Report from Dagstuhl Seminar 23101

Foundations of WebAssembly

Karthikeyan Bhargavan*!, Jonathan Protzenko*?,
Andreas Rossberg*3, and Deian Stefan*4

INRIA — Paris, FR. karthikeyan.bhargavan@inria.fr
Microsoft — Redmond, US. jonathan.protzenko@gmail.com
Miinchen, DE. rossberg@mpi-sws.org

University of California — San Diego, US. deian@cs.ucsd.edu

W N =

—— Abstract
WebAssembly (Wasm) is a new portable code format with a formal semantics whose popularity
has been growing fast, as a platform for new application domains, as a target for compilers and
languages, and as a subject of research into its semantics, its performance, and its use in building
verified and secure systems. This Dagstuhl Seminar brought together leading academics and
industry representatives currently involved in the design, implementation and formal study of

Wasm, to exchange ideas around topics such as formal methods for, verified compilation to, and

verified implementation of Wasm.

Seminar March 5-10, 2023 — https://www.dagstuhl.de/23101

2012 ACM Subject Classification Software and its engineering — Formal language definitions;
Software and its engineering — Virtual machines; Theory of computation — Semantics and
reasoning

Keywords and phrases Compilation, Formal methods, Programming languages, Verification,
Virtual machines, WebAssembly

Digital Object Identifier 10.4230/DagRep.13.3.1

1 Executive Summary

Andreas Rossberg

License @ Creative Commons BY 4.0 International license
© Andreas Rossberg

WebAssembly — commonly known as Wasm — is a modern, portable code format and execution
environment with a formal semantics that enforces safety and isolation. Though initially
designed to run native, high-performance applications in Web browsers, Wasm is now used
in many other applications domains — from CDNs to serverless, 10T, library sandboxing, and
smart contracts. Wasm is one of the rare cases where practitioners are collaborating with
the semantics and programming languages research community. This was exemplified by
the initial design of Wasm itself, a collaboration with academia that culminated in a PLDI
paper. The popularity of Wasm has since been growing exponentially as a platform for new
application domains, as a target for compilers and languages, and as a subject of active
scientific research — from its future semantics to its performance, and its use in building
verified and secure systems.

This Dagstuhl Seminar brought together leading academics and industry representatives
currently involved in the design, implementation and formal study of Wasm. It was a forum
to exchange ideas that set new directions for WebAssembly research. The main focus was
around three topics:

* Editor / Organizer

Except where otherwise noted, content of this report is licensed
BY under a Creative Commons BY 4.0 International license
Foundations of WebAssembly, Dagstuhl Reports, Vol. 13, Issue 3, pp. 1-16
Editors: Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

\\v pagstunL Dagstuhl Reports
ReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:karthikeyan.bhargavan@inria.fr
mailto:jonathan.protzenko@gmail.com
mailto:rossberg@mpi-sws.org
mailto:deian@cs.ucsd.edu
https://www.dagstuhl.de/23101
https://doi.org/10.4230/DagRep.13.3.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

23101 - Foundations of WebAssembly

Formal methods for Wasm revolves around formalizing, reasoning and proving properties
about Wasm itself. There are many WebAssembly extensions (e.g., bulk memory operations
and vector instructions) which can benefit from formal semantics. Since Wasm is not a
standalone language, there also is need to develop formal methods to reason about its
interaction with the operating system, the execution of JITed Wasm code, etc. Finally, logics
are needed that will allow us to formally capture interesting properties beyond what current
work handles.

Verified Compilation to Wasm focusses on Wasm as a target of verified compilation
toolchains. Wasm is positioned as a viable candidate for verified and secure compilation
and we established that the clean design of Wasm offers greater simplicity when it comes
to verifying a compilation toolchain — in particular, simpler and shorter proofs of compiler
correctness and security.

Verified Compilation of Wasm studies the compilation of WebAssembly to native code, i.e.,
how to securely and correctly compile WebAssembly code to machine code. Wasm is growing
rapidly, and is used on the Web and beyond (e.g., embedded systems, edge computing, IoT,
and even OS kernels), and across different platforms and toolchains.

One particularly noteworthy result of the seminar was the birth of a new project that
resulted in a collaboration between various participants of the seminar: to create a domain-
specific language (DSL) for authoring the official Wasm specification. This project will enable
creating a single source of truth for generating both the formalism and the alternative prose
description in the standard, as well as transformations to representations in various theorem
provers or executable reference interpreters that process the Wasm semantics for formal
methods.

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

2 Table of Contents

Executive Summary
Andreas Rossberg e 1
Overview of Talks

RichWasm: Bringing Shared Memory Interoperability to WebAssembly
Amal Ahmedo 5

Wasocaml: compiling OCaml to WebAssembly
Léo Andrés o e 5

WebAssembly Diversification for Malware Evasion
Javier Cabrera Arteaga e 6

From Dynamic to Static Symbolic Execution for WebAssembly

José Fragoso Santos 6
WasmCert-Coq: A Mechanised Specification of WebAssembly

Philippa Gardner e 7
Iris-Wasm, a mechanized separation logic for WebAssembly

Aina Linn Georgeso e 7
Flexible and Secure Hardware-Assisted Wasm with HFI

Shravan Narayan, Evan Johnson, and Deian Stefan. 8

Let’s Go Coroutine

Luna Phipps-Costin and Daniel Hillerstrom 8
Wasm 2.0, 2.1 and beyond

Andreas Rossberg e 9
How to design, document, and implement programming languages

Sukyoung Ryw e e e 9
Wanilla: Sound Automated Horn-clause-based Noninterference Analysis for
WebAssembly

Markus Scherer e 10
That’s a Tough Calll Studying the Challenges of Call Graph Construction for
WebAssembly

Michelle Thalakottur, Daniel Lehmann, Michael Pradel, and Frank Tip. 10
WebAssembly as the Basis of All Things?

Ben L. Titzer e e e e e e 10

Verifying Instruction Selection in a Wasm-to-native Compiler
Alexa VanHattum oo 0 11

MSWasm: Soundly Enforcing Memory-Safe Execution of Unsafe Code
Marco Vassena o e e e e e e 11

The Path to Components

Luke Wagner e e e 12
Usefully Mechanising All of WebAssembly
Conrad Watt o e 12

23101

4

23101 - Foundations of WebAssembly

Working groups

A DSL for writing the WebAssembly Specification

Andreas Rossberg, Joachim Breitner, Pierre Chambart, Philippa Gardner, Sam
Lindley, Matija Pretnar, Xlaojia Rao, Sukyoung Ryu, Luke Wagner, Conrad Wait,
and Dongjun Youn e e

Participants

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

3 Overview of Talks

3.1 RichWasm: Bringing Shared Memory Interoperability to
WebAssembly

Amal Ahmed (Northeastern University — Boston, US)

License @@ Creative Commons BY 4.0 International license
© Amal Ahmed
Joint work of Amal Ahmed, Michael Fitzgibbons, Zoe Paraskevopoulou, Michelle Thalakottur, Noble Mushtak,
Jose Sulaiman Manzur

Though Wasm provides a safe, sandboxed environment for programs to run in, it lacks the
facilities to enable safe, shared-memory interoperability between Wasm modules, a feature
that we believe is essential for a low-level language in a multi-language world. T’ll present
RichWasm, a higher-level version of WebAssembly with an enriched capability-based type
system to support fine-grained type-safe shared-memory interoperability. RichWasm is rich
enough to serve as a typed compilation target for both typed garbage-collected languages and
languages with an ownership-based type system and manually managed memory. RichWasm
takes inspiration from earlier work on languages with linear capability types to support
safe strong updates, and adds analogous unrestricted capability types for garbage-collected
locations, allowing a module to provide fine-grained memory access to another module,
regardless of memory-management strategy. RichWasm types are not intended to be made
part of core Wasm; instead we compile RichWasm to core Wasm, allowing for use in existing
environments. We have formalized RichWasm in Coq and are currently proving its safety via
progress and preservation.

3.2 Wasocaml: compiling OCaml to WebAssembly
Léo Andrés (University Paris-Saclay — Orsay, FR)

License @ Creative Commons BY 4.0 International license
© Léo Andres
Joint work of Léo Andres, Pierre Chambart

OCaml is a rich programming language. It is comprised of a lot of advanced functional
and imperative features while allowing low-level manipulations. Our talk will begin with
a description of the value representation technique as well as the memory layout used by
the OCaml runtime. We will then examine the distinctions between various intermediate
representations in the OCaml compiler, and then justify the selection of Flambda as a source
language. Additionally, we will present our translation process from Flambda to wasm-gc,
with a particular focus on the encoding of small scalars, heap-allocated blocks and functions
closures. To top it off, we will provide a comparative analysis of our compiler against the
alternatives, based on informative benchmarks.

23101

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

23101 - Foundations of WebAssembly

3.3 WebAssembly Diversification for Malware Evasion

Javier Cabrera Arteaga (KTH Royal Institute of Technology — Stockholm, SE)

License @ Creative Commons BY 4.0 International license
© Javier Cabrera Arteaga
Joint work of Javier Cabrera Arteaga, Martin Monperrus, Benoit Baudry
Main reference Javier Cabrera-Arteaga, Martin Monperrus, Tim Toady, Benoit Baudry: “WebAssembly
Diversification for Malware Evasion”, CoRR, Vol. abs/2212.08427, 2022.
URL https://doi.org//10.48550/arXiv.2212.08427

WebAssembly is an important binary format that has become an integral part of the modern
web. This technology offers a faster alternative to JavaScript in web browsers, but it has also
been utilized for cryptojacking since its inception. To counter this threat, considerable efforts
have been made to develop defenses that can detect WebAssembly malware. However, these
defenses have not taken into account the possibility that attackers may use complex evasion
techniques. We explore how to evade detection by WebAssembly cryptojacking detectors.
We propose a technique that uses wasm-mutate, a fuzzing tailored tool of wasmtime, to
create variants of the original code that can evade the detectors and demystify the previous
assumption. To evaluate our technique, we used VirusTotal. Our results demonstrate that
our approach swiftly generates WebAssembly cryptojacking variants that evade detection,
while the generated WebAssembly binaries show only minimal performance overhead. Our
experiments also provide valuable insights into which WebAssembly code transformations
are best suited for evading malware detection. This knowledge can be used to improve the
state of the art in WebAssembly malware detection, which will benefit the wider community.
Although our technique exposes weaknesses in detection mechanisms, it also serves as a
valuable tool for testing other systems using WebAssembly as an input, e.g. compilers,
validators and verification tools.

3.4 From Dynamic to Static Symbolic Execution for WebAssembly
José Fragoso Santos (INESC-ID — Lisbon, PT)

License @@ Creative Commons BY 4.0 International license
© José Fragoso Santos
Joint work of José Fragoso Santos, Filipe Marques, Nuno Santos, Pedro Adao

We present WASP, a configurable symbolic execution engine for analysing Wasm modules.
WASP works directly on Wasm code and is built on top of the official Wasm reference
interpreter. One key advantage of WASP compared to other symbolic execution engines
is that it is highly configurable, supporting various flavours of symbolic execution and
exploration strategies of the program’s state space.

Using WASP, we created WASP-C, a new symbolic execution framework for testing C
programs. WASP-C was used to symbolically test a generic data-structure library for C
and the Amazon Encryption SDK, demonstrating that it can find new bugs and generate
high-coverage testing inputs for real-world C code. WASP-C was further tested against the
Test-Comp 2022/2023 benchmarks, obtaining results comparable to well-established symbolic
execution and testing tools for C.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/arXiv.2212.08427
https://doi.org//10.48550/arXiv.2212.08427
https://doi.org//10.48550/arXiv.2212.08427
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

3.5 WasmCert-Coq: A Mechanised Specification of WebAssembly
Philippa Gardner (Imperial College London, GB)

License @ Creative Commons BY 4.0 International license
© Philippa Gardner

Milner pioneered formal language specification, proving hand-written correctness results
about type safety and module instantiation. His work led to many formal then mechanised
specifications including the large Cog-mechanisation of JavaScript, JSCert [1], developed
at Imperial and Inria. Most of these large mechanised specifications were developed long
after the language standards had been essentially settled. The challenge now is to establish
mechanised language specification within the language standardisation process.

The W3C WebAssembly (Wasm) language is the first programming language to have a
formal standard as envisaged by Milner. Inspired by JSCert, Gardner and Watt developed
the mechanised specification of the Wasm 1.0 standard, WasmCert-Coq and WasmCert-
Isabelle [2]: crucially, Watt fixed errors in the specification and type-safety result before the
Wasm draft publication [3], adapting ideas from JSCert; correctness of module instantiation
was proved in WasmCert.

In Conrad’s Dagstuhl talk, he will present WasmRef-Isabelle [4], an efficient certified
reference interpreter for Wasm 1.0 supported by the ByteCode Alliance. In this talk, I will
present WasmCert-Coq and explore how to define a certified reference interpreter, WasmRef-
Coq, in such a way that the definitions and correctness proofs might have a better chance to
keep up with the evolving standard in future.

References

1 Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniené, Alan Schmitt and Gareth Smith. A Trusted Mechanised JavaScript
Specification. Principles of Programming Languages (POPL), 2014

2 Watt, Rao, Pichon-Pharabod, Bodin and Gardner. Two Mechanisations of WebAssembly
1.0. Formal Methods (FM), 2021

3 Conrad Watt. Mechanising and Verifying the WebAssembly Specification. Certified Programs
and Proofs (CPP), 2018

4 Watt, Trela, Lammich, Marki. WasmRef-Isabelle: a Verified Monadic Interpreter and Indus-
trial Fuzzing Oracle for WebAssembly. Programming Language Design and Implementation
(PLDI), 2023

3.6 Iris-Wasm, a mechanized separation logic for WebAssembly
Aina Linn Georges (Aarhus University, DK)

License @ Creative Commons BY 4.0 International license
© Aina Linn Georges
Joint work of Xiaojia Rao, Aina Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa

Gardner, Lars Birkedal

Main reference Xiaojia Rao, Aina Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa
Gardner, Lars Birkedal: “Iris-Wasm: Robust and Modular Verification of WebAssembly Programs”,
Proc. ACM Program. Lang., Vol. 7(PLDI), Association for Computing Machinery, 2023.

URL https://doi.org//10.1145/3591265

Iris-Wasm is a mechanized separation logic that we have developed and used to practically
verify both individual Wasm programs and properties of Wasm itself. In this talk, we will
explore how Iris enables the specification and verification of individual modules separately,

23101

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3591265
https://doi.org//10.1145/3591265
https://doi.org//10.1145/3591265
https://doi.org//10.1145/3591265

23101 - Foundations of WebAssembly

which can then be combined modularly to reason about complex programs. Additionally, we
will demonstrate how Iris enables the verification of functional correctness in WebAssembly
programs, even when they interact with unknown or adversarial code, demonstrating the
promise of WebAssembly’s module isolation. Iris is a rich and expressive higher-order
separation logic that provides a powerful toolset for program verification. By successfully
instantiating the full language standard into Iris, we can, going forward, leverage its numerous
applications, such as exploring weak memory, robust safety, capabilities, effects, secure
compilation, garbage collection, and more. Thus, we open up many exciting prospects for
the verification of WebAssembly programs, and create an expressive foundational support for
the WebAssembly ecosystem. In this talk, I will present a high level overview of Iris-Wasm,
demonstrating the kind of verification it enables and providing a practical demonstration of
what a proof in Iris-Wasm looks like.

3.7 Flexible and Secure Hardware-Assisted Wasm with HFI

Shravan Narayan (University of California — San Diego, US), Evan Johnson (University of
California — San Diego, US), and Deian Stefan (University of California — San Diego, US)
License) Creative Commons BY 4.0 International license
© Shravan Narayan, Evan Johnson, and Deian Stefan
Joint work of Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey Rudek, Daniel Moghimi, Evan

Johnson, Chris Fallin, Anjo Vahldiek-Oberwagner, Michael LeMay, Ravi Sahita, Dean Tullsen, Deian
Stefan

Main reference Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey Rudek, Daniel Moghimi, Evan
Johnson, Chris Fallin, Anjo Vahldiek-Oberwagner, Michael LeMay, Ravi Sahita, Dean M. Tullsen,
Deian Stefan: “Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process
Isolation with HFI”, in Proc. of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3, ASPLOS 2023, Vancouver, BC,
Canada, March 25-29, 2023, pp. 266281, ACM, 2023.

URL https://doi.org//10.1145/3582016.3582023

In this talk, I will introduce Hardware-assisted Fault Isolation (HFI), a simple extension to
existing processors to support secure, flexible, and efficient in-process isolation. HFI addresses
the limitations of ex- isting software-based isolation (SFI) systems including: runtime
overheads, limited scalability, vulnerability to Spectre attacks, and limited compatibility with
existing code. HFI can seamlessly in- tegrate with current SFI systems (e.g., WebAssembly),
or directly sandbox unmodified native binaries. To ease adoption, HFI relies only on
incremental changes to the data and control path of existing high-performance processors. I
will also cover our evaluation of HFI for x86-64 using the gem5 simulator and compiler-based
emulation on a mix of real and synthetic workloads

3.8 Let's Go Coroutine

Luna Phipps-Costin (Northeastern University — Boston, US) and Daniel Hillerstrom (Huawei
Technologies — Ziirich, CH)
License @ Creative Commons BY 4.0 International license

© Luna Phipps-Costin and Daniel Hillerstrém
Joint work of Arjun Guha, Daan Leijen, Sam Lindley, Matija Pretnar, Andreas Rossberg, KC Sivaramakrishnan

Non-local control flow features provide the ability to suspend the current execution context
and later resume it. Many industrial-strength programming languages feature a wealth of
non-local control flow features such as async/await, coroutines, generators/iterators, effect

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3582016.3582023
https://doi.org//10.1145/3582016.3582023
https://doi.org//10.1145/3582016.3582023
https://doi.org//10.1145/3582016.3582023
https://doi.org//10.1145/3582016.3582023
https://doi.org//10.1145/3582016.3582023
https://doi.org//10.1145/3582016.3582023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

handlers, call/cc, and so forth. For some programming languages non-local control flow
is central to their identity, meaning that they rely on non-local control flow for efficiency,
e.g. to support massively scalable concurrency. Currently, WebAssembly lacks support for
implementing such features directly and efficiently without a circuitous global transformation
of source programs on the producer side. During this talk we will introduce WasmFX, an
extension of Wasm with effect handlers for handling non-local control-flow in a structured
manner. We will demonstrate WasmFX by example by compiling and running some coroutine
programs live (uh-oh). We will also discuss the implementation of WasmFX in wasmtime,
and the future directions that we are looking to explore.

3.9 Wasm 2.0, 2.1 and beyond
Andreas Rossberg (Miinchen, DE)

License @ Creative Commons BY 4.0 International license
© Andreas Rossberg

Since the release of Wasm 1.0, many formal proposals for language extensions have been
and are still being developed. A first batch has been included as part of Wasm 2.0, another
one is soon expected with Wasm 2.1. I gave an overview of the extensions already adopted,
those nearing completion, and those still under active development, and briefly touched on
the wider implications they might have on Wasm’s semantics. I also explained the proposal
process itself and its requirements, for those who are not following the Wasm CG closely.

3.10 How to design, document, and implement programming languages
Sukyoung Ryu (KAIST — Daejeon, KR)

License) Creative Commons BY 4.0 International license
© Sukyoung Ryu

Since 2015, the JavaScript language has rapidly evolved with a yearly release cadence and
open development process. However, it results in the gap between the language specification
written in English and tools, such as parsers, interpreters, and static analyzers, which makes
language designers and tool developers suffer from manually filling the gap. JISET and its
extensions lessen the burden by automatically extracting a mechanized specification from
the language specification in prose.

We introduce several tools in the JISET family and show how they fill the gap between
the language specification and tools. We then discuss how to apply this technique to
WebAssembly.

23101

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

10

23101 - Foundations of WebAssembly

3.11 Wanilla: Sound Automated Horn-clause-based Noninterference
Analysis for WebAssembly

Markus Scherer (TU Wien, AT)

License @ Creative Commons BY 4.0 International license
© Markus Scherer
Joint work of Jeppe Fredsgaard Blaabjerg, Markus Scherer, Magdalena Solitro, Alexander Sjosten, Matteo Maffei

Noninterference is an important information flow property that can be formalized as 2-safety-
property. In this talk we will explore how to leverage horn-clause-based abstractions to
overapproximate it as a reachability property. Having done so, we can use solvers for SMT’s
Constrained-Horn-Clause fragment to assess noninterference in WebAssembly, a compilation
target widely used in the real world. Our approach aims to be sound and automated at the
same time which forces us to carefully balance runtime performance and precision.

3.12 That’s a Tough Call! Studying the Challenges of Call Graph
Construction for WebAssembly

Michelle Thalakottur (Northeastern University — Boston, US), Daniel Lehmann (Universitdt
Stuttgart, DE & Google — Miinchen, DE), Michael Pradel (Universitit Stuttgart, DE), and
Frank Tip

License @ Creative Commons BY 4.0 International license
© Michelle Thalakottur, Daniel Lehmann, Michael Pradel, and Frank Tip

Call graphs are at the core of many inter-procedural static analysis and optimization
techniques. However, WebAssembly poses some unique challenges for static call graph
construction. Currently, these challenges are neither well understood, nor is it clear to what
extent existing techniques address them. We systematically study WebAssembly specific
challenges for static call graph construction and identify and classify 12 challenges. We then
measure their prevalence in real-world binaries. We also study the soundness and precision
of four existing static analyses. Our findings include that, surprisingly, all of the existing
techniques are unsound, without this being documented anywhere. We envision our work to
provide guidance for improving static call graph construction for WebAssembly.

3.13 WebAssembly as the Basis of All Things?
Ben L. Titzer (Carnegie Mellon University — Pittsburgh, US)

License) Creative Commons BY 4.0 International license
© Ben L. Titzer

WebAssembly is a low-level, portable bytecode offering a compilation target with near-native
performance. Now a standard feature of all web browsers, Wasm has started to expand to
many other applications such as edge computing, distributed cryptographic digital contracts,
networking stacks, and more. As Wasm gains features through the standardization process, it
becomes a more attractive target for new kinds of languages. In this talk I will fast-forward
to look at a whole new set of language runtime system designs that are made possible with
some new features that can be added to Wasm. In particular, can we build a *really™ fast

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

language implementation without having to write a new JIT compiler? A new code format
(with validator)? A new garbage collector? Can we do this without ever having to look at
assembly language? I hope so! Let’s look at what I've discovered and what I think that
means.

3.14 \Verifying Instruction Selection in a Wasm-to-native Compiler
Alexa VanHattum (Cornell University — Ithaca, US)

License @@ Creative Commons BY 4.0 International license
© Alexa VanHattum
Joint work of Alexa VanHattum, Monica Pardeshi, Chris Fallin, Adrian Sampson, Fraser Brown

For ahead-of-time or just-in-time compilation, Wasm’s sandboxing guarantees rely on the
correctness of the generated native assembly. Subtle wrong-code bugs in native instruction
selection can introduce security flaws. In this talk, I'll present our efforts toward automated
verification for instruction lowering rules within Cranelift, a production code generator for
Wasmtime. I'll discuss our approach to modeling the Cranelift intermediate representation
and ARM aarch64 backend, challenges with generalizing over types, and several case studies
of faults analyzed by our tool.

3.15 MSWasm: Soundly Enforcing Memory-Safe Execution of Unsafe
Code

Marco Vassena (Utrecht University, NL)

License @ Creative Commons BY 4.0 International license
© Marco Vassena
Joint work of Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig
Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani, Marco Vassena, Deian Stefan
Main reference Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig
Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani, Marco Vassena, Deian Stefan: “MSWasm:
Soundly Enforcing Memory-Safe Execution of Unsafe Code”, Proc. ACM Program. Lang.,
Vol. 7(POPL), pp. 425-454, 2023.
URL https://doi.org//10.1145/3571208

Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages
like C and C++. Unfortunately, memory-unsafe C code remains unsafe when compiled to
Wasm—and attackers can exploit buffer overflows and use-after-frees in Wasm almost as easily
as they can on native platforms. This talk presents Memory-Safe WebAssembly (MSWasm),
an extension of Wasm with language-level memory-safety abstractions to precisely address
this problem. In the talk, we will discuss the design of MSWasm and show how compilers can
leverage these abstractions to automatically eliminate memory vulnerabilities from unsafe
code. We have developed a C-to-MSWasm compiler on top of Clang and two compilers
of MSWasm to native code, which support different enforcement mechanisms, and thus
allow developers to make security-performance trade-offs according to their needs. More
importantly, MSWasm’s design makes it easy to swap between enforcement mechanisms; as
fast (especially hardware-based) enforcement techniques become available, MSWasm will be
able to take advantage of these advances almost for free.

11

23101

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3571208
https://doi.org//10.1145/3571208
https://doi.org//10.1145/3571208
https://doi.org//10.1145/3571208
https://doi.org//10.1145/3571208

12

23101 - Foundations of WebAssembly

3.16 The Path to Components
Luke Wagner (Fastly — San Francisco, US)

License @ Creative Commons BY 4.0 International license
© Luke Wagner

This talk described the motivation for starting work on a new set of standards focused on
portably and securely executing WebAssembly outside the browser, viz., WASI and the
Component Model. Next, the talk covered the motivation for not simply adopting the
well-established design of POSIX by identifying 4 areas where POSIX has performance
and composability problems, viz., around linking, the passing of high-level values between
processes, the handling of external resources and the basis for concurrency. Lastly, the
talk gave a quick preview of how the tooling could work in practice and be shared across a
heterogeneous ecosystem of platforms executing WebAssembly.

3.17 Usefully Mechanising All of WebAssembly
Conrad Waltt (University of Cambridge, GB)

License) Creative Commons BY 4.0 International license
© Conrad Watt

This talk will describe WasmCert-Isabelle, an Isabelle/HOL mechanisation of the
WebAssembly specification; and recent work on developing WasmRef-Isabelle, a practically-
useful reference implementation of WebAssembly that is verified with respect to this mechan-
isation. We describe our successes in driving WasmRef-Isabelle’s adoption as a fuzzing oracle
for the widely-used Wasmtime implementation of WebAssembly, as well as the challenges we
will face in keeping our work up to date with the ever-evolving WebAssembly standard.

4 Working groups

4.1 A DSL for writing the WebAssembly Specification

Andreas Rossberg (Miinchen, DE), Joachim Breitner (Freiburg, DE), Pierre Chambart (Société
OCamlPro SAS — Paris, FR), Philippa Gardner (Imperial College London, GB), Sam Lindley
(Undversity of Edinburgh, GB), Matija Pretnar (University of Ljubljana, SI), Xlaojia Rao,
Sukyoung Ryu (KAIST — Daejeon, KR), Luke Wagner (Fastly — San Francisco, US), Conrad
Watt (University of Cambridge, GB), and Dongjun Youn (KAIST — Daejeon, KR)

License @ Creative Commons BY 4.0 International license

© Andreas Rossberg, Joachim Breitner, Pierre Chambart, Philippa Gardner, Sam Lindley, Matija
Pretnar, Xlaojia Rao, Sukyoung Ryu, Luke Wagner, Conrad Watt, and Dongjun Youn

Motivation

To standardise a WebAssembly feature, the following specification artefacts must be produced:
a formal specification of the feature in LaTeX
a prose description of the feature
a reference implementation in OCaml

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

This process is onerous and several important upcoming WebAssembly features such
as Threads and Exception Handling have not yet been standardised purely because they
do not meet these requirements, despite widespread industrial support, implementation,
and use. In addition, inconsistencies between these definitions can lead to divergences in
implementations!.

Moreover, academic mechanisations of WebAssembly such as WasmCert-Isabelle? and
WasmCert-Coq® must be updated with each new feature if they wish to remain correspondant
to the current version of WebAssembly. Even when this effort is undertaken, academics
working with other popular theorem provers such as Lean and Agda are not be able to make
use of these models and would need to write their own from scratch in order to carry out
mechanisation-related research on WebAssembly.

We propose to develop a machine readable domain-specific language (DSL) that will
function as a unified source of truth for the WebAssembly specification, and for which we can
define a number of separate backends to generate not only the above specification artefacts,
but also mechanisations in all major theorem provers. This will significantly improve the
productivity of WebAssembly’s industrial standards body, and allow academics to access a
feature-complete mechanisation of WebAssembly no matter their preferred theorem prover.

Why not use an existing DSL?

There are a number of existing tools for writing language definitions [1, 2, 3], with backends
that could generate KTEX, parts of a reference interpreter, and stubs for proof assistants. We
have considered using them for the Wasm specification, but ultimately decided against them
— we believe that we will be able to generate higher-quality artefacts by building our DSL to
intrinsically make use of domain-specific knowledge about the WebAssembly specification.

As an immediate example, it would likely be impossible to generate a prose description
acceptable to WebAssembly’s standards body from a generic IR. In addition, our initial
work suggests that our generated interpreter will be significantly more efficient if we are
able to make use of certain knowledge regarding the restricted structure of WebAssembly’s
evaluation contexts.

Moreover, the primary audience of the DSL is the existing specification authors, so we
intend for the DSL to closely reflect the current style of the hand-written specification — for
example the pervasive use of sequences and corresponding iterators. For the same reason, we
have also quickly abandoned a prototype of an embedded DSL in OCaml?.

Proposed solution

The solution proposed by Andreas Rossberg and quickly adopted by the whole group is
SpecTec®. In it, the specification is written in a text format similar to the existing specification.
The language consists of few generic concepts:

! https://github.com/WebAssembly/threads/issues/195
2 nttps://github.com/WasmCert/WasmCert-Isabelle

3 https://github.com/WasmCert/WasmCert-Coq

4 https://github.com/matijapretnar/wasm-spec-dsl

5 https://github.com/Wasm-DSL/spectec

13

23101

https://github.com/WebAssembly/threads/issues/195
https://github.com/WasmCert/WasmCert-Isabelle
https://github.com/WasmCert/WasmCert-Coq
https://github.com/matijapretnar/wasm-spec-dsl
https://github.com/Wasm-DSL/spectec

14 23101 - Foundations of WebAssembly

Syntax definitions, describing the grammar of the input language or auxiliary constructs.
These are essentially type definitions for the object language. For example:

syntax valtype = | I32 | 164 | F32 | F64
syntax functype = valtype* -> valtype*
syntax instr = | NOP | BLOCK instr* | IF instr* ELSE instr*

syntax context = { FUNC functype*, LABEL (valtypex*)* }
syntax config = state; instr*

Variable declarations, ascribing the syntactic class (i.e., type) that meta variables used in
rules range over. For example:

var t : valtype
var ft : functype
var ‘C : context

(Also, every type name is implicitly usable as a variable of the respective type.)

Relation declarations, defining the shape of judgement forms, such as typing or reduction
relations. These are essentially type declarations for the meta language. For example:

relation Instr_ok: context |- instr : functype
relation Step: config ~> config

Rule definitions, expressing the individual rules defining relations. For example:

rule Instr_ok/nop:
‘C |- NOP : epsilon -> epsilon

rule Instr_ok/if:
‘C |- IF instr_1* ELSE instr_2* : t_1x -> t_2
-- InstrSeq_ok: ‘C, LABEL t_2* |- instr_1* : t_1* -> t_2x%
-- InstrSeq_ok: ‘C, LABEL t_2% |- instr_2% : t_1x -> t_2%

rule Step/nop:
z; NOP ~> z; epsilon

rule Step/if-true:
z; (I32.CONST c) (IF instr_1* ELSE instr_2%) ~> z; (BLOCK instr_1%)
--if ¢ =/=0

rule Step/if-false:
z; (I32.CONST c) (IF instr_1i* ELSE instr_2x) ~> z; (BLOCK instr_2x)
-——if c =0

Every rule is named, so that it can be referenced. Each premise is introduced by a dash
and includes the name of the relation it is referencing, easing checking and processing.

Auziliary Functions, allowing to abstract complex conditions into separate definitions.
For example:

def $size(numtype) : nat
def $size(I32) = 32
def $size(I64) = 64
def $size(F32) 32
def $size(F64) 64

Hint annotations that are uninterpreted by default, but may offer occasional extra
guidance for different backends (eg. IXTEX macros to be used).

The implementation defines two AST representations: an external language (EL), which
is close to the written specification and suitable for backends generating ITEX, and an
internal language (IL), suitable for backends generating programs. Elaboration from EL into
IL infers additional information and makes it explicit in the representation:

Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan

resolve notational overloading and mixfix applications,

resolve overloading of variant constructors and annotate them with their type,
insert injections from variant subtypes into supertypes,

insert injections from singletons into options/lists,

insert binders and types for local variables in rules and functions,

mark recursion groups and group definitions with rules, ordering everything by dependency.

Progress since the seminar

Since the seminar, there has been significant progress on the implementation. In addition
to the basic infrastructure and a IXTEX backend, there is a prototype backend generating
prose English, as well as ones generating Agda, Coq and Lean code, and a number of passes
that further elaborate the IL. Particular effort is being put into animating the operational
semantics, i.e., transforming the rules into algorithmic steps that then can be used for
generating both the prose part of the specification and a reference interpreter.

References
1 Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. Skeletal semantics
and their interpretations. Proc. ACM Program. Lang., 3(POPL):44:1-44:31, 2019.

2 Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. Lem:

reusable engineering of real-world semantics. In ICFP, pages 175-188. ACM, 2014.
3 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit

Sarkar, and Rok Strnisa. Ott: Effective tool support for the working semanticist. J. Funct.

Program., 20(1):71-122, 2010.

15

23101

16

23101 — Foundations of WebAssembly

Participants

= Amal Ahmed
Northeastern University —
Boston, US

= Léo Andres

University Paris-Saclay —
Orsay, FR

= Javier Cabrera Arteaga
KTH Royal Institute of
Technology — Stockholm, SE
= Karthikeyan Bhargavan
INRIA — Paris, FR

= Joachim Breitner
Freiburg, DE

= Pierre Chambart
Société OCamlPro SAS —
Paris, FR

= Martin Fink

TU Miinchen —

Garching, DE

- Philippa Gardner
Imperial College — London, UK
= Aina Linn Georges
Aarhus University, DK

= Arjun Guha
Northeastern University —
Boston, US

= Reiner Hahnle

TU Darmstadt, DE

= Daniel Hillerstrom
Huawei Technologies —
Zirich, CH

= Evan Johnson
University of California —
San Diego, US

= Daniel Lehmann

Google — Miinchen, DE

= Sam Lindley

University of Edinburgh, UK
= Tyler McMullen

Fastly — San Francisco, US
= Lucy Menon
Northeastern University —
Boston, US

= Shravan Narayan
University of California —
San Diego, US

= Luna Phipps-Costin

Northeastern University —
Boston, US

= Jean Pichon-Pharabod
Aarhus University, DK

= Michael Pradel
Universitdt Stuttgart, DE
= Matija Pretnar
University of Ljubljana, SI
= Jonathan Protzenko
Microsoft — Redmond, US
= Andreas Rossberg
Miinchen, DE

= José Fragoso Santos
INESC-ID — Lisbon, PT

= Claudio Russo

Dfinity — Cambridge, UK
= Sukyoung Ryu

KAIST - Daejeon, KR

- Markus Scherer
TU Wien, AT

= Sabine Schmaltz
Tarides — Saarbriicken, DE

= Till Schneidereit
Fermyon — Heidelberg, DE

= KC Sivaramakrishnan
Indian Institute of Technology —
Madras, IN

= Deian Stefan
University of California —
San Diego, US

= Michelle Thalakottur
Northeastern University —
Boston, US

= David Thien
University of California — San
Diego, US

= Ben Titzer
Carnegie Mellon University —
Pittsburgh, US

= Alexa VanHattum
Cornell University — Ithaca, US

= Marco Vassena
Utrecht University, NL

= Luke Wagner
Fastly — San Francisco, US

= Conrad Watt
University of Cambridge, UK

= Dongjun Youn
KAIST - Daejeon, KR

	Executive Summary (Andreas Rossberg)
	Table of Contents
	Overview of Talks
	RichWasm: Bringing Shared Memory Interoperability to WebAssembly (Amal Ahmed)
	Wasocaml: compiling OCaml to WebAssembly (Léo Andrès)
	WebAssembly Diversification for Malware Evasion (Javier Cabrera Arteaga)
	From Dynamic to Static Symbolic Execution for WebAssembly (José Fragoso Santos)
	WasmCert-Coq: A Mechanised Specification of WebAssembly (Philippa Gardner)
	Iris-Wasm, a mechanized separation logic for WebAssembly (Aïna Linn Georges)
	Flexible and Secure Hardware-Assisted Wasm with HFI (Shravan Narayan, Evan Johnson, and Deian Stefan)
	Let's Go Coroutine (Luna Phipps-Costin and Daniel Hillerström)
	Wasm 2.0, 2.1 and beyond (Andreas Rossberg)
	How to design, document, and implement programming languages (Sukyoung Ryu)
	Wanilla: Sound Automated Horn-clause-based Noninterference Analysis for WebAssembly (Markus Scherer)
	That's a Tough Call! Studying the Challenges of Call Graph Construction for WebAssembly (Michelle Thalakottur, Daniel Lehmann, Michael Pradel, and Frank Tip)
	WebAssembly as the Basis of All Things? (Ben L. Titzer)
	Verifying Instruction Selection in a Wasm-to-native Compiler (Alexa VanHattum)
	MSWasm: Soundly Enforcing Memory-Safe Execution of Unsafe Code (Marco Vassena)
	The Path to Components (Luke Wagner)
	Usefully Mechanising All of WebAssembly (Conrad Watt)

	Working groups
	A DSL for writing the WebAssembly Specification (Andreas Rossberg, Joachim Breitner, Pierre Chambart, Philippa Gardner, Sam Lindley, Matija Pretnar, Xlaojia Rao, Sukyoung Ryu, Luke Wagner, Conrad Watt, and Dongjun Youn)

	Participants

