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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23022 “Inverse
Biophysical Modeling and Machine Learning in Personalized Oncology”.

This seminar brought together leading experts in mathematical, computational, and medical
imaging sciences with research interests in data science, scientific machine learning, modeling and
numerical simulation, optimization, and statistical and deterministic inversion, and image analysis
with applications in medical imaging, and, in particular, oncology. A central theme of the seminar
was the integration of data-driven methods with model-driven approaches for predictive modeling.

The seminar had several main thrusts including design and analysis of novel mathematical
models, recent developments in medical imaging, machine learning in the context data analytics and
data-driven model prediction, predictive computational modeling through (statistical) inversion,
integration of machine learning with model-based priors and use of these methods to aid decision-
making. We discussed these topics through the lens of foundational algorithmic complications
and mathematical and computational challenges. The participants explored how advances in
the applied sciences (e.g., data analytics, medical imaging, or radiomics) can aid us to tackle
challenges in the application domain. We also discussed the significant challenges associated with
the validation of the proposed methodology, and a lack of reproducibility due to the absence of
standard protocols for validation of data- and model-driven methods by translational research
groups.
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1 Executive Summary

Andreas Mang (University of Houston, US)
George Biros (University of Texas at Austin, US)
Björn H. Menze (Universität Zürich, CH)
Miriam Schulte (Universität Stuttgart, DE)

License Creative Commons BY 4.0 International license
© Andreas Mang, George Biros, Björn H. Menze, and Miriam Schulte

Our Dagstuhl Seminar brought together leading experts in computational and applied math-
ematics, computer science, biomedical imaging, and medical imaging sciences with research
interests in data science, machine learning, modeling, optimization, and statistical and
deterministic inversion with applications in medical imaging, and – in particular – oncology.
Overall, 22 participants (and 5 remote participants) from various scientific disciplines con-
tributed with scientific presentations about their current and future research efforts in these
areas.

The seminar had four main thrusts: (i) machine learning in the context of data analytics
and data-driven model prediction, (ii) predictive computational modeling through statistical
and deterministic inversion, (iii) integration of machine learning with model-based priors, and
(iv) use of these methods to aid decision making. We discussed these topics through the lens
of foundational algorithmic complications and mathematical and computational challenges.
We also explored how advances in the applied sciences (e.g., data analytics, medical imaging,
radiomics, genomics, or experimental design) can aid us to tackle challenges associated with
the design of computational and mathematical methods.

In the context of predictive computational modeling and deterministic and statistical inver-
sion, we addressed topics ranging from uncertainty quantification, model choices (multiscale
versus macroscopic; model-complexity; multispecies versus single-species), regularization
strategies, sensitivity analysis, strategies to address the massive computational costs, chal-
lenges in the design of hardware-accelerated computational methods with optimal energy
efficiency, and strategies to yield the throughput, robustness, and reliability required in
practical applications under given hardware constraints. In the context of machine learning
and its integration with predictive modeling and priors, we discussed issues associated with
limited reproducibility beyond the training data, robustness against outliers, issues with
small-sample size problems, uncertainty quantification for learning from data, and generic
strategies to enrich the available data. Lastly, we also explored the availability and use of
advanced imaging technologies that can help to (i) provide a better data basis for predictive
modeling, (ii) trigger community efforts to enrich available data, and (iii) enable validation
and standardize population-based studies. We also discussed reproducibility issues, given
that in many cases (medical imaging) data is proprietary, challenges associated with the
validation of the proposed methodology, and a lack of reproducibility due to the absence
of standard protocols for validation of data- and model-driven methods by translational
research groups.

The seminar started with opening remarks by two of the main organizers (Biros and
Menze). They reviewed their contributions to the field and gave an overview of the state-of-
the-art from their perspective. This opened up the floor for a first discussion on where we are
and where we would like to go with our future research. During the first two and a half days
different scientists contributed to our seminar with presentations about their recent activities
and their view on the state-of-the-art. We did not keep a tightly fixed schedule. This allowed
participants to engage and discuss the presented material, shed light on potential future
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research avenues, identify common areas of interest between participants and research groups,
as well as exchange ideas on how to address potential shortcomings of the state-of-the-art
methods. Overall, this led to an active exchange about open issues, potential solutions,
and current activities among participants of our seminar. The topics discussed during the
research presentations include computational and mathematical approaches targeted at aiding
clinical treatment (with contributions form, e.g., Brüningk, Fuster Garcia, Hormuth, Menze),
the design of new mathematical models of cancer/tumor progression (with contributions
from, e.g., Biros, Deutsch, Gomez, Menze, Schulte, Wohlmuth), the design and analysis
of methodology for machine learning (with contributions from, e.g., Erhardt, Konukoglu,
Pati), inverse problems and optimization (with contributions from, e.g., Biros, Erhardt,
Latz, Mang, Schulte), scientific machine learning with applications in medical imaging (with
contributions from e.g., Brüningk, Erhardt, Fuster Garcia, Konukoglu, Li, Merhof, Van
Leemput), hardware-accelerated computational methods, high performance computing, and
computational complexity (with contributions from Biros, Mang, Schulte), the integration of
modeling integration of data-driven methods with model-driven approaches for predictive
modeling (with contributions from, e.g., Biros, Brüningk, Hormuth, Lorenzo, Menze, Schulte,
Wiestler), and advances in medical imaging and medical image analysis (with contributions
from, e.g., Li, Lundervold, Merhof, Paech, Pati, Van Leemput, Weidner, Wiestler). Several
of these contributions are briefly described in the abstracts included in this report.

As mentioned above, during the discussions after each scientific presentation, we identified
several open problems and challenges that we believe should be addressed by the community
at large. We briefly list some of the main points raised during these discussions here:

Regarding the integration of computational models with medical imaging, a key challenge
is to establish if a model is of use in the clinical context. Many of the available mathematical
models are oversimplifications, particularly in the context of modeling cancer progression
at a tissue scale. As such, one generic use of these models is to utilize them as “priors” for
more classical image analysis tasks such as image segmentation or image registration.

As for generating model-based predictions, a key remaining challenge is how simple or
complicated mathematical models need to be, to be of clinical value. While some tasks (e.g.,
patient classification or tissue characterization) can potentially be helped by simple models,
an open question is how complicated models can or have to be to aid clinical decision-making
or enable model-based predictions (e.g., if one envisions forecasting the benefit of certain
types of clinical intervention in individual patients).

Another key challenge in this context is the scarcity of the available data. Moreover, how
do we validate and compare the performance of these approaches and how can we establish
good benchmarks to test methods developed by individual research teams? A related open
question is, which scale is most suitable to simulate certain aspects of cancer growth/disease
progression and/or treatment? Are microscopic rule-based approaches required, or can we
utilize coarser, macroscopic models that typically formulate tumor/cancer progression in
terms of partial differential equations? Another question is to what extent and if physics-
informed methods (i.e., methods based on the simulation of biophysical phenomena) add
significant value to clinical diagnosis and treatment planning versus more standard, machine
learning-based predictions generated from features derived from imaging data. One key
question that was also discussed in this context was how these methods are plagued by model
and data uncertainties.

Moreover, we discussed how to integrate modeling with machine learning in the most
efficient way. Can we, e.g., use machine learning as a tool to initialize more classical (e.g.,
variational) methods for inference of model parameters and/or integration of simulation
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with data? Conversely, can machine learning benefit from an integration of physics-based
principles prescribed by biophysical models? Likewise, can machine learning be used as a
tool to improve model selection, i.e., can we use it to decide how complex a mathematical
model needs to be?

From an imaging perspective, one question that arose was how to combine different
types of data (e.g., structural imaging, biomedical markers, radiomics, functional imaging,
patient questionnaires) most effectively. In many studies, one typically does not integrate
information from multiple sources but relies on specific types of medical data. Would such a
more complete integration aid model-based predictions? How does the designed methodology
generalize for data acquired at different imaging sites and/or imaging modalities? Another
key issue is the scarcity of publicly available (good quality) data and how to address it as a
community. One solution presented at the seminar was the use of federated learning.

Lastly, if we envision pushing these methods toward clinical applications, how can we deal
with low-performance computing infrastructure at clinical sites? We also discussed clinical
scenarios for applying the designed methods and how they could be of use in clinical practice
(for example, to plan a therapeutic intervention or post-therapy assessment).

On Wednesday, we engaged participants in scientific discussions during an excursion to
an art show at the “Völklinger Hütte”. We concluded this social event with a joint dinner in
one of the local restaurants.

The scientific presentations were followed by a brief discussion about selected topics in
two working groups to identify immediate goals and further discuss existing challenges. The
first group included researchers with a key interest in designing methods to analyze medical
(imaging) data and integrate mathematical and computational methods with imaging and
medical data. The second group discussed topics associated with the design of mathematical
and computational methods for inference, simulation, and optimization. We list the key
findings in these two groups and some of the questions that remain to be addressed by the
community at large in this report. We concluded our seminar with a plenary discussion about
the findings of our working group discussions. This enabled us to identify commonalities
toward a more concrete outline of follow-up work after the conclusion of our seminar. As a first
concrete goal for the entire group, we agreed that we should start our work with a joint (public)
dataset that compiles available medical imaging data for model development and testing.
Spearheaded by Gomez and Hormuth, a first list of publicly available data was curated on
the Mathematical Oncology webpage: https://mathematical-oncology.org/resources/
datasets. Moreover, they have started to collect information for relevant conferences and
workshops of interest for the community at large (https://mathematical-oncology.org/
conferences).
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3 Overview of Talks

3.1 Harnessing machine learning and mechanistic modelling for
personalized radiotherapy of pediatric diffuse midline glioma

Sarah Brüningk (ETH Zürich – Basel, CH)

License Creative Commons BY 4.0 International license
© Sarah Brüningk

Joint work of Sarah Brüningk, Catherine Jutzeler, Javad Nazarian, Karsten Borgwardt, Sabine Mueller
Main reference Sarah C. Brüningk, Jeffrey Peacock, Christopher J. Whelan, Renee Brady-Nicholls, Hsiang-Hsuan M.

Yu, Solmaz Sahebjam, Heiko Enderling: “Intermittent radiotherapy as alternative treatment for
recurrent high grade glioma: a modeling study based on longitudinal tumor measurements”.
Scientific Reports, 11(1), 2021.

URL https://doi.org/10.1038/s41598-021-99507-2

Pediatric diffuse midline glioma is a rare, yet fatal disease, with currently no curative
treatment. Owing to the delicate location of these tumors, treatment options and surgical
interventions are greatly limited. Radiotherapy (RT) is one of the few life-prolonging
treatments, but its therapeutic efficacy varies between individuals. Currently, it is impossible
to predict RT benefit a priori and there is a great unmet clinical need to improve patient
stratification and survival.

The overarching aim of this project is to build a treatment decision support platform
facilitating personalized RT optimization based on non-invasive magnetic resonance imaging.
To this end, we develop an analytical pipeline bridging mechanistic modelling and data-driven
machine learning to refine patient stratification, discover imaging biomarkers, and inform RT
scheduling and dosing by an individualized radiosensitivity score (RSS).

Imaging and clinical data from ∼250 patients centralized from different international
institutions are at the centre of this analysis. Image classification will be based on a scalable
combination of local and global image features reflecting the biological hallmarks of DMGs.
The challenge of limited, multi-domain data is addressed via the model architecture together
with transfer learning from adult glioblastoma and data augmentation. We employ inter-
pretability analysis to identify imaging biomarkers driving classification, and use regression
analysis to infer a RSS. An ordinary differential equation model of longitudinal tumor growth
under RT is fitted to follow-up patient data. Based on the fitted model parameters and the
RSS, alternative RT strategies can then be simulated and the gain in time to progression of
an in silico trial comparing conventional and personalized RT will be quantified. At this point
we are in the early phase of the study and have centalized patient data from the University
of Californa, San Francisco, from The DMG Centre Zurich, and from patients treated as
part of clinical trials within the Pacific Pediatric Neuro-Oncology Consortium (PNOC).

This study investigates personalized RT for a group of pediatric patients for which
treatment individualization is inevitable. The treatment decision support tool and the
identified imaging biomarkers should be translatable to clinical practice, while our in silico
trial may motivate clinical evaluation to provide validation of our predictions. By focussing on
imaging data and available, cost effective RT, our approach is feasible in treatment facilities
worldwide with clear application of digital pediatric health. Relevant references are [1, 2].
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3.2 Mechanisms of cancer invasion and progression: insights from
cellular automaton models

Andreas Deutsch (TU Dresden, DE)

License Creative Commons BY 4.0 International license
© Andreas Deutsch

Tumour invasion and progression may be viewed as collective phenomena emerging from
the interplay of biological cells with their environment. Cell-based mathematical models
in which cells are regarded as separate discrete entities can be used to decipher the rules
of interaction. Here, we focus on the dynamics of glioma and breast cancer. We introduce
lattice-gas cellular automaton models [1, 5] to analyse the role of phenotypic plasticity in
cancer invasion, define spatial and non-spatial Moran processes to shed light on the size of
the tumour originating niche, and adopt Markov chain models to investigate the origin of
genetic heterogeneity in glioblastoma [2, 3, 4].

References
1 A. Deutsch and S. Dormann, Cellular automaton modeling of biological pattern formation:

characterization, applications, and analysis, Birkhauser, Boston, 2018.
2 T. Buder, A. Deutsch, B. Klink and A. Voss-Böhme, Patterns of tumor progression predict

small and tissue-specific tumor-originating niches, Front. Oncol., 8, 668, 2019.
3 Anne Dirkse, Anna Golebiewska, Thomas Buder, Petr V. Nazarov, Arnaud Muller, Suresh

Poovathingal, Nicolaas H. C. Brons, Sonia Leite, Nicolas Sauvageot, Dzjemma Sarkisjan,
Mathieu Seyfrid, Sabrina Fritah, Daniel Stieber, Alessandro Michelucci, Frank Hertel,
Christel Herold-Mende, Francisco Azuaje, Alexander Skupin, Rolf Bjerkvig, Andreas
Deutsch, Anja Voss-Böhme and Simone P. Niclou, Stem cell-associated heterogeneity
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Nature Commun., 10, 1, 1787, 2019.
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Oleksandr Chepizhko, Steffen Grosser, Manon Vullings, Gert-Jan Bakker, Jörn Starruß,
Peter Bult, Stefano Zapperi, Josef A. Käs, Andreas Deutsch and Peter Friedl, Cell–cell
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Nature Cell Biol., 1103–1115, 2020.

5 A. Deutsch, J. M. Nava-Sedeño, S. Syga, H. Hatzikirou, BIO-LGCA: a cellular automaton
modelling class for analysing collective cell migration, PLOS Comp. Biol., 17, 6, e1009066,
2021.
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3.3 Machine Learning meets Inverse Problems: Bilevel Learning
Matthias J. Ehrhardt (University of Bath, GB)
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Martin J.Graves, Georg Maierhofer, GuyWilliams, Carola-Bibiane Schönlieb

Main reference Matthias J. Ehrhardt, Lindon Roberts: “Inexact Derivative-Free Optimization for Bilevel Learning”,
J. Math. Imaging Vis., Vol. 63(5), pp. 580–600, 2021.

URL http://dx.doi.org/10.1007/s10851-021-01020-8

Inverse problems are omnipresent in any imaging related field and is as such a backbone in
oncology, too. Here we focussed on the connections of machine learning to the particular
inverse problem of image reconstruction but many concepts generalise to other inverse
problems such as estimating parameters in PDEs. Solving inverse problems can be approached
via variational regularization techniques which are dominant in the field of inverse problems
in general. A drawback of these techniques is that they are dependent on a number of
parameters which have to be set by the user. This issue can be approached by machine
learning where we estimate these parameters from data. This is known as “Bilevel Learning”
and has been successfully applied to many tasks, some as small-dimensional as learning a
regularization parameter, others as high-dimensional as learning a sampling pattern in MRI.
While mathematically appealing this strategy leads to a nested optimization problem which
is computationally difficult to handle. We discussed several applications of bilevel learning
for imaging [2, 1] as well as new computational approaches [1, 3].

References
1 Ehrhardt, M. J., and Roberts, L. (2021).Inexact Derivative-Free Optimization for Bilevel

Learning. Journal of Mathematical Imaging and Vision, 63(5), 580–600. https://doi.org/
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2 Sherry, F., Benning, M., de los Reyes, J. C., Graves, M. J., Maierhofer, G., Williams, G.,
Schönlieb, C.-B., and Ehrhardt, M. J. (2020). Learning the Sampling Pattern for MRI.
IEEE Transactions on Medical Imaging, 39(12), 4310–4321.

3 Ehrhardt, M. J., and Roberts, L. (2023). Analyzing Inexact Hypergradients for Bilevel
Learning. http://arxiv.org/abs/2301.04764

3.4 Computational Radiology & Artificial Intelligence in Cancer
Elies Fuster Garcia (Technical University of Valencia, ES)
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Recent advances in medical imaging, coupled with the analysis capabilities offered by
artificial intelligence, have led to significant progress in personalized oncology. Advanced MRI
sequences in neuroimaging are now able to provide critical biophysical parameters for the
study of tumor growth, response to therapies, and clinical decision-making. Furthermore, the
integration of multi-parametric information, which would be otherwise infeasible, is now made
possible through artificial intelligence. This presentation will introduce the collaborative
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efforts between the Biomedical Data Science Lab (Universitat Politècnica de València, UPV)
and the MRI research and technology (Oslo University Hospital, OUH) to combine these
two disciplines and make a real impact on clinical practice, particularly on high-grade glial
tumors.

The OUH is improving its MRI protocol for neuro-oncology studies by incorporating
advanced MRI sequences, such as Vessel Caliber MRI, Vessel Architectural Imaging, and MR
Elastography. These sequences offer valuable information at the voxel level, such as vessel
caliber size and density [1], vessel type dominance and microvascular efficiency [2], and tissue
biomechanics by stiffness and viscosity [3, 8]. This enables researchers to gather a wider
range of information on the brain’s blood vessels and tissue, providing a more comprehensive
understanding of neuro-oncology.

To integrate all of the information gathered through advanced MRI sequences, processing
pipelines and multi-parametric artificial intelligence models are being developed. The
collaboration between the Oslo University Hospital (OUH) and the Universitat Politècnica
de València (UPV) has led to the creation of AI systems that can accurately segment
regions of interest [4], identify functional habitats [5], and analyze longitudinal series and
growth dynamics [6], among others. An example of such a system is the publicly available
ONCOhabitats platform developed by the UPV, which studies vascular heterogeneity in
patients with high-grade glial tumors [7].

The success of these AI technologies in clinical practice depends on their integration into
a relevant environment at the moment of decision-making. To achieve this, OUH’s models
and associated pipelines are being integrated into a computation framework connected with
the hospital PACS through the TrackGrowth, Chronos, and Progress research projects (see
Acknowledgements). This setup allows for the direct evaluation of AI-based solutions in
PACS by deploying hospital-approved software in the hospital interface.
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3.5 An image-driven computational modeling approach to forecast
radiotherapy response in gliomas
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Radiotherapy (RT) is a foundational component of clinical management for high-grade glioma
(HGG) used to target residual and infiltrative disease following surgical resection. Variability
in patient response to radiotherapy can depend on the tumor’s underlying sensitivity to
treatment as well as the ability to accurately target the biologically relevant malignant
tissue. To improve patient outcomes, RT treatment plans could be adapted for individual
patients to target tumor sub-regions demonstrating treatment resilience and higher aggressive
potential. Towards this goal, we developed a family of biologically-based mathematical models
of HGG growth and response, which are initialized and calibrated using patient-specific
multi-parametric magnetic resonance imaging (mpMRI) data [1, 2]. Our family of models is
built upon a 3D, two-species model of enhancing and non-enhancing tumor that describes
tumor cell proliferation, diffusion, and treatment response. Unique to our approach is the use
of mpMRI collected weekly during RT which reports on both tumor extent and cellularity
dynamics. Using patient imaging data collected before treatment onset and weekly up to
mid-treatment, we identified patient-specific tumor growth and response parameters via a
non-linear least squares optimization. These patient-specific model parameters were then
used to forecast tumor growth and response dynamics at the remaining weekly imaging visits
during RT. In an initial cohort of 13 patients, we observed that our computational framework
was able to predict total tumor cell count with a Pearson correlation coefficient of 0.95 and
concordance correlation coefficient of 0.91 at 1-month post-RT. Likewise, the forecasted
total tumor volume agreed spatially with the observed tumor volume with Dice similarity
coefficients greater than 0.73. At the individual voxel-level, the forecasted distribution of
tumor growth was able to predict areas of significant increases or decreases in tumor cell
with an accuracy, specificity, and sensitivity greater than 0.76. The results of this initial
study demonstrates the ability for image-driven modeling to predict HGG response to RT
that with further development may enable anticipatory adaption of RT.
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3.6 On the well-posedness of Bayesian inverse problems
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Mathematical models that are used in science and engineering often need to be calibrated
with respect to observational data. In the context of tumour modelling, for instance, image
data can be used to estimate chemotaxis, consumption, and proliferation of a tumour [1].
Such parameter estimation problems are often referred to as “inverse problems”. Due to
observational noise and complexity of models, inverse problems are usually difficult to solve
and also ill-posed: a well-posed problem on the opposite is one, that has a solution, the
solution is unique, and the solution depends continuously on the data. Well-posedness
is important. Without existence, the problem has no solution and is, thus, not solvable.
Uniqueness is required to prevent ambiguity between different solutions. The continuity
assumption is a stability condition: the data is noisy, thus, we should hope that the influence
of the noise on the parameter estimate is restricted in a certain sense.

The Bayesian approach to inverse problems gives a way to turn an ill-posed inverse
problem into a well-posed problem. Here, we consider the calibration problem to be a
statistical problem and model noise and unknown parameter as random variables. Through
conditioning we are then able to incorporate the information from the data into the parameter.
The conditioning can be achieved through Bayes’ formula.

As shown in [2], the resulting “Bayesian inverse problem” will be well-posed under very,
very mild assumptions, allowing for parameter estimation in blackbox models and, e.g., with
respect to data-driven prior models.
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3.7 Intelligent Neuroimaging for Precision Neuro-oncology
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Brain tumour comprises a spectrum of malignant and benign entities. The complex patho-
physiology of brain tumours poses challenges to effective clinical decision-making and treat-
ment for patients. Multi-modal neuroimaging provides a non-invasive technique for probing
brain tumours [5, 3, 13]. Based on neuroimaging, artificial intelligence (AI) offers an
automated solution to optimise patient management, promising to accelerate precision neuro-
oncology. Typically, the clinical applications of AI include tools for automatic diagnostics and
guiding precise treatment. Together, these AI models promise to improve the overall efficiency
of healthcare. Through engaging clinical domain knowledge, AI models can be tailored to
the critical challenges in neuro-oncology, which could further advance our understanding of
brain tumours and accelerate individualised and precise therapeutics.

Glioma is the most common malignant brain tumour in adults, characterised by remark-
able heterogeneity and extensive invasion. To characterize tumour heterogeneity based on
imaging, we designed novel radiological features to characterize tumour morphology and
spatial heterogeneity [12]. Combined with machine learning methods, these features show
robust performance in subtyping patients across diverse tissues and imaging modalities.
The identified patient sub-groups show distinct molecular characteristics and prognostics.
Advanced MRI techniques, e.g., perfusion and diffusion MRIs [4, 6], provide sensitive informa-
tion for characterising tumour invasion over contrast-enhanced MRI. However, advanced MRI
are typically in low resolution, which hinders full training labels for developing supervised
models. To mitigate this challenge, we develop weakly supervised deep learning models
that can identify the tumour invasion outside of contrast enhancement [2]. Further, glioma
is considered a systematic disease, as it frequently spreads along white matter tracts into
the whole brain. To characterize the tumour invasion globally, we developed an iterative
tract-based spatial statistics method to quantify the structural connectivity of the brain and
measure tract integrity in brain tumour patients [11]. Through comparing patients to healthy
controls, we identified regional disrupted connectome in glioblastoma patients, which shows
significance in predicting patient survival and indicating treatment targets [10]. Following
this study, we introduced brain connectome into the AI model to better characterise glioma.
Specifcially, we developed a multi-modal learning model, which leverages three encoders
to extract features of focal tumour image, tumour geometrics and global brain network in
predicting the isocitrate dehydrogenase (IDH) mutation, achieving higher performance over
other state-of-the-art models [9].

In translating AI models into real-world practice, we need to tackle the challenges from
heterogeneous clinical datasets, e.g., missing scans, and low image resolution. Therefore,
we develop AI approaches to enhance image quality and standardisation [7, 1, 8]. For a
trustworthy AI solution, we develop biophysics-informed deep learning models to enhance
model explainability and generalisability. With these AI prototypes developed, we test the
models in the real-world clinical setting, by connecting model development with the clinical
system to obtain clinical and biological validations. We develop multi-centre imaging trials
to validate the efficacy of imaging tools, where MR images are processed using reproducible
and transparent pipelines. In the next step, we will test the imaging tools at scale through
connections to large population data. Our vision is to transform the healthcare of brain
tumour patients using image-based AI models.
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Active surveillance (AS) is a feasible management option for low to intermediate-risk prostate
cancer (PCa), which represents almost 70% of newly-diagnosed cases. During AS, patients
have their tumor monitored via multiparametric magnetic resonance imaging (mpMRI),
serum prostate-specific antigen (PSA), and biopsies [1]. If any of these data reveal tumor
progression towards an increased clinical risk, the patient is prescribed a curative treatment.
However, clinical decision-making in AS is usually guided by population-based protocols
that do not account for the unique, heterogenous nature of each patient’s tumor. This
limitation complicates the personalization of monitoring plans and the early detection of
tumor progression, which constitute two unresolved problems in AS. To address these issues,
we propose to forecast PCa growth using personalized simulations of an mpMRI-informed
mechanistic model solved over the 3D anatomy of the patient’s prostate [1, 2, 3]. We
describe PCa growth via the dynamics of tumor cell density with a diffusion operator,
representing tumor cell mobility, and a logistic reaction term, which accounts for tumor cell
net proliferation [1, 2]. Model calibration and validation rely on assessing the mismatch
between model predictions of the tumor cell density map with respect to corresponding
mpMRI-based estimates [2]. Our preliminary results on a cohort of seven patients show a
median concordance correlation coefficient (CCC) and Dice score (DSC) of 0.55 and 0.82,
respectively, for the spatial fit of tumor cell density during model calibration using two
mpMRI datasets. Then, model validation at the date of a third mpMRI scan resulted in
median CCC and DSC of 0.33 and 0.76, respectively. Thus, while further improvement
and testing in larger cohorts are required, we believe that our results are promising for the
potential use of our methods to personalize AS protocols and predict tumor progression.
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Table 1 Performance evaluation for the multi-GPU implementation of CLAIRE for the registration
of images of size 2563 of different individuals. We report (from left to right) the considered hardware
architecture, the used memory, the relative mismatch after registration, the runtime (in seconds) as
well as the speedup compared to the CPU implementation.

version hardware mem mis runtime speedup
CLAIRE 24 core x86 2.9e-2 1.5e2 1×

P100 4.6GB 2.6e-2 5.2e0 28×
V100 4.6GB 2.6e-2 4.2e0 36×
RTX3080 5.0GB 2.6e-2 3.2e0 47×

CLAIRE∗ P100 8.1GB 3.6e-2 2.9e0 52×
4×V100 2.6GB 3.6e-2 2.1e0 71×
RTX3080 8.5GB 3.6e-2 2.3e0 65×

3.9 Scalable Algorithms for Diffeomorphic Image Registration
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We present a framework for diffeomorphic image registration termed CLAIRE [1, 6]. This
algorithm is an integral part of some of our efforts to develop algorithms for the analysis of
brain tumor imaging data [4, 5, 7, 8, 9]. Diffeomorphic image registration is a non-linear,
ill-posed inverse problem that poses significant mathematical and computational challenges.
Generally speaking, we seek a Rd-diffeomorphism y ∈ diff(Rd), d ∈ {2, 3} that establishes
a point-wise spatial correspondence between two views (images) of the same scene. In our
work, we consider a variational formulation governed by hyperbolic transport equations.

Our contributions are new algorithms and dedicated computational kernels to reduce the
runtime. We study the performance of our solver in terms of rate of convergence, registration
accuracy, and time-to-solution. We demonstrate that we can solve problems for clinically
relevant data of sizes (2563 voxels; ∼50 million unknowns) in under 5 seconds (see table
below). Our formulation and numerical algorithms are described in [6, 10, 11, 13]. Our
parallel CPU implementation is discussed in [6, 12]. Our parallel GPU implementation is
presented in [2, 3]. The integration of our registration algorithm with models of tumor
progression is presented in [4, 5, 7, 8, 9]. We overview the computational performance of
our framework for diffeomorphic image registration for an image of size 2563 in the table
below. Compared to our CPU implementation we observe a speedup between 28× and 71×
depending on the GPU and implementation (CLAIRE: standard implementation; CLAIRE∗:
additional intermediate variables kept in memory). We report from left to right the version
of CLAIRE, the hardware CLAIRE is executed on, the memory use, the mismatch between
the data after registration, the runtime in seconds and the speedup. We can see that the
GPU implementation is significantly faster than our GPU implementation without sacrificing
accuracy.
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Figure 1 Visualizations associated with our work on deep-learning based analysis of diffusion
MRI data.
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Artificial Intelligence approaches, and especially recent Deep Learning techniques, have shown
to outperform conventional image processing algorithms in many medical image analysis
scenarios.

This presentation will present Deep Learning approaches for Diffusion MRI Data for
(1) diffusion signal augmentation [1], (2) free water correction [6, 2, 4] and (3) signal
harmonization [5, 6, 7].

Finally, limitations of neuronal networks as well as current challenges and trends in Deep
Learning will be discussed.

References
1 Simon Koppers, Christoph Haarburger and Dorit Merhof: Diffusion MRI Signal Augment-

ation – From Single Shell to Multi Shell with Deep Learning. In: MICCAI Workshop on
Computational Diffusion MRI (CDMRI), 2016.

23022

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0239475
https://doi.org/10.1371/journal.pone.0239475
https://doi.org/10.1371/journal.pone.0239475
http://dx.doi.org/10.1371/journal.pone.0239475


54 23022 – Inverse Biophysical Modeling and ML in Personalized Oncology

2 Leon Weninger, Simon Koppers, Chuh-Hyoun Na, Kerstin Juetten and Dorit Merhof: Free-
Water Correction in Diffusion MRI: A Reliable and Robust Learning Approach. In: MICCAI
Workshop on Computational Diffusion MRI (CDMRI), 2019.

3 Leon Weninger, Chuh-Hyoun Na, Kerstin Jütten and Dorit Merhof: Analyzing the effects
of free water modeling by deep learning on diffusion MRI structural connectivity estimates
in glioma patients. In: PLOS ONE 15 (9), 2020.

4 Kerstin Jütten, Leon Weninger, Verena Mainz, Siegfried Gauggel, Ferdinand Binkofski,
Martin Wiesmann, Dorit Merhof, Hans Clusmann and Chuh-Hyoun Na: Dissociation of
structural and functional connectomic coherence in glioma patients. In: Scientific Reports
11 (16790), 2021.

5 Simon Koppers, Luke Bloy, Jeffrey I. Berman, Chantal M.W. Tax, J. Christopher Edgar and
Dorit Merhof: Spherical Harmonic Residual Network for Diffusion Signal Harmonization.
In: MICCAI Workshop on Computational Diffusion MRI (CDMRI), 2018.

6 Leon Weninger, Sandro Romanzetti, Julia Ebert, Kathrin Reetz and Dorit Merhof: Har-
monization of diffusion MRI data obtained with multiple head coils using hybrid CNNs. In:
ECCV AIMIA Workshop, 2022.

7 Leon Weninger, Mushawar Ahmad and Dorit Merhof: From supervised to unsupervised har-
monization of diffusion MRI acquisitions. In: IEEE International Symposium on Biomedical
Imaging (ISBI), 2022.

3.11 Federated Learning and Reproducibility in Healthcare
Sarthak Pati (University of Pennsylvania, US)

License Creative Commons BY 4.0 International license
© Sarthak Pati

Joint work of Sarthak Pati, Spyridon Bakas

Real-world applicability of artificial intelligence (AI) in the clinical setting [39, 40, 41] is
hampered by the i) lack of available diverse (training and validation) data affecting the
robustness and generalizability of AI models towards unseen/unknown population groups, and
ii) limitations on defining reproducible computational pipelines for local hardware resources
at clinical sites.

The current paradigm towards sufficiently large and diverse data for training and validating
AI models is via centralization of data from multiple institutions [29, 30, 32, 33, 31, 17,
6, 49, 50, 45, 46, 47, 48, 51]. However, this paradigm faces limitations when it comes to
scale due to various legal, regulatory, cultural, and ownership concerns [8, 9]. Federated
Learning (FL) offers an alternative paradigm to train robust AI models and a potential
solution to the data sharing hurdles, as demonstrated in multiple simulated [8, 9, 2, 43] and
real-world studies [1]. Furthermore, beyond training robust AI models, the evaluation of
their effectiveness and durability over time on real-world patient data from large and diverse
population demographics poses another challenge towards their clinical translation. Federated
evaluation (FE) studies through persistent data registries and streamlined workflows may
provide a solution on such performance evaluations, obviating the need of data sharing.
Together, federated learning and evaluation form complementary mechanisms to generate
meaningful clinical impact by enabling access to data silos in a way that is compatible with
regulations and cultural concerns.

There have been numerous community-driven efforts to provide either common definitions
towards results’ reproducibility [13, 14, 16, 29, 30, 32, 33, 31, 17, 49, 50, 45, 46, 47, 48, 51],
or common benchmarking environments (i.e., challenges) for fair AI model evaluation [15].
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Although a substantial number of closed-source and commercial solutions achieve clinical
reproducibility [42], having widely available, community-driven, and well-documented open-
source projects [18, 19, 20, 21, 22, 23, 34, 7] that focus on the reproducibility of research,
while being driven by the clinical stakeholders would be critical towards ensuring that cutting
edge scientific breakthroughs make it for clinical validation sooner. This further allows
computational scientists to explore their methodological interests while allowing clinical
partners to deploy these methods in an easy manner in their existing hardware infrastructure.

Our collaborative group has collectively produced open-source publicly-available software
solutions to address this space. Starting with the largest real-world FL study to-date (the
Federated Tumor Segmentation (FeTS) initiative)1, which also describes the largest reported
study on the rare cancer of glioblastoma, involving data of 6,314 patients from 71 institutions
across 6 continents [1]. The tool used by the FeTS Initiative has been open-sourced as “The
FeTS Tool” [4], which provides an end-to-end point solution for studies related to brain tumor
boundary detection/segmentation. This solution includes all the required computational steps,
starting from data curation, anonymization, brain extraction (also known as skull-stripping
[35, 34]), to pre-processing, generation of baseline automated annotations leveraging methods
considered state of the art [53, 54, 55], an interface to manually refine these automated
annotations and sign off ground truth labels [18, 19, 20], as well as to allow a user to either
train their AI model or join an existing FL study. Moreover, the FL component of the FeTS
tool is enabled by the Open Federated Learning (OpenFL) library [11, 10], which is designed
for general-purpose FL and being agnostic to use-case and framework. Further to the FeTS
initiative, OpenFL has facilitated studies on the i) effect of cosmic radiation on astronauts by
the Frontier Development Lab (FDL) of the National Aeronautics and Space Administration
(NASA), and ii) prediction of respiratory distress syndrome and death for COVID-19 patients
by the 11 sites of the Montefiore Health System in New York.

Building upon the collaborative network of the FeTS initiative, we further conducted
the first-ever computational challenge in FL, which happened in conjunction with the
International Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI) 2021 and 2022 [5], and followed the principle of clinical trials [52]. The focus of the
FeTS challenge was two-fold: i) the development of aggregation methods for FL, and ii) the
federated evaluation of brain tumor segmentation algorithms in-the-wild, by circulating AI
models on unseen data from multiple sites of the FeTS initiative collaborative network. The
FeTS challenge was orchestrated by MedPerf [24], in which the challenge organizers initiated
the design of the study, the collaborating sites registered information about their datasets,
and the AI models of the challenge participants were described as independent experiments
evaluated against these datasets. Finally, towards broader clinical workflows, we developed
the Generally Nuanced Deep Learning Framework (GaNDLF) [12], which enables users
to design and manage AI algorithms for multiple tasks and various data/organ/modality
types, such as segmentation on brain tumor MRI [2, 1], breast mammograms [37, 36] &
dynamic contrast enhanced MRI [6], as well as classification on histology whole slide images
[3], RGB images [38], & breast mammograms [43]. The wide applicability and obtained
results showcase the generalizability of GaNDLF. Additionally, GaNDLF offers automated
post-training optimization of AI models [56, 44], allowing their execution/inference on
consumer-grade computers without requiring specialized hardware, such as deep learning
acceleration cards.

1 www.fets.ai

23022

http://www.fets.ai/


56 23022 – Inverse Biophysical Modeling and ML in Personalized Oncology

In conclusion, there is a need to i) assess the generalizability of AI models by capturing
ample patient demographics, ii) address bias and inequities in AI, especially those related to
underserved/underrepresented patient populations, and iii) on the continuous monitoring of
AI models requiring further developments in automated quality control, monitoring of drift
& bias, and model calibration. Towards fulfilling these goals, the open federated ecosystem
consisting of GaNDLF [12], OpenFL [11], and MedPerf [24] provide a holistic end-to-end
open-sourced federated learning and evaluation solution that supports multiple data types,
and that be easily used by both experienced and novice researchers.
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We present computational coupling of inverse tumor simulation and diffeomorphic image
registration that allows to achieve two tasks that can be relevant for clinicians: (i) registration
of a healthy statistical atlas brain to a patient brain with tumor in order to transfer labels
and brain region boundaries; (ii) identification of tumor growth parameters such as diffusion
and reaction rates or initial tumor. For both tasks, we have to solve a combined inverse
problem involving image registration and the tumor model to ’move’ from an atlas image
to a patient images with a tumor. We present various ways to achieve this by combining
separate registration and tumor solvers in [1, 2]. More details on the single components
are presented in [3] for the tumor growth inversion and in [4] for image registration. Both
software components show very good scalability on high performance computing hardware
such that we can solve problems at 2563 resolution in a couple of minutes.

For a glance at more general concepts for coupling of two or more computational com-
ponents, refer to [5] and [1].
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3.13 Generative Models for Generalizable and Interpretable Analysis of
Brain Tumor Images

Koen Van Leemput (Martinos Center – Charlestown, US)
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In my talk I will discuss the use of generative models for generalizable and interpretable
analysis of brain tumor images. Specifically, I will highlight the fundamental differences
that exist between analyzing tightly-standardized images in well-controlled group studies,
vs. analyzing images acquired “in the wild”, i.e., as part of the clinical treatment of brain
diseases. I will present our work on generative models that can naturally extrapolate beyond
the narrow characteristics of manually labeled training data, and how these techniques are
implemented within the well-known open-source software suite FreeSurfer. Specific attention
will be paid to modeling lesions (such as white matter lesions or brain tumors) within whole-
brain segmentation settings, and to leveraging the temporal consistency between follow-up
scans in longitudinal data. Time permitting, I will also touch on the need for interpretable
image prediction models, where the generative aspect encodes the causal effect of disease on
brain shape. Such models are much easier to interpret and explain to clinicians than the
“black box” discriminative methods that are often used for predicting diagnoses or disease
scores from images.

3.14 A Clinical and Biological Validation Study of a Tumor Growth
Model

Benedikt Wiestler (TU München – Klinikum rechts der Isar, DE)
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The diffuse growth pattern of glioblastoma is one of the main challenges for improving patient
survival. Computational tumor growth modeling has emerged as a promising tool to infer
tumor cell distribution and thereby guide personalized therapy.
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Figure 2 Comparison of standard clinical target volume (CTV) and computed target delineations
derived from isolines of different estimated tumor cell densities by the tumor growth model (TGM).
Underlying images are contrast-enhanced T1 (CE-T1).

In [1], we performed clinical and biological validation of a novel, deep learning – based
growth model [2], aiming to close the gap between the experimental state and clinical
implementation. In more detail, we wanted to investigate how well this Fisher-Kolmogorov
model correlates with (i) tumor biology, (ii) survival and – perhaps most importantly – (iii)
location of tumor recurrence.

To answer these questions, we included a total of three data sets into our study. For
(i) and (ii), we analysed 124 patients from The Cancer Genome Archive network and 397
patients from the UCSF glioma MRI data set for correlations between clinical data, genetic
pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (Dw)
as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model
adjusted to the patients’ preoperative images [2]. To address (iii), we correlated later tumor
recurrence in an in-house data set with 30 glioblastoma patients with radiotherapy plans
and growth model-derived tumor cell distribution.

Interestingly, we observed a significant correlation between 11 signaling pathways that are
associated with proliferation, and the estimated proliferation parameter ρ. The parameter
ratio Dw/ρ (p<0.05 in TCGA) as well as the simulated tumor volume (p<0.05 in both
TCGA and UCSF) were significantly inversely correlated with overall survival in Cox survival
modeling. Depending on the cutoff value for tumor cell density, we observed a significant
improvement of recurrence coverage without significantly increased radiation volume utilizing
model-derived target volumes instead of standard radiation plans (example shown in figure 2).
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Identifying a significant correlation between computed growth parameters, and clinical
and biological data, we highlight the potential of tumor growth modeling for individualized
therapy of glioblastoma. This holds promise to improve accuracy of personalized radiation
planning in the near future. Future research directions include more complex growth models
(e.g., including necrosis or mass effect), including imaging information for model calibration,
and ultimately also going from global to local modeling, explicitly incorporating tumor
heterogeneity.
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3.15 Conceptual mathematical tumor models on different scales
Barbara Wohlmuth (TU München – Garching, DE)
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Tumor simulations require complex multiscale models ranging from discrete agent-based
models to continuum models, with various hybrid type models in between [1]. Extremely
small scales require an agent-based formulation for the tumor and the capillaries, where
only signaling molecules, drugs, and nutrients are described by continuous fields [2]. Larger
tumors inside rat brains might be resolved with a continuous phase field approach, where still
the capillary flow is described by 1D-models, and their growth is modeled by a rule-based
algorithm [5]. On the macro scale, the capillaries might be further simplified to a porous
medium, requiring only the resolution of larger vessels by 1D-models for breast tumors [7]
or 2D surface sources in the lung [8]. Often a problem-dependent coupling is required to
achieve a biologically meaningful value range, particularly for the pressure of the 1D blood
flow where 0D models have to damp down oscillations.

Besides the choice between discrete and continuum approaches, there remains the question
of which biophysical mechanisms are considered relevant for the application at hand and thus
have to be modeled, often leading to increasingly complex models of various species. The
tumor typically consists of necrotic, hypoxic, and proliferative cell species. For agent-based
models, the latter might be further divided into the Q, G1, SG2 subspecies [2]. Further,
matrix degenerative enzymes acting on the extra-cellular matrix might be added [3]. The
nutrient field might be split up into various porous media resulting in double continuum
models [7, 8]. For angiogenesis, vascular endothelial growth factors have to be included [2, 5].
Often mechanical deformations have to be considered [6], and, depending on the clinical
therapy, one or more drug species have to be included [6, 8].
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All these modeling choices lead to complex, heavily-coupled, nonlinear models, which
pose mathematical challenges to the analysis of their well-posedness [3, 4], to the creation of
stable numerical schemes and efficient decoupled solvers [5].

In a second, more applied and challenging step, these models have to be calibrated against
real-world data [9] and verified against clinical measurements [8]. Here, the amount of data
is often the bottleneck and requires a strong multidisciplinary effort to acquire, evaluate and
interpret. Especially the derivation of generally accepted benchmark problems for model
validation would be extremely valuable for future work.
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4 Panel discussions

4.1 Working Groups and Panel Discussions
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As mentioned in the executive summary, the scientific presentations were followed by a
brief discussion about selected topics in two working groups to identify immediate goals
and further discuss existing challenges. The first group included researchers with a key
interest in designing methods to analyze medical (imaging) data and integrate mathematical
and computational methods with imaging and medical data. The second group discussed
topics associated with the design of mathematical and computational methods for inference,
simulation, and optimization. Below we list the key findings in these two groups and some of
the questions that remain open.
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Working Group 1

We summarize the main topics discussed in the first working group below:
One of the questions discussed during our meeting was if it is possible to curate a database

of (publicly) available data for model validation on unseen data in both machine learning
and classical modeling. Several questions arose in this context. For example: What are
the quality requirements for the data and what datasets are already available? (What are
the resolution requirements? How do we deal with medical imaging artifacts?) What are
the most pertinent/viable applications that this database is generated from? Do we only
include/want longitudinal data included in this study? What types of imaging modalities are
most pertinent/relevant and available? Do we require multi-modal/multi-parametric data?
What is the best entry-level for these data, i.e., what preprocessing should be applied? How
does one coordinate IRB approval across institutions? Another key aspect discussed during
this session was the inclusion of meta-data in such a database. Such inclusion is decisive
for clinicians and the reproducibility of (modeling and simulation) results. From purely a
technological point of view, one needs to decide how to store/curate this metadata in the
most efficient way. Moreover, one needs to define a precise protocol to avoid confusion and
have documentation. In addition, standards need to be established for data pre-processing.
For example, one could improve data sets by offering data correction algorithms to generate
a harmonized reference data set and correct for most common imaging artifacts. This would
aid reproducibility. Additionally, one could provide data with respect to different processing
levels using already available tools deployed by the medical imaging and image computing
community.

Another key question that was discussed during this session is how to establish a benchmark
and demonstrators for mathematical modeling and data processing. Some of the main
questions that arose during this discussion include: What are the representations that models
have to return to be useful for clinical evaluation? Can we provide a benchmark that is useful
for model development and/or model validation? If so, what are the best metrics for such
an effort? How can we quantify tumor or patient status and what are the key metrics most
clinicians trust in this context? One possibility is to establish a benchmark similar to the
BraTS dataset at the organ level for tumor models. A first step towards establishing such a
benchmark could be to develop internal demonstrators to showcase what we can accomplish
with available modeling tools to the community at large as well as to clinicians.

Working Group 2

We summarize the main topics discussed in the second working group below:
One of the main challenges for many research groups working in medical imaging sciences

is access to clinical data (of high quality). Data is rarely shared amongst groups. One major
outcome we hope to accomplish with this seminar is to establish and curate a list of available
datasets.

We also discussed aspects surrounding model selection. We discussed the option to drive
an initiative for model selection and provide guidance to people with the following aspects in
mind: (i) How do we identify required model complexity with a specific application in mind
(i.e., what do the models need to capture in the context of a particular application), (ii)
When is a model useful and for what purpose? Can we provide guidance on the usefulness of
particular models for specific applications/clinical questions? (iii) What aspects can and
should be captured by mathematical models to make them clinically useful? For example,
can we include models of radio-necrosis? Are we able to design mathematical modes that
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can predict pseudo-progression? In this context, we concluded that an attainable concrete
goal for participants in this seminar is to curate a list that identifies classes of models and
their potential applications. We intend to curate this list in an online platform.

Another key aspect we discussed was model validation and the design of benchmarks for
computational models. One challenge in developing benchmarks for mathematical models of
disease progression is the definition of a clinical goal and/or a biological phenomenon one
wants to capture and how to measure a model’s performance in capturing it. Moreover, we
discussed that it will also be instrumental for developing predictive capabilities to rigorously
equip our simulations and model-based predictions with certificates about our belief in their
accuracy (uncertainty quantification).

Panel Discussion

After the two breakout sessions described above, we came together for a panel discussion. We
focussed on the following main items in an attempt to curate some of the information that
may help us to push forward community efforts towards developing computational methods
to aid clinical decision-making:

As a first attainable goal, we agreed that we would curate a list that identifies individual
researchers one reaches out to for computational tools and medical imaging data. Moreover,
we discussed how we could support such an endeavor of establishing a clinical benchmark
financially, i.e., we identified potential funding agencies to support such an effort. We also
identified several long-term goals of key clinical relevance such as differentiation of progression
and pseudoprogression (i.e., radio necrosis). Moreover, we established that such a database
should provide information about publicly available data sets as well as different classes of
models and computational tools for data pre- and post-processing developed by individual
groups. We agreed to use GitHub as a starting point to curate a platform to share our
research results, methods, algorithms, and data as well as provide a platform for young
researchers to showcase their academic profile.
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