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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23122 “Deep Continual
Learning”. This seminar brought together 26 researchers to discuss open problems and future
directions of Continual Learning. The discussion revolved around key properties and the definition
of Continual Learning itself, on the way Continual Learning should be evaluated, and on its
real-world applications beyond academic research.
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Continual learning, also referred to as lifelong learning, is a sub-field of machine learning
that focuses on the challenging problem of incrementally training models for sequentially
arriving tasks and/or when data distributions vary over time. Such non-stationarity calls
for learning algorithms that can acquire new knowledge over time with minimal forgetting
of what they have learned previously, transfer knowledge across tasks, and smoothly adapt
to new circumstances as needed. This is in contrast with the traditional setting of machine
learning, which typically builds on the premise that all data, both for training and testing,
are sampled i.i.d. from a single, stationary data distribution.

Deep learning models in particular are in need of continual learning capabilities. A first
reason for this is the strong data-dependence of these models. When trained on a stream of
data whose underlying distribution changes over time, deep learning models tend to almost
fully adapt to the most recently seen data, thereby “catastrophically” forgetting the skills
that have been learned earlier. Second, continual learning capabilities can be especially
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beneficial for deep learning models as they can help deal with the very long training time
of these models. The current practice in industry is to re-train on a regular basis to add
new skills and to prevent the knowledge learned previously from being outdated. Re-training
is time inefficient, unsustainable and sub-optimal. Freezing the feature extraction layers is
often not an option, as the power of deep learning in many challenging applications, be it
in computer vision, natural language processing or audio processing, hinges on the learned
representations.

The objective of the seminar was to bring together world-class researchers in the field
of deep continual learning, as well as in the related fields of online learning, meta-learning,
Bayesian deep learning, robotics and neuroscience, to discuss and to brainstorm, and to set
the research agenda for years to come.

During the seminar, participants presented new ideas and recent findings from their
research in plenary sessions that triggered many interesting discussions. There were also
several tutorials that helped create a shared understanding of similarities and differences
between continual learning and other related fields. Specifically, the relation with online
learning and streaming learning was discussed in detail. Furthermore, there were several
breakout discussion sessions in which open research questions and points of controversy within
the continual learning field were discussed. An important outcome of the seminar is the
shared feeling that the scope and potential benefit of the research on deep continual learning
should be communicated better to computer scientists outside of our subfield. Following up
on this, most of the seminar participants are currently collaborating on writing a perspective
article to do so.
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3 Overview of Tutorials

3.1 Deep Continual Learning
Gido van de Ven (KU Leuven, BE)
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Incrementally learning new information from a non-stationary stream of data, referred to
as “continual learning”, is a key feature of natural intelligence, but an open challenge for
deep learning. For example, standard deep neural networks tend to catastrophically forget
previous tasks or data distributions when trained on a new one. Enabling these networks to
incrementally learn, and retain, information from different contexts has become a topic of
intense research. In the first half of this tutorial I introduce the continual learning problem.
After covering some key terminology, I discuss three different types of continual learning, each
with their own set of challenges: task-incremental, domain-incremental and class-incremental
learning. I also cover the distinction between task-based and task-free continual learning.
I end this part of the tutorial with a general framework for continual learning unifiying
these different aspects. In the second half of the tutorial I review approaches that have been
proposed for addressing the continual learning problem. I do this at the level of computational
strategies, distinguishing between the following: (1) using context-specific components, (2)
parameter regularization, (3) functional regularization, (4) replay, and (5) template-based
classification. For each strategy I highlight two representative example methods.

3.2 Neuroscience inspired continual learning
Dhireesha Kudithipudi (University of Texas – San Antonio, US)
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Continual learning is commonplace in humans and other mammals, but has proven difficult
to achieve in artificial systems. By leveraging findings from neuroscience we can make
progress towards designing continual learning AI. In this tutorial, we present the key features
desirable in a continual learning system and how brain-inspired mechanisms for regularization,
dynamic architectures and replay can be realized in artificial systems. Specific examples of
metaplasticity, synaptic consolidation and neurogenesis are delved into closely. A canonical
theme in these neuro-inspired approaches is that they can be performed at extreme low
energy. We present a case for such framework.

3.3 A Light Introduction to Online Algorithms and Concept Drift
Joao Gama (INESC TEC – Porto, PT)
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In this tutorial we present the basic concepts about online learning from data streams. In
the first part of the tutorial, we present Hoeffding algorithms for learning decision trees,
regression trees, decision and regression rules, bagging, boosting and random forests. The
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second part covers concept drift topics. We discuss data management, detection methods,
adaptation methods and model management methods to deal with non-stationary data.
We present few illustrative algorithms for explicitly drift detection. We end the tutorial,
presenting open-source software available that implement most of the algorithms we discuss
in the tutorial.

4 Overview of Talks

4.1 Replay free representation learning
Rahaf Aljundi (Toyota Motor Europe – Zaventem, BE)
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This talk will focus on the effectiveness of representation learning as opposed to directly
optimizing a classifier. With that we aim for replay free efficient methods and we explore
how and when to adapt pretrained representations.

4.2 Reinventing science as a long-term ensemble learning machine
Matthias Bethge (Universität Tübingen, DE)
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Foundation models such as GPT-4 have demonstrated striking task generality based on
massively increasing the amount of training data and model capacity. The quest for unifying
models in science as well as the strong grounding in empirical data and evaluation of models
raises the question for opportunities and limitations of the current avenue to such foundation
models. Despite the widespread scientific impact of models like Alphafold-2 and MedPALM,
a large range of scientific questions are still hard to approach within a unified benchmarking
approach. The impressive flexibility of recent large language models due to their zero-shot
and in-context adaptation capabilities may help overcome this limitation – however, they are
only developed by a small group of people and not designed for easy updating. In science
we want models that are revisable by anyone, calling for the possibility of continual model
evaluation and updating. In order to achieve such an efficient continual model extensibility
(Mn+1 = f(Mn, U), with n arbitrary large), I argue that the key challenge is to modularize
continual learning without sacrificing the power and scalability of current LLMs. A large
part of current continual learning research aims at developing a better understanding of
how stochastic gradient descent (SGD) learning is affected by the curriculum, i.e. by the
order at which the data is processed. The focus lies on avoiding catastrophic forgetting
rather than achieving modularity. I argue to focus on “Scalable Compositionality Discovery”
(SCD) as the key challenge to overcome the limitations of collective continual foundation
model building that could (1) make large scale data-driven learning ubiquitously useful for
science, and (2) solve the credit assignment problem underlying catastrophic forgetting. I
conclude with a super brief sketch of how current model benchmarking can be turned into
an integrative ensemble learning approach for collective model building.
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4.3 Beyond Forgetting with Continual Pre-Training
Andrea Cossu (University of Pisa, IT)
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Pre-trained models are widely used in continual learning. They allow to leverage general
and robust representations that can be then fine-tuned during continual learning. However,
the existing continual learning scenarios do not fully exploit the potential of pre-trained
models. We will present the Continual Pre-Training scenario, which keeps a pre-trained
model updated over time. Under appropriate conditions, Continual Pre-Training proves to
be surprisingly resilient to forgetting. We will discuss the relationship between Continual
Pre-Training and existing paradigms, as well as its potential impact on both continual
learning research and applications.

4.4 Explaining Change – Towards Online Explanations on Data Streams
Fabian Fumagalli (Universität Bielefeld, DE)
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Recent advances in deep learning methods have shown impressive improvements in predictive
accuracy in many tasks at the cost of interpretability. Explainable Artificial Intelligence (XAI)
has emerged to understand the reasoning of such black-box models. However, XAI has mainly
considered static learning scenarios, whereas many real-world applications require dynamic
models that constantly adapt over time. In extreme cases, models learn incrementally on
a data stream, where observations are used only once to update the model and are then
discarded. In this talk, we present incremental SAGE, an efficient incremental variant of the
well-established model-agnostic global feature importance method SAGE (Covert et al., 2020).
We describe a general framework to efficiently compute these feature importance values in
a data stream scenario with concept drift and present an open-source implementation of
our method. Beyond incremental learning on data streams, we explore and discuss further
applications of incremental XAI in other areas of deep continual learning.

4.5 XPM-Explainable Predictive Maintenance
Joao Gama (INESC TEC – Porto, PT)
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Predictive Maintenance applications are increasingly complex, with interactions between many
components. Black-box models, based on deep-learning techniques, are popular approaches
due to their predictive accuracy. This talk presents a neural-symbolic architecture that uses
an online rule-learning algorithm to explain when the black-box model predicts failures. The
proposed system solves two problems in parallel: (i) anomaly detection and (ii) explanation
of the anomaly. For the first problem, we use an unsupervised state-of- the-art autoencoder.
For the second problem, we train a rule learning system that learns a mapping from the

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


T. Tuytelaars, B. Liu, V. Lomonaco, G. van de Ven, and A. Cossu 81

input features to the reconstruction error of the autoencoder. Both systems run online
and in parallel. The autoencoder signals an alarm for the examples with a reconstruction
error that exceeds a threshold. The causes of the signal alarm are hard to understand by
humans because they are the result of a non-linear combination of the sensor data. The rule
that triggers that example describes the relationship between the input features and the
autoencoder’s reconstruction error. The rule explains the failure signal in that it indicates
which sensors contribute to the alarm and allows the identification of the component involved
in the failure. The system can present global explanations that model the black-box model
and local explanations that describe why the black-box model predicts a failure. We evaluate
the proposed system in a real-world case study of Metro do Porto.

4.6 Replay-based continual learning with constant time complexity
Alexander Geppert (Hochschule für Angewandte Wissenschaften Fulda, DE)
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This talk describes a new CL approach based on generative replay (GR). The salient point is
that GR time complexity does not increase over time but stays constant, under some mild
assumptions.

GR protects existing knowledge by having auxiliary generator networks replay/generate
samples from previous sub-tasks. At each sub-task, the union of new and replayed data is
then used for training a new model (or scholar). The innovation we propose is to replay only
samples that cause conflicts with new data. In contrast, existing GR approaches replay all of
the previously acquired knowledge, which leads to an unbounded increase in computation
time.

In order to achieve constant time-complexity GR, we propose to use a GMM-based
generator/solver structure that allows selective modification of existing knowledge only
where it overlaps with new data. The same generator/solver can be queried with new data,
selectively replaying samples from overlapping areas only. Thus, we can maintain a constant
ratio between new and generated samples, irrespective of the number of sub-tasks already
processed.

We tested the proposed strategy on CL problems from visual classification and found
that it compares very favorably to VAE-based GR, despite vastly inferior model complexity.

4.7 Lifelong Learning: Where Do We Go Next?
Tyler Hayes (NAVER Labs Europe – Meylan, FR)
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The last few years have seen immense progress in developing lifelong learning models capable
of performing tasks such as incremental image classification (e.g., on ImageNet). However,
today’s lifelong learning models still lack the necessary capabilities to generalize to and
discover novel concepts in an open world. In this talk, I outline several future research
directions for lifelong learning, what advantages they offer, and initial research questions to
be addressed in these areas.
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4.8 Uncertainty Representation in Continual and Online Learning:
Challenges and Opportunities

Eyke Hüllermeier (LMU München, DE)
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The notion of uncertainty has recently drawn increasing attention in machine learning
research due to the field’s burgeoning relevance for practical applications, many of which have
safety requirements. This talk will elaborate on the representation and adequate handling
of (predictive) uncertainty in (supervised) machine learning. In this regard, the usefulness
of distinguishing between two important types of uncertainty, often referred to as aleatoric
and epistemic, will be elucidated. Finally, some challenges and opportunities of uncertainty
handling in the realm of continual learning will be highlighted.

4.9 Let’s Get Continual Learning Out of the Lab!
Christopher Kanan (University of Rochester, US)
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Continual learning has been a heavily researched topic over the past six years, with mitigation
of catastrophic forgetting being the primary focus. However, I argue that there is a lot
more to continual learning than catastrophic forgetting. Moreover, many of the systems
being created do not have the characteristics needed for real-world applications. In this
talk, I outline four real-world applications for continual learning: 1) efficiently updating
large neural network models, 2) learning on embedded devices, 3) enabling more efficient
learning algorithms, and 4) facilitating applications such as open world learning. I describe
the properties that an ideal continual learning method would need for these problem areas. I
then describe a new algorithm from my research group that attempts to meet many of these
criteria.

4.10 Continual domain generalization/adaptation
Tatsuya Konishi (KDDI – Saitama, JP)
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Many studies have been done for the domain-shift in continual learning. Some papers
have tackled this issue by techniques of test-time adaptation, but those methods depend
on an already pre-trained model. We believe it would be beneficial to propose a continual
pre-training procedure that is aware of possible future domain-shifts from the perspective
of both domain generalization and adaptation. We present preliminary results about this
problem.
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4.11 Continual Learning Theory?
Christoph H. Lampert (IST Austria – Klosterneuburg, AT)
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We introduce some of the fundamental concepts and results of statistical learning theory in
the PAC-Bayesian setting. Afterwards, we discuss the special case of representation learning
from multiple tasks and –time permitting– extensions to the continual learning regime.

4.12 Class-Incremental Learning and Open-world Continual Learning
Bing Liu (University of Illinois – Chicago, US)

License Creative Commons BY 4.0 International license
© Bing Liu

Continual learning (CL) learns a sequence of tasks incrementally. A challenging setting of
CL is class incremental learning (CIL). While it is well known that catastrophic forgetting
(CF) is a major difficulty for CIL, we argue that there is also an equally challenging problem
of inter-task class separation (ICS). This talk first presents a theoretical investigation on how
to solve the CIL problem. The key results are (1) that the necessary and sufficient conditions
for good CIL are good within-task prediction and task-id prediction, and (2) that task-id
prediction is correlated with out-of-distribution (OOD) detection. The theory thus states that
good within-task prediction and OOD detection are necessary and sufficient conditions for
good CIL. This theory is also applicable to open-world learning. I will then present a general
framework for open world learning, called Self-initiated Open-world continual Learning &
Adaptation (SOLA).

4.13 Learning Continually from Compressed Knowledge and Skills
Vincenzo Lomonaco (University of Pisa, IT)
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Learning continually from non-stationary data streams is a challenging research topic of
growing popularity in the last few years. Being able to learn, adapt, and generalize continually
in an efficient, effective, and scalable way is fundamental for a sustainable development of
Artificial Intelligent systems. However, an agent-centric view of continual learning requires
learning directly from raw data (i.e. by trial and error), which limits the efficiency, effectiveness
and privacy of current solutions. Instead, we argue that continual learning systems should
exploit the availability of compressed knowledge and skills in the form of trained models
made globally available from a decentralized network of independent agents. In this talk,
we suggest to investigate this new paradigm, also known as “Ex-Model Continual Learning”
(ExML), where an agent learns from a sequence of previously trained models instead of raw
data.
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4.14 Into the Unknown: Premises, Pitfalls, Promises
Martin Mundt (TU Darmstadt, DE)
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Deep neural networks excel in many areas seems to be a common conclusion drawn from
their success on predefined training and dedicated test set data. When moving beyond this
paradigm to learning data sequentially, we seem to draw similar conclusions when we find
techniques that transfer knowledge and avoid forgetting over time. However, the real world is
full of novel and unknown experiences, its complexity cannot be captured by benchmarking
knowledge accumulation alone. In this presentation, I will talk upon design of lifelong learning
systems in open worlds. These systems are able to robustly deal with novel situations and
incorporate new knowledge from data streams over time as humans do. To this end, I will
dive into symbiotic mechanisms for deep models to prevent erratic predictions for unknown
concepts, actively query new data, and avoid rapidly forgetting past knowledge when learning
on new tasks. I will then finish by revisiting the challenge of evaluation of such complex
systems and means to promote reproducibility.

4.15 Role of CL in large scale learning
Razvan Pascanu (DeepMind – London, GB)
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In this talk I will focus on what could be the goals of Continual Learning, particularly for
typical Deep Learning settings. Firstly I will show that deep learning is fundamentally
computationally inefficient due to interference or forgetting, which leads to concepts being
learnt sequentially even if they are all present at once. This leads to the hypothesis that
learning efficiently might require us to figure out how to learn continually, which can be
a well formed target for continual learning. Afterwards I will describe some limitations
of typical train-test setup, and argue that continual learning can be seen as a change of
perspective that can allow rephrasing several concepts and find new ways to address these
limitations. For example, it can alter how we think about evaluation at large scale. Finally I
will enumerate some research directions for continual learning that I feel are receiving less
attention than they should.

4.16 Transfer-learning-based exemplar-free incremental learning
Adrian Popescu (CEA LIST – Nano-INNOV, FR)

License Creative Commons BY 4.0 International license
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The effect of catastrophic forgetting is strong when storage of exemplars for past classes
is impossible. Most existing methods designed for this scenario implement variants of
fine tuning with knowledge distillation to reduce forgetting. This presentation discusses
transfer-learning-based methods, which use a fixed model learned with the initial classes and
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the update only the classification layer during the incremental process. Experiments with
different datasets and incremental splits show that transfer-based methods obtain competitive
performance, while being much faster to train than mainstream fine-tuning methods. These
results resonate with past works which show that simple methods can be highly effective in
incremental learning, and question our progress in the exemplar-free scenario.

4.17 Repetition and Reconstruction in Continual Learning
James M. Rehg (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 4.0 International license
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This talk describes some recent advances that shed light on the role of forgetting in continual
learning (CL). First, we introduce CL with repeated exposures, in which sequentially-
presented concepts are allowed to repeat a small number of times. We show that simple
memory-based CL methods can converge to accuracy approaching batch learning in this
setting. Second, we introduce a class of continual reconstruction tasks which do not suffer
from forgetting in either the single or repeated exposure settings This finding is based on
a novel SOTA method for single image shape reconstruction (Thai 20). We further show
that shape reconstruction can be used as a proxy task for continual classification, resulting
in SOTA performance. We close by developing some links between 3D reconstruction and
self-supervised learning.

4.18 Using Generative Models for Continual Learning
Andreas Tolias (Baylor College of Medicine – Houston, US)

License Creative Commons BY 4.0 International license
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Continual learning is a key feature of natural intelligence, but an unsolved problem in deep
learning. Particularly challenging for deep neural networks is “class-incremental learning”,
whereby a network must learn to distinguish between classes that are not observed together.
In this short talk, I will discuss two ways in which generative models can be used to address
the class-incremental learning problem. The first one is “generative replay” (e.g., van de Ven
et al., 2020 Nat Commun). With this approach, typically two models are learned: a classifier
network and an additional generative model. Then, when learning new classes, samples
from the generative model are interleaved – or replayed – along with the training data of
the new classes. The second approach is “generative classification” (e.g., van de Ven et al.,
2021 CVPR-W). With this approach, rather than using a generative model indirectly for
generating samples to train a discriminative classifier on (as is done with generative replay),
the generative model is used directly to perform classification using Bayes’ rule.
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4.19 How we applied Continual Learning for Long-sequence Neural
Rendering

Tinne Tuytelaars (KU Leuven, BE)
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The focus in most literature on Continual Learning lies on image classification problems. In
that context, it makes sense to reason about the learning process in terms of the learned
representation (penultimate layer of the network), which is the part that is shared over all
tasks. It’s often argued that a good representation makes it easy to learn new tasks and leads
to minimal forgetting. It is not clear though how these observations generalize to continual
learning beyond classification tasks. In this work, we apply continual learning in a very
different context, that of neural rendering. We argue there is an opportunity for continual
learning in this setting if one wants to process long-sequences, as it is impossible to load all
views for all timestamps in memory simultaneously, multiple views of the same timestamp
are required in the same batch to learn effectively from intersecting rays, and repeatedly
decoding and transferring views to/from memory is expensive. The standard architecture
used for Neural Radiance Fields is not well suited for continual learning though, as the
model itself is basically the representation: all properties of the dynamic scene are stored
implicitly in the model parameters. Instead, we show that switching to an image-based
rendering pipeline gives much better results, as it allows a good balance between what to
store implicitly (the learned part) and what to store explicitly (the training views). This
results in better transfer and good results when combined with a ray-based replay scheme.
This, for the first time, makes it possible to handle dynamic scenes of 1000+ frames with low
storage requirements and good quality.

4.20 The “Stability Gap”
Gido van de Ven (KU Leuven, BE)
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Continually learning from a stream of non-stationary data is challenging for deep neural
networks. When these networks are trained on something new, they tend to quickly forget
what was learned before. In recent years, considerable progress has been made towards
overcoming such catastrophic forgetting, predominantly thanks to an approach called “replay”.
With replay, examples of past tasks are stored in a memory buffer and later revisited when
the network is trained on new tasks. Strikingly, even with just a handful of stored samples
per task, replay still performs very strongly. Replay seems to work so well that it has even
been suggested that forgetting is no longer a major issue in continual learning. A recent
discovery of us challenges this (De Lange et al., 2023 ICLR). Surprisingly, we found that
replay still suffers from substantial forgetting when starting to learn a new task, but that this
forgetting is temporary and followed by a phase of performance recovery. We demonstrate
empirically that this phenomenon of transient forgetting – which we call the “stability gap” –
is consistently observed with replay, even in relatively simple toy problems.
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4.21 Projected Functional Regularization for Continual Learning
Joost van de Weijer (Computer Vision Center – Barcelona, ES)
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Recent self-supervised learning methods are able to learn high-quality image representations
and are closing the gap with supervised approaches. However, these methods are mostly
used as a pre-training phase over IID data. In this talk, we focus on self-supervised methods
for continual learning of visual feature representations. I introduce, Projected Functional
Regularization (PFR) where a separate temporal projection network prevents forgetting of
previously learned representations without jeopardizing plasticity. The main advantage of
the new regularization method over existing methods is that it does not penalize the learning
of new knowledge, and as a results can reach a better plasticity-stability trade-off.

4.22 Knowledge Accumulation in Continually Learned Representations
and the Issue of Feature Forgetting

Eli Verwimp (KU Leuven, BE)
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During this presentation, I will present and discuss how continual learners learn and forget
representations. We have observed two phenomena: knowledge accumulation, i.e. the
improvement of a representation over time, and feature forgetting, i.e. the loss of task-specific
representations. To better understand both phenomena, we introduced a new analysis
technique called task exclusion comparison. If a model has seen a task and it has not
forgotten all the task-specific features, then its representation for that task should be better
than that of a model that was trained on similar tasks, but not that exact one. Our
experiments show that most task-specific features are quickly forgotten, in contrast to what
has been suggested in the past. Further, we demonstrate how some continual learning
methods, like replay, and ideas from representation learning affect a continually learned
representation.

4.23 Prediction Error-based Classification for Class-Incremental Learning
Michal Zajac (Jagiellonian University – Kraków, PL)
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Class-incremental learning (CIL) is a particularly challenging variant of continual learning,
where the objective is to discriminate between all classes presented during the incremental
learning process. Existing solutions often suffer from excessive forgetting and imbalance of
the scores assigned to classes that have not been seen together during training. In our work,
we introduce a novel approach, Prediction Error-based Classification (PEC), which differs
from traditional discriminative and generative classification paradigms. PEC determines a
class score by measuring the prediction error of a model trained to replicate the outputs of
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a frozen random neural network on data from that class. Our empirical results show that
PEC performs strongly and is on par or better than all considered rehearsal-free baselines,
including those based on discriminative and generative classification, across multiple CIL
benchmarks.

5 Working groups

5.1 Evaluation (Part 1)
Alexander Geppert (Hochschule für Angewandte Wissenschaften Fulda, DE)
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Various aspects of evaluation procedures in CL were discussed, such as the proper and
improper way of tuning hyper-parameters, the use of simple datasets like MNIST, and what
useful evaluation measures for CL could be. It was commonly felt that new evaluation
measures should also reflect what CL can contribute in terms for real-world applicability. For
example, consistency, speed or compute-time/energy benefits achievable by CL when training
large-scale models could be metrics to be used. We raised the issues of CL benefiting data
privacy, and the application of CL to other modalities beyond vision. The general difficulty
of evaluating models on large-sale data, as well as difficulties with the very concept of dataset
were raised.

5.2 Evaluation (Part 2)
Andrea Cossu (University of Pisa, IT)
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State of the art is useful provided that we study hard problems where it is “hard to cheat”.
In particular, in continual learning the state of the art should be associated to a precisely
specified setup. This is also due to the fact that, in continual learning, it is especially easy
to cheat. Toy problems like MNIST can be useful, although some phenomena may only be
visible at a certain scale. Surely, MNIST-like problems are useful as sanity checks before
proceeding with more complex benchmarks. MNIST may still be relevant in extreme setups
(e.g., online, replay-free, single-class learning). Continual learning is sometimes modality-
specific. This is especially true for computer vision, where heavy use of augmentations
restricts the applicability of continual learning strategies to other modalities.
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5.3 Reproducibility
Alexander Geppert (Hochschule für Angewandte Wissenschaften Fulda, DE)
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The session discussed how reproducibility in CL could be improved by, e.g., organizing a
special track at a conference. The general goals of such an undertaking, as well as the
target population of potential authors were discussed, as well as questions about what papers
submitted to such a track could discuss. It was agreed that, despite a focus on reproducing
results, papers should contain newness realized by, e.g., supplementary experiments, extended
hyper-parameter searches or an application to other datasets. Finally, issues concerning the
workflow of the submission and the review process were discussed.

5.4 Online Learning and Continual Learning
Andrea Cossu (University of Pisa, IT)
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In online learning, there is no notion of generalization. Instead, algorithms are evaluated
on regret. Online learning algorithms make a decision in each step (or datapoint). While
online learning only cares about what happens at the current moment, continua llearning
cares about what happened during model lifetime. More, continua learning mainly works
with neural networks. As such, it usually requires lots of data, making it difficult to relearn
something. This requires to mitigate forgetting . Online learning, instead, does not have this
requirement because relearning happens quickly. Can we come up with real data streams
that have natural distribution? For example, data from Twitter can provide hundreds or
thousands of datapoints per second, with gradual drift. Unfortunately, the Twitter API
does not allow to extract this data anymore. One other difference is that, continual learning
with replay always considers that distribution for a certain task remains stationary (the
input-output mapping does not really change). It is still unclear whether or not continual
learning and online learning can be integrated together.

5.5 Optimization in continual learning
Vincenzo Lomonaco (University of Pisa, IT)
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The group discussed whether or not environments with piecewise iid data and environments
with constant drift are really different for the optimization process. One possible solution
would include the approximation of the static setting (only a patch) to make SGD work, for
example by approximating a global static target function or by performing local optimization
related to a moving target function. The usage of constraint optimization processes may
help in maintaining important properties. A completely different solution would depart
from the usual end-to-end training by leveraging separate objectives for different tasks and
representations.
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The group also discussed the role of bias for optimization in biology. It could be important
to put similar bias into the model (like memory consolidation). In this sense, local learning
is not similar to back-propagation which is global.
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