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Abstract
In the last week of March 2023, Schloss Dagstuhl hosted a Dagstuhl Seminar on “AI-Augmented
Facilities: Bridging Experiment and Simulation with ML”. The seminar brought together ex-
perimental and computational scientists, experts on edge and HPC computing, and machine
learning and computer science researchers to jointly develop a strategic vision on how to move
towards AI-augmented facilities in a unified manner. The goal was to suggest a common research
agenda with an emphasis on areas where joint efforts are needed for future progress. Starting
with some overarching perspectives the seminar was dominated by lively discussions that resulted
in a strategic write-up to be published separately.
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1 Executive Summary

Peer-Timo Bremer (Lawrence Livermore National Laboratory, US)
Brian Spears (Lawrence Livermore National Laboratory, US)
Tom Gibbs (Nvidia – Santa Clara, US)
Michael Bussmann (Helmholtz-Zentrum Dresden-Rossendorf, DE)
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The Dagstuhl Seminar connected three traditionally different communities: experimental
and computational scientists, experts in HPC and edge computing, and machine learning
researchers, to discuss a new vision for future AI-augmented facilities. This document
summarizes the activities during the week of in person discussion including the outline of
a position paper that is under development to publish the joined findings. The seminar
proceeded in roughly three stages: an introduction with two keynotes and a general discussion
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on the goals, an expansive phase of collecting ideas and defining the scope of the position
paper, and finally working groups on creating explicit outlines and collecting materials for
various sections of the paper.
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3 Keynotes and Topic Introduction

The week started with a session to introduce all participants with a little bit of their
background to facilitate later discussions and provide an overview of the available expertise.
This was followed by two introductory keynotes from the organizers briefly describing the
current state of affairs in AI-augmented facilities from both the US (Brian Spears) and the
EU (Michael Bussmann) perspective which consumed Monday morning.

3.1 Facilities & AI a US Perspective
Brian Spears (Lawrence Livermore National Laboratory, US)

License Creative Commons BY 4.0 International license
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The pace of data generation in modern science has greatly accelerated, but the pace of
transformational discovery is still too slow. This is clear at a variety of state-of-the-art
facilities: laser experiments are slow or noisy; advanced manufacturing (AM) is open loop;
accelerators need time consuming tuning, sometimes by hand. However, AI-enable self-
driving systems can accelerate our science and discovery processes. AI sentinels that help
collect data, compare to prediction, and choose next steps can provide a step change
in experimental and manufacturing operations. They will bring accelerated closed-loop
operations, transformational data rates, physics-informed experiment updates on sub-second
timescales, and digital twins for facility modeling and optimization. This not only accelerates
discovery, but it deepens the quality of knowledge that we can discover. As examples, it will
provide stabilized lasers and autonomous optimization of high-energy-density physics, self-
correcting AM processes and high-throughput operations, and repeatable, robust accelerator
conditions. Beyond individual systems, self-driving ecosystems composed of interconnected
sets of these facilities will offer capabilities greater than the sum of their parts offering rapid
discoveries that are hard to conceive in today’s slower and isolated science regime. To achieve
this goal, the science community needs to work together to build the scientific tools to execute
self-driving operations. With community input, like that provided by Dagstuhl, we can make
self-driving science systems a reality.

3.2 Facilities & AI an EU Perspective
Michael Bussmann (Helmholtz-Zentrum Dresden-Rossendorf, DE)

License Creative Commons BY 4.0 International license
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In the EU, the use of AI at large-scale research infrastructures is on the rise in a broad
variety of fields from Particle Physics to Photon Science, Neutron Science, Life Science,
Astrophysics to Laser Science and more. The ESFRI Roadmap and the EU digitalization
strategy highlight the importance of data and meta data and the potential of AI. Focusing
on the example of Germany, We highlight how the Helmholtz Association as the largest
research organization in Europe and in particular the Helmholtz Research Field Matter plan
to develop autonomous, intelligent facilities using AI at key points in the data lifecycle of
research facilities. The topic Data Management & Analysis and the Helmholtz Incubator
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for Information and Data Science play key roles, looking at such diverse topics as data
lifecycle management, the tight integration of simulation, experiments and machines, online
and large-scale data analysis, visual analytics, optimization, automation and resilience.
Embedded in a national AI strategy with key components such as the National Research
Data Infrastructure, ErUM-Data and many more, embedded in EU-wide and international
cooperations and initiatives, the landscape of AI-augmented facilities is being shaped into a
EU-wide, cross-community effort to enable excellent science at optimum conditions across
the whole spectrum of research infrastructures. We argue that this can be a blueprint for
international collaboration on AI-augmented facilities.

4 Working Groups Results

Starting Monday afternoon the seminar switched to a mixture of interactive working groups
followed by sessions to report the results and plan the next agenda items. The sections
below will briefly summarize the individual sessions including (subsets of) the raw notes
when possible and list or participants where available.

4.1 Monday Afternoon
In two closely related sessions on Monday afternoon all seminar participants first collected
a list of prototypical science drivers that motivate the need for AI-augmented facilities.
Subsequently, this discussion branched out to list stakeholders and specific applications that
could be used later as examples. Finally, the discussion converged on defining more the goal
of the seminar more explicitly: To collect the insights, existing solutions, and strategic ideas
into a perspective paper to be jointly published. Consequently, the remainder of Monday
afternoon was spend creating a first paper outline that simultaneously served as a guide
for the schedule on Tuesday morning. An overview of the topics discussed is provided in
Figure 1 in form of a topic graph.

4.2 Tuesday Morning
Following the initial paper outline different groups in parallel started to flesh out individual
sections. This started with three parallel breakouts on the overall needs, the approach, and
the expected outcomes as the cornerstone of the paper.

4.2.1 Group 1: Needs

Working Group 1 was tasked to explore the need for AI augmented facilities in more detail
to ultimately serve as the motivation for the perspective. Figure 2 documents some of the
notes including a conceptual diagram of the state-of-the-art created as straw-man for the
discussion. The list of high level needs collected during the outbrief included:

Faster Science
Better Science / per $ or €
Data Interpretation / optimum operation
Optimised sciences
Addressing grand challenges
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Figure 1 Topic graph of the discussion on Monday afternoon outlining both the science drivers,
stakeholders and applications as well as a plan for a perspective paper as the goal for the seminar.

More accurate, precise and reproducible results
Finding complex patterns in big data
Automated workflows for scientific facilities
Optimise energy efficiency of large facilities
Finding new and unexpected science in data

4.2.2 Group 2: Approach

The discussion around which approaches might be fruitful to pursue resulted in a set of high
level questions that would need to be answered followed by directions for solutions.

Questions:
1. How will we control complex, serial, and decoupled science experiments/observations ?
2. What high-level (abstract) approaches will we use to be more responsive to (said) experi-

ments/observations?
3. How will we respond to grand challenges?
4. What expertise (existing or to be developed) do we need?
5. How do we enable scientists to shorten the “time to science”?

Answers:
1. Match simulation availability to experimental demands → surrogate models to bring

physics into the control loop
2. Use inductive AI methods to merge multimodal and heterogeneous data → Autoencoders,

deep neural networks, reinforcement learning, etc.
3. Build efficient connections between computing and experiments → couple AI, optimiza-

tion, ...
4. Engineer and demonstrate robustness and uncertainty quantification for application on

real machines and systems → AI techniques for UQ, robustness, to increase machine
uptime, etc.

5. Offload experimental data to computing resources
6. Decide next steps based on both computational and experimental knowledge

23132
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(a) (b)

Figure 2 (a) Straw-man diagram of the current state of the art and its challenges; (b) Notes of
the Needs working group.

4.2.3 Group 3: Envisioned Outcomes

To better understand what success might look like the group members decided to organize
the discussion into three time frames: near-term (1-3 years), mid-term (5 years), and long
term (10 years) goals.

1-3 Years

Define Requirements for
Computing needs
Experimental needs

Interactive (ML) com-
pute

Capability for 5000
Jupyter notebooks

Edge computing integ-
rated into control sys-
tem (EPICS++)
Data and meta-data cur-
ation (per domain)
Connect control to HPC
New generation of AI-
ready control system
ML enabled simulations

Inner loop
Outer loop

5 Years

Self-driving experiment
Self-tuning
Self-optimizing
Archive for stabil-
ity/reproduction

Integrated simulations
for ML guidance and in-
ference
Science metrics other
than uptime
Reliable surrogate mod-
els updated on the fly
AI enabled streaming

Analysis
Anomaly detection

Distributed experiments
Robust/ reliable / ex-
plainable ML for science

10 Years

Data standards with
translators
Autonomous collection
of data
Scientist in the loop de-
cision making
Coupled experiments

4.3 Tuesday Afternoon
Tuesday afternoon developed the paper draft further by exploring the software and hardware
needs as well as the necessary changes in large scale facilities. The charges for the different
group after the morning discussions were as follows:
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Software needs
AI techniques and software tools (classes of AI tools – huge networks, tiny ones, ...)
Orchestration for computing and experiment interoperation
More ...

Computing hardware
Needs for compute on the instrument
Needs for compute at the edge or facility
Needs for data center
Needs for distributed computing
Kinds of architectures, systems
More ...

Facility preparation
Making facilities look fully integrated – unified compute and experiment
Making facilities AI ready (AI ready diagnostics and instruments)
Making facilities prepared for computing
Making facilities networked to resources

4.3.1 Group 1: Software Needs

The software working group first collected a list of general capabilities that will be required
before discussing in more detail the different dimensions that differentiate various AI ap-
proaches.
Necessary capabilities

AI tools and methods
AI benchmarks
Tools for knowledge extraction

Orchestration
Online and coupled automation

ML-Ops and RSE
Language of choice: Julia, Python
Frameworks to build AI
Workflows
Notebooks / Interactive development
Model / Data parallel
Big parallel models
Hyperparameter optimisation
Model optimisation

Target users
Facilities
Scientists / Users

Automation
Tools for model calibration and validation
Tools for continual learning (especially for model drift)

Dimension of AI models
Time to train
Time to inference
Cost and energy
Size of the model (number of parameters)
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Data size
Compute for training
Compute for inference

Model science performance
Accuracy
Precision
Stability
Convergence
Fidelity
Composability
Modularity

Data
Sparsity
Multiple modalities
Heterogeneity
Locality
Privacy

Model capability
Multimodal
Explainability
Deterministic
Uncertainty
Federated models
Dynamic models

Privacy preserving federated learning as a Service
Generalisability / Ability to disentanglement (symbolic knowledge / data-driven / repres-
entation learning)
Physics-Informedness
Procedural knowledge

4.3.2 Group 2: Computing Hardware

The hardware discussion resulted in a list of technology directions that must be considered
for AI augmented facilities.

Object store-type, DB focused, storage
SWaP (size, weight, and power) based AI-hardware (sensors, embedded systems etc.)
Chiplet-based (low latency/high bandwidth) embedded-AI accelerator

Composability across multiple vendors
Latency optimized accelerator – multi mode(a)l
AI hardware for edge training
Capacity: Large scale, on-demand, aI-training
Capability system driven AI computing
Network protocols?!

Ethernet
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4.3.3 Group 3: Facility Preparation

While full integration and potential distributed “super-facilities” are the long term goal, the
facility preparation was discussed in terms of experimental and compute facilities yet with a
focus on ensuring inter-facility communication

Experimental Facilities

AI ready diagnostics / control
Digitized
Networked vs. online (real-time avail-
ability)
Compute enabled (ASIC)
Sufficient bandwidth
(Semi-)autonomous calibration
Monitoring and change detection

Data acquisition system
Acquisition
Provenance
Meta-data
System state

Local compute
High precision and AI compute
On-site data reduction
Large model inference
On-site storage
Data storage and exploration before
transmission
Networking

Software defined systems
Flexible adjustment of controls (readi-
ness to update)
Retrain operators to engage with AI

Computing Facilities

Data transfer / interface with the world
Networking
Robotic operating system
workflow service layer
Reconfigurable storage
Hetrogeneous nodes with flexible connec-
tion for strong vs. weak scaling

High-precision
Low-precision

Make computer center time-responsive
Data availability and/or streaming data-
flow
Hardware and software policies, i.e.,
queue priorities

4.4 Wednesday Morning
Wednesday morning focused on some outstanding topics such as communication, first steps,
and potential early demonstration targets.

4.4.1 Group 1: Communications and Data Movement

ESNet
One platform to file bug in a transparent process
How to influence Open source packages

Resilience
Robustness
Life-cycle management of the AI software stack

Storage across sites in a transparent way
Access API
Lifecycle of data
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High bandwidth vs. low latency
What is the priority (depending on the dataflow)
Networks are restricted by reality
Critical boundary conditions

Wireless connections
Policy issues
Security

Remote control must be viable
Dealing with asynchronous information

4.4.2 Group 2: First steps

The second group discussed which communities to engage and on which projects to start
moving towards the joint vision of AI augmented facilities.

Early Demonstration Targets
Magnetic confinement fusion: Surrogate models and experimental controls
“InterTwin”: Multi-Science digital twin engine
Laser-driven inertial fusion (LLNL, LBNL, Rochester) : AI surrogates
Rock-IT: Digital twin for photon science with applicationsin catalytics
BOFAB: Advanced Photon Lightsource + SLAC
Digital earth
OPTIMA: Real world evidence + AI for cancer
ACCLAIM: AI for accelerator research
ERVM-WAVE: AI for safe operation of Einstein telescope
Helmholtz AI: Autonomous accelerators
Synthetic data for particle physics
MALA: Materials predictions from fundamental physics
KITTEN: Energy responsible project for accelerators at KIT
Center of Excellence for Research on AI- and Simulation-Based Engineering at Exascale
(RAISE)
ErUM-Data-Hub: central networking and transfer office for the digital transformation in
the exploration of universe and matter.

General topics of interest for first steps
Determining generalizable patterns of application of AI
Workshops/Hackathons/Datathons/Studyathons/Ideathons
Repositories for AI models
Standardized intermediate representations
BADGER/SLAC: Control optimizations, BlueSky
Control standards for robotics
Openness and interoperability
High-throughput AI hardware
Energy + Sustainability + Optimization
Multi-target optimization
Multi-X surrogate demonstrations
Federated learning
Hosting for training data?
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4.4.3 Group 3: 1-3 Year Projects

What are the capabilities and time frames to make these capabilities a regular occurrence,
i.e., the experimental/computing facility has an access mode for this

Experimental Facilities

Proxy hardware (1Y)
Access to test facilities (1-2Y)

connect different science teams
Triggered analysis (2-3Y)
Experimental steering (3Y)

Computing Facilities

Access policies (1Y)
Make schedules reliable and open (1Y)
On demand / interactive computing (1-
2Y)

Other important initial activities not directly linked to facilities
Building working groups across multiple professional societies
Staff education

Curriculum development
Summer schools
Maybe connect to academically minded staff members interested in teaching or even
explicitly hiring these

Workshops to find “killer” applications
Social aspects

Courses aimed to get people comfortable rather than necessarily convey knowledge
Schedule coordination

Joint proposals

5 Perspective Paper Development

Given the discussions outlined above the seminar broke into writing groups largely split by
sections that started to develop outline and/or initial text. Below we report on the state
of these developments by the end of the seminar. Once finalized the goal is to publish the
polished results as a persectives paper in a yet to be determined venue.

5.1 Section 1: Needs
Michael Bussmann (Helmholtz-Zentrum Dresden-Rossendorf, DE)
Jean-Luc Vay (Lawrence Berkeley National Laboratory, US)
Arvind Ramanathan (Argonne National Laboratory – Lemont, US)

License Creative Commons BY 4.0 International license
© Michael Bussmann, Jean-Luc Vay, Arvind Ramanathan

Gaps that AI can address

AI has enabled transformational progress in a number of scientific, engineering, and technology
domains; however, enabling rapid progress in the adoption of AI strategies will not be entirely
realized, unless these critical gaps are addressed.

23132
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1. AI is needed for optimizing the life-cycle of scientific data: While commercial applications
(such as recommender systems) have ready access to quality datasets, scientific data is
often more decentralized, distributed and less deterministic. Hence, one of the key needs
of AI is in identifying the critical aspects from data, including achieving the ability to
optimally reduce and represent vast scientific datasets, while also identifying potentially
anomalous data points in them. Further, AI methods need to automatically enable the
transformation of data → (actionable) information → (inferable) knowledge, which can
significantly impact today’s scientific processes.

2. AI needs for enabling close, near real-time coupling of modeling, simulations and ex-
periments: Multimodal, multi-view, multi-scale data is extremely common in scientific
processes. Specifically, experiments and sensor networks within integrated research in-
frastructure produce data at specific length- and time-scales for investigating complex
phenomena and AI techniques can potentially act as ‘glue’ to stitch together such datasets.
However, to truly enable experimental design at scale, there needs to be a strong coupling
of how simulations and experiments inform each other about the complex phenomena of
interest. This in turn requires AI methods to not only act as effective surrogate models,
but also to respect foundational scientific principles that produce the underlying data
distributions.

3. AI is needed for optimizing facility operations and control: Current scientific instrument-
ation within research facilities is largely informed by user access and individual research
goals, which makes facilities to be extremely expensive and less optimal for cost-effective
management. However, costs of managing research infrastructure can be significantly
lowered by analyzing user access patterns and modeling, which can be used to optimize
how experiments and simulations can be scheduled and automated. In essence, much like
the car assembly line in the past, there is a need to industrialize the scientific process
through meaningful engagement of scalable automation (such as robotics).

4. AI is needed for cross-domain, data-driven, automated, accelerated discovery: Current
scientific progress is enabled in part by serendipitous discoveries within individual labs
or consortiums, and still relies on domain-specific expertise drawn from intense training
and experience. However, as is now evident, rapid progress in science and technology is
enabled by ‘cross-pollination’ – wherein knowledge drawn from across disciplines and
technology can mutually inform and benefit new foundation discoveries. Enabling such
discoveries requires access to enormous datasets and analyses of patterns across such data
which is enabled by modern AI techniques. Furthermore, instead of having individuals
synthesize this knowledge, and design experiments, automated, data-driven knowledge
distillation and hypotheses generation can direct experimental campaigns that can in
turn accelerate the pace of scientific discoveries to address some of the aforementioned
grand challenges.
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5.2 Section 2a: Vision – Approach
Brian Spears (LLNL – Livermore, US)
Sunita Chandrasekaran (University of Delaware – Newark, US)
Matthew Streeter (Queen’s University of Belfast, GB)

License Creative Commons BY 4.0 International license
© Brian Spears, Sunita Chandrasekaran, Matthew Streeter

The pace and quality of scientific discovery can be greatly improved by erasing the boundary
between experimentation and computation. Each step in the scientific process can be revisited
with newer hypotheses through the application of machine learning to accelerate scientific
discovery, which then enables orchestration of the whole activity. The scientist is then the
conductor of this orchestra, and is placed back in control of the increasing complexity and
huge scale of modern science.

Coupling scientific computing with large-scale experimentation using modern AI methods
will introduce a new class of unified, AI-augmented facility. In such a facility, AI surrogates
can be used to capture the intricacies of detailed simulations, but in a way that is accessible
to experiments in seconds, not hours or months. Such facilities will then have access to
simulations as a real-time commodity for informing experiments. Likewise, AI-guided analysis
using representation learning can capture and reduce complicated diagnostic information
on the fly. This promises to provide distilled and interpretable empirical data back to the
computational world, again in moments, not months. AI-driven representations of both
computational and experimental science, scientists can decide far more effectively – about
the best next simulation to run or the most insightful next experiment to execute. In fact,
these decisions can be accelerated and improved by using formal optimization algorithms
that exploit compact AI representations to navigate to superior experimental outcomes; the
decisions can even be made semi-autonomous or automated, allowing an optimized loop to
execute well-informed experiments incredibly rapidly, keeping pace with modern facilities
that perform experiments on the timescales of minutes down to milliseconds.

Its tightly AI-coupled components and efficient information processing ecosystem allow
for scientific discovery on much shorter timescales than previously imaginable. Likewise, the
AI-enabled operating environment simplifies the execution of simulation and experiment.
This frees expert users of the previously disconnected facilities to think and innovate rather
than labor over job submission, diagnostic data reduction, and similar operational tasks.
Furthermore, non-expert users will find access to complicated science machines to have been
democratized, allowing these new facilities to serve a far wider range of scientific communities.

We envision the technical roadmap of our AI-enabled facility to be an energy-efficient
framework/design/infrastructure driven by novel hardware and software components that
are connected together to form a unified system. With a goal to offer an AI-acceleration
solution everywhere, newer dedicated AI-hardware will be built to address the need for a
variety of commuting fronts on the diagnostic end, near the facility, at a data center and
across a distributed compute network. We will also build software for orchestrating a variety
of operations in both high performance compute and experiments. Such AI-orchestrated
software will provide the necessary infrastructure to drive informed decisions thus enabling
newer science. Facilities augmented by AI will also have a modernized strategy for handling
volumes of heterogeneous data that carries context from generation until analysis.
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5.3 Section 2b: Vision – Outcomes
Roger H. French (Case Western Reserve University – Cleveland, US)
Niko Bier (DLR, Institute of Aerodynamics and Flow Technology, DE)
Shantenu Jha (Brookhaven National Lab – Upton, US& Rutgers University – Piscataway, US)
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AI will be applied at different levels in scientific facilities.

1. On a level close to and integrated into e.g. optical sensors AI will be used to directly
provide scientific information rather than raw data to the facility. This will not only
lead to significantly decreased requirements in bandwidth and data storage but will also
drastically speed up the scientific experiment as such.

2. On a facility level AI will be used to generate digital twins of the facility and thus to
control scientific experiments. This will significantly increase the efficiency of a facility
by better coordinating the tools and sensors involved during the experiment.Moreover
the status of the facility and its components will be accessible in real-time and predictive
maintenance will become more efficient and will increase the availability and safety of the
facility. The digital twin of a facility will also allow for the use of virtual sensors making
it possible to collect previously not accessible data.

3. On an overall level distributed scientific facilities and HPC resources will be merged
together into an AI-driven facility. In these facilities AI will be used to orchestrate the
experiments. It will not only significantly speed up scientific experiments but will also be
used for planning and conducting of experiments. AI will not only perform experiments
better, but will conduct better experiments.

In such a new “generative science” completely new scientific questions will emerge and
appropriate experiments will be conducted. Scientists will be able to focus on understanding
and answering fundamental questions on the basis of an unprecedented quality of scientific
experiments and their results.

5.4 Section 3: Software
Ravi Madduri (Argonne National Laboratory – Lemont, US)
Jeyan Thiyagalingam (Rutherford Appleton Lab. – Didcot, GB)
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The software requirements for the AI Augmented Facilities are driven by users and operators
of the facilities. In Software Development Life Cycle (SDLC), these processes are typically
referred to as stakeholder analysis and requirement analysis. For the purpose of this document,
we identified facility operators and scientists using the facilities as stakeholders. This section
offers requirement analysis and identities of current methodologies and places where AI can
augment and lead to better results.

We assume that AI-Augmented facilities have the following stages, regardless of the
scientific domain (whether they are, e.g., photonic or laser or environmental or datacenter
facilities) or whether they are centralized or distributed facilities.
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Hypothesis Simulation ControlScan/Sens On the Fly

AI Loop 1

AI Loop 5

AI Loop 6AI Loop 2
AI Loop 3 AI Loop 4

AI Loop 7

AI - Augmented

Figure 3 Examples of AI Loops at different stages: Synthetic GAN to simulate a facility that
help validate or come up hypothesis (Omniverse) – AI Loop 1, Surrogate Models that help come up
with better results from Simulation – AI Loop2, etc.

1. Basic hypothesis or expectation of the scientific outcomes from experiments or data
acquisition

2. Simulation studies to understand the hypothesis better, and to develop insights into
expected results off the potential experiments or data acquisition

3. Empirical data/fielding of experiments
4. Consolidation and interpretation of the data for developing better understanding or to

underpin scientific discoveries
5. Tuning or controlling of the data acquisition step for improving the quality of the data

In the contemporary setting, some of these are human-controlled, which may eventually
be replaced by an automated system component in the context of an AI-augmented facility.
There are a number of challenges here that different stakeholders face here,especially in the
absence of any AI-specific capabilities. These include the following:

Expensive Simulations: The simulations can be a serious bottleneck to the overall
progress, especially when they are of high-fidelity in nature, or when high-quality outputs
are desirable,
Divergence between Simulated and Experimental Data: The actual results from
the experiments may as well be different to the hypothesis or expected results, owing to
a number of reasons

Scope-insensitive calibration of the data acquisition instruments or sensors,
Incorrect a priori of hypothesis for simulations, and
Physical limitations of the data acquisition, such as potential dosage level or acquisition
resolution of the detectors.

Data Analysis and Enhancements: Understanding, interpreting and analyzing the
experimental or sensed data, and correlating that with the a priori formed as part of the
hypothesis, and
Feedback-driven Optimal Control of the experimental facility. Optimal and stable
control of the instruments are a serious practical challenge, especially in tolerant-sensitive
contexts.
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Figure 4 Current State-of-the-Art Hardware supporting Data Intensive Facilities.

5.5 Section 4: Hardware
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Figure 5 Current state-of-the-art of hardware systems supporting the design and operation of AI
augmented facilities. It features a clearly segmented technology stack separated in compute, storage
and network (horizontal) and technologies at different locations (vertical).

On the hardware level we are currently seeing three trends that will radically impact AI
augmented facilities in how they are built, operated, and used:
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Compute

Data/Storage
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Latency
Number of Streams

Contunuous and Transparent Data Access
(supported by smart Networks and Near-Storage Compute)

Continuous Compute with Facility Boundareis

Consistent network access
(Smart Networks with in Network Compute)

Figure 6 Future hardware vision: integrated systems and APIs making storage and compute
available independent of location and hardware system, supporting fused augmented facilities.

Modern AI accelerators are moving from data-center-only use towards facility / on-premise
systems making both inference and learning capabilities available closer to the data source.
Convergence of compute and network in the form of SmartSwitches and SmartNICs,
which enables processing on the fly and independent of actual location in a decentralized
fashion
Convergence of compute and storage in the form of Near or In Storage Compute, enabling
low-latency data processing at the various and distributed storage location.

Figure 4 illustrates the hierarchy of needs for an AI-enhanced, integrated, experimental
and compute facility.

At the top of the hierarchy is the set of primary data inputs from the experiments
represented as a set of sensors. The hardware needs here are extremely low-latency,
working with single or small number of samples, high data capture rates, and most
importantly engagement with a set of custom / bespoke / specialized sensors that have
unique demands such as custom analog signaling that requires high-speed analog to digital
converters (ADCs), proprietary formats, etc. Some of the key demands for AI at this
level are feature extraction, data processing / conditioning, local controletc.
Primarily inference tasks. Another class of sensors are those that are deployed in a
Size, Weight, and Power (SWaP) constrained environment / facility. Typical examples of
these are battery powered and may be geographically distributed (e.g. drones, buoys,
. . . ).
The next level of the hierarchy is the latency-optimized AI-accelerator that is designed
for data-fusion of heterogenous, multi-modal data near the input sensors, forming a
“near-line” compute capability. These accelerators need to be optimized to process “single
samples” of data (i.e. all of the data from a single event / shot / experiment), and cannot
afford to batch multiple samples together prior to processing. Another way to think
about this is that they need to be optimized for streaming data sets, where decisions
and analysis have to be produced for each sample in real-time. [keywords: streaming,
real-time, latency-optimized] Primarily focused on AI inference tasks.
Integrating the output of the real-time sensor streams output from the near-line acceler-
ators are the near-experiment computing resources. These resources are now expected
to work with batches of data samples, and start to blend workloads that include both
inference of more complex / larger models as well as the training or fine-tuning of existing
or new models
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The bottom of the compute hierarchy is anchored by two classes of computing needs /
ecosystems: Leadership-class High Performance Computing (LC HPC) aka capability
computing and capacity-based High Throughput Computing (HTC) with persistent and
elastic services.

HPC resources are intended for full-system, monolithic, modeling and simulation
(ModSim) jobs and training of large neural networks (e.g. foundation models). They
are designed with highly-interconnected accelerators (e.g. GPUs) using proprietary
network architectures (InfiniBand, Slingshot, etc.) Traditionally, these are run in
a batch-scheduled manner. Additionally, there is a need to establish new HPC
system architecture designs that are optimized for traditional modeling and simulation
codes (ModSim), AI training and inference workloads, as well as hybrid cognitive
simulations (CogSim) workflows. Optimizations for ModSim include accelerators with
high-precision data types (64b arithmetic), high cross-section bandwidth networking,
and high-bandwidth write-optimized parallel file systems. HPC optimized for AI
training and inference will leverage low-precision accelerators, with read-optimized
parallel file systems and support for advanced object-stores. CogSim HPC systems
will require a blend of both capabilities.
HTC resources are designed to serve the needs of many users, models, or data streams.
Persistent and elastic services are designed to capture experimental data in real-time
with the ability to meet data surges from the experiment. Additionally, they provide
the ability to update / refine / fine-tune AI models in the background as new data is
captured.

Fundamental shifts needed in the AI-accelerator architecture space:
1. Engagement with customized sensors requires AI-accelerators to interface with a myriad

of signaling protocols, formats, and data types (including varying precisions). The current
state of the practice is to develop custom accelerator sub-systems that are able to funnel
the outputs of these sensors into standard AI-accelerators such as GPUs or a specializable
systems such as a blended FPGA / AI-accelerator (such as a Xilinx Versal) through
a series of customized ADC capture cards, FPGAs and ASICs. These data capture
sub-systems can become quite complex and are as unique as the sensors themselves. The
emergence of chiplet-based AI accelerator design would enable a fundamental shift in how
research teams would be able to interface state of the art AI accelerators with their custom
sensors. Chiplet-based architectures offer the promise of allowing multiple vendors to
integrate proprietary hardware into unique hardware processes in a timely and affordable
manufacturing process. Advances in this field would enable sensor manufacturers and
research teams to more easily and efficiently couple SOTA AI accelerator hardware directly
(or closely) to their sensors and thus unleash new capabilities that can be exploited at
the sensor.

2. AI accelerators in the near-line computing regime will need to be tuned for real-time,
streaming workloads, where they need to produce inference results on only a single sample
of data that contains a large volume of heterogeneous data fields. Frequently these
accelerators will need to be able to meet hard latency limits and execute neural network
models (inference) with predictable performance characteristics.

3. AI-accelerators close to the sensor may need to meet the demands of a Size, Weight,
and Power (SWaP) constrained environments. For these systems, the operational cost in
terms of inference requests per Watt will be a key design metric.
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Cross-cutting Requirements. There are several cross-cutting requirements that span ex-
perimental and computational facilities, broadly spanning the computing continuum from
edge to data center.

Connectivity. Central to integration is the need for unimpeded access between experi-
mental and computational facilities, such that experiment results can be rapidly available to
AI models running nearby or at compute facilities and that AI informed decisions can be
enacted at experiment facilities. Ideally, we require both in-bound and out-bound network
access between participating entities, with minimal restrictions (e.g., firewalls, NAT). In
many cases, regulations and policies will limit the degree to which connectivity is permitted;
however, this represents an opportunity to explore approaches to reduce friction. We refer to
the success of the Science DMZ model in science as a way of providing minimally impeded
access to scientific data and resources.

Security. Traditionally, compute and experimental facilities have rigid security models
that prevent automation. To attain semi/full automation it is necessary that facilities
implement flexible and interoperable security models that enable remote and automated
actions, while ensuring accountability for actions. As we move towards automated and
AI-based techniques, there is a need for delegatable access, via which humans may permit
operations to be performed within some bound and for some period of time. We further
require methods to audit operations, restrict the scope of access, and revoke access rapidly.

Data. AI is dependent on data and as such movement between experiment and/or compute
facilities is integral in enabling AI-augmented experiments. Important data movement
characteristics may different significantly between use cases, for example, to deliver streams
of experiment data for analysis, to move trained models to the edge, or to move huge amounts
of simulation data to available compute resources. We require common interfaces (e.g.,
Globus, HTTPS, common messaging protocols) and methods to securely access, move, and
share data between participants.

Storage. The plethora of data storage options spanning experiments to HPC presents
obstacles for accessing and preserving important data. Methods are required to a) access
storage that is physically and logically distributed; and b) optimize storage for different tiers
of data (e.g., ephemeral storage of intermediate data vs long-term preservation of experiment
data). Data access requires a consistent view of data irrespective of storage, and interfaces via
which data can be accessed by new and traditional methods (e.g., using HTTP for integrated
data visualization in existing tools).

Compute. AI-enabled methods will require that computation be fluid, such that it may
be executed where it makes the most sense (e.g., near to a detector, where simulation
data reside). Enabling such fluidity requires a) common interfaces to execute tasks (e.g.,
simulation, model training, inference) across the computing continuum, from edge to HPC;
and b) portable packaging such that codes may be easily executed without herculean efforts
to configure and contextualize environments. Community efforts such as Superfacility and
funcX lay the groundwork to provide common APIs, while work in container technologies
such as Shifter will support the need for portable codes.
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Policies. Perhaps the most challenging problem to address is the need to support the
varied policies across participating organizations, between users, and in consideration of
AI-managed actions. Understanding of the requirements for defining a trustability model
between facilities is a first step towards enabling an AI augmented automated facility.

Experimental Facilities. Experimental facilities will in many cases require updates to enable
AI-augmentation. This includes diagnostics with integrated edge computing resources for
rapid data distillation, remote communication with and precise control over machine inputs,
robust pipelines for two-way communications with high performance computing, and new
tools for monitoring the system/diagnostics health and calibration.

Detectors/measurements. Detector measurements and sensors collect data that will inform
AI about the real world. Crucially, the detectors must be able to deliver electronic signals (i.e.
the information must be readily digitized). For diagnostics without direct AI-ready interfaces,
edge hardware must be deployed to provide for real-time high-accuracy data processing,
localized storage (depending on network pipeline resources and latency needs), and access to
diagnostic controls. Such hardware can include GPUs, FPGAs, or other specialized hardware
that can perform complex calculations quickly (discussed in HW). By processing data at the
edge, AI will be able to consume heterogenous data to drive the experimental process while
retaining full-fidelity data for validation.

Controls access. In AI augmented experimental facilities, it will be necessary to interface
with machine and diagnostic controls in ways that are often inaccessible to users. Common,
open-source control interfaces such as EPICS [ref], BlueSky [ref] are examples for enabling
control and data acquisition from heterogeneous hardware[ref] that could be readily accessed
via AI while retaining proprietary interfaces. New operation policies for experimental
facilities will need to be developed to allow control of high-value systems (accelerators,
robotics, lasers, etc.) with AI with robust limitations that prioritize machine safety while
allowing transformative capability for fine control.

Robot control. AI augmented experimental and computational facilities often use robots
to automate tasks such as sample preparation, data collection, and analysis. To control
these robots, it is essential to have a common interface that allows for arbitrary control of
the robotics. This can be achieved by developing custom software that integrates with the
robot’s control system and is again amenable to autonomous control.

Asynchronous, event-based operation. Keeping pace with high experiment throughputs
and rapid AI-based decisions will require movement to a more asynchronous model of
communication and control. Event-based models have been transformative in industry
as a way of decoupling monolithic applications and improving performance. Moving to
event-based models will require common methods to a) detect events; b) propagate events
across distributed systems; and c) make decisions based on complex heterogeneous event
streams. For many applications, it will be important that events include timestamps such
that they can be ordered. Consistency across event generators is application specific.

Compute Resources. Computational facilities often target the deployment of large-scale
computing systems to solve complex problems from a diverse set of computational science
domains. As the use of AI solutions has significantly increased in these domains, there is a
need to provide specialized support to heterogeneous computing architectures and flexible
policies that address the different set of requirements.

Flexible and available allocation. Reservations and dedicated resources are crucial for
ensuring that researchers have access to the resources they need when they need them (i.e.,
urgent computing). To this end, there is a need for the development of policies that allow
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different levels of reservations based on the urgency of the application. On the other hand, it
is also necessary to support pre-emptive mechanisms to meet unforeseen requirements or
impromptu workloads.

Hardware. Specialized hardware (e.g., GPUs, TPUs, and upcoming DPUs) is used to
accelerate compute- and data-intensive tasks including data analysis, machine learning
training, and AI inference. Specialized inference hardware is used for real-time analysis and
processing of experimental data. Enabling support for these resources requires specialized
software for bridging these resources to traditional HPC and storage resources.

Policies (access). Policies are important to ensure that resources are used fairly and
efficiently. In an AI augmented facility, policies will have to be extended to encompass the
heterogeneous set of resources and requirements from near real-time to long-term campaigns
that might involve both HPC and specialized hardware. Additionally, policies will have to
be flexible regarding experiment/access management, i.e. in order to enable steering across
facilities there might be needed to provide support to generic/global accounts or provide
specialized APIs that can manage/access external resources from/to computing nodes.

5.7 Section 6: First Steps
Marina Ganeva (Forschungszentrum Jülich, DE)
Tom Gibbs (NVIDIA Corp. – Santa Clara, US)
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The first steps include programmatic proof of concept (POC) starter projects that are co-led
between the Data Center and Selected Experimental Facilities, community outreach with
workshops and centers of excellence along with training and development events such as
hackathons.

The POC projects will develop and demonstrate the new workflows that connect the
Science Data center with the Experimental facility, where AI is used as part of the workflow
that connects them.. An example of a program is the SuperFacility Project at NERSC1.
Each POC project must have scope that is sufficient to demonstrate the potential for
improved science and identify features and requirements that can’t be met with the current
infrastructure.

A key feature of the new workflows are AI algorithms is that once trained at the HPC
Data Center are fast enough and accurate to be deployed at the experiments for control
and/or improvement of experiment operation. Another feature is Active Learning that
may be executed at the Data Center and/or the experimental facility that can be used in
conjunction with experiment operation. Simulation workflows are critical for explainability
and validation of AI approaches as well as for generation of synthetic training datasets.

Examples of projects include improving the control of a Fusion Experiment, Multi
Messenger Astrophysics, Improving the process for drug discovery with a biology lab or
data analysis/evaluation on the fly as a neutron/x-ray/electron/light scattering experiment
executes. Key features have already been identified that will need to be acted on in the near
term to allow for the new workflow include the following:

1 https://www.nersc.gov/research-and-development/superfacility/
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The Data Center Facility will need to include features that allow interactive usage that is
interrupt driven along with the current batch oriented usage model for long running jobs.
Both the Data Center and Experiment will need to be able to support the bandwidth
and latency for data transfer. Reconfigurable storage will also be needed to support the
experiment as it executes, which acts as a workflow buffer between the storage at the
experiment and persistent platform storage at the data center.
The Experiment hardware/software should allow for automated control. Curated data in
the form that it can be used by AI will also be required.
Funding agencies will need to initiate projects to pursue the new use cases for a sufficient
period of time to develop a working example.

Workshops that cross domains as well as specific to a given domain will be needed to
promote the new methods, socialize new concepts, identify key requirements and avoid
redundancy. Where possible Centers of Excellence, Data Hubs and other vehicles should be
developed for concentrated effort on specific projects within a community. The workshops
and COEs should be balanced with Hackathons and bootcamps that can serve to help train
users on the new tools and approaches. Additionally, hackathons and bootcamps allow
for collective efforts to address challenging problems relevant for multiple facilities (inverse
problem-related issues, uncertainty quantification, etc.) that result in code that can be
evaluated.
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5.8 Section X: Figures
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Figure 7 Conceptual drawing of the current state of the art in which computer centers (left)
and experimental facilities are connected primarily through laborious manual data transfers and
coordinated largely through publications.
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Figure 8 Conceptual drawing of future AI augmented facilities in which AI informs and supports
all aspect of an experiment from real-time control to on premise compute, on demand processing,
and large-scale simulations capabilties.
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