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Abstract
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1 Executive Summary

Holger Dell (Goethe-Universität – Frankfurt am Main, DE)
Mark R. Jerrum (Queen Mary University of London, GB)
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Counting and sampling problems arise in areas such as statistics (benchmarking statistical
tests, or sampling from a posterior distribution) and statistical physics (computing the
partition function of a spin system). Computationally, these problems are very different
in character from decision or optimisation problems, and their solution requires distinctive
techniques. It is natural to treat counting and sampling together in the same Dagstuhl
Seminar, as they are closely related computationally: subject to a reasonable side condition,
an efficient algorithm for sampling certain combinatorial structures can be used as a black
box to approximately count those structures, and vice versa.

Although much attention has been directed towards the complexity of counting and
sampling problems, our understanding of them is not as well developed as it is of decision
and optimisation problems. This Seminar marks a timely return to the topic, as new ideas
have recently been injected into the area, resulting in renewed activity and progress. It is

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Counting and Sampling: Algorithms and Complexity, Dagstuhl Reports, Vol. 12, Issue 11, pp. 124–145
Editors: Holger Dell, Mark R. Jerrum, Haiko Müller, Konrad Anand, and Marcus Pappik

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dagstuhl.de@holgerdell.com
mailto:m.jerrum@qmul.ac.uk
mailto:h.muller@leeds.ac.uk
mailto:k.anand@qmul.ac.uk
mailto:marcus.pappik@hpi.de
http://www.dagstuhl.de/22482
https://doi.org/10.4230/DagRep.12.11.124
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


Holger Dell, Mark R. Jerrum, Haiko Müller, Konrad Anand, and Marcus Pappik 125

particularly satisfying to observe that much of this progress has been in the positive direction,
in the form of new efficient algorithms. This is in an area where negative results had become
the norm.

The Covid pandemic inevitably left its mark on the meeting. Over five years elapsed
between the previous Dagstuhl Seminar on a related topic and the current one. In the
meantime, the introduction of a circle of ideas around high-dimensional expanders, spectral
expansion and entropy decay has transformed the analysis of Markov chains for sampling, and
brought many previously intractable questions within scope of our methods. An unwelcome
impact of Covid was to reduce significantly the number of participants. Sadly, it was not
possible to invite all the people we would have liked to see at the meeting.

With a view to providing a snapshot of current interests, here is a rough-and-ready
breakdown of the presentations against a somewhat arbitrary set of headings.

Connections with statistical physics, phase transitions, etc. Coja-Oghlan, Galanis and
Patel,
Holant and constraint satisfaction problems. Backens and Bulatov.
Markov chains. Guo and Miracle.
Parameterised complexity of counting problems. Bressan, Focke, Roth and Wellnitz.
Perfect samplers. Anand and Cannon.
Point processes and other geometric connections. Anari, Jerrum and Pappik.
Polynomials associated with graphs, matroids and matrices. Björklund, Curticapean,
Regts.
Other. Göbel, Goldberg, Kaski, Lapinskas.

If nothing else, this rough classification exercise gives an impression of the wide span of
current research. Aside from the progress on the analysis of Markov chains mentioned earlier,
many other topics have seen advances in the past five years. Examples include: counting
small patterns (‘motifs’) in large graphs (networks), sampling structures in regions of phase
non-uniqueness, perfect sampling, and weighted counting problems where the weights are
complex. It turns out that the latter study shines light on the case of real weights, through
an examination of zeros of partition functions in the complex plane. The meeting gave
participants a long-awaited chance to review developments over the past five years.

On the organisational front, an innovation (as far as this community is concerned) was
the inclusion of a problem session on the first day. This went off quite smoothly, and small
working groups formed fairly spontaneously to work on problems during the week. On the
final day we heard from the groups a summary of their investigations over the week. Our
hope is that sufficient momentum was achieved on some of these problems that groups will
continue to work on them beyond the end of the meeting. Indeed, one of the working groups
decided to apply to run a workshop on homomorphism counting at ICALP 2023 with this
aim in mind. The proposal, by Radu Curticapean and Marc Roth, was accepted, and the
workshop, entitled “ADjoint HOmomorphism Counting” (AD HOC) will take place in July
2023. We look forward to being able to report on advances achieved on this and other topics
on this website.
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3 Overview of Talks

3.1 Lazy Depth-First Sampling of Spin Systems
Konrad Anand (Queen Mary University of London, GB) and Mark R. Jerrum (Queen Mary
University of London, GB)

License Creative Commons BY 4.0 International license
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Main reference Konrad Anand, Mark Jerrum: “Perfect Sampling in Infinite Spin Systems Via Strong Spatial
Mixing”, SIAM Journal on Computing, Vol. 51(4), pp. 1280–1295, 2022.

URL https://doi.org/10.1137/21M1437433

We present a simple algorithm that perfectly samples configurations from the unique Gibbs
measure of a spin system on a potentially infinite graph G. The sampling algorithm assumes
strong spatial mixing together with subexponential growth of G. It produces a finite window
onto a perfect sample from the Gibbs distribution. The run-time is linear in the size of the
window, in particular it is constant for each vertex.

3.2 Parallel Discrete Sampling via Continuous Walks
Nima Anari (Stanford University, US)

License Creative Commons BY 4.0 International license
© Nima Anari

Joint work of Nima Anari, Yizhi Huang, Tianyu Liu, Thuy-Duong Vuong, Brian Xu, Katherine Yu

We develop a framework for sampling from discrete distributions on the hypercube by sampling
from continuous distributions obtained by convolution with spherical Gaussians. We show
that for well-studied families of discrete distributions, the result of the convolution is well-
conditioned log-concave, whenever the Gaussian’s variance is above an O(1) threshold. We
plug in off-the-shelf continuous sampling methods into our framework to obtain novel discrete
sampling algorithms. Additionally, we introduce and study a crucial notion of smoothness for
discrete distributions that we call transport-stability, that we use to control the propagation
of error in our framework. We expect transport-stability to be of independent interest, as
we connect it to constructions of optimally mixing local random walks and concentration
inequalities.

As our main application, we resolve open questions on parallel sampling of distributions
which admit parallel counting. We show that determinantal point processes can be sampled
via RNC algorithms, that is in time polylog(n) using poly(n) processors. For a wider class
of distributions, we show our framework yields Quasi-RNC sampling, that is sampling in
time polylog(n) using nO(logn) processors. This wider class includes random Eulerian tours
in digraphs.
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3.3 Holant clones and approximation of holant problems
Miriam Backens (University of Birmingham, GB)

License Creative Commons BY 4.0 International license
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Joint work of Miriam Backens, Leslie Ann Goldberg
Main reference Miriam Backens, Leslie Ann Goldberg: “Holant Clones and the Approximability of Conservative

Holant Problems”, ACM Trans. Algorithms, Vol. 16(2), pp. 23:1–23:55, 2020.
URL https://doi.org/10.1145/3381425

Holant problems are a generalisation of counting constraint satisfaction problems, equivalent
to the problem of fully contracting a tensor network built from some fixed family of tensors.
Generalising relational and functional clones, the holant clone of a set of constraint functions
contains all functions that can be simulated from the original set via gadgets.

I will discuss a result about approximation of holant problems that employs the formalism
of holant clones, and talk about some further work in progress.

3.4 The Fine-Grained Complexity of Computing the Tutte Polynomial of
a Linear Matroid

Andreas Björklund (Lund, SE)

License Creative Commons BY 4.0 International license
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Joint work of Andreas Björklund and Petteri Kaski
Main reference Andreas Björklund, Petteri Kaski: The Fine-Grained Complexity of Computing the Tutte

Polynomial of a Linear Matroid. SODA 2021: 2333-2345.
URL https://dl.acm.org/doi/10.5555/3458064.3458203

We show that computing the Tutte polynomial of a linear matroid of dimension k on kO(1)

points over a field of kO(1) elements requires kΩ(k) time unless the #ETH— a counting
extension of the Exponential Time Hypothesis of Impagliazzo and Paturi [CCC 1999] due to
Dell et al. [ACM TALG 2014]—is false.

3.5 Linear and sublinear algorithms for sampling graphlets in large
graphs

Marco Bressan (University of Milan, IT)

License Creative Commons BY 4.0 International license
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Main reference Marco Bressan: “Efficient and near-optimal algorithms for sampling connected subgraphs”, in Proc.
of the STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, pp. 1132–1143, ACM, 2021.

URL https://doi.org/10.1145/3406325.3451042

A fundamental primitive in modern graph mining is sampling connected subgraphs on k
vertices (also known as k-graphlets) from a graph G. For a long time, no good algorithm was
known for sampling k-graphlets uniformly at random; the best algorithms available could
sample only approximately. In this talk I will present algorithms for sampling k-graphlets
uniformly or eps-uniformly from an arbitrary n-vertex graph G with preprocessing time
linear or even sublinear in G and sampling time logarithmic or even constant in G.
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3.6 Complexity classification of counting graph homomorphisms modulo
a prime number

Andrei A. Bulatov (Simon Fraser University – Burnaby, CA)

License Creative Commons BY 4.0 International license
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Joint work of Andrei A. Bulatov, Amirhosein Kazeminia

Counting graph homomorphisms and its generalizations such as the Counting Constraint
Satisfaction Problem (CSP), its variations, and counting problems in general have been
intensively studied since the pioneering work of Valiant. While the complexity of exact
counting of graph homomorphisms (Dyer and Greenhill, 2000) and the counting CSP (Bulatov,
2013, and Dyer and Richerby, 2013) is well understood, counting modulo some natural number
has attracted considerable interest as well. In their 2015 paper Faben and Jerrum suggested
a conjecture stating that counting homomorphisms to a fixed graph H modulo a prime
number is hard whenever it is hard to count exactly, unless H has automorphisms of certain
kind. In this paper we confirm this conjecture. As a part of this investigation we develop
techniques that widen the spectrum of reductions available for modular counting and apply
to the general CSP rather than being limited to graph homomorphisms.

3.7 Fast and Perfect Sampling of Subgraphs and Polymer Systems
Sarah Cannon (Claremont McKenna College, US)

License Creative Commons BY 4.0 International license
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Joint work of Antonio Blanca, Sarah Cannon, Will Perkins
Main reference Antonio Blanca, Sarah Cannon, Will Perkins: “Fast and Perfect Sampling of Subgraphs and Polymer

Systems”, in Proc. of the Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of
Illinois, Urbana-Champaign, USA (Virtual Conference), LIPIcs, Vol. 245, pp. 4:1–4:18, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

URL https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.4

We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs
(or graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation
process with a carefully chosen rejection filter and works under a percolation subcriticality
condition. We show that this condition is optimal in the sense that the task of (approximately)
sampling weighted rooted graphlets becomes impossible in finite expected time for infinite
graphs and intractable for finite graphs when the condition does not hold. We apply our
sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms
for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied
yet very different problems. This new perfect sampling algorithm for polymer models gives
improved sampling algorithms for spin systems at low temperatures on expander graphs and
unbalanced bipartite graphs, among other applications.
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3.8 The random 2-SAT partition function
Amin Coja-Oghlan (TU Dortmund, DE) and Noela Müller (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
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Joint work of Amin Coja-Oghlan, Dimitris Achlioptas, Max Hahn-Klimroth, Joon Lee, Noëla Müller, Manuel
Penschuck, Guangyan Zhou

Main reference Dimitris Achlioptas, Amin Coja-Oghlan, Max Hahn-Klimroth, Joon Lee, Noëla Müller, Manuel
Penschuck, Guangyan Zhou: “The number of satisfying assignments of random 2-SAT formulas”,
Random Struct. Algorithms, Vol. 58(4), pp. 609–647, 2021.

URL https://doi.org/10.1002/rsa.20993

The random 2-SAT problem was the first random constraint satisfaction problem whose
satisfiability threshold could be pinpointed precisely [1, 2]. The satisfiability threshold turns
out to be determined by the appearance of certain local structures called “bicycles”. In this talk
I address the more difficult but no less fundamental problem of calculating the (exponential
order of the) number of satisfying assignments within the satisfiable phase. The main result
rigorously establishes a prediction from statistical physics called the “replica symmetric
ansatz” [3, 4]. The resulting formula does not boil down to a simple algebraic expression, but
rather involves a stochastic fixed point problem that mimics the Belief Propagation message
passing algorithm. Nonetheless, the formula can be evaluated numerically within arbitrary
precision.

References
1 V. Chvatal, B. Reed: Mick gets some (the odds are on his side). Proc. 33th FOCS (1992)

620–627.
2 A. Goerdt: A threshold for unsatisfiability. J. Comput. Syst. Sci. 53 (1996) 469–486
3 R. Monasson, R. Zecchina: The entropy of the k-satisfiability problem. Phys. Rev. Lett. 76

(1996) 3881.
4 R. Monasson, R. Zecchina: Statistical mechanics of the random K-SAT model. Phys. Rev. E

56 (1997) 1357–1370.

3.9 Immanants and determinants
Radu Curticapean (IT University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
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Main reference Radu Curticapean: “A full complexity dichotomy for immanant families”, in Proc. of the STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pp. 1770–1783, ACM, 2021.

URL https://doi.org/10.1145/3406325.3451124

Immanants are matrix functionals that generalize determinants and permanents by allowing
general irreducible characters of the symmetric group as permutations weights rather than
merely the sign function (which yields the determinant) or the all-ones function (which yields
the permanent). In this talk, we give an introduction to immanants and describe a recent
classification of their complexity. In a second part, we give a simple proof that shows how
determinants can be expressed in terms of homomorphism counts from cycle covers, leaving
open similar expressions for general immanants.
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3.10 Counting small induced subgraphs with hereditary properties
Jacob Focke (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
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Joint work of Jacob Focke, Marc Roth
Main reference Jacob Focke, Marc Roth: “Counting small induced subgraphs with hereditary properties”, in Proc.

of the STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 – 24, 2022, pp. 1543–1551, ACM, 2022.

URL https://doi.org/10.1145/3519935.3520008

We study the computational complexity of the problem #IndSub(Φ) of counting k-vertex
induced subgraphs of a graph G that satisfy a graph property Φ. Our main result establishes an
exhaustive and explicit classification for all hereditary properties, including tight conditional
lower bounds under the Exponential Time Hypothesis (ETH): If a hereditary property Φ
is true for all graphs, or if it is true only for finitely many graphs, then #IndSub(Φ) is
solvable in polynomial time. Otherwise, #IndSub(Φ) is #W[1]-complete when parameterised
by k, and, assuming ETH, it cannot be solved in time f(k) · |G|o(k) for any function f .
This classification features a wide range of properties for which the corresponding detection
problem (as classified by Khot and Raman [TCS 02]) is tractable but counting is hard.
Moreover, even for properties which are already intractable in their decision version, our
results yield significantly stronger lower bounds for the counting problem. As additional
result, we also present an exhaustive and explicit parameterised complexity classification for
all properties that are invariant under homomorphic equivalence. By covering one of the most
natural and general notions of closure, namely, closure under vertex-deletion (hereditary), we
generalise some of the earlier results on this problem. For instance, our results fully subsume
and strengthen the existing classification of #IndSub(Φ) for monotone (subgraph-closed)
properties due to Roth, Schmitt, and Wellnitz [FOCS 20]. A full version of our paper,
containing all proofs, is available at https://arxiv.org/abs/2111.02277.

3.11 Metastability for the ferromagnetic Potts model
Andreas Galanis (University of Oxford, GB)

License Creative Commons BY 4.0 International license
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Joint work of Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel
Stefankovic, Eric Vigoda

Main reference Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel
Stefankovic, Eric Vigoda: “Metastability of the Potts ferromagnet on random regular graphs”,
CoRR, Vol. abs/2202.05777, 2022.

URL https://arxiv.org/abs/2202.05777

We study the performance of Markov chains for the q-state ferromagnetic Potts model on
random regular graphs. While the cases of the grid and the complete graph are by now
well-understood, the case of random regular graphs has resisted a detailed analysis and,
in fact, even analysing the properties of the Potts distribution has remained elusive. It is
conjectured that the performance of Markov chains is dictated by metastability phenomena,
i.e., the presence of “phases” (clusters) in the sample space where Markov chains with local
update rules, such as the Glauber dynamics, are bound to take exponential time to escape,
and therefore cause slow mixing. The phases that are believed to drive these metastability
phenomena in the case of the Potts model emerge as local, rather than global, maxima of
the so-called Bethe functional, and previous approaches of analysing these phases based on
optimisation arguments fall short of the task.
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Our first contribution is to detail the emergence of the two relevant phases for the q-state
Potts model on the d-regular random graph for all integers q, d ≥ 3, and establish that for
an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on
the d-regular tree, the two phases coexist (as possible metastable states). The proofs are
based on a conceptual connection between spatial properties and the structure of the Potts
distribution on the random regular graph, rather than complicated moment calculations.
This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established
phase coexistence for a small interval around the so-called ordered-disordered threshold (via
different arguments) that applied for large q and d ≥ 5.

Based on our new structural understanding of the model, our second contribution is to
obtain metastability results for two classical Markov chains for the Potts model. We first
complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below
the uniqueness threshold, by showing an exponential lower bound on the mixing time above
the uniqueness threshold. Then, we obtain tight results even for the non-local and more
elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole
interval of temperatures where the chain is conjectured to mix slowly on the random regular
graph. The key is to bound the conductance of the chains using a random graph “planting”
argument combined with delicate bounds on random-graph percolation.

3.12 Instability of contention resolution protocols
Leslie Ann Goldberg (University of Oxford, GB)
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Main reference Leslie Ann Goldberg, John Lapinskas: “Instability of backoff protocols with arbitrary arrival rates”,

CoRR, Vol. abs/2203.17144, 2022.
URL https://doi.org/10.48550/arXiv.2203.17144

A backoff protocol is a simple and elegant randomised algorithm for communicating in a
Multiple Access Channel. Aldous conjectured in 1987 that, for any positive arrival rate,
every backoff protocol is unstable. I will report on new work with John Lapinskas towards
proving this conjecture. (This will appear in SODA 2023.)

3.13 Towards derandomising Markov chain Monte Carlo
Heng Guo (University of Edinburgh, GB)

License Creative Commons BY 4.0 International license
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Joint work of Heng Guo, Weiming Feng, Chunyang Wang, Jiaheng Wang, Yitong Yin
Main reference Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, Yitong Yin: “Towards derandomising

Markov chain Monte Carlo”, CoRR, Vol. abs/2211.03487, 2022.
URL https://doi.org/10.48550/arXiv.2211.03487

We present a new framework to derandomise certain Markov chain Monte Carlo (MCMC)
algorithms. As in MCMC, we first reduce counting problems to sampling from a sequence of
marginal distributions. For the latter task, we introduce a method called coupling towards
the past that can, in logarithmic time, evaluate one or a constant number of variables from a
stationary Markov chain state. Since there are at most logarithmic random choices, this leads
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to very simple derandomisation. We provide two applications of this framework, namely
efficient deterministic approximate counting algorithms for hypergraph independent sets
and hypergraph colourings, under local lemma type conditions matching, up to lower order
factors, their state-of-the-art randomised counterparts.

3.14 Analysis of the survival time of the SIRS process via expansion
Andreas Göbel (Hasso-Plattner-Institut, Universität Potsdam, DE) and Marcus Pappik
(Hasso-Plattner-Institut, Universität Potsdam, DE)
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survival time of the SIRS process via expansion”, arXiv, 2022.
URL https://doi.org/10.48550/ARXIV.2205.02653

We study the SIRS process, a continuous-time Markov chain modelling the spread of infections
on graphs. In this process, vertices are either susceptible, infected, or recovered. Each infected
vertex becomes recovered at rate 1 and infects each of its susceptible neighbours independently
at rate λ, and each recovered vertex becomes susceptible at a rate ρ, which we assume to
be independent of the graph size. A central quantity of the SIRS process is the time until
no vertex is infected, known as the survival time. The survival time of the SIRS process is
studied extensively in a variety of contexts. Surprisingly though, to the best of our knowledge,
no rigorous theoretical results exist so far. This is even more surprising given that for the
related SIS process, mathematical analysis began in the 70s and continues to this day.

We address this imbalance by conducting the first theoretical analyses of the SIRS process
on various graph classes via their expansion properties. Our analyses assume that the
graphs start with at least one infected vertex and no recovered vertices. Our first result
considers stars, which have poor expansion. We prove that the expected survival time of
the SIRS process on stars is at most polynomial in the graph size for any value of λ. This
behaviour is fundamentally different from the SIS process, where the expected survival time
is exponential already for small infection rates. Due to this property, for the SIS process,
stars constitute an important sub-structure for proving an expected exponential survival
time of more complicated graphs. For the SIRS process, this argument is not sufficient.

Our main result is an exponential lower bound of the expected survival time of the SIRS
process on expander graphs. Specifically, we show that on expander graphs G with n vertices,
degree close to d, and sufficiently small spectral expansion, the SIRS process has expected
survival time at least exponential in n when λ ≥ c/d for a constant c > 1. This result is
complemented by established results for the SIS process, which imply that the expected
survival time of the SIRS process is at most logarithmic in n when λ ≤ c/d for a constant
c < 1. Combined, our result shows an almost-tight threshold behaviour of the expected
survival time of the SIRS process on expander graphs. Additionally, our result holds even if G

is a subgraph. This allows, for the SIRS process, the use of expanders as sub-structures for
lower bounds, similar to stars in the SIS process. Notably, our result implies an almost-tight
threshold for Erdős–Rényi graphs and a regime of exponential survival time for hyperbolic
random graphs, one of the most popular graph models, as it incorporates many properties
found in real-world networks. The proof of our main result draws inspiration from Lyapunov
functions used in mean-field theory to devise a two-dimensional potential function and
applying a negative-drift theorem to show that the expected survival time is exponential.
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3.15 Counting vertices of integral polytopes defined by facets
Mark R. Jerrum (Queen Mary University of London, GB)
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We present a number of complexity results concerning the problem of counting vertices of an
integral polytope defined by a system of linear inequalities. The focus is on polytopes with
small integer vertices, particularly 0/1-polytopes and half-integral polytopes (ones whose
vertices are contained in {0, 1}n and {0, 1

2 , 1}n, respectively). Such polytopes are ubiquitous
in the field of combinatorial optimisation.

Suppose a polytope P is defined by linear inequalities Ax ≤ b. If the matrix A is ‘totally
unimodular’ then P is guaranteed to be integral; many integral polytopes that are encountered
in practice arise in this way. Network matrices and their transposes are particular kinds of
totally unimodular matrices. Our main results are the following.

Counting the vertices of a 0/1-polytope exactly is #P complete, even when restricted to
the case when A is a network matrix or the transpose of one. (This is nothing more than
an observation, given that the problems of counting perfect matchings or independent
sets in a bipartite graph are both #P-complete.)
Approximately counting the vertices of a half-integral polytope is NP-hard, as witnessed
by the ‘perfect 2-matching polytope’.
The vertex-counting problem for 0/1-polytopes defined by transposes of network matrices
is equivalent, under approximation-preserving reductions, to counting independent sets of
a bipartite graph (#BIS). No efficient approximation algorithm is known for #BIS, but
neither is approximating #BIS known to be NP-hard. Many natural counting problems
are known to be equivalent to #BIS under polynomial-time approximation-preserving
reductions.
For a natural subclass of polytopes defined by network matrices, it is possible to approx-
imate the number of vertices in polynomial time. The complexity for network matrices in
general is, however, unknown,

3.16 Nearly optimal independence oracle algorithms for edge estimation
in hypergraphs

John Lapinskas (University of Bristol, GB)
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We study a query model of computation in which an n-vertex k-hypergraph can be accessed
only via its independence oracle or via its colourful independence oracle, and each oracle
query may incur a cost depending on the size of the query. In each of these models, we obtain
oracle algorithms to approximately count the hypergraph’s edges, and we unconditionally
prove that no oracle algorithm for this problem can have significantly smaller worst-case
oracle cost than our algorithms.
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3.17 Iterated Decomposition of Biased Permutations Via New Bounds
on the Spectral Gap of Markov Chains

Sarah Miracle (University of St. Thomas – St. Paul, US)
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We study a nearest-neighbor Markov chain over biased permutations of [n]. We build on
previous work that analyzed the spectral gap of the chain when [n] is partitioned into k

classes. There, the authors iteratively decomposed the nearest neighbor chain into simpler
chains, but incurred a multiplicative penalty of n−2 for each application of the decomposition
theorem. We introduce a new decomposition theorem which allows us to avoid this penalty
(in certain cases) and prove the first inverse-polynomial bound on the spectral gap of the
chain when k is as large as Θ(n/ log n). The previous best known bound assumed k was at
most a constant.

3.18 Discretization-based algorithms for repulsive Gibbs point processes
Marcus Pappik (Hasso-Plattner-Institut, Universität Potsdam, DE) and Andreas Göbel
(Hasso-Plattner-Institut, Universität Potsdam, DE)
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random graphs to sample repulsive Gibbs point processes with arbitrary-range potentials”, CoRR,
Vol. abs/2204.01793, 2022.

URL https://doi.org/10.48550/arXiv.2204.01793

Gibbs point processes are a popular way to model particle distributions of fluids and gasses
in Euclidean space. Similar to spin systems on graphs, which might be seen as their discrete
counterparts, sampling the Gibbs distribution and computing its normalizing constant,
the partition function, of such point processes is highly relevant. However, until recently,
very few rigorous computational results existed. In this talk, we give a brief introduction
to Gibbs point processes and present recent algorithmic results. In particular, we focus
on discretization-based algorithms, which reduce the algorithmic tasks at hand to related
problems for discrete spin systems, making use of the rich literature in that area. Our main
focus will be on a recent approach that employs hard-core models on carefully constructed
families of geometric random graphs to obtain sampling and approximation algorithms
for Gibbs point processes. This results in efficient algorithms for arbitrary repulsive pair
potentials ϕ up to a fugacity of λ < e/Cϕ, where Cϕ is the temperedness constant of ϕ.
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3.19 Sampling from the low temperature feroomagnetic Potts model
via flows

Viresh Patel (Queen Mary University of London, GB) and Guus Regts (University of Ams-
terdam, NL)
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I will discuss how one can (approximately and quickly) sample configurations from the
ferromagnetic Potts model with underlying graph G at low temperatures using a Markov
chain on flows. The use of flows allows one to work with certain types of graphs that can
have unbounded degree.

3.20 Trustworthy Monte Carlo
Petteri Kaski
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Building on work of Williams (CCC’16) and Björklund & Kaski (PODC’16) on fine-grained
noninteractive proof systems in the context of deterministic counting problems, we study
verifiable randomized approximation schemes for hard counting problems such as the perman-
ent. We show that sample-average-based Monte Carlo estimators such as the Godsil-Gutman
and the Chien-Rasmussen-Sinclair estimators for the permanent admit verifiable random-
ized approximation with verifier complexity scaling essentially as the square root of the
prover/estimator complexity.

[This work is to appear in NeurIPS’22.]

3.21 Approximating the chromatic polynomial is as hard as computing it
exactly

Guus Regts (University of Amsterdam, NL)
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In this talk I will explain that for any non-real algebraic number q, approximately computing
the absolute value of the chromatic polynomial evaluated at q is as hard as computing it
exactly and hence is #P-hard. The proof is based on constructing series-parallel gadgets
that “implement” a dense set of edge interactions and is inspired by Sokal’s result saying
that chromatic roots are dense in the complex plane.
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3.22 Counting Small Directed Subgraphs, Parameterised by the
Outdegree

Marc Roth (University of Oxford, GB)
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We study the problem of counting the copies of a small directed pattern graph H in a large
directed host graph G. Motivated by the recent surge on pattern counting in degenerate
graphs, we focus on host graphs with small outdegree d(G). Formally, we choose |H| + d(G)
as the problem parameter and ask for which classes of patterns the problem is fixed-parameter
tractable.

This talk presents a complete parameterised complexity classification of the problem and
provides an overview of the technical challenges in proving this result – among others, those
challenges include a careful analysis of a variety of width measures on hypergraphs encoding
the reachability structure of directed graphs.

3.23 Tight Complexity Bounds for Counting Generalized Dominating
Sets in Bounded-Treewidth Graphs

Philip Wellnitz (MPI für Informatik – Saarbrücken, DE)
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We investigate how efficiently a well-studied family of domination-type problems can be
solved on bounded-treewidth graphs. For sets σ, ρ of non-negative integers, a (σ, ρ)-set of a
graph G is a set S of vertices such that |N(u)∩S| ∈ σ for every u ∈ S, and |N(v)∩S| ∈ ρ for
every v ̸∈ S. The problem of finding a (σ, ρ)-set (of a certain size) unifies standard problems
such as Independent Set, Dominating Set, Independent Dominating Set, and many
others.

For all pairs of finite or cofinite sets (σ, ρ), we determine (under standard complexity
assumptions) the best possible value cσ,ρ such that there is an algorithm that counts (σ, ρ)-sets
in time ctw

σ,ρ · nO(1) (if a tree decomposition of width tw is given in the input). Let stop denote
the largest element of σ if σ is finite, or the largest missing integer +1 if σ is cofinite; rtop is
defined analogously for ρ. Surprisingly, cσ,ρ is often significantly smaller than the natural
bound stop + rtop + 2 achieved by existing algorithms [van Rooij, 2020]. Toward defining
cσ,ρ, we say that (σ, ρ) is m-structured if there is a pair (α, β) such that every integer in σ

equals α mod m, and every integer in ρ equals β mod m. Then, setting
cσ,ρ = stop + rtop + 2 if (σ, ρ) is not m-structured for any m ≥ 2,
cσ,ρ = max{stop, rtop} + 2 if (σ, ρ) is 2-structured, but not m-structured for any m ≥ 3,
and stop = rtop is even, and
cσ,ρ = max{stop, rtop} + 1, otherwise,
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we provide algorithms counting (σ, ρ)-sets in time ctw
σ,ρ · nO(1). For example, for the Exact

Independent Dominating Set problem (also known as Perfect Code) corresponding
to σ = {0} and ρ = {1}, this improves the 3tw · nO(1) algorithm of van Rooij to 2tw · nO(1).

Despite the unusually delicate definition of cσ,ρ, we show that our algorithms are most
likely optimal, that is, for any pair (σ, ρ) of finite or cofinite sets where the problem is
non-trivial, and any ε > 0, a (cσ,ρ − ε)tw · nO(1)-algorithm counting the number of (σ, ρ)-sets
would violate the Counting Strong Exponential-Time Hypothesis (#SETH). For finite sets σ

and ρ, our lower bounds also extend to the decision version, showing that our algorithms
are optimal in this setting as well. In contrast, for many cofinite sets, we show that further
significant improvements for the decision and optimization versions are possible using the
technique of representative sets.

4 Working groups

4.1 Counting Functions via Extension Oracles
Marco Bressan (University of Milan, IT), Konrad Anand (Queen Mary University of London,
GB), and Holger Dell (Goethe-Universität – Frankfurt am Main, DE)
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Introduction. Let X = {1, . . . , n}, and let C be a set of functions from X to some set Y ;
for the sake of this introduction wa may assume Y = {0, 1}. A partial function from X

to Y is a function f̂ : X → Y ∪ {⋆} where ⋆ is a special symbol meaning abstention. An
extension oracle or consistency oracle OC for C takes in input a partial function f̂ from X

to Y and returns 1 if and only if that function has an extension in C, i.e., if ∃f ∈ C such
that f(x) = f̂(x) for all x ∈ f̂−1(Y ). We consider the following counting problem: given
X, Y and access to OC , compute |C| or a good approximation to it. This problem arises for
instance in machine learning, where C is the concept class, or the version space (the set of
concepts consistent with what the learner has seen so far). In this case, an efficient algorithm
to compute or estimate |C| yields efficient algorithms for, say, the Halving algorithm [2, 1, 5].

Outcomes. First, we have highlighted a separation between the consistency oracle and
the independence oracle for hypergraphs. The independence oracle was recently used by
Dell, Lapinskas and Meek [4, 3] in the problem of counting the hyperedges of a hypergraph
H = (V, E). Clearly, this problem can be cast in our setting by letting X = {1, . . . , |V |},
Y = {0, 1}, and C = {⊮e : e ∈ E}. An independence oracle for H takes in input a subset
S ⊆ V and returns 1 if and only if there exists e ∈ E with e ⊆ S. In their work, the authors
consider k-hypergraphs (ones where every edge has size k), and they show that even in that
case one may need |V |Ω(k) queries to approximate |E| [4]. In fact it is easy to see that an
independence oracle is not sufficient to solve the problem at all if the hypergraph is arbitrary:
for instance, an independence oracle will output 1 on every input as long as E contains all
singletons, and therefore any two such hypergraphs are indistinguishable via independence
oracles. Instead, a consistency oracle always allows one to compute C using O(|C|) queries,
via a simple exhaustive search tree exploration. Thus in particular one gets a polynomial-time
algorithm whenever |C| = nO(1).
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Second, we have obtained a construction that proves what follows. For every fixed k ≥ 1,
in order to be able to distinguish with non-vanishing probability between |C| = nk and
|C| = Ω(n2k), one needs to make a number of calls to the consistency oracle of order:(

n

2k log n

)k+1
(1)

This construction will likely be the basis for future developments.
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4.2 Independent sets of fixed size
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Recently, a number of algorithmic methods for approximately counting the number of
independent sets of a given size k = ⌊αn⌋ in n-vertex bounded-degree graphs have been
discovered. In [2] the sharp hardness threshold in the density α was uncovered, and the
algorithm in the tractable region of densities is based on rejection sampling from the hard-core
model. Alternative approaches based local central limit theorems that yield faster algorithms
were given in [3].

There is a natural Markov chain whose stationary distribution is uniform on independent
sets of size k, namely the down-up walk that from a state I takes a uniform random element
v ∈ I and moves to a uniform random independent set of size k containing I \ {v}. This was
shown using path coupling [1] to mix rapidly at densities up to roughly α ∼ 1/(2d) in graphs
of maximum degree d. The hardness threshold from [2] is slightly larger: αc ∼ e/(1 + e) · 1/d.

This working group focused on the question of whether the down-up walk mixes rapidly
up to the hardness threshold. Emerging techniques that seem pertinent include spectral
independence and localization schemes, but there is a rather significant obstacle to apply
these techniques associated with the global constraint of a fixed size k. We did not overcome
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the main obstacle, and instead explored alternative approaches and familiarised ourselves
with topics such as correlation decay, computation trees, and zeros of partition functions
for the fixed-size model. One starting point is an idea due to Heng Guo that provides a
computation tree for the ratios rk(v) = Prk(v ∈ I)/ Prk(v /∈ I) where Prk is over the uniform
independent set of size k, but it remains unclear how to use this insight to study the mixing
time of the down-up walk. We thank Guus Regts for an interesting discussion on techniques
for finding zero-free regions.
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4.3 Fine grained complexity of counting independent sets in bounded
degree graphs

Heng Guo (University of Edinburgh, GB)
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A key component of the approximate counting algorithm for independent sets in bounded
degree graphs by Patel-Regts is a fixed parameter tractable algorithm for exactly counting
them with the size being the parameter. The natural question is then if there is a corresponding
lower bound. There are various hardness results when the degree bound goes to n, namely
for general graphs. We have worked on reducing from those cases. However, there is a
main difficulty, in that for general graphs, the size of the maximum independent set can be
arbitrary, and yet for bounded degree graphs it is linear in the number of vertices. This
makes such reductions difficult to construct.
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4.4 Approximating the number of proper colorings of a planar graph
with a large number of colors

Viresh Patel (Queen Mary University of London, GB), Andrei A. Bulatov (Simon Fraser
University – Burnaby, CA), Charlie Carlson (University of Colorado – Boulder, US), Heng
Guo (University of Edinburgh, GB), and Guus Regts (University of Amsterdam, NL)
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The computational complexity of approximately counting the number of proper colorings
with say a million colors of planar graphs is unclear. On the one hand as soon as we replace
the number a million by any non-real number close arbitrarily to it and look at the evaluation
of the chromatic polynomial at this point, this problem becomes #P-hard on planar graphs,
as was recently proved in [1]. On the other hand a planar graph can be colored with 4 colors,
which could possibly lead to the suspicion that for some large enough number of colors
approximately counting the number of proper colorings should not be computational hard.

We have met in various compositions throughout the week and discussed the problem.
Unfortunately we have not really made any progress. Some of the things we looked at include:
the use of standard decomposition techniques for planar graphs and reductions to partition
function of the ferromagnetic Potts model. The main conclusion from our initial discussions
has been that this appears to be a difficult problem for which the current techniques are
not powerful enough to make progress. Perhaps a useful question is to see if there exist sub
exponential algorithms. For example Nederlof [2] designed an exact 2O(

√
k)poly(n) algorithm

for counting the number of independent sets of size k in a planar n-vertex graph.
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4.5 Understanding the Homomorphism Basis
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The goal of this working group was to improve the understanding of the structure of the
so-called homomorphism basis of counting problems: Well-known transformations dating back
to early works of Lovász allow the expression of a wide range of counting problems (including
problems arising in database theory and network sciences) as a finite linear combination
of homomorphism counts. For example, it is known that for every graph H there exists
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a finitely supported function a from graphs to rationals such that, for every graph G the
following is true:

#Sub(H → G) =
∑

F

a(F ) · #Hom(F → G) , (2)

where #Sub(H → G) denotes the number of subgraphs of G that are isomorphic to H, and
#Hom(F → G) denotes the number of graph homomorphisms (edge-preserving mappings)
from F to G. In other words, the problem of counting copies of H in a graph G can be cast
as computing a finite linear combination of homomorphism counts.

In 2017, Curticapean, Dell and Marx [1] established a remarkable property, sometimes
called “complexity monotonicity”, of linear combinations as in (2): They are exactly has hard
to compute as their hardest term #Hom(F → G) with a non-zero coefficient (a(F ) ̸= 0).1
Since the complexity of computing individual homomorphism counts is reasonably well-
understood due to a result of Dalmau and Jonsson [2], this discovery enabled a general
strategy for studying the complexity of counting problems: Cast the problem as a linear
combination of homomorphism counts and investigate which terms cancel out, i.e., for which
graphs F the coefficient a(F ) becomes 0. In recent years, this strategy has seen significant
success in classifying counting problems arising e.g. in database theory [3, 4], subgraph and
induced subgraph counting [1, 5, 6], modular counting [7, 8], fine-grained homomorphism
counting [12], and pattern counting in degenerate graphs [9, 10, 11].

The purpose of this working group was to gather and unify the many different tools that
have been established for analysing the homomorphism basis, to enhance the methods to
tackle new problems, and to find common grounds for future collaborations.

Outcomes

We discovered a new strategy for analysing the homomorphism basis of induced subgraph
counting problems that enabled us to understand the complexity of various instances of
the induced subgraph counting problem that have previously been unclassified. We hope
that this strategy will enable us in the future to completely resolve the complexity of the
induced subgraph counting problem as studied in [5, 6].
We discovered that the general framework extends to pattern counting problems in
hypergraphs (which is not surprising). However, we also found that we need new tools to
understand the coefficients in the homomorphism basis, since the established tools do not
always generalise to hypergraphs (which is surprising).
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