
Report from Dagstuhl Seminar 22391

Cognitive Robotics
Fredrik Heintz∗1, Gerhard Lakemeyer∗2, and Sheila McIlraith∗3

1 Linköping University, SE. fredrik.heintz@liu.se
2 RWTH Aachen University, DE. gerhard@kbsg.rwth-aachen.de
3 University of Toronto, CA. sheila@cs.toronto.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22391 on the topic
of “Cognitive Robotics”. Cognitive Robotics is concerned with endowing robots or software
agents with higher level cognitive functions that involve reasoning, for example, about goals,
perception, actions, the mental states of other agents, and collaborative task execution. The
seminar is the latest event in a series of events on this topic that were initiated in 1998. With its
roots in knowledge representation and reasoning, the program for this seminar was influenced by
transformative advances in machine learning and deep learning, by recent advances in human-robot
interactions, and by issues that arise in the development of trustworthy cognitive robotic systems.
Reflective of this, the seminar featured sessions devoted to the following four themes: cognitive
robotics and KR, verification of cognitive robots, human-robot interaction and robot ethics, and
planning and learning. Each theme consisted of plenary talks, plenary discussions and working
groups resulting in a research road map for the coming years. There was also a poster session
where new or published results could be presented by the participants.

The seminar was very successful and well received by the participants thanks to the excellent
environment for exchanging ideas provided by Schloss Dagstuhl.
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Cognitive Robotics is concerned with endowing robots or software agents with higher level
cognitive functions that involve reasoning, for example, about goals, perception, actions,
the mental states of other agents, collaborative task execution, etc. This research agenda
has historically been pursued by describing, in a language suitable for automated reasoning,
enough of the properties of the robot, its abilities, and its environment, to permit it to
make high-level decisions about how to act. Such properties were typically encoded by a
human, but with recent advances in machine learning, many of these properties, and the

∗ Editor / Organizer
Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Cognitive Robotics, Dagstuhl Reports, Vol. 12, Issue 9, pp. 200–219
Editors: Fredrik Heintz, Gerhard Lakemeyer, and Sheila McIlraith

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fredrik.heintz@liu.se
mailto:gerhard@kbsg.rwth-aachen.de
mailto:sheila@cs.toronto.edu
http://www.dagstuhl.de/22391
https://doi.org/10.4230/DagRep.12.9.200
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


Fredrik Heintz, Gerhard Lakemeyer, and Sheila McIlraith 201

determination of how to act, can be learned or adapted through experience. This in turn
raises the question of how we can ensure that robots, or other intelligent agents, can be
constructed in a manner that is compatible with human values and modes of interactions.

The Cognitive Robotics workshop series has been running since 1998 and includes a
Dagstuhl Seminar held in 2010. While progress in Cognitive Robotics has undoubtedly been
made over the past twenty years, it is fair to say that we are still far away from creating
truly cognitive robots. In particular, the years since the previous Dagstuhl Seminar have
seen tremendous progress in many areas that touch on the realisation of cognitive robots
such as advances in human-robot interaction and machine learning.

This seminar featured sessions devoted to the following four themes:
Cognitive Robotics and KR: While knowledge representation and reasoning (KR) has played

a role in robotic systems for many years, for example, by incorporating domain knowledge
in the form of description logic-based ontologies or using automated planning systems for
high-level robot control, obstacles remain, which prevent today’s robots from benefiting
from the true potential of KR. In this session we re-visited the state of the art of how KR
is used in robotics and discussed challenges and possible benchmark problems that would
demonstrate the need and benefit of KR techniques for cognitive robots. The session was
organized by Michael Beetz, University of Bremen.

Verification of Cognitive Robots: Verification has been an active research area in formal
methods for many years. It is also an important topic when it comes to cognitive robots,
especially when it comes to achieving trustworthiness. However, the sheer complexity
of the interplay between a robot’s hard- and software components makes verification
particularly challenging. In this session we discussed where we currently stand in terms
of verifying cognitive robots and what challenges lie ahead. The session was organized by
Michael Fisher, University of Manchester.

Human-robot Interaction and Robot Ethics: For cognitive robots to be useful in human
environments, effective human-robot interaction (HRI) plays a crucial role. Besides
the technological challenges such as multi-modal communication, ethical considerations
have become more and more important. These range from robots observing norms and
conventions to humans viewing robots as moral agents. In this session we discussed the
many facets of robot ethics in the context of HRI and identified a number of future
challenges and open problems. The session was organized by Matthias Scheutz, Tufts
University.

Planning and Learning: While planning and learning have traditionally been separate re-
search tracks in cognitive robotics, recent work has shown how action primitives that
form the basis of planning can be learned from data without background knowledge,
thus avoiding the need for hand-crafted solutions. In this sessions this work and related
proposals were discussed and a roadmap with short- and long-term challenges was drawn
up. The session was organized by Hector Geffner, ICREA and Universitat Pompeu
Fabra, Spain. The format of the sessions varied and consisted of one or more plenary
talks, plenary discussions and/or working groups. Working groups for all four themes
discussed challenges and roadmaps for the future, and one representative of each group
presented their findings on the last day of the seminar. Besides talks and discussions
that centered around the four themes, the seminar also featured two invited talks by Luis
Lamb, Universidade Federal Do Rio Grande Do Sul, on neurosymbolic AI and by Jan
Peters, TU Darmstadt, on robot learning. In addition, a number of participants gave
poster presentations on their research.
The organizers of the seminar wish to thank Schloss Dagstuhl for providing such an

excellent environment for exchanging ideas on how to move the field of cognitive robotics
forward.
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3 Overview of Talks

3.1 Knowledge Representation and Reasoning for Cognition-enabled
Robot Manipulation

Michael Beetz (Universität Bremen, DE)

License Creative Commons BY 4.0 International license
© Michael Beetz

Robotic agents that can accomplish manipulation tasks with the competence of humans
have been the holy grail for AI and robotics research for more than 50 years. However,
while the fields made huge progress over the years, this ultimate goal is still out of reach. I
believe that this is the case because the knowledge representation and reasoning methods
that have been proposed in AI so far are necessary but still too abstract. In this talk I
propose to endow robots with the capability to mentally “reason with their eyes and hands,”
that is to internally emulate and simulate their perception-action loops based on photo-
realistic images and faithful physics simulations, which are made machine-understandable
by casting them as virtual symbolic knowledge bases. These capabilities allow robots to
generate huge collections of machine-understandable manipulation experiences, which they
can then generalize into commonsense and intuitive physics knowledge applicable to open
manipulation task domains. The combination of learning, representation, and reasoning will
equip robots with an understanding of the relation between their motions and the physical
effects they cause at an unprecedented level of realism, depth, and breadth, and enable
them to master human-scale manipulation tasks. This breakthrough will be achievable by
combining simulation and visual rendering technologies with mechanisms to semantically
interpret internal simulation data structures and processes.

3.2 Online Replanning with Human-in-The-Loop for Non-Prehensile
Manipulation in Clutter – A Trajectory Optimization based
Approach

Tony Cohn (University of Leeds, GB)

License Creative Commons BY 4.0 International license
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Joint work of RafaelPapalla, Anthony G. Cohn, Mehmet R. Dogar

We are interested in the problem where a number of robots, in parallel, are trying to solve
reaching through clutter problems in a simulated warehouse setting. In such a setting, we
investigate the performance increase that can be achieved by using a human-in-the-loop
providing guidance to robot planners. These manipulation problems are challenging for
autonomous planners as they have to search for a solution in a high- dimensional space. In
addition, physics simulators suffer from the uncertainty problem where a valid trajectory
in simulation can be invalid when executing the trajectory in the real-world. To tackle
these problems, we propose an online-replanning method with a human-in-the-loop. This
system enables a robot to plan and execute a trajectory autonomously, but also to seek high-
level suggestions from a human operator if required at any point during execution. This
method aims to minimize the human effort required, thereby increasing the number of robots
that can be guided in parallel by a single human operator. We performed experiments in
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simulation and on a real robot, using an experienced and a novice operator. Our results show
a significant increase in performance when using our approach in a simulated warehouse
scenario and six robots.

3.3 Joint Perceptual Learning and Natural Language Acquisition for
Autonomous Robots

Tony Cohn (University of Leeds, GB)

License Creative Commons BY 4.0 International license
© Tony Cohn

Joint work of Muhannad Alomari, Fangjun Li, David C. Hogg, Anthony G. Cohn

In this work, the problem of bootstrapping knowledge in language and vision for autonomous
robots is addressed through novel techniques in grammar induction and word grounding
to the perceptual world. In particular, we demonstrate a system, called OLAV, which is
able, for the first time, to (1) learn to form discrete concepts from sensory data; (2) ground
language (n-grams) to these concepts; (3) induce a grammar for the language being used to
describe the perceptual world; and moreover to do all this incrementally, without storing all
previous data. The learning is achieved in a loosely-supervised manner from raw linguistic
and visual data. Moreover, the learnt model is transparent, rather than a black-box model
and is thus open to human inspection. The visual data is collected using three different
robotic platforms deployed in real-world and simulated environments and equipped with
different sensing modalities, while the linguistic data is collected using online crowdsourcing
tools and volunteers. The analysis performed on these robots demonstrates the effectiveness
of the framework in learning visual concepts, language groundings and grammatical structure
in these three online settings.

3.4 Verifying Autonomous Systems
Michael Fisher (University of Manchester, GB)

License Creative Commons BY 4.0 International license
© Michael Fisher

Autonomy represents a step-change in systems development and requires new approaches to
system architectures, to systems analysis and to effective usage.

In this presentation, I describe an approach that utilises the modularity and heterogeneity
of (robotic) software architectures to provide a hybrid agent architecture. Then, a range of
verification techniques can be applied to the different components, from formal verification
applied to the core autonomous decision-making through to varieties of testing used in other
parts of the system.

Finally, an important component is the use of runtime verification (or runtime monitoring)
to check for anomolies and violations. Together, these mechanisms provide a basis for more
relaible, transparent, trustworthy and verifiable autonomous systems.
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3.5 Top-down Representation Learning for Acting and Planning
Hector Geffner (ICREA and Universitat Pompeu Fabra, ES)
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Recent breakthroughs in AI have shown the remarkable power of deep learning and deep
reinforcement learning. These developments, however, have been tied to specific tasks, and
progress in out-of-distribution generalization has been limited. While it is assumed that these
limitations can be overcome by incorporating suitable inductive biases in neural nets, this is
left vague and informal, and does not provide meaningful guidance. In this talk, I articulate
a different learning approach where representations are learned over domain-independent
target languages whose structure and semantics yield a meaningful and strongly biased
hypothesis space. The learned representations do not emerge then from biases in a low level
architecture but from a general preference for the simplest hypothesis that explain the data.
I illustrate this general idea by considering three learning problems in AI planning: learning
general actions models, learning general policies, and learning general subgoal structures
(“intrinsic rewards”). In all these cases, learning is formulated and solved as a combinatorial
optimization problem although nothing prevents the use of deep learning techniques instead.
Indeed, learning representations over domain-independent languages with a known structure
and semantics provides an account of what is to be learned, while learning representations
with neural nets provides a complementary account of how representations can be learned.
The challenge and the opportunity is to bring the two approaches together.

3.6 Better Autonomy Through Uncertainty
Nick Hawes (Oxford University, GB)
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Due to the challenges of perception and action, and inevitable inaccuracies in world modelling,
the results of a robot’s interactions with its environment are inherently stochastic. To
successfully complete extended missions under such conditions it is therefore essential that
autonomous robots use techniques from decision-making under uncertainty to plan goal-
directed behaviour. In this talk I will give an overview of our recent work on planning under
uncertainty for autonomous robots, drawing examples from mobile service robots, underwater
vehicles, and quadrupeds.

3.7 Cognitive Robotics – A KR Perspective
Gerhard Lakemeyer (RWTH Aachen University, DE)

License Creative Commons BY 4.0 International license
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In this overview talk I address some of the main representation and reasoning techniques
that have been used in robotic systems. On the representation side, these include simple
databases (logical literals), description logics, and geometric or topological maps with semantic
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annotations. On the reasoning side, we find methods for temporal, spatial, and uncertainty
reasoning as well as automated planning techniques. I also touch upon the need for execution
monitoring and failure diagnosis. At the end of my talk I briefly introduce the RoboCup
Logistics League, where robots interact with machines in a production logistics scenario and
which can serve as a benchmark for applying KR in robotics, both in simulation and on real
robots.

3.8 Learning and Reasoning in Neurosymbolic AI
Luis Lamb (Universidade Federal Do Rio Grande Do Sul, BR))

License Creative Commons BY 4.0 International license
© Luis Lamb

Neurosymbolic AI aims to bring together the statistical nature of machine learning and
the logical essence of reasoning in AI systems. Recently, leading technology companies and
research groups have put forward agendas for the development of the field, as modern AI
systems require sound reasoning and improved explainability. In this talk, we highlight
Neurosymbolic AI research results that led to applications and novel developments towards
building richer AI systems. We summarize how the field evolved over the years and how it
can potentially contribute to improved explainability and the effective integration of learning
and reasoning in robust AI.

3.9 Learning Grounded Language for Human Interaction
Cynthia Matuszek (University of Maryland, Baltimore County, US)

License Creative Commons BY 4.0 International license
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Robots deployed today largely perform a predefined set of tasks in limited, controlled
environments. In order to handle the complexity of human-centric spaces, it is necessary
to learn about the world and tasks from human end users, and natural language is a key
modality for such learning. Two high level approaches to understanding and learning from
such language are, first, learning probabilistic grammars describing the perceptual state of
the world and, second, learning directly from speech, without any textual intermediary. This
talk describes work on using a combination of language and perceptual data to learn about
how people describe objects in the world, with the long-term goal of understanding tasks and
instructions presented in natural language by non-specialist end users. The importance of
using speech directly is discussed, and the effectiveness of using featurized speech is compared
to ASR-based approaches. Using speech not only improves performance on the language
grounding task, but also reduces performance differences among different demographic groups,
leading to more immediately deployable robotic systems.
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3.10 Reward Machines: Formal Languages and Automata for
Reinforcement Learning

Sheila McIlraith (University of Toronto, CA)

License Creative Commons BY 4.0 International license
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Reinforcement Learning (RL) is proving to be a powerful technique for building sequential
decision-making systems in cases where the complexity of the underlying environment
is difficult to model. Two challenges that face RL are reward specification and sample
complexity. Specification of a reward function – a mapping from state to numeric value –
can be challenging, particularly when reward-worthy behaviour is complex and temporally
extended. Further, when reward is sparse, it can require millions of exploratory episodes for
an RL agent to converge to a reasonable quality policy. In this talk I’ll show how formal
languages and automata can be used to represent complex non-Markovian reward functions.
I’ll present the notion of a Reward Machine, an automata-based structure that provides a
normal form representation for reward functions, exposing function structure in a manner
that greatly expedites learning. Finally, I’ll also show how these machines can be generated
via symbolic planning or learned from data, solving (deep) RL problems that otherwise could
not be solved.

3.11 Model Learning for Plannning
Christian Muise (Queens University – Kingston, CA)

License Creative Commons BY 4.0 International license
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Model learning can primarily be characterized across three dimensions: (1) the input data
format; (2) the output model components; and (3) the priors/partial models that we start
with. Here, we explore two settings where model learning for planning has been studied.

First, we detail the Model Acquisition Toolkit (MACQ): a library dedicated to learning
action theories from state traces of various forms. Each technique in the library comes with
its own priors, but collectively the library provides the most comprehensive treatment to
date of extracting action theories from discrete time series data.

The second work explores how strong priors influenced by planning concepts can aid in
learning planning models from image pairs alone. By embedding strong notions of action
representation into the learning architecture itself, we are able to learn action theories and
state representations that can be given to off-the-shelf planners.

These are but two modern examples of how model learning is being explored in the
context of planning.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Fredrik Heintz, Gerhard Lakemeyer, and Sheila McIlraith 209

3.12 Hardware Acceleration: Why, What, How, Use Cases?
Bernhard Nebel (Universität Freiburg, DE)

License Creative Commons BY 4.0 International license
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This talk does not report on research results, but rather on perspectives of how hardware
acceleration can be exploited for automatic planning. Focusing on RPG-style heuristics,
it is sketched how such heuristics estimators can be compiled into sequential circuits for
moderately large planning tasks, which opens up the possibility to implement that on standard
FPGAs. Since 80-90% of the compute time in planning systems is spent on computing
heuristic estimates, this could result in a speedup of one order of magnitude.

3.13 Robot Learning: Quo Vadis?
Jan Peters (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
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Autonomous robots that can assist humans in situations of daily life have been a long standing
vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal
is to create robots that can learn tasks triggered by environmental context or higher level
instruction. However, learning techniques have yet to live up to this promise as only few
methods manage to scale to high-dimensional manipulator or humanoid robots. In this talk,
we investigate the challenges for robot learning from both the symbolic and subsymbolic
perspective! We show how symbols can arise in a robot learning system and can used to
further the general application of robot learning. We also discuss how classically disjunct
approaches from first order insight can be used as inductive biases for faster learning using
the simulation based approach. We describe the work in various robotic scenarios ranging
from tactile manipulation to robot juggling.

3.14 HRI and Robot Ethics
Matthias Scheutz (Tufts University – Medford, US)

License Creative Commons BY 4.0 International license
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Robot ethics is no different from bioethics, information ethics, environmental ethics, etc. in
that as a technology it has impact on humans human societies. It is different from all other
technologies in that AI enables the development and deployment of autonomous systems that
perceive their environment and determine their actions without human ado. AI/robot ethics
thus raises the question of whether these systems can operate in human societies and interact
with humans in a way that is ethical and acceptable to humans, not causing any harm. For
this, robots need to be able to learn human norms from observations and instructions and
follow them. When norm conflicts arise, they need to be able to determine the best course of
action and justify their choices by appealing to principles used for their decisions. How to
build a robotic architecture capable of all of this is the main challenge of ethical HRI!
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3.15 Active Learning in Risky Environments: Exploring Deep-Sea
Volcanoes and Ocean Worlds

Brian Williams (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
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Machine learning is a powerhouse in information rich environments. However, machine
learning remains challenging when data is sparse, is costly to collect, and is dangerous
and complex to acquire. As two examples, ocean exploration and subsea inspection use
autonomous vehicles to perform information gathering, to answer questions about the
environment. In these applications, communication is limited, vehicles need to be autonomous,
environments are risky, and resources are constrained.

Our vision is to create systems that answer information queries by performing active
learning in risky environments. These systems 1) generate information gathering plans that
bound risk, while maximizing information with respect to a set of questions being asked, 2)
continuously adapt plans based on what is observed and what remains unanswered and 3)
incorporates informative measures and risk within operational plans, at multiple levels of
abstraction.

The talk introduces a series of model-based agent programming paradigms that support
this process of active learning in risky environments, starting with state and decision-
theoretic programming. The talk then focuses on planning and learning methods that are
needed to support two new programming paradigms – information theoretic and risk-aware
programming. These approaches are demonstrated in the context of a 2019 ocean campaign,
to explore the Columbo volcano in the Mediterranean Sea.

4 Poster Presentations

All participants provided a brief oral introduction and an overview of their research at the
outset of the 5-day seminar. All participants were also given the opportunity to present their
work in a poster session. The following is a list of participants who presented their research
as posters.

Mohamed Behery and Gerhard Lakemeyer

Poster: Assistive Robot Teleoperation Using Phase Switching Behavior Trees
Authors: Mohamed Behery, Minh Trinh, Christian Brecher, Gerhard Lakemeyer
Related Publications: Not published yet.

Anthony G Cohn

Poster: A framework for categorising AI evaluation instruments
Authors: A G Cohn, José Hernández-Orallo, Julius Sechang Mboli, Yael Moros-Daval,
Zhiliang Xiang, Lexin Zhou
Related Publications: https://ceur-ws.org/Vol-3169/paper3.pdf
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Jasmin Grosinger

Poster: Proactivity
Author: Jasmin Grosinger
Related Publications: Not published yet.

Till Hofmann and Gerhard Lakemeyer

Poster: Controlling Golog Programs against MTL Constraints
Authors: Till Hofmann, Stefan Schupp, Gerhard Lakemeyer
Related Publications: Not published yet.

Mikhail Khodak

Poster: Learning Algorithms and Learning Algorithms
Authors: Mikhail Khodak
Related Publications: listed at the bottom of the poster.

Sven Koenig

Poster: Multi-Agent Path Finding (MAPF) and Its Applications
Authors: Many, as listed on poster
Related Publications: http://idm-lab.org/project-p.html

Yves Lespérance

Poster: Plan Recognition in a High Level Belief-Based Programming Language
Authors: Yves Lespérance, Alistair Scheuhammer, Yu Chen, and Petros Faloutsos

Setareh Maghsudi

Poster: Multi-Agent Reinforcement Learning
Authors: Setareh Maghsudi
Related Publications: based on several publications as listed in the poster,

Sheila McIlraith

Poster: LTL and Beyond: Formal Languages for Reward Function Specification in
Reinforcement Learning
Authors: Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano,
Sheila A. McIlraith
Related Publications: based on several publications as listed in the poster.

Bernhard Nebel

Poster: The Complexity of MAPF on Directed Graphs & The Small Solution Hypothesis
Authors: Bernhard Nebel
Related Publications: The Small Solution Hypothesis for MAPF on Strongly Connected
Directed Graphs is True, arXiv:2210.04590.
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https://drive.google.com/file/d/1WkFsa3VAOben7Ii01leo5qtLuz8E6Lu2/view?usp=sharing
http://idm-lab.org/project-p/dagstuhl-mapf-poster.pdf
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Maayan Shvo

Poster: Proactive Robotic Assistance via Theory of Mind
Authors: Maayan Shvo, Ruthrash Hari, Ziggy O’Reilly, Sophia Abolore, Nina Wang, Sheila
A. McIlraith
Related Publications: Proactive Robotic Assistance via Theory of Mind, IROS 2022.

5 Working groups

The seminar focused on four themes central to cognitive robotics, with one expert among the
participants organizing a session around each theme: cognitive robotics and KR (Michael
Beetz), verification of cognitive robots (Michael Fisher), HRI and robot ethics (Matthias
Scheutz), and planning and learning (Hector Geffner). The format of the sessions varied
and consisted of one or more plenary talks, plenary discussions and/or working groups.
Working groups for all four themes discussed challenges and roadmaps for the future, and
one representative of each group presented their findings on the last day of the seminar:
Gerhard Lakemeyer (cognitive robotics and KR), Fredrik Heintz (verification of cognitive
robots), Cynthia Matuszek (HRI and robot ethics), Christian Muise (planning and learning).
Here is a summary.

5.1 Cognitive Robotics and KR
Knowledge Representation and Reasoning (KR) has been a concern in cognitive robotics for
many years, beginning with the robot Shakey developed at SRI in the late sixties. While
ontological knowledge, formalized using description logics, and automated planning systems,
among other things, can be found in many robotic applications, KR has yet to play a central
role in building cognitive robots. In this working group, we discussed and collected some
of the challenges that remain in order to leverage the true potential of KR for cognitive
robotics. The following lists the main findings and recommendations.

5.1.1 Challenges

How does a robot know when system 2 is needed (meta cognition)?
Finding suitable open-ended robotic tasks that demonstrate the need for KR.
Industrial use cases, where humans and robots collaborate during production (issues in
planning, HRI).
Addressing problems with long-tail phenomena, which are best solved with commonsense.
How to acquire commonsense for specific tasks.
Standardization of KR formalisms would help with the uptake (as has happened with
OWL).
Creating a NELL (lifelong learned KB) for robots.
How to control the complexity of a task? Compilation techniques?
How can a robot be taught like a human or, how to transfer conceptual representations
of a human to a robot?
How to build a system that can perform a task after watching a video that shows how to
do it. How to do it with tools different from those in the video.

https://drive.google.com/file/d/1674UPbw7FcZEbC5p0VfUbmcdTowq3WVd/view?usp=share_link
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How to build systems that can introspect on their own actions and explain what they are
doing.
How to build robots with a theory of mind (going beyond traditional BDI, which does
not consider action, perception, failures, uncertainty).

5.1.2 Reasons why KR is not yet central to robotics and possible ways to
overcome this

When working with robots, 90% of the time is spent on things other than KR. For
roboticist, KR issues are often an afterthought, while KR people cannot grapple with the
complexity of robots.
KR for robotics is lacking a “playground” such as benchmarks suitable for testing/e-
valuating implemented systems. ( Attempts like RoboCup Logistics in simulation were
not taken up by the planning people because of the complexity, see also Multi-Agent
Programming)
Appropriate environments need to be developed (RoboCup?)
Those need to be spread and advertized via tutorials at the KR and ICAPS conferences.
Similarly, KR tools need to be created for use by roboticists.

5.1.3 Roadmap (5–10 years)

Principled approaches to abstraction of perception.
Goal reasoning for robots.
Rationalizing existing implemented KR systems like KnowRob.
A theory of explainable behavior and its realization in cognitive robots.
A theory of mind for robots.

5.2 Verification of Cognitive Robots
Verification and validation of complex cognitive robots is very challenging and existing
methods, mainly from formal verification, can only be applied to relatively simple cases. This
section summarizes the challenges, directions for future research and provides a roadmap
towards verification of cognitive robots.

5.2.1 Challenges

Correct-by-design
End-to-end verification
Composing verified components into verified systems
Combining partial/abstract offline verification with complete/detailed online verification
Minimum assumption verification, combined with a risk model to assess the risk involved
in the assumptions, combined with runtime verification of the assumption to get the
minimum risk system
Systematic combination of partial verification and testing, verify those parts that can be
verified, and then systematically test the rest
Verify models that are used by for example solvers
Understand the limitations of what is verifiable
How to build systems that can be verified? What architectures enables verification?
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Verifying learning systems
Verifying systems that interact with people
Continuous (online) verification of learning and interacting systems

5.2.2 General Direction of Development

From static deterministic simple environments to dynamic non-deterministic complex
adversarial environments
From one-off large-scale efforts for verifying particular components to systematic methods
for verifying components to tools that automate the verification of components
From simple components to complex components to simple static systems to complex
dynamic systems of components to open, dynamic and learning systems-of-systems

5.2.3 Roadmap

5-years
Develop verified plan verifiers that can verify plan instances
Verified solvers, such as planners, which are guaranteed to generate verified solutions
Verified skills under (potentially strong) assumptions about sensors and external
behaviors
Principled combination of testing, off-line verification and on-line verification of static
systems
Early involvement with regulators to jointly agree on what to verify, also related
to translating high-level abstract properties into things that can be quantified and
(probabilistically) verified

10-years
A formal understanding of what can be verified
Methods for formally verifying solvers
Methods for verifying skills (and other robot behaviors) and reducing the assumptions
under which these are guaranteed to work
Verified (simple) cognitive robots using (verified) solvers and (verified) skills to achieve
non-trivial goals
Principled (off-line/on-line) verification of (simple) cognitive robots that improve their
behavior over time (learning)

5.3 HRI and Robot Ethics
Human-robot interaction (HRI) with its many facets and interdisciplinary nature is of key
importance for cognitive robotics, with ethical concerns playing an important role as well. In
this working group challenges for HRI and robot ethics were discussed and collected along
several dimensions: humans modeling robots and vice versa, norms, communication and
information flow, and proactive behavior. In the following, we summarize our main findings.

5.3.1 Humans modeling robots

How can we build systems where it is possible for people to have an accurate model of
the robot’s capabilities and internal state?
Possibly we will always interpret its behavior or lack thereof as if it were a human.

Does it matter if it is human-shaped?
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We will update our mental model over time to more accurately capture the robot’s
state.
How can we design a robot such that people’s model of it is more accurate?

Maybe a principle of robot design should be to work with the model of the robot that
people have, rather than trying to affect that model.
Transparency – where does the data come from for learning?

5.3.2 Robots modeling humans

Understanding/demonstrating social behavior:
Depends in part on reasoning about plans, beliefs, goals
Timing, dialog, cutting in, . . .

What can we learn from cognitive science interests, e.g., human-human interaction
studies?

Some characteristics can be learned from data, but not all.
What are the features that such a representation would need to learn that model
humans?
It is different if you are learning ethical principles.

Need to consider roles and role-switching to handle such learning.
Speeds up planning in a collaborative setting to have an understanding of acceptable
behavior/social norms.

5.3.3 Norms: representing, learning, following them

What is the best formalism to express norms/ethical principles?
Need dialog/some capability of learning from being “told.”
Need more general reasoning and more commonsense/general knowledge

It depends on how expensive plan changes are, how long the planning horizon is, etc.
How to learn norms? From observations, instructions, . . . ?

Norms vary in importance, consequences.
We learn norms from a variety of mechanisms:
important things are written down, less important things are told, some things are
just learned from demonstrations.

Important for norm learners: must be able to learn norms online.
Can’t do a single model and then be done with it.
Online learning and online adaptation.

Do we have to learn norms in context?
General vs. specific vs. culturally-modulated norms.

Challenge: doing online learning, but not trying stupid things that violate social require-
ments.

But children push boundaries to improve understanding.
Learn in simulation?

Concept of risk, balancing information gain with possible seriousness of a transgression.
Four choices: be extremely conservative to try to minimize norm violations; watch and
see; ask; or try it and see what happens

What can we do in simulation?
Norms can be complex/contradictory/overlapping.

Learning sufficiently to act appropriately is difficult.
Need to watch for signals and adjust norms over time.
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How do you know how to adjust behaviors?
How do you recognize signals that you have violated a norm?

There is a gradation from benign to strong social norms (mild vs. serious), long-term vs
short-term – is there a spatio-temporal hierarchy?

People violate norms all the time.
Challenge: what do we start with?
Challenge: a lot has to happen in parallel; there is a control problem of making the layers
of the robot architecture work together with timing.

5.3.4 Communication and information flow

For HRI, humans and robots need to communicate.
Many modalities of interagent communication.
Language, legible behavior, . . .

Need some model of information flow that is deliberate on the part of at least one actor.
There exists work on recognition and activity/plan recognition–what else is there that
robots can learn from passive observation?

How can we communicate by inferring from behavior?
If you act to make your model clear via inference, you are communicating.
Some things are also best conveyed via being told, e.g., driving regulations.

Just conveying information is not enough.

5.3.5 Proactive behavior

Desirable for robots to be not purely reactive, but
More of a problem for the robot to get things wrong when assisting than to do nothing.

Do people have a charitable view of a robot if the robot meant well but messed up?
Apologizing helps.
Depends partly on horizon – for how long will it be bad at something before it becomes
good/helpful?

5.3.6 Grand and small challenges

Supermarket:
Sub-problem: socially aware spill detector;
Sub-problem: getting something from the shelf for someone.

Polite restaurant server:
When to interrupt, how long to leave the table alone, . . .

Shared manipulation/physical HRI:
Joint manipulation (putting all the dishes on the trolley);
Joint cooking.

Seeing-eye Spot robot
Intelligent disobedience;
Epistemic reasoning about human’s beliefs, intentions.
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5.4 Planning and Learning
Planning and learning have traditionally been two separate research tracks within cognitive
robots. Lately, several research groups have started to study the combination and integration
of planning and learning. For example learning symbols or primitives from observations.
To achieve this, it is important to use the right inductive biases in learning to ground the
AI system in the world. The key to complex behavior is being able to compose these into
more complex plans or composite behaviors, thus planning based on these learned primitives
clearly adds a significant value. This section provides a roadmap to achieve this in the form
of three short-term challenges and four longer term challenges.

5.4.1 Roadmap

Short-term Challenge 1: Bootstrap the knowledge – preliminary information, partial
models

Examples of success: Given a partial PDDL for any planning model learning approach,
and observing an improved performance in acquiring the rest of the model. Easy for
aspects like SAT/ASP-based learning, but not so clear for deep learning methods that
try to acquire things in an end-to-end way.
ETA 4 years

Short-term Challenge 2: Life-long learning – models will drift, change, no longer be valid,
etc

Example of success: Reliably able to detect when the model is no longer valid and
how it has changed. Detect when new object types or new instances of an object are
introduced. Being able to modify existing knowledge/model so that action which failed
after world change now succeeds. Taking advantage of past experiences to quickly
adapt to new environments.
ETA: 4 years

Short-term Challenge 3: Leveraging our model specifications / formal languages to
help traditional learning, e.g. interpretability/explainability: “why did my model do
this?”; robustness: ensuring a DL system performs as expected; fairness: detecting biases,
establishing and verifying fairness criteria

Example of success: Reasoning-based approach to verify / validate the concepts learned
by traditional DL systems (e.g., interrogating LLM’s for consistent reasoning)
ETA: 4 years

Long-term Challenge 1: Integration of learned dynamics and hand-crafted models. Under-
standing the aspects of the models learned by agents – aligning / grounding the symbols
specified & learned (including grounding language).

This challenge includes generating high level plans to deal with all kinds of complex
environment which could include those with non-rigid objects (e.g. bed sheets) but
also cluttered environments, uncertain environments, environments with other agents
who change the environment dynamically.
Example of success: Creating plans that involve learning dynamics e.g., folding a bed
sheet.
ETA: 10+ years

Long-term challenge 2: HRI-style Model Acquisition. How to ground symbols interactively
(with human users) to iteratively build a planning model (including objects, fluents, actions,
etc). Aligning agent’s internal language to the one used by the human. Extension –
ability to align to multiple humans, using different concepts and languages/phrasing.
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Example of success: Robot being capable of interactively receiving instructions (while
clarifying) and performing the task given by human operators. ALFRED may be an
initial starting point (language is all pre-known, as are the goals).
ETA: 10+ years

Long-term challenge 3: Exploration based learning – i..e the robot actively exploring
the world and trying to perform experiments to learn more about the world, and its
capabilities and how actions affect the world.

Example of success: Simulated environment to place an egocentric agent in – success
measured in properly acquiring a correct (or correct enough) planning model
ETA: 10+ years

Long-term challenge 4: Multi-agent/human collaboration – learning how to collaborate
with another agent to perform a task

Example of success: learning how to hand over an object, or jointly moving some large
object, or collaborating to build some object (one agent holding the work-piece to
resist forces such as sawing or drilling being applied by a second agent).
ETA: 5+ years
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