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Abstract
The Dagstuhl Seminar on Set Visualization and Uncertainty brought together a group of researchers
from diverse disciplines, all of which are interested in various aspects of this type of visualization:
the cognitive aspects, the modelling aspects, the algorithmic aspects, and the information
visualization aspects. An important but difficult to handle problem is how one should visualize
information with underlying uncertainty. The seminar focused on uncertainty in set systems. This
report includes short abstracts of the talks given during the seminar as well as more extensive
working group reports on the research done during the seminar.
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Research Area
The topic of Set Visualization and Uncertainty is inherently interdisciplinary, combining
aspects of several diverse fields. As such, the overview of the research area is split into the
key fields associated with it; namely, information visualization, set systems, graph drawing,
uncertainty (as applied to data sets), and cartography.

Information visualization (InfoVis) can help humans gain insight from large volumes of
data by providing good graphical overviews as well as appropriate interfaces for accessing
details (see, e.g., [1]). It has thus become of high relevance for industry and many scientific
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disciplines. Since the generation of effective visualizations requires knowledge of human
cognition, algorithms, data characteristics, visual variables, and tasks, the InfoVis community
embraces members of various disciplines, including computer scientists of different areas,
cognitive scientists, psychologists, and cartographers.

Sets are mathematically defined as unordered collections of distinct objects. They play an
important role in InfoVis since reasoning based on aggregated information (i.e., sets instead of
individual objects) can greatly reduce the complexity of data analysis tasks. Most often, the
sets are defined by categories of objects; e.g., people can be grouped by country of residence,
education, or gender to study influences on income. Often, the aim is to visualize statistics
(e.g., number of elements, average income) for each set and, since an element can be member
of multiple sets, the relationships between them (e.g., intersection and containment). Set
visualization is traditionally done with Venn or Euler diagrams, yet a plethora of alternative
visualization types for sets has been developed. A recent focus of research has been on
developing scalable solutions (e.g., to create effective visualizations for very large set systems)
and dealing with dynamics (e.g., changes of the elements’ set memberships over time). In
this seminar we dealt with a different issue, already relevant for static and small set systems:
uncertainty. Although the importance of uncertainty visualization has been stressed by
several researchers, only few studies exist that deal with it specifically in the context of sets
and systems of sets [3].

Uncertainty is inherent to almost any information collected through observations by
humans or sensors. Since the assignment of elements to categories corresponding to sets follows
observations, the set memberships are uncertain, too. Moreover, subsuming multiple elements
with their individual properties under one category results in a loss of information. Although
this information reduction may be intended to reduce the graphical complexity, visualizing
the within-set as well as the between-set variability may improve the interpretation of the
data. Uncertainty is usually evaluated with statistical methods or concepts of probability.
Uncertainty can relate to the existence of an element, the existence of a set, the presence of an
element in a set, set containment in hierarchies, location of an object in geo-located data, etc.
Moreover, uncertainty can be given as a binary property or as a probability. Fuzzy set theory
extends the idea of sets by allowing partial set membership, indicated by a value between 0
and 1. This model has been proposed for concepts that lack crisp boundaries (e.g., “young”
and “old” as categories of people). In InfoVis, an important question is whether and how the
uncertainty of the information displayed should be visually encoded (e.g., with glyphs or
graphical variables), and how users process this visualization of uncertainty [2]. Moreover,
although the uncertainty may not be depicted, it may be considered when generating a
visualization (e.g., by filtering information based on its certainty). Conversely, a standard
visualization like a heat map suggests uncertainty which may not exist in the data at all.

Graph drawing is a branch of computer science focusing on the computation of geometric
layouts of graphs, involving both formal and experimental methods. Since graphs are
useful mathematical models for networks, graph drawing is of high relevance for network
visualization. Graph drawing can be applied to non-geometric networks (e.g., social networks
consisting of friendship relationships) as well as to geometric networks (e.g., networks of
metro lines) if the aim is to generate more abstract (e.g., schematic) representations. Since a
system of sets can be considered as a hypergraph in which each node corresponds to one
entity and each hyperedge corresponds to one set, set visualization is fundamental in the
graph drawing community. However, aspects of uncertainty remain mostly unexplored [4].
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Geographic information is a combination of geometric, temporal, and attribute inform-
ation, each of which can be uncertain in different ways and can be visualized in different
ways commonly through maps. Cartography and its sister discipline Geographic Information
Science have a long history in dealing with uncertainty in the context of analyzing and
visualizing spatial information. For example, international standards formalizing elements of
spatial data quality have been established (e.g., ISO 19157:2013 defining thematic accuracy,
temporal quality, positional accuracy) and graphical variables encoding the uncertainty of
information in maps have been proposed, including color saturation and symbol focus [5].

Seminar Goals
This seminar aimed to advance research into methods and techniques for set visualizations
and uncertainty by fostering interdisciplinary and cross-domain collaboration (cf. section
Research Area). Sets are mathematically defined as collections of distinct objects. They
play an important role in Information Visualization since reasoning based on aggregated
information can reduce the complexity of the analysis tasks. Uncertainty is inherent to
almost any information collected through observations by humans or sensors and, thus,
also set elements or their set membership. Uncertainty generally adds to the complexity of
data analysis and data presentation. In the seminar we looked specifically into approaches
for dealing with uncertain information when visualizing sets. Information Visualization
has some established techniques regarding uncertainty. However, the topic is – except for
some specific cases (cf. Fig. 1) – mostly unexplored in the context of set visualizations.
Some uncertainty visualization techniques may directly apply to set visualizations. In this
seminar we brought together researchers from the areas of information visualization, visual
analytics, graph drawing, geoinformation science, uncertainty research, and cognitive science.
These interdisciplinary participants formed working groups to consider selected problems of
considering and visualising uncertainty associated with sets so that the visualizations are
informative and reliable, in the sense that humans can use them for visual analysis tasks and
that the uncertain information is recognizable.

Seminar Format
The interdisciplinary topic of the seminar, as well as the different scientific backgrounds of the
participants, asked for an introduction to the main topics as well as to selected perspectives
through invited talks on the first day. The structure of two talks in the morning and two
in the afternoon of the first day left enough room for first discussions. The day ended with
participants’ pitches of open problems and the participants indicating their interest in the
pitched problems.
Invited talks of the first day:

Daniel Archambault: Drawing Euler Diagrams with Closed Curves
Wouter Meulemans: Algorithmic Perspectives on Uncertainty and Set Visualization
Bei Wang Phillips: Visualizing Hypergraphs: With Connections to Uncertainty Visualiza-
tion
Martin Kryzwinski: Genomes: sets of sets of sets

The second day of the seminar was started with the formation of four groups interested
in four different open problems. Each group worked on their specific open problem for
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Figure 1 Examples of uncertainty visualizations for sets from [6, 7, 8, 9, 10, 11] (from top left to
bottom right).

the remainder of the seminar. Participants were invited to give mini-talks related to the
seminar topic. Time was reserved for those contributed talks every morning. Additionally,
the working groups reported on their progress on Wednesday and Friday.
Contributed mini-talks throughout the week (given are the names of the presenters, see
Overview of Talks for full list of contributors):

Annika Bonerath & Markus Wallinger: MosaicSets
Sara Irina Fabrikant: How to visualize uncertainty
Silvia Miksch: Visual Encodings of Temporal Uncertainty: A Comparative User Study
Nathan van Beusekom: Simultaneous Matrix Orderings for Graph Collections
Marc van Kreveld: On Full Diversity in Metric Spaces
Alexander Wolff: StoryLines

Outcomes and Future Plans
The participants were highly satisfied with the quality of the seminar. Diverse interdisciplinary
discussions took place and all groups worked well together. The final progress reports of the
working groups indicate that the collaborations will be ongoing and some papers will be
published (cf. section Working Groups).
At the final day plenary meeting, plans for a follow-up seminar were discussed. A group of
interested participants is currently discussing the focus and title of such a seminar.

References
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3 Overview of Talks

3.1 (Invited) Drawing Euler Diagrams with Closed Curves
Daniel Archambault (Swansea University, GB)

License Creative Commons BY 4.0 International license
© Daniel Archambault

Joint work of Paolo Simonetto, Daniel Archambault, Carlos Scheidegger, David Auber
Main reference Paolo Simonetto, Daniel Archambault, Carlos Scheidegger: “A Simple Approach for Boundary

Improvement of Euler Diagrams”, IEEE Trans. Vis. Comput. Graph., Vol. 22(1), pp. 678–687, 2016.
URL https://doi.org/10.1109/TVCG.2015.2467992

Main reference Paolo Simonetto, David Auber, Daniel Archambault: “Fully Automatic Visualisation of Overlapping
Sets”, Comput. Graph. Forum, Vol. 28(3), pp. 967–974, 2009.

URL https://doi.org/10.1111/j.1467-8659.2009.01452.x
Main reference Paolo Simonetto, Daniel Archambault, David Auber, Romain Bourqui: “ImPrEd: An Improved

Force-Directed Algorithm that Prevents Nodes from Crossing Edges”, Comput. Graph. Forum,
Vol. 30(3), pp. 1071–1080, 2011.

URL https://doi.org/10.1111/j.1467-8659.2011.01956.x

One of the typical methods for visualising sets is through Euler diagrams represented as
closed curves. In this talk, I recap some work on force-directed drawings of Euler diagrams
and the scalability of such methods. In particular, I speak of force-directed methods for
drawing Euler diagrams and methods for refining them given a drawing. I conclude with
some open problems that involve representing uncertainty in this representation.

3.2 (Invited) Algorithmic Perspectives on Uncertainty and Set
Visualization

Wouter Meulemans (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
© Wouter Meulemans

Treemaps are a common way to visualize hierarchical numeric data (file systems, census data,
economic data). However, in many cases, the numeric values have associated uncertainty:
arising for example from the data-collection process or from data transformations like
aggregation over time. I will discuss a method [1] for creating treemaps that show both the
data itself and the uncertainty, while maintaining the partitioning nature of treemaps. Then,
I continue briefly to consider an alternative perspective: to artificially induce uncertainty to
improve visual structure. Specifically, we will look at using spatial deformation to schematize
set visualization [2] and relate this to research in algorithmic imprecision.

References
1 M. Sondag, W. Meulemans, C. Schulz, K. Verbeek, D. Weiskopf, and B. Speckmann.

Uncertainty treemaps. In Proceedings of the 2020 IEEE Pacific Visualization Symposium,
pages 111–120, 2020.

2 M. A. Bekos, D. J. C. Dekker, F. Frank, W. Meulemans, P. Rodgers, A. Schulz, and S.
Wessel. Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and
Grids. Computer Graphics Forum, 41(6):316–335, 2022.
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3.3 (Invited) Visualizing Hypergraphs: With Connections to Uncertainty
Visualization

Bei Wang Phillips (University of Utah – Salt Lake City, US)

License Creative Commons BY 4.0 International license
© Bei Wang Phillips

Joint work of Bei Wang Phillips, Youjia Zhou, Archit Rathore, Emilie Purvine, Samir Chowdhury, Tom Needham,
Ethan Semrad

Main reference Youjia Zhou, Archit Rathore, Emilie Purvine, Bei Wang: “Topological Simplifications of
Hypergraphs”, IEEE Transactions on Visualization and Computer Graphics (TVCG), 2022.

URL https://doi.org/10.1109/tvcg.2022.3153895
Main reference Samir Chowdhury, Tom Needham, Ethan Semrad, Bei Wang, Youjia Zhou: “Hypergraph Co-Optimal

Transport: Metric and Categorical Properties”, CoRR, Vol. abs/2112.03904, 2021.
URL https://arxiv.org/abs/2112.03904

In this talk, I first give a brief overview of hypergraph visualization, which is closely related
to set visualization. Following the recent survey of Fischer et al. [1], hypergraph visualization
techniques could be classified as node-link-based, matrix-based, and timeline-based approaches.
During the overview, I ask the following questions with respect to uncertainty visualization:
Where are the uncertainties? And how to encode uncertainties? I then discuss the current
and future directions on hypergraph visualization. Specifically, from existing perspectives:

Scalability;
Aggregating and subsetting;
Providing support for dynamic hypergraphs with a large number of time steps;
Benchmark dataset for hypergraph visualizations;
Performance metrics.

And from my own perspectives:
Hypergraph simplification using topological approaches;
Transforming hypergraphs to graphs while preserving metric structures;
Hypergraph matching using measure theory and optimal transport;
Uncertainty visualization for hypergraph ensembles.

References
1 M. T. Fischer, A. Frings, D. A. Keim, and D. Seebacher. Towards a survey on static and

dynamic hypergraph visualizations. In 2021 IEEE visualization conference (VIS), pages
81–85, 2021.

3.4 (Invited) Genomes: sets of sets of sets
Martin Krzywinski (BC Cancer Research Centre – Vancouver, CA)

License Creative Commons BY 4.0 International license
© Martin Krzywinski

The genomes in our cells naturally vary between individuals. These changes are mostly
differences (mutations) at single base pair positions — two random individuals vary at
about 3,000,000 locations (1 in 1,000). An individual may have an inherited mutation that
predisposes them to disease (e.g. cancer) or have accumulated unrepaired DNA damage from
environmental exposure (e.g. sunlight) that equally raises their risk. A mutation that triggers
the onset of a disease is called a “driver mutation”. Such mutations typically dysregulate the
repair systems of the genome and lead to an accumulation of errors – the genome becomes
fragile and the cell may begin to divide without limitation imposed by checkpoints. As this
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cell divides, mutations accumulate and now the tumor becomes a collection of groups of cells
(clones), each with a slightly different genome. This process leads to a “family tree”, in which
nodes are groups of cells.

Thus, cancers can be thought of as sets (individuals with a tumor) of sets (tumors
composed of cell groups) of sets (cell groups composed of cells). Visualizing this complexity
is challenging for the researcher (tools are only now appearing) and reader (the researcher
typically lacks design and visualization experience). Good practices in the use of color, symbol
and encoding, which are well known in the visualisation community, have not penetrated the
cancer research community — which has only a vague (or no) awareness of best practices.
The biologists are not versed in breaking down and addressing the challenges in creating
complex visualisations.

I present case studies from the field of genomics and cancer research that illustrate
common errors in visualisations in that field, show how I address them (on an individual
basis) and identify areas in which visualisation and set community can contribute.

3.5 (Contributed) MosaicSets
Annika Bonerath (Universität Bonn, DE), Sven Gedicke, Jan-Henrik Haunert (Universität
Bonn, DE), Martin Nöllenburg (TU Wien, AT), Peter Rottmann, and Markus Wallinger
(TU Wien, AT)

License Creative Commons BY 4.0 International license
© Annika Bonerath, Sven Gedicke, Jan-Henrik Haunert, Martin Nöllenburg, Peter Rottmann, and
Markus Wallinger

Main reference Peter Rottmann, Markus Wallinger, Annika Bonerath, Sven Gedicke, Martin Nöllenburg, Jan-Henrik
Haunert: “MosaicSets: Embedding Set Systems into Grid Graphs”, IEEE Trans. Vis. Comput.
Graph., Vol. 29(1), pp. 875–885, 2023.

URL https://doi.org/10.1109/TVCG.2022.3209485
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Figure 2 Visualizing the research groups of the Agricultural Faculty of the University of Bonn
with MosaicSets.
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Visualizing sets of elements and their relations is an important research area in information
visualization. In this presentation, we present MosaicSets: a novel approach to create Euler-
like diagrams from non-spatial set systems such that each element occupies one cell of
a regular hexagonal or square grid. The main challenge is to find an assignment of the
elements to the grid cells such that each set constitutes a contiguous region. As use case, we
consider the research groups of a university faculty as elements, and the departments and
joint research projects as sets. We aim at finding a suitable mapping between the research
groups and the grid cells such that the department structure forms a base map layout. Our
objectives are to optimize both the compactness of the entirety of all cells and of each set
by itself. We show that computing the mapping is NP-hard. However, using integer linear
programming we can solve real-world instances optimally within a few seconds. Moreover,
we propose a relaxation of the contiguity requirement to visualize otherwise non-embeddable
set systems. We present and discuss different rendering styles for the set overlays. Based on
a case study with real-world data, our evaluation comprises quantitative measures as well as
expert interviews.

3.6 (Contributed) How to visualize uncertainty
Sara Irina Fabrikant (Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Sara Irina Fabrikant

The brief presentation introduced the interdisciplinary audience to the empirical research
frontier in how to visualize uncertainty, inherent to any collected, analyzed, and visualized
data. I reviewed empirically evaluated visual variables that are intuitively understood by
target users of uncertainty visualizations (e.g., [1, 2]). I also reported on past and ongoing
empirical geovisualization research with colleagues that investigates how data uncertainty
visualized on maps might influence the process and outcomes of spatial decision-making,
especially when made under time pressure, and in risky situations. Based on our collected
empirical evidence to date, we argue that spatial data uncertainties should be communicated
to space-time decision-makers, especially when decisions need to be made with limited time
resources and when decision outcomes can have dramatic consequences.

References
1 MacEachren, Alan M. and Robinson, Anthony and Hopper, Susan and Gardner, Steven and

Murray, Robert and Gahegan, Mark and Hetzler, Elisabeth (2005). Visualizing Geospatial
Information Uncertainty: What We Know and What We Need to Know. Cartography and
Geographic Information Science, 32(3):139–160. doi:10.1559/1523040054738936.

2 Alan M. MacEachren, Robert E. Roth, James O’Brien, Bonan Li, Derek Swingley, Mark
Gahegan: Visual Semiotics & Uncertainty Visualization: An Empirical Study. IEEE Trans.
Vis. Comput. Graph. 18(12): 2496-2505 (2012).
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3.7 (Contributed) Visual Encodings of Temporal Uncertainty: A
Comparative User Study

Silvia Miksch (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Silvia Miksch

Joint work of Theresia Gschwandtner, Markus Bögl, Paolo Federico, Silvia Miksch
Main reference Theresia Gschwandtner, Markus Bögl, Paolo Federico, Silvia Miksch: “Visual Encodings of Temporal

Uncertainty: A Comparative User Study”, IEEE Trans. Vis. Comput. Graph., Vol. 22(1),
pp. 539–548, 2016.

URL https://doi.org/10.1109/TVCG.2015.2467752

Visualizing temporal uncertainty is still an open research challenge because the special char-
acteristics of time require special visual encodings and may provoke different interpretations.
Thus, we have conducted a comprehensive study comparing alternative visual encodings
of intervals with uncertain start and end times: gradient plots, violin plots, accumulated
probability plots, error bars, centered error bars, and ambiguation. Our results reveal
significant differences in error rates and completion time for these different visualization
types and different tasks. We recommend using ambiguation – using a lighter color value to
represent uncertain regions – or error bars for judging durations and temporal bounds, and
gradient plots – using fading color or transparency – for judging probability values.

3.8 (Contributed) Simultaneous Matrix Orderings for Graph Collections
Nathan Van Beusekom (TU Eindhoven, NL), Wouter Meulemans (TU Eindhoven, NL)

Joint work of Nathan Van Beusekom, Wouter Meulemans, and Bettina Speckmann
License Creative Commons BY 4.0 International license

© Nathan Van Beusekom and Wouter Meulemans
Main reference Nathan van Beusekom, Wouter Meulemans, Bettina Speckmann: “Simultaneous Matrix Orderings

for Graph Collections”, CoRR, Vol. abs/2109.12050, 2021.
URL https://arxiv.org/abs/2109.12050

Undirected graphs are frequently used to model phenomena that deal with interacting objects,
such as social networks, brain activity and communication networks. The topology of an
undirected graph G can be captured by an adjacency matrix; this matrix in turn can be
visualized directly to give insight into the graph structure. Which visual patterns appear
in such a matrix visualization crucially depends on the ordering of its rows and columns.
Formally defining the quality of an ordering and then automatically computing a high-quality
ordering are both challenging problems; however, effective heuristics exist and are used in
practice.

Often, graphs do not exist in isolation but as part of a collection of graphs on the same set
of vertices, for example, brain scans over time or of different people. To visualize such graph
collections, we need a single ordering that works well for all matrices simultaneously. The
current state-of-the-art solves this problem by taking a (weighted) union over all graphs and
applying existing heuristics. However, this union leads to a loss of information, specifically
in those parts of the graphs which are different. We propose a collection-aware approach to
avoid this loss of information and apply it to two popular heuristic methods: leaf order and
barycenter.

The de-facto standard computational quality metrics for matrix ordering capture only
block-diagonal patterns (cliques). Instead, we propose to use Moran’s I, a spatial auto-
correlation metric, which captures the full range of established patterns. Moran’s I refines
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previously proposed stress measures. Furthermore, the popular leaf order method heuristically
optimizes a similar measure which further supports the use of Moran’s I in this context. An
ordering that maximizes Moran’s I can be computed via solutions to the Traveling Salesperson
Problem (TSP); orderings that approximate the optimal ordering can be computed more
efficiently, using any of the approximation algorithms for metric TSP.

We evaluated our methods for simultaneous orderings on real-world datasets using Moran’s
I as the quality metric. Our results show that our collection-aware approach matches
or improves performance compared to the union approach, depending on the similarity
of the graphs in the collection. Specifically, our Moran’s I-based collection-aware leaf
order implementation consistently outperforms other implementations. Our collection-aware
implementations carry no significant additional computational costs.

3.9 (Contributed) On Full Diversity in Metric Spaces
Marc van Kreveld (Utrecht University, NL)

License Creative Commons BY 4.0 International license
© Marc van Kreveld

Joint work of Fabian Klute, Marc van Kreveld
Main reference Fabian Klute, Marc J. van Kreveld: “On Fully Diverse Sets of Geometric Objects and Graphs”, in

Proc. of the Graph-Theoretic Concepts in Computer Science – 48th International Workshop, WG
2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, Lecture Notes in Computer
Science, Vol. 13453, pp. 328–341, Springer, 2022.

URL https://doi.org/10.1007/978-3-031-15914-5_24

In a metric space we have objects and a way to measure distances between pairs of objects.
In a bounded metric space, there is an upper bound on the maximum distance.

We define full diversity of a subset of a metric space as a subset where all pairs of objects
are approximately as far apart as the diameter, up to a constant factor.

We examine how large fully diverse subsets can be in several cases of metric spaces, like
bit strings with Hamming distance, graphs with edit distance, simple polygons inside a unit
square with area-of-symmetric difference or Hausdorff distance, or Frechet distance of the
boundary. We give upper and lower bounds in these cases and others.

This research is joint work with Fabian Klute and it appeared in WG 2022.

3.10 (Contributed) StoryLines
Alexander Wolff (Universität Würzburg, DE)

License Creative Commons BY 4.0 International license
© Alexander Wolff

Joint work of Alexander Wolff, Tim Hermann

In this talk I sketch the main idea of a master’s thesis [1] that a student, Tim Herrmann,
wrote in my group recently. He developed a web service called PubLines1 where the user can
enter a few names of computer scientists. Then Tim Herrmann’s JavaScript program scans
the computer science bibliography dblp2 for publications that are co-authored by at least two

1 https://www1.pub.informatik.uni-wuerzburg.de/pub/publines
2 https://dblp.uni-trier.de
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of the names that the user entered. The program outputs a so-called storyline visualization
of the sequence of joint publications. In this visualization, the authors are represented by
x-monotone curves and their joint publications are represented by vertical bars such that the
curve of a given author goes through the bars of exactly those publications that (s)he has
co-authored. The program heuristically tries to minimize the (block) crossings [2] between
the curves. For an example that visualizes the joint publications of some seminar participants,
see Figure 3.

Figure 3 A storyline visualization of the joint publications of some seminar participants.

References
1 T. Herrmann. Storyline visualizations for scientific collaboration graphs. Master’s thesis,

Institut für Informatik, Universität Würzburg, 2022. URL: https://www1.pub.informatik.
uni-wuerzburg.de/pub/theses/2022-herrmann-masterarbeit.pdf.

2 T. C. van Dijk, M. Fink, N. Fischer, F. Lipp, P. Markfelder, A. Ravsky, S. Suri, and
A. Wolff. Block crossings in storyline visualizations. J. Graph Alg. Appl., 21(5):873–913,
2017. doi:10.7155/jgaa.00443.

4 Working groups

4.1 StorySets
Annika Bonerath (Universität Bonn, DE), Stephen G. Kobourov (University of Arizona –
Tucson, US), Wouter Meulemans (TU Eindhoven, NL), Martin Nöllenburg (TU Wien, AT),
Markus Wallinger (TU Wien, AT), and Alexander Wolff (Universität Würzburg, DE)

License Creative Commons BY 4.0 International license
© Annika Bonerath, Stephen G. Kobourov, Wouter Meulemans, Martin Nöllenburg, Markus
Wallinger, and Alexander Wolff

Problem Definition

Roughly speaking, there are two types of set systems: abstract and spatial. In a spatial
set system, each element has a fixed, spatial location. Visualizations of spatial set systems
usually use connected regions of the plane in order to visualize the sets: elements are points
in the plane, and a set consists of exactly those elements that lie inside the region. Examples
for such visualizations are Bubble Sets [4], GMap [8], or MapSets [6]. LineSets [1] connect the
elements of a set by a path. LineSets are generalized by Kelp diagrams [5], which connect the
elements of a set by a sparse spanning graph. In order to avoid intersections, ClusterSets [9]
allow disconnected regions to visualize sets. Examples for visualizations of abstract set
systems are Venn diagrams, Euler diagrams [7], linear diagrams [11], matrices, etc. The
survey by Alsallakh et al. [2] gives an extensive overview over methods for set visualization.
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Figure 4 Various graphical representations of a fuzzy set system with three sets A, B, C and six
elements 1, 2, 3, 4, 5, 6. The table in (a) lists the uncertain set memberships.

A fuzzy set system (U , F) consists of a finite universe U of elements and a finite collec-
tion F of fuzzy sets. A fuzzy set S in F is described by a membership function µS : U → [0, 1]
that expresses the certainty of element x being in set S. For example, if µS(x) = 1, then
x is certainly contained in S, and if µS(x) = 0, then x is certainly not contained in S. We
assume that membership functions are independent of each other.

During the seminar, we investigated various ways to graphically represent fuzzy set
systems. We focussed on visualizing (uncertain) set membership per element and (uncertain)
set containment. Specifically, if µS(x) ≤ µS′(x) for every x ∈ U , then we say that S is
uncertainly contained in S ′, and we would like this relationship to be graphically represented
as well. Note, however, that uncertain containment does not guarantee containment.

Exploring the Design Space

During the seminar, we first tried to extend visualizations for spatial set systems to the fuzzy
case. We considered representing elements as unit-sized disks instead of points; see Figure 4b
for an adaption of Euler diagrams and Figure 4c for an adaption of LineSets. In order to
indicate how certain the membership of an element in a set is we used the element’s distance
to the set boundary or partial containment of the element in the set’s region. The latter
type of representation may be somewhat more intuitive; see Figure 4b and Figure 4c.

Second, we looked at an adaptation of linear diagrams [11]; see Figure 4d. Each set is
a row in this matrix, and each element is a column. The certainty of the membership is
illustrated by the line width. A disadvantage of this visualization is that it is difficult to
recognize (uncertain) set containment.

Third, we explored a style in which sets are represented as curves and elements as axes
that are intersected by the set curves. For example, in a star plot [3], axes are radials
emanating from a common center and a set (or, by duality, an element) is represented by a
polygon whose vertices lie on these axes. The distance of a polygon vertex from the center of
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Figure 5 Different design variants of StorySets.

the diagram expresses the value of some parameter. For visualizing fuzzy set systems, we
introduced an axis for each element x and chose as parameter to be displayed on its axis
the membership certainty µS(x) of x in S; see Figure 4e. This visualization easily encodes
uncertain set containment via polygon containment.

However, this principle can be applied more generally, using ideas found in, e.g, Sankey
diagrams [12] and storyline visualizations [10, 13]. Specifically, we explored a novel design
that combines storylines and set visualization. For this design, we assume that membership
certainties are grouped into a few certainty groups, e.g., by rounding. Now, we can partition
the axis of an element according to the number of sets per uncertainty group. We represent
every element by a stack of boxes such that each box represents one certainty group. In this
representation, the width of a box encodes the certainty and the height of a box encoding the
number of sets that contain the element with the given certainty. The box for the highest
certainty group is anchored at the top and the others are placed underneath, ordered by their
certainty value. We call this visualization StorySets; see Figure 4f. With this visualization
(uncertain) set containment is encoded as follows: if the curve of a set S is always below the
curve of another set S ′, then the S is uncertainly contained in S ′. We consider StorySets a
promising approach for the visualization of fuzzy set systems and, hence, focused on StorySets
for the remainder of the seminar.

During the discussion, we considered several variants of StorySets, some needing only
small adjustments (e.g., a different choice of symbols; see Figure 5a); others posing new
algorithmic problems (e.g., compactness; see Figure 5b). In the following, we discuss three of
these variants.

Compactness

We can vertically compact a StorySet representation by not showing every set curve for the
whole time, that is, over the complete horizontal extent of the diagram. Instead, we allow
each set curve to start immediately before its respective first element in the given element
order and to end right after its respective last element; see Figure 5b.
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Also, it is possible to horizontally compact the design by considering “non-linear” storylines.
To this end, we can stack an element x above an element y if (it is certain that) there is no
set that contains both x and y; see Figure 5b.

Fixed heights per certainty box

Due to the varying heights of the certainty boxes throughout the elements, it might be
difficult to perceive whether a curve changes the certainty level between two elements or not.
Hence, we considered the variant that we have a fixed height per certainty group defined by
the maximal number of sets in which an element is contained; see Figure 5c.

Circular arrangement

We want to mention that the optimization for horizontal arrangement of elements can be
easily adapted to a circular arrangement of elements. Here, one only needs to take care about
the additional cyclic constraints between the last and the first element.

Algorithmic Considerations

The designs discussed in the last section give rise to several optimization problems. In the
case of star plots, linear diagrams or StorySets, the order of the elements is very important.
Ideally, we would like to place elements with similar fuzzy set memberships next to each
other resulting in more homogeneous curves and polygons. Since each element can be seen
as an |F|-dimensional vector in a matrix, we can define a distance metric between them
and model this as an ordering problem. Depending on the visualization design, computing
the linear arrangement or profile of the matrix, or modelling it as a traveling salesperson
problem, could be used to tackle this optimization problem.

Specifically for StorySets, it seems natural to consider the following optimization goals:
(i) minimize the number of curve crossings, (ii) minimize the number of level changes over
all curves, and (iii) keep the drawing compact, that is, minimize width and/or height. In
order to achieve these design goals, we want to find a horizontal order of the elements and a
vertical order of the curves that respects the certainty groups of each element. Note that
goals (i) and (ii) are very similar to what standard storylines aim to optimize [10].

We worked on a pipeline that alternates between the optimization of the horizontal order
of the elements and the vertical order of the curves per certainty box and per element. First,
we fix the vertical order of curves per element such that the certainty groups are respected.
Second, we compute the number of crossings between every pair of elements. Third, we
introduce an auxiliary complete graph where each vertex corresponds to an element and each
edge is weighted with the number of crossing curves if the two elements are consecutive in the
horizontal order. Then, we solve the traveling salesperson problem on this graph. This leads
to a new horizontal order of the elements. Now, if we can further improve the vertical order
of the curves per element, we return to the first step. Otherwise, the algorithm terminates.

Outlook

We plan to provide an framework with several algorithms for computing various versions
of StorySets. We want to evaluate our approach using real-world data. Such real-world
data could be, for example, a set of tweets combined with a topic analysis. Each topic then
corresponds to a set and the certainty with which a tweet belongs to a topic reflects its
uncertain membership in that set.
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4.2 Simplification of Set Systems to Draw Nice Euler Diagrams
Peter Rodgers (University of Kent – Canterbury, GB), Daniel Archambault (Swansea Univer-
sity, GB), Jan-Henrik Haunert (Universität Bonn, DE), and Bei Wang Phillips (University
of Utah – Salt Lake City, US)
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Motivation and general idea

Euler diagrams are frequently used to visualize set systems. They represent each set as a
region that is bounded by a closed curve. An area in an Euler diagram where multiple regions
overlap indicates the existence of set elements that are contained in the corresponding sets
and in no other set. An advantage of Euler diagrams is that they are intuitive to understand.
However, they can become cluttered even for medium-sized set systems. When requiring the
regions to be contiguous, it may even be the case that for a given set system no Euler diagram
exists. We aim to mitigate these weaknesses of Euler diagrams by developing algorithms
for the simplification of set systems. Given a set system as input, our goal is to compute a
simplified but still similar version of it that can be drawn nicely as an Euler diagram. In
this report we introduce a measure of dissimilarity between a set system and a simplified
version of it (i.e., a distance) and state the criteria a set system needs to fulfill such that it
can be drawn nicely. Based on this we sketch an optimization approach as well as a greedy
heuristic. While a lot of previous work on the automatic generation of Euler diagrams exists
[1, 2, 3, 4, 5, 6, 7, 8], we hope that with our simplification algorithms we will be able to
extend the applicability of Euler diagrams to much larger and more complex set systems.

Preliminaries

Formally we consider a set system as a bipartite graph S = (V, S; E); see Fig. 6a. Every node
u ∈ V represents an element and every node X ∈ S a set. Every edge {u, X} ∈ E indicates
that element u ∈ V is a member of set X ∈ S. The set of all elements S is partitioned into
zones such that, if two elements u, v ∈ V are members of exactly the same sets in S, then
u and v are in the same zone. A zone is labeled with the sets in S that have its elements
as members. With ℓ(Z) we refer to the set of labels of a zone Z. Our algorithms operate
on a graph G that contains a node for each zone and an edge between every two zones that
share at least one label; see Fig. 6b. In particular, our optimization algorithm computes a
subgraph G′ of G such that, in a next processing step, we can compute an Euler diagram
whose dual graph is G′. Accordingly, we call G the super dual graph. Figure 6c shows a
subgraph G′ of the super dual graph G in Fig. 6b. An Euler diagram that has G′ as its dual
graph is shown in Fig. 6d.

Distance measure

Since we aim for a set system that is similar to the input set system S, we need to quantify
the loss of information resulting from the reduction of the super dual graph G to the dual
graph G′ of the Euler diagram. We do this by computing an optimal assignment that maps
every zone that is not selected for G′ to a selected zone or to the empty set ∅. Each assignment
of a zone Z1 to a zone Z2 is interpreted such that the elements in Z1 are removed from every
set in ℓ(Z1) \ ℓ(Z2) and inserted into every set in ℓ(Z2) \ ℓ(Z1). If Z1 is asssigned to ∅, then
the elements in Z1 are removed from every set in ℓ(Z1) but not inserted into any set. For

22462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


84 22462 – Set Visualization and Uncertainty

elements V sets S
a
b
c
d
e
f

A
B
C
D

(a)
A

AB
AD

AC

ACD

a, b

c

d

e

f

(b)

AD

ACD

A

AB

AC

a, b

c

d

e

f

(c)

a
b

c

d

(d)

Figure 6 From left to right: (a) A bipartite graph S representing a set system, (b) the super
dual graph G for S, (c) the subgraph G′ of G that has been computed to form the dual graph of the
Euler diagram, (d) the Euler diagram.

every removal of an element from a set and every insertion of an element into a set we charge
a cost cremove ∈ R≥0 and cinsert ∈ R≥0, respectively. The transport distance between the two
set systems represented by G and G′ is the minimum total cost over all possible assignments.

Optimization problem

We are now ready to define the task of simplifying a set system as an optimization problem.
SetSystemSimplification: Given the super dual graph G of a set system S, find a
subgraph G′ of G such that

(1) G′ is planar,
(2) for every set X ∈ S, the subgraph of G′ induced by the set of zones labeled with X is

connected or empty, and
(3) the transport distance between the set systems represented by G and G′ is minimized.
Optionally, to keep the visual complexity of the output Euler diagram low, we could require
to select at most a prescribed number k of zones. Furthermore, to avoid concurrencies in
the output Euler diagram (which is one of the criteria for well-formed Euler diagrams), we
could discard all edges of G whose incident zones differ by more than one label. To compute
an optimal solution, we consider Integer Linear Programming, but also local search seems
promising.

Greedy heuristic

Our greedy heuristic takes the super dual graph G as input and iterates until a certain set of
conditions is reached. In each iteration, we select two intersecting sets A and B and merge
them to one. We update G to reflect this change. In principle, we could choose A and B

arbitrarily (as long as they intersect). However, to get closer to a sufficiently simplified
version of the set system, we prioritize the different options as follow:

A merge of two sets A and B has highest priority if it destroys a subgraph of G that is a
Kuratowski subdivision, i.e., a subdivision of one of the two non-planar graphs K5 or
K3,3. This is because it will bring us closer to a planar graph, which is strictly required
for drawing the Euler diagram.
Our second priority is to choose a merge if it destroys a concurrency.
If multiple merges are equally good according to the first two criteria, we choose the
merge based on a measure of (dis-)similarity. In particular, we consider choosing the
merge that yields the set system at minimum transport distance from the current set
system, but it would also be reasonable to merge the two sets with maximum Jaccard
similarity.
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Final remarks

We consider the optimization approach and the greedy heuristic as two complementary
approaches, which we plan to implement and compare in experiments. Concerning the
rendering of an Euler diagram based on its dual graph our hope is that we can re-use existing
methods and software. A crucial question that needs further discussions, however, is how the
uncertainties introduced with our simplification methods can be visualized.
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Set visualization deals with visual methods to support people understand and make sense of
sets, their elements, and relations thereof. Existing methods such as Euler diagrams, Venn
diagrams, and bi-partite node-link representations focus on communicating set memberships,
their cardinality, and their possible intersections. However, designing visual representations
of uncertain sets appears to be challenging. This is mainly due to the fact that not only
the data D themselves need to be encoded visually, but also the information about their
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uncertainty U needs to be communicated to a reader. Above all, set visualization users must
be able to extract all the encoded information (about the data and their uncertainty) from
the visualization, which can be formulated abstractly as a pipeline:

(D, U) m−−−−→ V
i−−−→ (D′, U ′).

The visualization designer defines a mapping m of data D and uncertainty U to create a
visual representation V . Through an interpretation i of the visual representation V , human
observers extract their own versions of data D′ and uncertainty information U ′. The scientific
challenge is to understand the cognitive process of i and to devise mappings m so that ideally
D = D′ and U = U ′ for all human observers. The congruence of D and D′, as well as U and
U ′, can serve as a guiding principle for the visualization of uncertain data.

While set visualizations themselves are an active research frontier there are far fewer
research activities in the understanding of the implications of uncertainty for set visualization.
In the first place, it is still unclear how uncertainty is defined in the context of set-type
data. Only if we know what types of uncertainty are relevant for set type data can we design
expressive visual representations of uncertain sets. Therefore, we conceptualized uncertainty
in the context of set visualization by examining (a) which aspects of set-type data might
be affected by uncertainty, and (b) which characteristics of uncertainty might influence the
visualization design.

Undeniably, uncertainty bears the notion of something being known, unknown, vague,
and/or containing varying accuracy. So, the starting point of our discussion centered around
specifying what is known and what is unknown. In a perfect world, we know the data and
we assume that they are accurate. For set-type data this means that we know for certain all
elements, all existing sets, and the set membership of each element. There are also associated
data attributes we know with certainty, for example, set size as an important derived set
attribute. There may be further data attributes given for elements or sets for which we know
their data values with certainty (e.g., the number of female members of a team). Given
these data characteristics (D), the visualization of set-type data is primarily concerned with
communicating (i) set membership, (ii) set properties, and (iii) associated data attributes.
An overview of suitable visualization methods for the cases where set characteristics are
certain is available in [1].

While we might believe to know things accurately in a perfect world, in the real world,
however, there is certainty about uncertainty (U) surrounding us. Just take the weather
predictions, for example, and the often heard statement “There is a 70% chance of rain
tomorrow” on your favorite weather app. We thus asked ourselves, how much do we actually
know about data uncertainty? In a perfect world, we know that there exists no uncertainty at
all, which we denote as U = 0. In the real world, however, one can distinguish two scenarios.
First, we know that there is uncertainty, but we cannot tell accurately where it is, what it is,
or how much of it exists. In other words, we know for a fact that uncertainty is present in
our data, but no further details. We denote this as U > 0. In the second scenario, we not
only know that uncertainty exists in our data, but we also know with certainty where, what,
and how much of it exists in our data. For the sake of simplicity, we denote this as U = p.
The letter p is a strong simplification of what could be known about the uncertainty in our
dataset. Depending on the given data characteristics we are interested in, p can take different
forms. When set membership of an element a and a set X is certain, one can say either
a ∈ X or a /∈ X. Under uncertainty, p might denote a probability of a being a member of X,
P (a, X) = p, which is a notation known from fuzzy sets. In this case, p can be understood as
a plain probability value. Yet, we could also say that p denotes a more complex probability
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Figure 7 Conceptual framework sketched as a table with columns and rows representing data
characteristics D and types of uncertainty U , respectively. The individual columns were discussed
in separate subgroups.

distribution (e.g., p = N (µ, σ2)) based on which set membership is decided. Also, in relation
to the data attributes of elements or sets, we may understand p as the probability value
of an attribute taking a particular data value. The same holds for the notion of p being a
probability distribution. Additionally, it is common for uncertain attribute values to specify
them via a range of possible values, in which case p = [l, u] is some interval with a lower and
upper bound of l and u.

Overall, the discussion of the characteristics of set data D and the types of uncertainty
U led us to a conceptual framework of uncertainty in set visualization. In terms of D, the
framework distinguishes: set membership, set attributes, and element attributes. Related to
U , we use the different plausible types of (un)certainty: certainty (U = 0), uncertainty as
a binary fact (U > 0), and uncertainty as quantifiable measure (U = p). We captured the
framework in a table whose columns and rows respectively represent D and U , as shown in
fig. 7.

Based on this conceptual framework, we then systematically discussed possible visualiz-
ation designs to illustrate examples and highlight challenges of integrating uncertainty in
set visualizations. Three subgroups were formed, each working on a selected data charac-
teristic (i.e., table column). As a baseline, each subgroup used the simple case of a visual
representation with zero uncertainty (U = 0). The group that dealt with set membership
worked with bi-partite node-link and matrix representations, which were gradually expanded
to include unknown uncertainty (U > 0) and known uncertainty (U = p) by varying the
visual encoding of links and matrix cells as indicated in fig. 8.

Set attributes turned out to be particularly challenging to visualize when uncertainty is
involved. The reason for this is that derived data attributes depend by definition on other
data characteristics, which also can include varying levels of uncertainty. For example, set
size depends on set memberships. Leaving this particular challenge for future work, the
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Figure 8 Integrating uncertainty into visual representations of set membership. Two alternatives
were sketched: bi-partite node-link representation with uncertainty encoded on the links (center)
and matrix visualization with uncertainty visualized in the matrix cells.

subgroup designed and discussed visual representations where set attributes do not depend on
other factors. They came up with node-link-style representations as shown in fig. 9. Sets are
represented as bigger nodes being linked to their belonging set elements, which are depicted
as smaller nodes. The set attributes are shown as pie charts within the bigger nodes, where
color hue indicates certain attribute values and hatching marks uncertain set elements. The
same encoding is applied to the attributes of the individual set elements on the smaller nodes.

Finally, one subgroup worked on visualizing uncertain element attributes. Their focus
was not so much on coming up with new designs, but to review the existing knowledge
about general uncertainty visualization. For example, cartography has a long history in
working with uncertain data, but also the visualization community studied this topic in
detail. Particularly, the works by Alan MacEachren et al. [5, 6], Kristin Potter et al. [7, 8, 2],
Amit Jena et al. [4], and Theresia Gschwandtner et al. [3] offer profound insight into how
uncertain data values can be encoded visually, and to what degree humans can interpret
and understand the depicted information. With these general considerations, the table
of the developed conceptual framework could be filled completely. Based on the intense
and productive discussions centered on the conceptual framework for set visualization and
uncertainty, we drafted an outline for a journal article that will summarize key results of
the research conducted at the Dagstuhl-Seminar. Our planned article will also include a
synthesis of recommendations to be considered when designing visualizations for uncertain
set data and an outline of future research directions.

This working group consisted of (in alphabetical order) Michael Behrisch, Susanne Bleisch,
Sarah Fabrikant, Eva Mayr, Silvia Miksch, Helen Purchase, and Christian Tominski (see
fig. 10). Helen Purchase headed the group. Christian Tominski drafted this report. All
members of the team contributed significantly to the discussions, provided feedback and
edited this report, and will be co-authors of the planned journal article.
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Figure 9 Node-link depiction where larger nodes visualize attributes of sets by color hue (certain)
or by hatching (uncertain) within a pie chart and smaller nodes denote set elements using the same
visual variables.

Figure 10 Members of the working group (from left to right): Helen Purchase (lead), Susanne
Bleisch, Christian Tominski, Eva Mayr, Silvia Miksch, Sarah Fabrikant, and Michael Behrisch.
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Related Work

Sets are models that have been used in data management and analysis to capture collection
relationships of elements. In addition, uncertainty information provides more context
regarding the reliability of the underlying data sets. Classical uncertainty visualizations cover
not only visual language design [6], but also its corresponding visual efficiency [4]. Although
several set visualization algorithms have been proposed [1], integrating uncertainty into these
approaches is still in its infancy.

Visualizing uncertainty in sets is related to the problem of visualizing Fuzzy Sets [10],
where membership is a value between 0 and 1. Disk diagrams [8] interactively visualize fuzzy
sets, and show the membership distribution of the elements with one disk per set.

Some visualization approaches for independent set uncertainty have been proposed. For
example, Uncertainty Treemaps [9], introduced nested hatched lines to show the independent
set uncertainty for treemaps across hierarchies. Another example of visualizing independent
set size uncertainty for hierarchical data is Bubble Treemaps [3], which use squiggly lines
to indicate uncertainty. UpSet [5] lists essential combinations of sets, especially their
intersections, and aggregates of intersections. Showing independent and dependent set size
uncertainties has not yet been fully investigated to the best of our knowledge.

Visual Design for Set Data with Dependent and Independent Uncertainties

The visualization of set sizes rather than sets with their elements allows us to use part of
the available space for visualizing the set size uncertainty, since we do not need to show
the elements in the sets themselves. Visualization of set size is best done by using a visual
variable related to size, e.g., area or length. This holds true for the uncertainty in the set
size as well. Studies show that people can intuitively understand uncertainties when they
are expressed as frequencies [2]. Directly depicting both set sizes and set size uncertainties
with size makes comparisons between sets easier by offloading the cognitive effort of mental
arithmetic onto vision [7].

There are various scenarios where understanding the size of a set is more important than
understanding set membership. Some of these scenarios have a geographic component while
others do not. We therefore consider different visualization options.

A visualization of set sizes and their uncertainties should be able to show answers to the
following questions:
1. For each set, what is its minimum and maximum size, and how much uncertainty is there

in the size?
2. What sets can be the largest sets?
3. Between which sets does a large dependent size uncertainty exist?

If the visualization shows the spatial location of the sets as well, we additionally want it
to be able to answer the following questions:
1. Where are the smaller or larger regions located?
2. Where are the regions with more uncertainty located?

Discussion

We describe several types of set size uncertainty visualization and some of their affordances and
challenges next. To illustrate a basic visualization of such a data set, we use proportional disks
drawn in a node-link style (Fig. 2A) where dependencies are indicated with edges/connections
between disks.
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Figure 11 Four visualizations of set sizes and uncertainties. Certain set sizes are grey, independ-
ently uncertain set sizes are blue, and dependently uncertain set sizes are magenta. A. Proportional
symbol representation using disks. B. Stacked bar chart representation for the same data as in A. C.
Reservoir map visualization with the same underlying (non-spatial) data set as in A. D. Rectangular
cartogram.

Topic 1. Sets are commonly represented as disks with proportional size, such as in Euler
diagrams. We use a simple visualization to explain the concepts of dependent and
independent uncertainty (Fig. 2A). The certain set sizes are represented as gray disks,
independent uncertainties as blue disks attached to the gray disks, and dependent
uncertainties as pink disks, with lines connecting them to the corresponding gray disks.
Though this visualization may introduce some clutter, it allows for showing more de-
pendencies than the other visualizations, by efficiently placing the gray disks in the
plane.
Furthermore, it naturally allows for showing dependency between more than two sets, by
simply adding extra lines to the additional dependent gray disks.

Topic 2. Bar charts (Fig. 2B) are a simple and effective way to show sizes of sets. It is
intuitive to stack uncertain set size bars on top of the bars that show certain sizes. This
idea implies that the certain parts show the minimum set size, and we must adopt an
additive view of set size. The maximum set size is implied by the length of all bar parts
considered together.
Every set has three types of bars that should be distinguishable: a bar for the certain
part, a part for the independently uncertain part, and zero or more bars that represent
sizes of dependent uncertainties. In case of pairwise uncertainties, these bars always come
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in pairs, and we use a line connecting the two bars that are interdependent.
In the visualization, we have the choice of ordering the sets (bars) from left to right
in a convenient way. We also have the choice of ordering the dependently uncertain
components vertically. These choices influence how complex the connecting lines get, for
example, whether they intersect and how long they are.
We think that this type of visualization is the most clear, but it is limited to at most a
few dozen sets and it cannot show geographic patterns.

Topic 3. In a second visualization type, we examined rectangular subdivisions like rectangular
cartograms and treemaps (Fig. 2D). They allow the visualization to distort the spatial
location of the sets and use the available two-dimensional space more efficiently than
either bar charts or the reservoir maps when there are many sets. Each set is shown by a
rectangle whose size represents the size of the set. If the set represents a geographic region
like a country, then these visualizations attempt to maintain adjacencies and relative
orientations.
On the border between two rectangles we can show the dependent uncertainties that
may exist between adjacent locations. For example, a gas station close to the border
between two countries may have clientele from both countries. We may know the total
sales of petrol, but not how much exhaust will be caused by this petrol in each of the two
countries. Such dependent size uncertainty is shown by a region that overlaps the border
and extends on both sides of it.
Independent size uncertainty, which includes uncertainty that is definitely attributable to
a specific set (in this case, a location), is shown at the edge of each rectangle, but how
a reader will interpret any visualization that does this is unclear. Another issue is that
dependent uncertainties between non-adjacent regions are difficult show.

Topic 4. We examine a new style of visualization that we call Reservoir Maps (Fig. 2C).
They are suitable when a (geographic) map has regions that represent the sets. They are
similar to the visualization using rectangular subdivisions, but here we show regions as
they are, and use proportional symbols or enumeration symbols to show the set sizes and
their uncertainties. The effect is that we use less space for the visualization of the set
size variable, but provide a stronger connection to the actual region (in case it needs to
be be easily recognizable).
Because the set size corresponding to a region is now symbolized, we can show the
certain and independently uncertain parts better inside the region than with rectangular
subdivisions. The dependent size uncertainties are again shown in a way that overlaps
the border defining the dependency.
The symbol type used for the certain sizes, the independently uncertain sizes, and the
dependently uncertain sizes should be the same. We could use a proportional symbol like
a disk for each set size component, or an enumeration symbol like small squares. Color
can be used to visualize what size is certain and what size is uncertain.
An issue is that dependent uncertainties between non-adjacent regions are difficult show,
and it may be challenging to scale symbol sizes for small regions that have large set sizes
because this visualization does not distort space.

These visualization types are static. With interaction, many additional options exist for
focus and details on demand.

Acknowledgment. The topic was proposed by Wouter Meulemans.
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