
Report from Dagstuhl Seminar 23082

Resilient Software Configuration and Infrastructure Code
Analysis
Jürgen Cito∗1, Ruzica Piskac∗2, Mark Santolucito∗3,
Andy Zaidman∗4, and Daniel Sokolowski†5

1 TU Wien, AT. juergen.cito@tuwien.ac.at
2 Yale University – New Haven, US. ruzica.piskac@yale.edu
3 Barnard College – New York, US. msantolu@barnard.edu
4 TU Delft, NL. a.e.zaidman@tudelft.nl
5 Universität St. Gallen, CH. daniel.sokolowski@unisg.ch

Abstract
Errors originating from infrastructure and their configurations are one of the major causes of
system failures and system degradation, resulting in security vulnerabilities, application outages,
and incorrect program executions. Investigating the root causes of such issues and remedies
for them requires insight from different research perspectives, including systems, programming
languages, software engineering, and verification. To facilitate progress in this field, this Dagstuhl
Seminar brought together experts from academia and industry, enabling synergies between different
software systems subareas. The seminar was a forum for cross-disciplinary discussions, bridged
communities, and forged new conversations on new approaches. Emerging themes that were
revealed during the seminar included a focus on Infrastructure as Code, the similarities and
differences between configuration engineering and software engineering, the portability (or lack
thereof) of program analysis techniques to configuration analysis, the design space of expressibility
of configuration languages, and future challenges of analysis for safety, security, and auditing. The
seminar led to new short-term and long-term collaborations and connections, including organizing
additional workshops and a joint vision paper.
Seminar February 19–24, 2023 – https://www.dagstuhl.de/23082
2012 ACM Subject Classification Security and privacy → Operating systems security; Software

and its engineering → Parallel programming languages; Software and its engineering →
Compilers; Software and its engineering

Keywords and phrases Computing infrastructure, Configuration, Program analysis
Digital Object Identifier 10.4230/DagRep.13.2.163

1 Executive Summary

Jürgen Cito (TU Wien, AT)
Ruzica Piskac (Yale University – New Haven, US)
Mark Santolucito (Barnard College – New York, US)
Andy Zaidman (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Jürgen Cito, Ruzica Piskac, Mark Santolucito, and Andy Zaidman

Errors originating from infrastructure and their configurations are one of the major causes
of system failures and system degradation, resulting in security vulnerabilities, application
outages, and incorrect program executions. Investigating the root causes of such issues and

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Resilient Software Configuration and Infrastructure Code Analysis, Dagstuhl Reports, Vol. 13, Issue 2, pp. 163–182
Editors: Jürgen Cito, Ruzica Piskac, Mark Santolucito, Andy Zaidman, and Daniel Sokolowski

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juergen.cito@tuwien.ac.at
mailto:ruzica.piskac@yale.edu
mailto:msantolu@barnard.edu
mailto:a.e.zaidman@tudelft.nl
mailto:daniel.sokolowski@unisg.ch
https://www.dagstuhl.de/23082
https://doi.org/10.4230/DagRep.13.2.163
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

164 23082 – Resilient Software Configuration and Infrastructure Code Analysis

remedies for them requires insight from different research perspectives, including systems,
programming languages, software engineering, and verification. From these areas, approaches
are emerging to manage the complexity of infrastructure and configuration, covering a breadth
of forms, such as domain-specific languages, standalone verification tools, automated learning
techniques, specification-based synthesis, security annotation extensions, and configuration
optimizers.

The Dagstuhl Seminar on Resilient Software Configuration and Infrastructure Code
Analysis brought together experts from different fields to explore new cross-disciplinary
approaches to configuration management. The seminar facilitated collaboration between
academia and industry and enabled synergies between different subareas of software systems.
The seminar was a forum for cross-disciplinary discussions, bridged communities, and forged
new conversations between academic and industrial perspectives. The shared knowledge
built during the seminar is captured in this report, which we hope can act as a body of
knowledge for researchers joining this newly forming community.

Overall, the seminar consisted of 3 tutorial talks, 16 presentations, and 5 group discussions.
Emerging themes that were revealed during the seminar included a focus on Infrastructure
as Code, the similarities and differences between configuration engineering and software
engineering, the portability (or lack thereof) of program analysis techniques to configuration
analysis, the design space of expressibility of configuration languages, and future challenges
of analysis for safety, security, and auditing. In addition, we had a joint evening session with
the parallel seminar “Agents on the Web” (Dagstuhl Seminar 23081), where each organizer
presented an overview of their seminar. As a result, we started joint discussions where we
investigated the use of formal methods, in particular synthesis, for establishing semantic
relations between the data.

Key outcomes of this seminar were evident both in new short-term collaboration and
connections, as well as the initiation of longer-term projects. For example, a collection of
the participants have connected to host a workshop on configuration languages and analysis
called CONFLANG 2023, which will be hosted at SPLASH 2023. Additionally, a vision
paper outlining key future directions of the field is being drafted by participants of the event.

After two postponements due to COVID-19, this seminar was a pleasure to hold in person
and a great success from both a community and a research perspective. We would like
to thank the team of Schloss Dagstuhl for their hospitality and support as well as all the
participants for their valuable contributions.

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 165

2 Table of Contents

Executive Summary
Jürgen Cito, Ruzica Piskac, Mark Santolucito, and Andy Zaidman 163

Overview of Talks
Improving Infrastructure Security by Analyzing Pre-Deployment Artifacts
Claudia Cauli . 167
GLITCH: Automated Polyglot Code Smell Detection in Infrastructure as Code
João F. Ferreira . 167
Correctness and Fault Tolerance of Kubernetes Operators
Tianyin Xu . 168
Configuration Validation and Testing for Cloud Systems: Research and Practice
Tianyin Xu . 169
Configurations Here and There, Configurations Everywhere
Myra B. Cohen . 170
Correct and Modular Configuration with Nickel
Yann Hamdaoui . 171
The Theory of Real-life Small and Large Configurations
Marcel Van Lohuizen . 171
Using CUE to Model Configuration
Marcel Van Lohuizen . 172
The Do’s and Don’ts of Infrastructure Code: A Systematic Gray Literature Review
Dario Di Nucci . 172
Automotive (and Some Other) Configuration Problems
Wolfgang Küchlin . 173
Your Shell Reasoning Toolkit
Michael Greenberg . 174
IaC for Architectural Reconstruction
Davide Taibi . 174
Decentralizing Infrastructure as Code
Daniel Sokolowski . 175
Answer Set Programming: The Powerhouse Technology You’ve Never Heard Of
Michael Greenberg . 175
Transposing Static Analyses from Application to Infrastructure Code: the Curious
Case of Ansible
Ruben Opdebeeck and Coen De Roover . 176
Application, Orchestation, and Infrastructure, Oh My! Cross Layer Static Analysis
Strategies
Mark Santolucito . 176
TOSCA Explained!
Damian Andrew Tamburri . 177

23082

166 23082 – Resilient Software Configuration and Infrastructure Code Analysis

Static Detection of Silent Misconfigurations with Deep Interaction Analysis
Ruzica Piskac . 177
Generating Infrastructure Code from System Interactions
Jürgen Cito . 178

Working groups
Intersections of Infrastructure as Code (IaC) and Configurable Software
Myra B. Cohen, Claudia Cauli, Coen De Roover, Dario Di Nucci, Thomas Durieux,
João F. Ferreira, Wolfgang Küchlin, Shane McIntosh, Ruben Opdebeeck, Akond
Rahman, Martin Schäf, Davide Taibi, and Marcel Van Lohuizen 179
Architectural Reconstruction and IaC
Davide Taibi, Wolfgang Küchlin, Ruben Opdebeeck, Ruzica Piskac, and Damian
Andrew Tamburri . 179
Reasoning about Code and Infrastructure
Martin Schäf, Claudia Cauli, Jürgen Cito, Myra B. Cohen, Coen De Roover, Dario
Di Nucci, Thomas Durieux, João F. Ferreira, Michael Greenberg, Shane McIntosh,
Akond Rahman, Daniel Sokolowski, Marcel Van Lohuizen, and Tianyin Xu 180
Emerging Trends in Infrastructure as Code (IaC) Research
Akond Rahman, Jürgen Cito, Myra B. Cohen, Thomas Durieux, João F. Ferreira,
Michael Greenberg, Wolfgang Küchlin, Daniel Sokolowski, Davide Taibi, Marcel
Van Lohuizen, and Tianyin Xu . 181

Participants . 182

Remote Participants . 182

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 167

3 Overview of Talks

3.1 Improving Infrastructure Security by Analyzing Pre-Deployment
Artifacts

Claudia Cauli (Amazon Web Services – London, GB)

License Creative Commons BY 4.0 International license
© Claudia Cauli

Joint work of Claudia Cauli, Meng Li, Nir Piterman, Oksana Tkachuk
Main reference Claudia Cauli, Meng Li, Nir Piterman, Oksana Tkachuk: Pre-deployment Security Assessment for

Cloud Services Through Semantic Reasoning. CAV (1) 2021: 767-780
URL https://link.springer.com/chapter/10.1007/978-3-030-81685-8_36

Over the past ten years, the adoption of cloud services has grown rapidly, leading to the
introduction of automated deployment tools to address the scale and complexity of the
infrastructure companies and users deploy. Without the aid of automation, ensuring the
security of an ever-increasing number of deployments becomes more and more challenging.
To the best of our knowledge, no formal automated technique currently exists to verify cloud
deployments during the design phase. In this case study, we show that Description Logic
modeling and inference capabilities can be used to improve the safety of cloud configurations.
We focus on the Amazon Web Services (AWS) proprietary declarative language, CloudForm-
ation, and develop a tool to encode template files into logic. We query the resulting models
with properties related to security posture and report on our findings. By extending the
models with dataflow-specific knowledge, we use more comprehensive semantic reasoning
to further support security reviews. When applying the developed toolchain to publicly
available deployment files, we find numerous violations of widely-recognized security best
practices, which suggests that streamlining the methodologies developed for this case study
would be beneficial.

3.2 GLITCH: Automated Polyglot Code Smell Detection in
Infrastructure as Code

João F. Ferreira (INESC-ID – Lisboa, PT)

License Creative Commons BY 4.0 International license
© João F. Ferreira

Joint work of João F. Ferreira, Nuno Saavedra
Main reference Nuno Saavedra, João F. Ferreira: “GLITCH: Automated Polyglot Security Smell Detection in

Infrastructure as Code”, in Proc. of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pp. 47:1–47:12, ACM,
2022.

URL https://doi.org//10.1145/3551349.3556945

Infrastructure as Code (IaC) is the process of managing IT infrastructure via programmable
configuration files (also called IaC scripts). Like other software artifacts, IaC scripts may
contain code smells, which are coding patterns that can result in weaknesses. Automated
analysis tools to detect code smells in IaC scripts exist, but they focus on specific technologies
such as Puppet, Ansible, or Chef. This means that when the detection of a new smell is
implemented in one of the tools, it is not immediately available for the technologies supported
by the other tools – the only option is to duplicate the effort.

We present GLITCH, a technology-agnostic framework that enables the automated detec-
tion of code smells in IaC scripts. GLITCH allows polyglot smell detection by transforming
IaC scripts into an intermediate representation on which different smell detectors can be

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_36
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_36
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_36
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3551349.3556945
https://doi.org//10.1145/3551349.3556945
https://doi.org//10.1145/3551349.3556945
https://doi.org//10.1145/3551349.3556945
https://doi.org//10.1145/3551349.3556945

168 23082 – Resilient Software Configuration and Infrastructure Code Analysis

defined. GLITCH currently supports the detection of nine security smells and nine design
& implementation smells. We compare GLITCH with state-of-the-art smell detectors. For
security smells, the results show that GLITCH can reduce the effort of writing security smell
analyses for multiple IaC technologies and that it obtains higher precision and recall than the
current state-of-the-art tools. For the design & implementation smells, we show that GLITCH
has enough information in its intermediate representation to detect technology-agnostic smells
supported by state-of-the-art tools.

3.3 Correctness and Fault Tolerance of Kubernetes Operators
Tianyin Xu (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 4.0 International license
© Tianyin Xu

Main reference Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan, Ramnatthan Alagappan, Michael
Gasch, Lalith Suresh, Tianyin Xu: “Automatic Reliability Testing For Cluster Management
Controllers”, in Proc. of the 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pp. 143–159, USENIX Association, 2022.

URL https://www.usenix.org/conference/osdi22/presentation/sun

Modern cluster managers like Borg, Omega, and Kubernetes rely on the state-reconciliation
principle to be highly resilient and extensible. In these systems, all cluster-management logic
is embedded in a loosely coupled collection of microservices called controllers. Each controller
independently observes the current cluster state and issues corrective actions to converge the
cluster to a desired state. However, the complex distributed nature of the overall system
makes it hard to build reliable and correct controllers – we find that controllers face myriad
reliability issues that lead to severe consequences like data loss, security vulnerabilities, and
resource leaks.

In this talk, I present Sieve, the first automatic reliability-testing tool for cluster-
management controllers. Sieve drives controllers to their potentially buggy corners by
systematically and extensively perturbing the controller’s view of the current cluster state
in ways it is expected to tolerate. It then compares the cluster state’s evolution with and
without perturbations to detect safety and liveness issues. Sieve’s design is powered by
a fundamental opportunity in state-reconciliation systems – these systems are based on
state-centric interfaces between the controllers and the cluster state; such interfaces are highly
transparent and enable fully-automated reliability testing. To date, Sieve has efficiently found
46 serious safety and liveness bugs (35 confirmed and 22 fixed) in ten popular controllers
with a low false-positive rate of 3.5%.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/osdi22/presentation/sun
https://www.usenix.org/conference/osdi22/presentation/sun
https://www.usenix.org/conference/osdi22/presentation/sun
https://www.usenix.org/conference/osdi22/presentation/sun
https://www.usenix.org/conference/osdi22/presentation/sun

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 169

3.4 Configuration Validation and Testing for Cloud Systems: Research
and Practice

Tianyin Xu (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 4.0 International license
© Tianyin Xu

Main reference Shuai Wang, Xinyu Lian, Darko Marinov, and Tianyin Xu: “Test Selection for Unified Regression
Testing”, In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering
(ICSE’23), Melbourne, Australia, May 2023.

URL https://tianyin.github.io/pub/ctest.pdf

Configuration management is an integral part of modern DevOps-based cloud system man-
agement. Many critical operations are done by updating configurations to change system
behavior in production dynamically. Today, large-scale cloud and Internet services evolve
rapidly, with hundreds to thousands of configuration changes deployed daily. For example,
at Facebook, thousands of configuration changes are committed every day, outpacing the
frequency of code changes. Other cloud services from Google and Azure also frequently
deploy configuration changes. It is not surprising to hear that the “cloud feels more about
configuration management than software engineering.”

With the high velocity of changes, faulty configurations inevitably have become major
causes of system failures and service outages. For example, faulty configurations are reported
as the second largest cause of service disruptions in a main Google production service.
At Facebook, 16% of service-level incidents are induced by configuration changes. Many
configuration-induced failures led to catastrophic impacts. For instance, in March 2019, a
misconfiguration led to Facebook’s largest outage in terms of duration (14 hours); in June
2021, a seemingly-valid configuration change at Fastly triggered an undiscovered software
bug and broke the Internet for an hour.

We argue that continuous testing is a key missing piece of today’s configuration man-
agement practice. Despite the “configuration-as-code” movement, there is no widely-used,
systematic configuration testing technique, and thus configuration changes are not unit-
tested—imagining a world where code changes only go through manual review and static
analysis, without regression testing.

We will introduce the idea of configuration testing, a new testing technique that enables
configuration changes to be unit-tested in DevOps-based continuous integration/deployment.
The basic idea of configuration testing is connecting system configurations to software tests
so that configuration changes can be tested in the context of code affected by the changes.
We will introduce a new type of tests, termed Ctests, to fill the critical need for configuration
testing. Ctests complement static validation (the de facto protection), analogous to how
testing complements static analysis:

Ctests can detect failure-inducing configuration changes where the failure root causes are
in the code, e.g., valid configuration value changes that trigger dormant bugs.
Ctests can detect sophisticated misconfigurations (e.g., those that violate undocumented,
hidden constraints) by capturing the resulting unexpected system behavior.

We will demonstrate that ctests can be generated by transforming existing software tests
that are abundant in mature software projects. The generated ctests selectively inherit test
logic and assertions from the original tests. The inherited assertions hold for all correct
configuration values. We have successfully generated 7,974 ctests for five widely-used open-
source cloud systems (Hadoop Common, HDFS, HBase, ZooKeeper, and Alluxio).

We will show that the generated ctests are effective and outperform state-of-the-art static
configuration validation techniques based on extensive evaluations with real-world failure
cases, synthesized misconfigurations, and deployed configuration files in public Docker images.

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://tianyin.github.io/pub/ctest.pdf
https://tianyin.github.io/pub/ctest.pdf
https://tianyin.github.io/pub/ctest.pdf
https://tianyin.github.io/pub/ctest.pdf

170 23082 – Resilient Software Configuration and Infrastructure Code Analysis

References
1 Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu, Test-Case Prioritiza-

tion for Configuration Testing, In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’21), Virtual Event, July 2021.

2 Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and Tianyin Xu,
An Evolutionary Study of Configuration Design and Implementation in Cloud Systeums,
In Proceedings of the 43rd International Conference on Software Engineering (ICSE’21),
Virtual Event, May 2021.

3 Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen, and Tianyin
Xu, Testing Configuration Changes in Context to Prevent Production Failures, In Proceed-
ings of the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’20), Virtual Event, Nov. 2020.

4 Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu, Understand-
ing and Discovering Software Configuration Dependencies in Cloud and Datacenter Systems,
In Proceedings of the 2020 ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE’20), Virtual Event,
Nov. 2020.

5 Tianyin Xu and Darko Marinov, Mining Container Image Repositories for Software Con-
figurations and Beyond, In Proceedings of the 40th International Conference on Software
Engineering, New Ideas and Emerging Results (ICSE’18, NIER), Gothenburg, Sweden, May
2018.

6 Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and Shankar
Pasupathy, Early Detection of Configuration Errors to Reduce Failure Damage, In Proceed-
ings of the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16), Savannah, GA, Nov. 2016.

7 Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma
Talwadker, Hey, You Have Given Me Too Many Knobs! Understanding and Dealing with
Over-Designed Configuration in System Software, In Proceedings of the 10th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’15), Bergamo, Italy, Aug. 2015.

8 Tianyin Xu and Yuanyuan Zhou, Systems Approaches to Tackling Configuration Errors: A
Survey, ACM Computing Surveys (CSUR), Vol. 47, No. 4, Article 70, Jul. 2015.

9 Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan, Yuanyuan
Zhou, and Shankar Pasupathy, Do Not Blame Users for Misconfigrations, In Proceedings of
the 24th ACM Symposium on Operating Systems Principles (SOSP’13), Farmington, PA,
Nov. 2013.

3.5 Configurations Here and There, Configurations Everywhere
Myra B. Cohen (Iowa State University – Ames, US)

License Creative Commons BY 4.0 International license
© Myra B. Cohen

Joint work of Paul Gazzillo, Myra B. Cohen
Main reference Paul Gazzillo, Myra B. Cohen: “Bringing Together Configuration Research: Towards a Common

Ground”, in Proc. of the 2022 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward! 2022, Auckland, New Zealand,
December 8-10, 2022, pp. 259–269, ACM, 2022.

URL https://doi.org//10.1145/3563835.3568737

Configurable software makes up most of the software in use today. Configurability, i.e.,
the ability of software to be customized without additional programming, is pervasive, and
due to the criticality of problems caused by misconfiguration, it has been an active topic

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3563835.3568737
https://doi.org//10.1145/3563835.3568737
https://doi.org//10.1145/3563835.3568737
https://doi.org//10.1145/3563835.3568737
https://doi.org//10.1145/3563835.3568737

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 171

researched by investigators in multiple, diverse areas. This broad reach of configurability
means that much of the literature and latest results are dispersed, and researchers may
not be collaborating or be aware of similar problems and solutions in other domains. We
argue that this lack of a common ground leads to a missed opportunity for synergy between
research domains and the synthesis of efforts to tackle configurability problems. To provide a
foundation for addressing these concerns, we suggest how to bring the communities together
and propose a common model of configurability and a platform, ACCORD, to facilitate
collaboration among researchers and practitioners.

3.6 Correct and Modular Configuration with Nickel
Yann Hamdaoui (Tweag I/O – Paris, FR)

License Creative Commons BY 4.0 International license
© Yann Hamdaoui

From a distance, Infrastructure as Code should really be called Infrastructure as Configuration.
DevOps, SRE and other engineers dealing with infrastructure are mostly managing pure
configuration data by writing, editing and auditing JSON, YAML or similar serialization
formats.

Purely data-oriented languages like JSON might be fine for managing small and simple
infrastructure, but when the size and complexity of a configuration grows, data languages
don’t seem to be the right tool anymore.

There is no way to reuse data and have a single source of truth, with all the pain
and inconsistencies that duplication inevitably brings with time. We can’t express data
dependencies either. For example, the open ports of a firewall may depend on which services
are enabled on a server. In JSON, everything must be hardcoded.

Infrastructure tools have thus incorporated programming features in their languages
(Terraform, Ansible, Puppet, etc.). But those are often unplanned and unprincipled, resulting
in a complex system.

In the end, Configuration Management looks like the poor sibling of Software Engin-
eering. What about tests, types, LSP integration for real-time feedback, completion, and
documentation? What about modularity, code reuse, and abstraction?

In this talk, I will present Nickel, a configuration programming language I am currently
working on at Tweag, to help finally enter the era of Configuration as Code. I’ll discuss more
specifically the approach of Nickel to modularity, which is how to write small and reusable
configuration snippets that can be combined into a complex configuration based on a merging
operation. I’ll talk about type-checking and built-in schema validation as well.

3.7 The Theory of Real-life Small and Large Configurations
Marcel Van Lohuizen (CUE – Zug, CH)

License Creative Commons BY 4.0 International license
© Marcel Van Lohuizen

URL https://cuelang.org

Configuration is in more places than people imagine. Every part of your tech stack – databases,
apps, schemas, services, workflows, policy, models, and networking must be configured. Not
only that, there are dependencies between these configurations. With cloud, multi-cloud,

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cuelang.org

172 23082 – Resilient Software Configuration and Infrastructure Code Analysis

IoT, and edge computing, the number of things to configure within growing systems has
exploded. The consequences of getting the configuration wrong have only worsened over
time.

We are in the middle of a major shift where configuration is becoming a first-class citizen
across your stack. New engineering roles dedicated to solving configuration problems have
emerged: Platform, Site Reliability, Resilience, Observability, Data, “DevOps” and “YAML”
engineers all deal with easing configuration toil. There are many tools and approaches
that aim to help developers deal with growing configuration complexity: Configuration
Management, Infrastructure as Code, GitOps, Policy as Code, and finally, Infrastructure as
Data. The industry needs something to unify all these roles, approaches, and challenges and
break down configuration silos. CUE (cuelang.org) does exactly that.

In this presentation, you will hear:
hard-won insights and experiences of configuration at scale, culminating in the design of
CUE,
how configuration can go wrong,
the need for testing and validation,
how CUE is paving the way for a holistic approach to configuration via a language,
tooling, and APIs that support a vibrant configuration ecosystem.

3.8 Using CUE to Model Configuration
Marcel Van Lohuizen (CUE – Zug, CH)

License Creative Commons BY 4.0 International license
© Marcel Van Lohuizen

URL https://cuelang.org

Configuration is inherently cross-cutting. Combing configuration, therefore, requires com-
mutative and associative composition. In this tutorial, we show how to use CUE to model
all configuration aspects of a distributed system into a single space. Configuration aspects
can be data, schema, policy, validation, and templates, or any combination thereof.

3.9 The Do’s and Don’ts of Infrastructure Code: A Systematic Gray
Literature Review

Dario Di Nucci (University of Salerno, IT)

License Creative Commons BY 4.0 International license
© Dario Di Nucci

Joint work of Indika Kumara, Martin Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio Palomba, Damian
Andrew Tamburri, Willem-Jan van den Heuvel

Main reference Indika Kumara, Martin Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio Palomba, Damian
Andrew Tamburri, Willem-Jan van den Heuvel: “The do’s and don’ts of infrastructure code: A
systematic gray literature review”, Inf. Softw. Technol., Vol. 137, p. 106593, 2021.

URL https://doi.org//10.1016/j.infsof.2021.106593

This talk provided an overview of the qualitative analysis we conducted to summarize the
industrial gray literature (e.g., blog posts, tutorials, white papers) on IaC.

cuelang.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cuelang.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/j.infsof.2021.106593
https://doi.org//10.1016/j.infsof.2021.106593
https://doi.org//10.1016/j.infsof.2021.106593
https://doi.org//10.1016/j.infsof.2021.106593

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 173

In particular, it provided a general definition of IaC and a broad catalog outlined in
taxonomy consisting of ten and four primary categories for best practices and bad practices,
respectively, both language-agnostic and language-specific ones, for three IaC languages of
best and bad practices for widely used IaC languages (i.e., Ansible, Puppet, and Chef).

Our findings highlighted that the IaC development and maintenance field is in its infancy
and deserves further attention.

3.10 Automotive (and Some Other) Configuration Problems
Wolfgang Küchlin (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Wolfgang Küchlin

Joint work of Wolfgang Küchlin, Carsten Sinz
Main reference Wolfgang Küchlin, Carsten Sinz: “Proving Consistency Assertions for Automotive Product Data

Management”, J. Autom. Reason., Vol. 24(1/2), pp. 145–163, 2000.
URL https://doi.org//10.1023/A:1006370506164

We report on industrial configuration problems outside the field of infrastructure as code. We
focus on our work on automotive configuration which goes back to the 1990s and continues
until today by providing software to the industry in the context of our Steinbeis Transfer
Centre STZ OIT.

Automotive configuration is managed on two levels using (a flavor of) Boolean Algebra.
Every equipment or sales option is represented by a Boolean variable x, where x=true
represents the presence of the option in a car, and x=false represents the absence, such that
a valid car order is given by a complete valuation of all variables. The upper level, model
description, comprises the configuration rules for an entire model line of cars (e.g. Mercedes
C-Class). The lower level, the Bill-of-Materials, contains the list of all materials needed for
the model line. Each material also has a selection formula, and the material is needed to
produce a car order if the selection formula evaluates to true under the order.

Problems on the upper level include the computation of forced options, which must be
contained in any car, and impossible options, which cannot be contained in any car. Problems
on the lower level include the detection of car orders which will select alternative materials
or will fail to select a necessary material. These problems are efficiently solved by modern
CDCL SAT-Solvers, although the typical variance of the model description is practically
infinite (more than a trillion).

Beyond the detection of configuration errors, we proceed to configuration optimization.
As an example, we describe the problem of computing the configuration of optimal (minimal)
sets of test vehicles on which a given set of testing demands can be carried out.

In addition, we report on some other industrial configuration verification problems whose
solutions we published in the past. This includes the detection of misconfigurations of
Storage Area Networks (SAN) and of Apache Webservers, the analysis of LINUX Kernel
configurations, and the analysis of the completeness of the online help system of a line of
computer tomographs.

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1023/A:1006370506164
https://doi.org//10.1023/A:1006370506164
https://doi.org//10.1023/A:1006370506164

174 23082 – Resilient Software Configuration and Infrastructure Code Analysis

3.11 Your Shell Reasoning Toolkit
Michael Greenberg (Stevens Institute of Technology – Hoboken, US)

License Creative Commons BY 4.0 International license
© Michael Greenberg

Main reference Michael Greenberg, Austin J. Blatt: “Executable Formal Semantics for the POSIX Shell”, Proc.
ACM Program. Lang., Vol. 4(POPL), Association for Computing Machinery, 2019.

URL https://doi.org//10.1145/3371111
Main reference Konstantinos Kallas, Tammam Mustafa, Jan Bielak, Dimitris Karnikis, Thurston H.Y. Dang,

Michael Greenberg, Nikos Vasilakis: “Practically Correct, Just-in-Time Shell Script Parallelization”,
in Proc. of the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22), pp. 769–785, USENIX Association, 2022.

URL https://www.usenix.org/conference/osdi22/presentation/kallas

The shell is a critical part of modern software operations. I have three tools for helping you
work with the shell:

libdash, bindings to the dash parser in OCaml and Python
smoosh, an executable small-step operational semantics tested against the POSIX spec
pash-annotations, specifications of common commands

3.12 IaC for Architectural Reconstruction
Davide Taibi (University of Oulu, FI)

License Creative Commons BY 4.0 International license
© Davide Taibi

Main reference Tomás Cerný, Amr S. Abdelfattah, Vincent Bushong, Abdullah Al Maruf, Davide Taibi:
“Microservice Architecture Reconstruction and Visualization Techniques: A Review”, in Proc. of the
IEEE International Conference on Service-Oriented System Engineering, SOSE 2022, Newark, CA,
USA, August 15-18, 2022, pp. 39–48, IEEE, 2022.

URL https://doi.org//10.1109/SOSE55356.2022.00011

The continuous development of new services and the time pressure imposed by the development
of new features commonly result in the introduction of non-optimal and temporary solutions.
As a result, the software architecture is commonly not compliant with the originally designed
one, and nobody has a complete view of the whole system. Static and dynamic analysis
methods can help to reconstruct the architecture of the system.

In this talk, we showed some possible techniques for reconstructing the architecture from
different perspectives: the infrastructural, the structure of the system analyzed statically or
dynamically, and the structure of the organization.

Last we presented a roadmap of possible shared research work towards the development
or the extension of tools for IaC architectural reconstruction.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3371111
https://doi.org//10.1145/3371111
https://doi.org//10.1145/3371111
https://www.usenix.org/conference/osdi22/presentation/kallas
https://www.usenix.org/conference/osdi22/presentation/kallas
https://www.usenix.org/conference/osdi22/presentation/kallas
https://www.usenix.org/conference/osdi22/presentation/kallas
https://www.usenix.org/conference/osdi22/presentation/kallas
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1109/SOSE55356.2022.00011
https://doi.org//10.1109/SOSE55356.2022.00011
https://doi.org//10.1109/SOSE55356.2022.00011
https://doi.org//10.1109/SOSE55356.2022.00011
https://doi.org//10.1109/SOSE55356.2022.00011

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 175

3.13 Decentralizing Infrastructure as Code
Daniel Sokolowski (Universität St. Gallen, CH)

License Creative Commons BY 4.0 International license
© Daniel Sokolowski

Joint work of Daniel Sokolowski, Pascal Weisenburger, Guido Salvaneschi
Main reference Daniel Sokolowski, Pascal Weisenburger, Guido Salvaneschi: “Decentralizing Infrastructure as Code”,

IEEE Softw., Vol. 40(1), pp. 50–55, 2023.
URL https://doi.org//10.1109/MS.2022.3192968

Main reference Daniel Sokolowski, Pascal Weisenburger, Guido Salvaneschi: “Automating serverless deployments for
DevOps organizations”, in Proc. of the ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, pp. 57–69, ACM, 2021.

URL https://doi.org//10.1145/3468264.3468575

DevOps unifies software development and operations in cross-functional teams to improve
software delivery and operations (SDO) performance. Ideally, cross-functional DevOps teams
independently deploy their services, but the correct operation of a service often demands
other services, requiring coordination to ensure the correct deployment order. This issue is
currently solved either with a central deployment or manual out-of-band communication
across teams, e.g., via phone, chat, or email. Unfortunately, both contradict the independence
of teams, hindering SDO performance – the reason why DevOps is adopted in the first place.

We conducted a study on 134 IT professionals, showing that, in practice, they resort to
manual coordination for correct deployments even if they expect better SDO performance
with fully automated approaches. We find that Infrastructure as Code (IaC) automates
deployments for single teams, falling short of decentralized deployments across groups. To
enable testing and automation advances for decentralized organizations, we need mature IaC
solutions that embrace and consolidate software engineering principles.

To address this issue, we proposed µs ([mju:z] “muse”), a novel IaC system automating
deployment coordination in a fully decentralized fashion, still retaining compatibility with
DevOps practice – in contrast to today’s solutions. We implement µs, demonstrate that it
effectively enables automated coordination, introduces negligible definition overhead, has no
performance overhead, and is broadly applicable, as shown by the migration of 64 third-party
IaC projects.

3.14 Answer Set Programming: The Powerhouse Technology You’ve
Never Heard Of

Michael Greenberg (Stevens Institute of Technology – Hoboken, US)

License Creative Commons BY 4.0 International license
© Michael Greenberg

Main reference Aaron Bembenek, Michael Greenberg, Stephen Chong: “From SMT to ASP: Solver-Based
Approaches to Solving Datalog Synthesis-as-Rule-Selection Problems”, Proc. ACM Program. Lang.,
Vol. 7(POPL), pp. 185–217, 2023.

URL https://doi.org//10.1145/3571200

Answer set programming (ASP) is a powerful tool that folks in PL/FM/SE do not know
about. I give two case studies applying ASP to synthesis (once for Datalog, once for RBAC
policies); I also explain how ASP relates to SAT (its parent) and SMT (its sibling).

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1109/MS.2022.3192968
https://doi.org//10.1109/MS.2022.3192968
https://doi.org//10.1109/MS.2022.3192968
https://doi.org//10.1145/3468264.3468575
https://doi.org//10.1145/3468264.3468575
https://doi.org//10.1145/3468264.3468575
https://doi.org//10.1145/3468264.3468575
https://doi.org//10.1145/3468264.3468575
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3571200
https://doi.org//10.1145/3571200
https://doi.org//10.1145/3571200
https://doi.org//10.1145/3571200

176 23082 – Resilient Software Configuration and Infrastructure Code Analysis

3.15 Transposing Static Analyses from Application to Infrastructure
Code: the Curious Case of Ansible

Ruben Opdebeeck (VU – Brussels, BE) and Coen De Roover (VU – Brussels, BE)

License Creative Commons BY 4.0 International license
© Ruben Opdebeeck and Coen De Roover

Joint work of Ruben Opdebeeck, Jonas De Bleser, Coen De Roover, Dario Di Nucci, Camilo Velázquez-Rodríguez,
Ahmed Zerouali

Main reference Ruben Opdebeeck, Ahmed Zerouali, Coen De Roover: “Smelly Variables in Ansible Infrastructure
Code: Detection, Prevalence, and Lifetime”, in Proc. of the 19th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022,
pp. 61–72, ACM, 2022.

URL https://doi.org//10.1145/3524842.3527964

This talk presents our journey and experiences in transposing static analyses from application
to infrastructure code.

We realized the need to analyze infrastructure code while designing the Chaokka auto-
mated tester. Chaokka injects cloud-specific faults during the execution of a test suite to
assess the resilience of a cloud-native application against these faults. The approach uses
delta debugging to speed up the exploration of the corresponding fault space, which we expect
to benefit further from architectural insights extracted from the supporting infrastructure
code (e.g., how many replicas the application maintains of each service, ...).

The second part of the talk focuses on analyses for infrastructure code in general and
Ansible in particular. To this end, we present two static representations of Ansible code.
First, we describe a structural model akin to an AST and its applications in empirical research
on Semantic Versioning in the Ansible Galaxy ecosystem. Second, we present a program
dependence graph representation that captures an Ansible script’s control and data flow.
We describe the challenges faced when building such graphs caused by unconventional and
undocumented Ansible semantics. Finally, we describe two applications of Ansible program
dependence graphs, namely the detection of variable-related smells and a graph pattern
mining approach to defect detection.

3.16 Application, Orchestation, and Infrastructure, Oh My! Cross Layer
Static Analysis Strategies

Mark Santolucito (Barnard College – New York, US)

License Creative Commons BY 4.0 International license
© Mark Santolucito

With Infrastructure as Code (Iac), the process of configuring complex infrastructure has been
simplified and made more accessible to developers. However, with the new expressive power of
IaC and the consequentially more complex cloud infrastructure deployments, understanding
this complexity has emerged as an unsolved issue. In particular, estimating the cost of an
Infrastructure as Code deployment requires understanding the pricing models of every cloud
resource being used, as well as an understanding of the interactions between the resources.
Existing work either relies on historical usage metrics to predict cost (which has limited
utility for new deployments), or on coarse-grain static cost analysis that ignores interactions
between resources. We pose as a challenge to the community the need for fine-grained static
cost analysis techniques for IaC that incorporate reasoning about the interactions between
resources. We walk through a motivating example of this problem that demonstrates the
need for such analysis as well as the complexity of the problem.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3524842.3527964
https://doi.org//10.1145/3524842.3527964
https://doi.org//10.1145/3524842.3527964
https://doi.org//10.1145/3524842.3527964
https://doi.org//10.1145/3524842.3527964
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 177

3.17 TOSCA Explained!
Damian Andrew Tamburri (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
© Damian Andrew Tamburri

Joint work of Paul Lipton, Derek Palma, Matt Rutkowski, Damian A. Tamburri
Main reference Paul Lipton, Derek Palma, Matt Rutkowski, Damian A. Tamburri: “TOSCA Solves Big Problems in

the Cloud and Beyond!”, IEEE Cloud Computing, Vol. 5(2), pp. 37–47, 2018.
URL https://doi.org//10.1109/MCC.2018.022171666

The anatomy of infrastructure code, as well as all elements and abstractions necessary in
writing and maintaining that blueprint, are addressed, among other IaC formats, in the
industrial standard for IaC, namely, the OASIS “Topology and Orchestration Specification for
Cloud Applications” (TOSCA) industrial standard adopted by as many as 60+ big industrial
players worldwide.

Paraphrasing from the standard specification itself, “TOSCA [...] uses [...] service
templates to describe cloud apps as a topology template, [...]. TOSCA provides a type system
of node types to describe the possible building blocks for constructing a service template
and relationship type to describe possible relations”. TOSCA-ready orchestrators such as
Cloudify or Apache Brooklyn normally come with a considerable number of reusable TOSCA
nodes (e.g., a MySQL DB or a WordPress host), while more are proliferating in both research
and practice.

Although several alternatives to TOSCA exist (e.g., HashiCorp Terraform, Ubuntu Juju),
for the sake of simplicity, we focus on outlining the anatomy of infrastructure code using the
technology-agnostic TOSCA standard notation and its intended levels of abstraction.

3.18 Static Detection of Silent Misconfigurations with Deep Interaction
Analysis

Ruzica Piskac (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© Ruzica Piskac

Joint work of Jialu Zhang, Ruzica Piskac, Ennan Zhai, Tianyin Xu
Main reference Jialu Zhang, Ruzica Piskac, Ennan Zhai, Tianyin Xu: “Static detection of silent misconfigurations

with deep interaction analysis”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–30, 2021.
URL https://doi.org//10.1145/3485517

The behavior of large systems is guided by their configurations: users set parameters in
the configuration file to dictate which corresponding part of the system code is executed.
However, it is often the case that, although some parameters are set in the configuration file,
they do not influence the system runtime behavior, thus failing to meet the user’s intent.
Moreover, such misconfigurations rarely lead to an error message or raising an exception.
We introduce the notion of silent misconfiguration, which are prohibitively hard to identify
due to (1) lack of feedback and (2) complex interactions between configurations and code.

In this talk we present ConfigX, the first tool for the detection of silent misconfigurations.
The main challenge is understanding the complex interactions between configurations and
the code they affected. Our goal is to derive a specification describing non-trivial interactions
between the configuration parameters that lead to silent misconfigurations. To this end,
ConfigX uses static analysis to determine which parts of the system code are associated
with configuration parameters. ConfigX then infers the connections between configuration
parameters by analyzing their associated code blocks. We design customized control- and

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1109/MCC.2018.022171666
https://doi.org//10.1109/MCC.2018.022171666
https://doi.org//10.1109/MCC.2018.022171666
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3485517
https://doi.org//10.1145/3485517
https://doi.org//10.1145/3485517

178 23082 – Resilient Software Configuration and Infrastructure Code Analysis

data-flow analysis to derive a specification of configurations. Additionally, we conduct
reachability analysis to eliminate spurious rules to reduce false positives. Upon evaluation on
five real-world datasets across three widely-used systems, Apache, vsftpd, and PostgreSQL,
ConfigX detected more than 2200 silent misconfigurations. We additionally conducted a user
study where we ran ConfigX on misconfigurations reported on user forums by real-world
users. ConfigX easily detected issues and suggested repairs for those misconfigurations. Our
solutions were accepted and confirmed in the interaction with the users who originally posted
the problems.

3.19 Generating Infrastructure Code from System Interactions
Jürgen Cito (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Jürgen Cito

Setting up complex, large-scale infrastructure is an iterative process that includes installing
dependencies and adjusting parameters within a vast space of configuration options and
eventual infrastructure testing in a trial-and-error fashion. The result of this process serves
as the underlying base for the deployment and execution of computation defined in the
program code. This ad-hoc style of infrastructure setup cannot scale to operations with
scalable compute instances (i.e., cloud computing). Infrastructure as code allows to express
all infrastructure concerns in the form of code, enabling automation to achieve scalability,
transparency, and reproducibility. However, creating code for infrastructure inherently
differs from writing program code. The fast feedback cycles required for the iterative setup
process outlined above are not feasible when infrastructure code is written in the same
way as program code. Thus, infrastructure code is commonly written retrospectively in a
cumbersome back-and-forth process querying configuration parameters that are prone to
human error. My proposed research aims to intercept lower-level system interactions by
experts setting up systems interactively and infer higher-level actions. We generate action
sequences guided by the existing infrastructure serving as an oracle goal state.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 179

4 Working groups

4.1 Intersections of Infrastructure as Code (IaC) and Configurable
Software

Myra B. Cohen (Iowa State University – Ames, US), Claudia Cauli (Amazon Web Services –
London, GB), Coen De Roover (VU – Brussels, BE), Dario Di Nucci (University of Salerno,
IT), Thomas Durieux (TU Delft, NL), João F. Ferreira (INESC-ID – Lisboa, PT), Wolfgang
Küchlin (Universität Tübingen, DE), Shane McIntosh (University of Waterloo, CA), Ruben
Opdebeeck (VU – Brussels, BE), Akond Rahman (Auburn University, US), Martin Schäf
(Amazon Web Services – New York City, US), Davide Taibi (University of Oulu, FI), and
Marcel Van Lohuizen (CUE – Zug, CH)

License Creative Commons BY 4.0 International license
© Myra B. Cohen, Claudia Cauli, Coen De Roover, Dario Di Nucci, Thomas Durieux, João F.
Ferreira, Wolfgang Küchlin, Shane McIntosh, Ruben Opdebeeck, Akond Rahman, Martin Schäf,
Davide Taibi, and Marcel Van Lohuizen

In this breakout, we discussed the intersections between infrastructure as code and traditional
configurable software, where configurability models the variability in system behavior rather
than defining how the system is composed at a single point in time. Our goal was to find ways
we can share techniques, tools, and benchmarks across these two domains. We discussed the
fact that configurability in software is usually declarative, while IaC is often imperative. We
also discussed the idea that the IaC view can be considered a unit level (or bottom-up view)
of the system, while those in traditional configurable systems are using a systems approach
(or top-down view). However, we agreed that many challenges are shared, so it would be
important to look for places we can merge approaches. Some roadblocks to using a systems
approach on IaC are that the systems are often unbounded; hence the complete configuration
space is unknown. There is also no uniform modeling approach for IaC. We further discussed
the problem that many of the dynamic techniques used in traditional configurable software,
such as testing across configurations, may not work. We also noted that it is often too
expensive to perform dynamic analyses because many IaC systems are often charged by
usage micro-services. We agreed we should start with some example benchmarks, such as
train-ticket to further explore the differences (and commonalities).

4.2 Architectural Reconstruction and IaC
Davide Taibi (University of Oulu, FI), Wolfgang Küchlin (Universität Tübingen, DE), Ruben
Opdebeeck (VU – Brussels, BE), Ruzica Piskac (Yale University – New Haven, US), and
Damian Andrew Tamburri (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
© Davide Taibi, Wolfgang Küchlin, Ruben Opdebeeck, Ruzica Piskac, and Damian Andrew
Tamburri

During this breakout session, we discussed on pros and cons of techniques for architectural
reconstruction. We identified mainly two analysis techniques: static and dynamic analysis
techniques. Static analysis techniques scan different software artifacts, including IaC, source
code, but also repository activity from git logs. We agreed that static analysis of source code
might not be a viable solution, mainly because of the large number of technologies existing
on the market. However, analysis of IaC might still be performed, because of the limited
number of languages adopted.

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

180 23082 – Resilient Software Configuration and Infrastructure Code Analysis

Dynamic analysis instead models the system’s behavior at runtime and allows one to
understand how the system is performing or structured at runtime.

We highlighted the importance of merging the different visualizations, including the
runtime analysis and the visualization of the infrastructure, which might become very
important when considering continuum edge-to-cloud systems, where different types of
devices and their resources can make the difference.

Security analysis might also be an important research avenue that could benefit from
static, dynamic analysis, and their composition.

4.3 Reasoning about Code and Infrastructure
Martin Schäf (Amazon Web Services – New York City, US), Claudia Cauli (Amazon Web
Services – London, GB), Myra B. Cohen (Iowa State University – Ames, US), Coen De
Roover (VU – Brussels, BE), Dario Di Nucci (University of Salerno, IT), Thomas Durieux
(TU Delft, NL), João F. Ferreira (INESC-ID – Lisboa, PT), Michael Greenberg (Stevens
Institute of Technology – Hoboken, US), Shane McIntosh (University of Waterloo, CA), Akond
Rahman (Auburn University, US), Daniel Sokolowski (Universität St. Gallen, CH), Marcel
Van Lohuizen (CUE – Zug, CH), and Tianyin Xu (University of Illinois – Urbana-Champaign,
US)

License Creative Commons BY 4.0 International license
© Martin Schäf, Claudia Cauli, Jürgen Cito, Myra B. Cohen, Coen De Roover, Dario Di Nucci,
Thomas Durieux, João F. Ferreira, Michael Greenberg, Shane McIntosh, Akond Rahman, Daniel
Sokolowski, Marcel Van Lohuizen, and Tianyin Xu

URL https://docs.google.com/document/d/1S0eN_5tjQ15DU6VO8b5T4oDAMBvOAVikx8KvOpJMfPc

Many of the most prevalent CWE security issues, such as cross-site scripting (xss) or command
injection, can be detected statically via data-flow or taint analysis. We simply define what
parameters are considered untrusted (e.g., the arguments to a Servelet request in a Java
application) and what sinks are considered sensitive (e.g., the members of a Servelet response
in Java). This method works great if the application is known to the analysis. However,
in a cloud setting, we usually have separate code bases and repositories for each compute
component of the system. Consider an AWS application that receives some job identifier
via a message queue, process that information via a serverless function, and then has the
serverless function pass that job identifier on to another queue once processing is done.

While this is a typical design for processing information with micro-services, from a
static, this serverless function has a cross-site scripting vulnerability since it parrots its input
without modification. This cross-site scripting vulnerability will be a false alarm unless the
input to the function can be controlled by an adversary and the output is sent back to a
browser. To decide this, we will need to analyze the code and its infrastructure.

We see multiple challenges in this space. The static analysis of the code will need to
produce a summary that can be re-used by the static analysis of the infrastructure code.
The mitigation for the code vulnerability may not happen in the code (e.g., xss could be
mitigated by a firewall or gateway), so tracking issues, producing counter-examples, or
generating patches will have to span over infrastructure code and application code.
The infrastructure code itself my not be complete and not show the entire system, so
analysis of infrastructure and application code will need to be able to report conditional
findings (e.g., if message queue X receives untrusted data, then lambda Y will forward it
to queue Z).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://docs.google.com/document/d/1S0eN_5tjQ15DU6VO8b5T4oDAMBvOAVikx8KvOpJMfPc

J. Cito, R. Piskac, M. Santolucito, A. Zaidman, and D. Sokolowski 181

4.4 Emerging Trends in Infrastructure as Code (IaC) Research
Akond Rahman (Auburn University, US), Jürgen Cito (TU Wien, AT), Myra B. Cohen (Iowa
State University – Ames, US), Thomas Durieux (TU Delft, NL), João F. Ferreira (INESC-ID
– Lisboa, PT), Michael Greenberg (Stevens Institute of Technology – Hoboken, US), Wolfgang
Küchlin (Universität Tübingen, DE), Daniel Sokolowski (Universität St. Gallen, CH), Davide
Taibi (University of Oulu, FI), Marcel Van Lohuizen (CUE – Zug, CH), and Tianyin Xu
(University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 4.0 International license
© Akond Rahman, Jürgen Cito, Myra B. Cohen, Thomas Durieux, João F. Ferreira, Michael
Greenberg, Wolfgang Küchlin, Daniel Sokolowski, Davide Taibi, Marcel Van Lohuizen, and Tianyin
Xu

The objective of this working group is to identify emerging areas in the domain of Infra-
structure as Code (IaC). As part of this breakout group, participants from academia and
industry both agreed that the domain of IaC research has a lot of potential and till date
remains an under-explored area. Through rigorous discussion, the participants suggested
the following areas as emerging and therefore need to be addressed: (i) discovering and
evaluating representations and reasoning for IaC, (ii) deriving metrics to measure complexity
of configurations, (iii) derivation of single source truth for IaC-based infrastructure, (iv)
investigate quality assurance for IaC compilers, (v) understand how to combine static and
dynamic analysis procedures for IaC, (vi) quantify coverage for IaC-specific tests, such as
idempotency detection coverage, and (vii) architectural inference from IaC.

While discussing these emerging areas participants shared real-world examples as well
as described their personal experiences when working with industry partners. Participants
also mentioned research papers in other CS-related research areas, such as security and
software product lines can benefit IaC research. Participants also remarked that the ongoing
discussions of the seminar helped them realize the scope and novelty of IaC research.

23082

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

182 23082 – Resilient Software Configuration and Infrastructure Code Analysis

Participants

Claudia Cauli
Amazon Web Services –
London, GB

Jürgen Cito
TU Wien, AT

Myra B. Cohen
Iowa State University –
Ames, US

Coen De Roover
VU – Brussels, BE

Dario Di Nucci
University of Salerno, IT

Thomas Durieux
TU Delft, NL

João F. Ferreira
INESC-ID – Lisboa, PT

Michael Greenberg
Stevens Institute of Technology –
Hoboken, US

Yann Hamdaoui
Tweag I/O – Paris, FR

Wolfgang Küchlin
Universität Tübingen, DE

Anthony W. Lin
RPTU – Kaiserslautern, DE

Shane McIntosh
University of Waterloo, CA

Ruben Opdebeeck
VU – Brussels, BE

Ruzica Piskac
Yale University – New Haven, US

Akond Rahman
Auburn University, US

Guido Salvaneschi
Universität St. Gallen, CH

Mark Santolucito
Barnard College –
New York, US

Martin Schäf
Amazon Web Services – New
York City, US

Daniel Sokolowski
Universität St. Gallen, CH

Davide Taibi
University of Oulu, FI

Damian Andrew Tamburri
TU Eindhoven, NL

Marcel Van Lohuizen
CUE – Zug, CH

Tianyin Xu
University of Illinois –
Urbana-Champaign, US

Remote Participants

Andy Zaidman
TU Delft, NL

	Executive Summary (Jürgen Cito, Ruzica Piskac, Mark Santolucito, and Andy Zaidman)
	Table of Contents
	Overview of Talks
	Improving Infrastructure Security by Analyzing Pre-Deployment Artifacts (Claudia Cauli)
	GLITCH: Automated Polyglot Code Smell Detection in Infrastructure as Code (João F. Ferreira)
	Correctness and Fault Tolerance of Kubernetes Operators (Tianyin Xu)
	Configuration Validation and Testing for Cloud Systems: Research and Practice (Tianyin Xu)
	Configurations Here and There, Configurations Everywhere (Myra B. Cohen)
	Correct and Modular Configuration with Nickel (Yann Hamdaoui)
	The Theory of Real-life Small and Large Configurations (Marcel Van Lohuizen)
	Using CUE to Model Configuration (Marcel Van Lohuizen)
	The Do's and Don'ts of Infrastructure Code: A Systematic Gray Literature Review (Dario Di Nucci)
	Automotive (and Some Other) Configuration Problems (Wolfgang Küchlin)
	Your Shell Reasoning Toolkit (Michael Greenberg)
	IaC for Architectural Reconstruction (Davide Taibi)
	Decentralizing Infrastructure as Code (Daniel Sokolowski)
	Answer Set Programming: The Powerhouse Technology You've Never Heard Of (Michael Greenberg)
	Transposing Static Analyses from Application to Infrastructure Code: the Curious Case of Ansible (Ruben Opdebeeck and Coen De Roover)
	Application, Orchestation, and Infrastructure, Oh My! Cross Layer Static Analysis Strategies (Mark Santolucito)
	TOSCA Explained! (Damian Andrew Tamburri)
	Static Detection of Silent Misconfigurations with Deep Interaction Analysis (Ruzica Piskac)
	Generating Infrastructure Code from System Interactions (Jürgen Cito)

	Working groups
	Intersections of Infrastructure as Code (IaC) and Configurable Software (Myra B. Cohen, Claudia Cauli, Coen De Roover, Dario Di Nucci, Thomas Durieux, João F. Ferreira, Wolfgang Küchlin, Shane McIntosh, Ruben Opdebeeck, Akond Rahman, Martin Schäf, Davide Taibi, and Marcel Van Lohuizen)
	Architectural Reconstruction and IaC (Davide Taibi, Wolfgang Küchlin, Ruben Opdebeeck, Ruzica Piskac, and Damian Andrew Tamburri)
	Reasoning about Code and Infrastructure (Martin Schäf, Claudia Cauli, Jürgen Cito, Myra B. Cohen, Coen De Roover, Dario Di Nucci, Thomas Durieux, João F. Ferreira, Michael Greenberg, Shane McIntosh, Akond Rahman, Daniel Sokolowski, Marcel Van Lohuizen, and Tianyin Xu)
	Emerging Trends in Infrastructure as Code (IaC) Research (Akond Rahman, Jürgen Cito, Myra B. Cohen, Thomas Durieux, João F. Ferreira, Michael Greenberg, Wolfgang Küchlin, Daniel Sokolowski, Davide Taibi, Marcel Van Lohuizen, and Tianyin Xu)

	Participants
	Remote Participants

