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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 2237 “Algebraic and
Analytic Methods in Computational Complexity”.

Computational Complexity is concerned with the resources that are required for algorithms
to detect properties of combinatorial objects and structures. It has often proven true that the
best way to argue about these combinatorial objects is by establishing a connection (perhaps
approximate) to a more well-behaved algebraic setting.

Beside algebraic methods, analytic methods have been used for quite some time in theoretical
computer science. These methods can also be used to solve algebraic problems as show by many
recent examples in the areas of derandomization, coding theory or circuit lower bounds. These
new directions were in the focus of the Dagstuhl Seminar and reflect the developments in the
field since the previous Dagstuhl Seminar 18391.

This Dagstuhl Seminar brought together researchers who are using a diverse array of algebraic
and analytic methods in a variety of settings. Researchers in these areas are relying on ever more
sophisticated and specialized mathematics and this seminar played a role in educating a diverse
community about the latest new techniques, spurring further progress.
Seminar September 11–16, 2022 – http://www.dagstuhl.de/22371
2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory

of computation → Circuit complexity; Theory of computation → Problems, reductions and
completeness; Theory of computation

Keywords and phrases (de-)randomization, algebra, circuits, coding, computational complexity
Digital Object Identifier 10.4230/DagRep.12.9.41

1 Executive Summary
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Introduction
The seminar on algebraic methods in computational complexity has traditionally taken place
every two years in Dagstuhl for many years. In these meetings, we try to bring together
leading researchers in a very active and broad area of theoretical computer science, having
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the algebraic methods as a unifying thread. Researchers in these areas are relying on ever
more sophisticated and specialized mathematics and this seminar can play an important role
in educating a diverse community about the latest new techniques, spurring further progress.
For the year 2022, we added a new direction that focused besides the algebraic aspect also
on methods from analysis. The seminar brought together more than 40 researchers covering
a wide spectrum of complexity theory. We had 24 talks, most of them lasting about 45
minutes, leaving ample room for discussions. In the following we describe the major topics of
discussion in more detail.

Some areas of focus
Computational complexity is a fundamental and active subarea of theoretical computer
science that has produced some of the most well known results in theoretical computer
science in recent years. Here we discuss a few broad themes which highlight the importance
of algebra as well as analytic methods in computational complexity, and which represent
some focus areas of our present seminar.

Circuit complexity

Boolean circuits are one of the most fundamental model of computation. Due to its combin-
atorial nature, they seem more amenable to formal analysis than the uniform models such
as Turing machines. The classical lower bound techniques of Razborov and Smolensky are
algebraic: they work by first approximating AC0[p] circuits (constant-depth circuits with
AND, OR, NOT, and counting modulo prime p gates) by low-degree polynomials, and then
proving that certain functions (like Majority) are not well correlated with such polynomials.
The Fourier expansion of a Boolean function and its representation as a real multilinear
polynomial as well as other analytic tools have been added in the last years to the bag of
tools used for the analysis of Boolean circuits. In the seminar, we talked about recent results
in circuit complexity.

Andrej Bogdanov talked about property testing. He constructed a natural tester that
tells if a function from {0, 1}n to some Abelian group is linear (or far from linear).

Frederic Green proved a new correlation bound for certain exponential sums over charac-
teristic 5.

William Hoza presented the construction of a Boolean function F on n bits such that F

can be computed by a uniform depth-(d + 1) AC0 circuit with O(n) wires, but F cannot be
computed by any depth-d TC0 circuit with n1+γ wires, where γ = 2−Θ(d) and d = o(log log n).

Michal Koucký dealt with a classical problem, the simulation of Turing machines by
circuits. He gave a new simple proof for the classical result that Turing machines running in
time t(n) and space s(n) can be simulated by Boolean circuits of size O(t(n) log s(n)) and of
depth O(t(n)).

Meena Mahajan presented relations between the minimum rank of a decision tree com-
puting a Boolean function and other complexity measures of the function, as well as a new
composition theorem in terms of rank and decision tree depth.

In his talk, Rocco Servedio establish a new quantitative version of the Gaussian correlation
inequality. It gives a lower bound on the correlation of two centrally symmetric convex sets
based on their “common influential directions”.

A new family of sampling tasks was presented by Rahul Santhanam. He showed that any
non-trivial algorithmic solutions to tasks from this family imply new uniform lower bounds
such as “NP not in uniform ACC0” or “NP does not have uniform depth-2 threshold circuits”.
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Algebraic complexity

A class of circuits especially suited for the use of algebraic techniques is that of arithmetic
circuits. These are circuit models that compute polynomial functions by using gates per-
forming arithmetic operations (additions, subtractions, multiplications, divisions, etc.) Two
fundamental complexity measures for arithmetic circuits are the size and the depth or product
depth.

Prerona Chatterjee considered the question of proving lower bounds against non-
commutative circuits better than Ω(n log n). She showed a quadratic lower bound against
the n-variate central symmetric polynomial.

Arkadev Chattopadhyay talked about connections between communication complexity
measures and monotone arithmetic circuit lower bounds. He constructed a (set-multilinear)
monotone polynomial that can be computed by depth-3 multilinear formulas in sub-cubic size
but requires exponential size to be computed by monotone arithmetic circuits. Second, he
proved the existence of a polynomial over n variables in VNP, for which 2Ω(n) size ϵ-sensitive
lower bounds hold if ϵ = 2−O(n).

Barrier results in the group-theoretic approach to bounding the exponent of matrix
multiplication was the topic of the talk by Chris Umans. He showed that finite groups of Lie
type cannot prove ω = 2 and presented a further barrier result. Then he gave constructions
in the continuous setting, which can potentially evade these two barriers.

Pascal Koiran studied the decomposition of multivariate polynomials as sums of powers
of linear forms. He presented a randomized algorithm for the following problem: Given a
homogeneous polynomial of degree d as a blackbox, decide whether it can be written as a
linear combination of dth powers of linearly independent complex linear forms.

Nutan Limaye proved in her talk that there exist monomial symmetric polynomials that
are hard for the class VNP.

Pseudorandomness and derandomization

The theory of pseudorandomness studies explicit constructions and applications of “random-
like” objects of combinatorial or algebraic type. The common feature of such objects is that
it is easy to construct one by random sampling, but a very important problem is to get
efficient deterministic constructions.

Eric Allender proved that Kolmogorov complexity characterizes statistical zero knowledge.
Every decidable promise problem has a non-interactive statistical zero-knowledge proof system
if and only if it is randomly reducible to a promise problem for Kolmogorov-random strings.

Random walks on expanders are a useful tool in complexity theory. Gil Cohen explained
how the inherent cost can be reduced from exponential to linear by applying a permutation
after each random step.

Sylvester-Gallai type problems have found applications in polynomial identity testing
and coding theory. Rafael Oliveira discussed such problems and their relation to algebraic
computation, and presented a theorem that radical Sylvester-Gallai configurations for cubic
polynomials must have small dimension.

Ryan O’Donnell explained how to contruct high-dimensional expanders from Chevalley
groups.

Motivated by applications from cryptography, Noga Ron-Zewi studied a new interactive
variant of PCPs, so-called interactive oracle proofs. She showed that for this model the
overhead in the encoding can be made arbitrarily small and the prover complexity overhead
can be made constant.
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In his talk, Amon Ta-Shma gave an alternative construction of the lossless condenser by
Guruswami, Umans and Vadhan. Instead of Parvaresh-Vardy codes, the new construction is
based on multiplicity codes.

A Chor-Goldreich source is a sequence of random variables where each has min-entropy,
even conditioned on the previous ones. David Zuckerman showed how to extend this
notion in several ways, most notably allowing each random variable to have Shannon entropy
conditioned on previous ones. He then proved new pseudorandomness results for Shannon-CG
sources.

Border complexity and invariant theory

Many problems in algebraic complexity theory can be written as an orbit closure problem.
We are given a vector space V and a group G acting on it. The orbit Gv of an element
v ∈ V is the set {gv | g ∈ G} and its closure is the usual closure in the Zariski topology.
For instance, we can formulate the tensor border rank problem in this language: Alder and
Strassen proved that the question whether a tensor t has border rank ≤ r is equivalent to
deciding whether t is in the orbit closure (under the standard action GLn × GLn × GLn) of
the so-called unit tensor of size r. As second example is provided by Mulmuley and Sohoni
who formulated a variant of the permanent versus determinant question as an orbit closure
problem.

Peter Bürgisser gave an introduction to new algorithmic and analysis techniques that
extend convex optimization from the classical Euclidean setting to a general geodesic setting.
He pointed out the relevance of invariant and representation theory for for complexity theory
and highlighted connections to different areas of mathematics, statistics, computer science,
and physics.

Rohit Gurjar considered determinants of the matrices of the form (
∑

i Aixi) where each
Ai is rank one. He showed that this class of polynomials is closed under approximation.

Approximate complexity was also the topic of Nitin Saxena’s talk. He proved that the
border of bounded-top-fanin depth-3 circuits is relatively easy, since it can be computed by a
polynomial-size algebraic branching program.

Counting and quantum complexity

In order to study the #P (non-)membership of some concrete problems, Christian Ikenmeyer
started the development of a classification of the #P closure properties on affine varieties.
He obtained oracle separations between counting classes, where the existence of the oracle is
based on properties of the vanishing ideal of an affine variety.

Steve Fenner considered a problem in quantum computing, the construction of a “realistic”
Hamiltonian for quantum fanout.

Conclusion
The talks of the seminar ranged over a broad assortment of subjects with the underlying
theme of using algebraic and analytic techniques. It was a very fruitful meeting and it has
hopefully initiated new directions in research. Several participants specifically mentioned
that they appreciated the particular focus on a common class of techniques (rather than end
results) as a unifying theme of the workshop. We look forward to our next seminar.
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3 Overview of Talks

3.1 Kolmogorov Complexity Characterizes Statistical Zero Knowledge
Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY 4.0 International license
© Eric Allender

Joint work of Eric Allender, Harsha Tirumala, and Shuichi Hirahara
Main reference Eric Allender, Shuichi Hirahara, Harsha Tirumala: “Kolmogorov Complexity Characterizes

Statistical Zero Knowledge”, ECCC TR22-127, 2022
URL https://eccc.weizmann.ac.il/report/2022/127/

We show that a decidable promise problem has a non-interactive statistical zero-knowledge
proof system if and only if it is randomly reducible to a promise problem for Kolmogorov-
random strings, with a superlogarithmic additive approximation term. This extends recent
work by Saks and Santhanam (CCC 2022). We build on this to give new characterizations of
Statistical Zero Knowledge (SZK), as well as the related classes NISZKL and SZKL.

3.2 Direct sum testing over Abelian groups
Andrej Bogdanov (The Chinese University of Hong Kong, HK)

License Creative Commons BY 4.0 International license
© Andrej Bogdanov

Joint work of Andrej Bogdanov, Gautam Prakriya
Main reference Andrej Bogdanov, Gautam Prakriya: “Direct Sum and Partitionability Testing over General

Groups”, in Proc. of the 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), LIPIcs, Vol. 198,
pp. 33:1–33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.33

I spoke about a natural tester that tells if a function from {0, 1}n to some Abelian group like
Z3 is linear (or far from linear). More generally, the tester can be used to tell if a multivariate
function g(x1, ..., xn) admits a direct sum decomposition f(x1) + ... + f(xn) for some f .

3.3 Optimization, Complexity and Invariant Theory
Peter Bürgisser (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Peter Bürgisser

Joint work of Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, Avi Wigderson
Main reference Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, Avi Wigderson: “Towards

a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment
Maps and Polytopes”, in Proc. of the 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2019.

URL http://dx.doi.org/10.1109/focs.2019.00055

Invariant and representation theory studies symmetries by means of group actions and is a
well established source of unifying principles in mathematics and physics. Recent research
suggests its relevance for complexity and optimization through quantitative and algorithmic
questions. The goal of the talk is to give an introduction to new algorithmic and analysis
techniques that extend convex optimization from the classical Euclidean setting to a general
geodesic setting. We also point out surprising connections to a diverse set of problems in
different areas of mathematics, statistics, computer science, and physics.
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3.4 A Quadratic Lower Bound Against Homogeneous Non-Commutative
Circuits

Prerona Chatterjee (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 4.0 International license
© Prerona Chatterjee

Joint work of Prerona Chatterjee, Pavel Hrubeš

Inspite of the various strong lower bounds against constant depth circuits and the depth
reduction results in algebraic circuit complexity, the best lower bound known against general
algebraic circuits remains Ω(n log n) [Strassen, 1973; Baur-Strassen 1983]. Nothing better is
known even in the more restrictive non-commutative setting where the product gates are
considered to denote non-commutative multiplication. This is surprising since exponential
lower bunds are known against algebraic formulas [Nisan 1991] and super polynomial lower
bounds are known against homogenous formulas for polynomials computable even by ABPs
[Tavenas, Limaye, Srinivasan, 2022]. A natural question is therefore to prove better lower
bounds against non-commutative circuits. In this talk, we make progress in this question
by showing a quadratic lower bound against the n-variate central symmetric polynomial.
Further, the simplicity of the proof motivates us to ask whether a similar lower bound can be
shown against general non-commutative circuits. This is ongoing work with Pavel Hrubes.

3.5 Monotone Arithmetic Lower Bounds Via Communication
Complexity

Arkadev Chattopadhyay (TIFR – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Arkadev Chattopadhyay

Joint work of Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, Partha Mukhopadhyay
Main reference Arkadev Chattopadhyay, Rajit Datta, Partha Mukhopadhyay: “Lower bounds for monotone

arithmetic circuits via communication complexity”, in Proc. of the STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pp. 786–799,
ACM, 2021.

URL http://dx.doi.org/10.1145/3406325.3451069

We make two novel connections between communication complexity measures and monotone
arithmetic circuit lower bounds. The first connection exploits the corruption measure. We
formulate a general method that constructs a set-multilinear polynomial Pf from a Boolean
function f and uses the corruption bound of f ◦XOR to imply a size lower bound on monotone
arithmetic circuits computing Pf . Using this method, we construct [1] a (set-multilinear)
monotone polynomial that can be computed by depth-3 multilinear formulas in sub-cubic
size but require exponential size to be computed by monotone arithmetic circuits. It was not
even known, before our work, if general formulas of arbitrary depth could provide exponential
savings in size over monotone circuits.

The second connection uses the discrepancy measure from communication complexity to
lower bound the size of monotone circuits computing a polynomial even in an ϵ-sensitive way.
Very recently, Hrubes [3] showed that ϵ-sensitive monotone lower bounds, for arbitrary small
positive ϵ, implies general circuit lower bounds. We formulate [2] a general recipe between
discrepancy under a universal distribution and ϵ-sensitive bounds. Using this connection, we
show the following:
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there exists a polynomial over n variables, crafted out of the Boolean inner-product
function defined using expander graphs, that is in VNP and for which 2Ω(n) size ϵ-
sensitive lower bounds hold if ϵ = 2−O(n).
the spanning tree polynomial, defined over the edge variables of a complete graph on n

vertices, needs 2Ω(n) size to be computed by monotone circuits in an ϵ-sensitive way as
long as ϵ = 2−O(n). Recall that the number of variables of this spanning tree polynomial
is Θ(n2) and it is in VP.

This is based on two papers referenced below.

References
1 Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay, Lower bounds for mono-

tone arithmetic circuits via communication complexity, STOC, 2021.
2 Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay, Monotone

complexity of spanning tree polynomial revisited, ITCS, 2022.
3 Pavel Hrubes, On ϵ-sensitive monotone computations, Computational Complexity, 2020.

3.6 Random walks on rotating expanders
Gil Cohen (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Gil Cohen

Joint work of Gil Cohen, Gal Maor

Random walks on expanders are extremely useful in TOC. Unfortunately though, they
have an inherent cost. E.g., the spectral expansion of a Ramanujan graph deteriorates
exponentially with the length of the walk (when compared to a Ramanujan graph of the
same degree). In this talk, we will see how this exponential cost can be reduced to linear
by applying a permutation after each random step. These permutations are tailor-made to
the graph at hand, requiring no randomness. Our proof is established using the powerful
framework of finite free probability and interlacing families that was introduced, around
ten years ago, by Marcus, Spielman and Srivastava in their seminal works on the existence
of bipartite Ramanujan graphs of every size and every degree, and in their solution to the
Kadison-Singer problem.

3.7 A “Realistic” Hamiltonian for Quantum Fanout
Stephen A. Fenner (University of South Carolina – Columbia, US)

License Creative Commons BY 4.0 International license
© Stephen A. Fenner

Joint work of Stephen A Fenner, Rabins Wosti
Main reference Stephen Fenner, Rabins Wosti: “Implementing the fanout operation with simple pairwise

interactions”, arXiv, 2022.
URL http://dx.doi.org/10.48550/ARXIV.2203.01141

We give a swap-invariant diagonal gate Un equivalent in constant depth to the n-qubit
fanout gate. For t = π/4 and real coupling constants {αi,j : 1 ≤ i, j ≤ n} with αi,j = αj,i,
αii = 0, the Hamiltonian Hα⃗ :=

∑
i<j αi,jZiZj implements Un (i.e., Un = exp(−iHα⃗t) up

to a global phase factor) if and only if: (1) all the αi,j are odd integers; and (2) for all i,
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∏
j ̸=i αi,j ≡ 1 (mod 4). We give tight constraints on {αi,j} as above for spatial arrangements

of identical qubits satisfying an inverse square law. These constraints are obtained using
modular arithmetic on rational numbers.

Joint work with Rabins Wosti.

3.8 New Correlation Bounds for Quadratic Polynomials
Frederic Green (Clark University – Worcester, US)

License Creative Commons BY 4.0 International license
© Frederic Green

Let p be an odd prime, ζ = e2πi/p a complex primitive pth root of unity, and χ : Z5 → C the
quadratic character over Zp. Let t ∈ Zp[x1, . . . , xn] be an n-variable quadratic polynomial∑

i,j cijxixj +
∑

i ℓixi. Consider the exponential sum,

S = 1
(p − 1)n

∑
x∈Zn

p

χ(
n∏

i=1
xi)ζt(x),

which can be interpreted as the correlation between the parity of the number of xi’s which
are quadratic residues and whether t(x) ≡ 0 (p). In 2001, Green (JCSS 69, 2004, pp. 28–
44) showed that for p = 3, |S| ≤ (|ζ − −ζ|/2)⌈n/2⌉, and that this bound can be met by
x1x2+x3x4+. . . . In this talk, we prove a tight bound for |S| when p = 5: |S| ≤ (|ζ−−ζ|)/2)n,
which can be met by the polynomial x2

1 + x2
2 + · · · + x2

n. The technique relies on some of
the simpler methods of those recently developed by Ivanov, Pavlovic, and Viola (ECCC
TR22-092, July 2022). The latter paper consider sums of the form,

1
2n

∑
x∈{0,1}n

ζ
∑n

i=1
xi(−1)t(x),

again with t quadratic, and, remarkably, prove tight upper bounds met by symmetric
polynomials for any complex unit ζ. It is not yet clear how to extend the simpler method for
p = 5 to other odd moduli.

3.9 Set of rank-1 determinant polynomials is closed under
approximations

Rohit Gurjar (Indian Institute of Technology – Mumbai, IN)

License Creative Commons BY 4.0 International license
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Joint work of Rohit Gurjar, Abhranil Chatterjee, Sumanta Ghosh, Roshan Raj

Consider the class of polynomials computed by rank-one determinants – determinants of
the matrices of the form (

∑
i Aixi) where each Ai is rank one. These polynomials appear

naturally in the study of bipartite matching and related combinatorial problems. We show
that this class of polynomials is closed under approximation. Interestingly, the proof of
closure uses ideas from combinatorial optimization, specifically Rado’s theorem on matroid
transversals.
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3.10 Depth-d Threshold Circuits vs. Depth-(d + 1) AND-OR Trees
William Hoza (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
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Joint work of William Hoza, Avishay Tal, Pooya Hatami, Roei Tell
Main reference Pooya Hatami, William Hoza, Avishay Tal, Roei Tell: “Depth-d Threshold Circuits vs. Depth-(d +

1) AND-OR Trees”, Electron. Colloquium Comput. Complex., Vol. TR22-087, 2022.
URL https://eccc.weizmann.ac.il/report/2022/087

For n ∈ N and d = o(log log n), we prove that there is a Boolean function F on n bits and a
value γ = 2−Θ(d) such that F can be computed by a uniform depth-(d + 1) AC0 circuit with
O(n) wires, but F cannot be computed by any depth-d TC0 circuit with n1+γ wires. This
bound matches the current state-of-the-art lower bounds for computing explicit functions by
threshold circuits of depth d > 2, which were previously known only for functions outside
AC0 such as the parity function. Furthermore, in our result, the AC0 circuit computing F is
a monotone read-once formula (i.e., an AND-OR tree), and the lower bound holds even in
the average-case setting with respect to advantage n−γ .

Our proof builds on the random projection procedure of Håstad, Rossman, Servedio, and
Tan, which they used to prove the celebrated average-case depth hierarchy theorem for AC0

(J. ACM, 2017). We show that under a modified version of their projection procedure, any
depth-d threshold circuit with n1+γ wires simplifies to a near-trivial function, whereas an
appropriately parameterized AND-OR tree of depth d + 1 maintains structure.

3.11 The algebraic geometry of the closure properties of #P
Christian Ikenmeyer (University of Liverpool, GB)

License Creative Commons BY 4.0 International license
© Christian Ikenmeyer

Joint work of Christian Ikenmeyer, Igor Pak
Main reference Christian Ikenmeyer, Igor Pak: “What is in #P and what is not?”, in Proc. of the 63rd IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
– November 3, 2022, pp. 860–871, IEEE, 2022.

URL http://dx.doi.org/10.1109/FOCS54457.2022.00087

Since 1995 the functional closure properties of #P are beautifully classified via the coefficients
in the expansion over the binomial basis. In order to study the #P (non-)membership of
concrete problems related to counting versions of TFNP problems, we start the development
of a classification of the #P closure properties on affine varieties. We obtain oracle separations
between counting classes, where the existence of the oracle is based on properties of the
vanishing ideal of an affine variety, which then translates to a specific polyhedron having no
integer point. This is a part of the recent FOCS 2022 paper “What is in #P and what is
not”, which is joint work with Igor Pak.

References
1 Christian Ikenmeyer and Igor Pak. What is in #P and what is not. Proceedings FOCS 2022,

full version on arXiv:2204.13149
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3.12 Black Box Absolute Reconstruction for Sums of Powers of Linear
Forms

Pascal Koiran (ENS – Lyon, FR)

License Creative Commons BY 4.0 International license
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Joint work of Pascal Koiran and Subhayan Saha
Main reference Pascal Koiran, Subhayan Saha: “Black Box Absolute Reconstruction for Sums of Powers of Linear

Forms”, in Proc. of the 42nd IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India,
LIPIcs, Vol. 250, pp. 24:1–24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2022.24

We study the decomposition of multivariate polynomials as sums of powers of linear forms.
We give a randomized algorithm for the following problem: If a homogeneous polynomial
f ∈ K[x1, ..., xn] (where K ⊆ C) of degree d is given as a blackbox, decide whether it can be
written as a linear combination of d-th powers of linearly independent complex linear forms.
The main novel features of the algorithm are:

For d = 3, we improve by a factor of n on the running time from the algorithm in (Koiran
and Skomra, 2020). The price to be paid for this improvement is that the algorithm now
has two-sided error.
For d > 3, we provide the first randomized blackbox algorithm for this problem that
runs in time poly(n, d) (in an algebraic model where only arithmetic operations and
equality tests are allowed). Previous algorithms for this problem (Kayal, 2011) as well as
most of the existing reconstruction algorithms for other classes appeal to a polynomial
factorization subroutine. This requires extraction of complex polynomial roots at unit
cost and in standard models such as the unit-cost RAM or the Turing machine this
approach does not yield polynomial time algorithms.
For d > 3, when f has rational coefficients (i.e. K = Q), the running time of the blackbox
algorithm is polynomial in n, d and the maximal bit size of any coefficient of f . This
yields the first algorithm for this problem over C with polynomial running time in the bit
model of computation.

These results are true even when we replace C by R. We view the problem as a tensor
decomposition problem and use linear algebraic methods such as checking the simultaneous
diagonalisability of the slices of a tensor. The number of such slices is exponential in d. But
surprisingly, we show that after a random change of variables, computing just 3 special slices
is enough. We also show that our approach can be extended to the computation of the actual
decomposition. This step relies on matrix diagonalisation which is not an algebraic step over
C. In forthcoming work we plan to extend these results to overcomplete decompositions, i.e.,
decompositions in more than n powers of linear forms.

3.13 Turning Turing Machines into Boolean Circuits
Michal Koucký (Charles University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Michal Koucký

We give a new simple proof for the classical result that Turing machines running in time
t(n) and space s(n) can be simulated by boolean circuits of size O(t(n)logs(n)) and of depth
O(t(n)). When we allow unbounded fan-in gates we can get circuits of the same size and
depth O(t(n)/loglogs(n)).
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3.14 The complexity of monomial symmetric polynomials
Nutan Limaye (IT University of Copenhagen, DK)
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Software Technology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT
Madras, Chennai, India, LIPIcs, Vol. 250, pp. 16:1–16:14, Schloss Dagstuhl – Leibniz-Zentrum für
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URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2022.16

The determinant of the Vandermonde matrix has a very simple algebraic formula. However,
the complexity of its permanent, denoted in this talk as Perm(V), is not known. The
permanent of the Vandermonde matrix is a “monomial symmetric polynomial”. In this talk
we show that there exist monomial symmetric polynomials that are hard for VNP.

3.15 Decision tree rank for Boolean functions
Meena Mahajan (The Institute of Mathematical Sciences – Chennai, IN)
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In this talk, I describe some relations between the minimum rank of a decision tree computing a
Boolean function and other complexity measures of the function. I also describe a composition
theorem in terms of rank and decision tree depth, and show how it simplifies some known
lower bounds on decision tree size and rank.

Joint work with Yogesh Dahiya.

3.16 Radical Sylvester-Gallai theorem for cubics – and beyond
Rafael Mendes de Oliveira (University of Waterloo, CA)

License Creative Commons BY 4.0 International license
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Joint work of Rafael Oliveira, Akash Kumar Sengupta
Main reference Rafael Mendes de Oliveira, Akash Sengupta: “Radical Sylvester-Gallai for Cubics”, Electron.

Colloquium Comput. Complex., Vol. TR22-131, 2022.
URL https://eccc.weizmann.ac.il/report/2022/131

In 1893, Sylvester asked a basic question in combinatorial geometry: given a finite set of
distinct points v1, . . . , vm ∈ RN such that the line defined by any pair of distinct points vi, vj

contains a third point vk in the set, must all points in the set be collinear?
Generalizations of Sylvester’s problem, which are known as Sylvester-Gallai type problems,

have found applications in algebraic complexity theory (in Polynomial Identity Testing –
PIT) and coding theory (Locally Correctable Codes). The underlying theme in all these
types of questions is the following:

Are Sylvester-Gallai type configurations always low-dimensional?
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In 2014, Gupta, motivated by such applications in algebraic complexity theory, proposed
wide-ranging non-linear generalizations of Sylvester’s question, with applications on the PIT
problem.

In this talk, we will discuss these non-linear generalizations of Sylvester’s conjecture,
their intrinsic relation to algebraic computation, and a recent theorem proving that radical
Sylvester-Gallai configurations for cubic polynomials must have small dimension.

Joint work with Akash Kumar Sengupta.

3.17 High-dimensional expanders from Chevalley groups
Ryan O’Donnell (Carnegie Mellon University – Pittsburgh, US)
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Joint work of Ryan O’Donnell, Kevin Pratt
Main reference Ryan O’Donnell, Kevin Pratt: “High-Dimensional Expanders from Chevalley Groups”, in Proc. of

the 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA,
USA, LIPIcs, Vol. 234, pp. 18:1–18:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
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In this talk I discussed recent joint work with Kevin Pratt on constructing high-dimensional
expanders.

Let Φ be an irreducible root system (other than G2) of rank at least 2, let F be a finite
field with p = charF > 3, and let GΦF be the corresponding Chevalley group. We describe
a strongly explicit high-dimensional expander (HDX) family of dimension rank(Φ), where
GΦF acts simply transitively on the top-dimensional faces; these are λ-spectral HDXs with
λ → 0 as p → ∞. This generalizes a construction of Kaufman and Oppenheim (STOC 2018),
which corresponds to the case Φ = Ad. Our work gives three new families of spectral HDXs
of any dimension ≥ 2, and four exceptional constructions of dimension 4, 6, 7, and 8.

3.18 Highly-efficient local proofs
Noga Ron-Zewi (University of Haifa, IL)

License Creative Commons BY 4.0 International license
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Joint work of Noga Ron-Zewi, Ron Rothblum

The celebrated PCP theorem from the 90’s shows that any mathematical proof can be
encoded in such a way that its correctness can be verified locally by reading only a tiny
number of bits from the encoding. A fundamental question that has drawn a great amount
of interest is what is the minimal overhead in encoding that is needed to allow for such highly
efficient local verification. While the original PCP theorem only guarantees a polynomial
overhead, a beautiful line of work has culminated in remarkably short encodings with only a
poly-logarithmic overhead. Motivated by cryptographic applications, we study a relatively
new interactive variant of PCPs, called Interactive Oracle Proofs, and show that for this
model the overhead in the encoding can be made arbitrarily small (approaching 1), and
moreover, the prover complexity overhead can be made constant.

The improved efficiency was obtained by replacing polynomial-based codes, commonly
used in such proof systems, with more efficient (tensor-based) codes. In particular, these
constructions bypassed a barrier imposed by the need to encode the computation using a
multiplication code.
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3.19 An Algorithmic Approach to Uniform Lower Bounds
Rahul Santhanam (University of Oxford, GB)
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We propose a new family of sampling tasks such that non-trivial algorithmic solutions to
certain tasks from this family imply frontier uniform lower bounds such as “NP not in uniform
ACC0” and “NP does not have uniform depth-2 threshold circuits”. Indeed, the most general
versions of these sampling tasks have implications even for central open problems such as
PSPACE vs P and NP vs P.

We observe that these sampling tasks do have non-trivial solutions under standard
cryptographic assumptions. Moreover, we can use our framework to capture uniform versions
of known non-uniform lower bounds, as well as classical results such as the space hierarchy
theorem and Allender’s uniform lower bound for the Permanent. Our framework can also be
used to show that NP does not have uniform AC0 circuits with a bottom layer of Mod 6
gates – the non-uniform version of this lower bound appears to be an open question.

3.20 Demystifying the border of depth-3 algebraic circuits
Nitin Saxena (Indian Institute of Technology Kanpur, IN)
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Border (or approximative) complexity of polynomials plays an integral role in GCT approach
to P̸=NP. This raises an important open question: can a border circuit be efficiently
debordered (i.e. convert from approximative to exact)? Or, could the approximation involve
exponential-precision which may not be efficiently simulable? Circuits of depth 3 or 4, are a
good testing ground for this question.

Recently, (Kumar ToCT’20) proved the universal power of the border of top-fanin-2
depth-3 circuits. We recently solved some of the related open questions. In this talk we
outline our result: border of bounded-top-fanin depth-3 circuits is relatively easy– it can
be computed by a polynomial-size algebraic branching program (ABP). Our de-bordering
paradigm has many applications, especially in identity testing and lower bounds.
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Based on the works with Prateek Dwivedi & Pranjal Dutta (CCC 2021) (FOCS 2021,
invited to SICOMP).

3.21 Convex influences and a quantitative Gaussian correlation
inequality

Rocco Servedio (Columbia University – New York, US)
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The Gaussian correlation inequality (GCI), proved by Royen in 2014, states that any two
centrally symmetric convex sets (say K and L) in Gaussian space are positively correlated.
We establish a new quantitative version of the GCI which gives a lower bound on this
correlation based on the “common influential directions” of K and L. This can be seen as
a Gaussian space analogue of Talagrand’s well known correlation inequality for monotone
Boolean functions.

To obtain this inequality, we propose a new approach, based on analysis of Littlewood
type polynomials, which gives a recipe for transferring qualitative correlation inequalities
into quantitative correlation inequalities. En route, we also give a new notion of influences
for symmetric convex symmetric sets over Gaussian space which has many of the properties
of influences of Boolean functions over the discrete cube. Much remains to be explored about
this new notion of influences for convex sets.

Based on joint work with Anindya De and Shivam Nadimpalli.

3.22 Lossless Condensers from Multiplicity Codes
Amnon Ta-Shma (Tel Aviv University, IL)
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In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless condenser
based on Parvaresh-Vardy codes. This lossless condenser is a fundamental building block in
many constructions, and, in particular, is behind state-of-the-art extractor constructions.
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We give an alternative construction that is based on Multiplicity codes. While the
bottom-line result is similar to the GUV result, the analysis is very different. In GUV (and
Parvaresh-Vardy codes) the polynomial ring is closed to a finite field, and every polynomial
is associated with related elements in the finite field. In our construction a polynomial from
the polynomial ring is associated with its iterated derivatives. Our analysis boils down to
solving a differential equation over a finite field, and uses previous techniques, introduced
by Kopparty for the list-decoding setting. We also observe that these (and more general)
questions were studied in differential algebra, and we use the terminology and result developed
there.

We believe these techniques have the potential to get better constructions and solve the
current bottlenecks in the area.

3.23 Matrix multiplication via matrix groups
Christopher Umans (California Institute of Technology – Pasadena, US)
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Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix
multiplication. Previous work within this approach ruled out certain families of groups as a
route to obtaining ω = 2, while other families of groups remain potentially viable. In this
work we turn our attention to matrix groups, whose usefulness within this framework was
relatively unexplored.

We first show that finite groups of Lie type cannot prove ω = 2 within the group-theoretic
approach. This is based on a representation-theoretic argument that identifies the second-
smallest dimension of an irreducible representation of a group as a key parameter that
determines its viability in this framework. Our proof builds on Gowers’ result concerning
product-free sets in quasirandom groups. We then give another barrier that rules out certain
natural matrix group constructions that make use of subgroups that are far from being
self-normalizing.

Our barrier results leave open several natural paths to obtain exponent 2 via matrix
groups. To explore these routes we propose working in the continuous setting of Lie groups,
in which we develop an analogous theory. Obtaining the analogue of exponent 2 in this
potentially easier setting is a key challenge that represents an intermediate goal short of
actually proving ω = 2. We give constructions in the continuous setting, which evade our
two barriers, and indeed are “best-possible” in a precise sense. We then describe a new
ingredient – “separating polynomials” – which allow us to recover a full-fledged framework
yielding actual algorithms in the Lie setting (rather than constructions whose interest is only
by analogy).
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3.24 Almost Chor-Goldreich Sources and Adversarial Random Walks
David Zuckerman (University of Texas – Austin, US)
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A Chor-Goldreich (CG) source is a sequence of random variables where each has min-entropy,
even conditioned on the previous ones. We extend this notion in several ways, most notably
allowing each random variable to have Shannon entropy conditioned on previous ones. We
achieve pseudorandomness results for Shannon-CG sources that were not known to hold even
for standard CG sources, and even for the weaker model of Santha-Vazirani sources.

Specifically, we construct a deterministic condenser that on input a Shannon-CG source,
outputs a distribution that is close to having constant entropy gap, namely its min-entropy
is only an additive constant less than its length. Therefore, we can simulate any randomized
algorithm with small failure probability using almost CG sources with no multiplicative
slowdown. This result extends to randomized protocols as well, and any setting in which we
cannot simply cycle over all seeds, and a “one-shot” simulation is needed. Moreover, our
construction works in an online manner, since it is based on random walks on expanders.

Our main technical contribution is a novel analysis of random walks, which should be of
independent interest. We analyze walks with adversarially correlated steps, each step being
entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain
interleaved walks on two expanders) accumulate entropy.
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