
Report from Dagstuhl Seminar 23161

Pushing the Limits of Computational Combinatorial
Constructions
Lucia Moura∗1, Anamari Nakic∗2, Patric Östergård∗3,
Alfred Wassermann∗4, and Charlene Weiß†5

1 University of Ottawa, CA. lmoura@uottawa.ca
2 University of Zagreb, HR. anamari.nakic@fer.hr
3 Aalto University, FI. patric.ostergard@aalto.fi
4 Universität Bayreuth, DE. alfred.wassermann@uni-bayreuth.de
5 Universität Paderborn, DE. chweiss@math.uni-paderborn.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23161 “Pushing the
Limits of Computational Combinatorial Constructions”.

In this Dagstuhl Seminar, we focused on computational methods for challenging problems in
combinatorial construction. This includes algorithms for construction of combinatorial objects
with prescribed symmetry, for isomorph-free exhaustive generation, and for combinatorial search.
Examples of specific algorithmic techniques are tactical decomposition, the Kramer-Mesner
method, algebraic methods, graph isomorphism software, isomorph-free generation, clique-finding
methods, heuristic search, SAT solvers, and combinatorial optimization. There was an emphasis
on problems involving graphs, designs and codes, also including topics in related fields such as
finite geometry, graph decomposition, Hadamard matrices, Latin squares, and q-analogs of designs
and codes.
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Objectives of the seminar
In this Dagstuhl Seminar, the focus was on computational methods for challenging problems
in combinatorial construction. This seminar brought together researchers with different
expertise: those with a deep understanding of combinatorial objects and experts in algorithm
design and high-performance computing. Participants identified important problems for
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codes, graphs, and designs; and discussed state-of-the-art methods for challenging problems
in constructing combinatorial objects. Additionally, the seminar brought together experts on
combinatorial algorithms and representatives from different scientific communities developing
practical techniques for attacking general hard problems, for example, in the framework of
SAT solving, integer linear programming, and optimization.

General overview of the research topic
In discrete mathematics, construction and classification of structures are core problems.
Computational methods have been essential in settling important mathematical questions,
such as the proof of the four color theorem (Apel and Haken, 1976) and the nonexistence
of projective planes of order 10 (Lam et al., 1989). Isomorph-free exhaustive searches are
quite challenging with the number of nonequivalent objects often growing exponentially with
the input size. For example, the classification of Steiner triple systems of order 19 (Kaski
and Östergård, 2004) involved producing a list of more than 11 billion such objects. Vast
exhaustive searches are also used to establish negative results, as in the non-existence of
16-clue Sudoku puzzles (McGuire et al., 2012), celebrated by the media due to its connection
with the famous puzzle. Many of the central problems, even subproblems, are (NP-)hard,
but with improved algorithms and general approaches, it is still possible to handle instances
with not too small parameters.

Structure of the seminar
This seminar was conducted in three main forms: plenary sessions, tutorials, and working
groups. Each morning started with a plenary session, where we asked four speakers to give
60 minute lectures:

Curtis Bright (University of Windsor, CA): SAT + Isomorph-free Generation ...and the
Quest for the Minimum Kochen–Specker System
Daniel Heinlein (Aalto University, FI): Enumerating Steiner Triple Systems: Counting
STS(21)s
Vedran Krčadinac (University of Zagreb, HR): On higher-dimensional designs
Pascal Schweitzer (TU Darmstadt, DE): Automorphisms, Isomorphisms, and Canoniza-
tion: recent developments

In the first two days of the seminar six leading experts gave 30 minute tutorials and
provided input on the current limits of the area:

Brendan McKay (Australian National University – Acton, AU): SURGE : A fact open-
source chemical graph generator
Gordon Royle (The University of Western Australia – Crawley, AU): Three stories about
computational combinatorics
Manfred Scheucher (TU Berlin, DE): Using SAT Solvers in Combinatorics and Geometry
Brett Stevens (Carleton University – Ottawa, CA): Thoughts on Computational Design
Theory
Leo Storme (Ghent University, BE): Computational methods in finite geometry
Ian M. Wanless (Monash University – Clayton, AU): Open problems on orthogonal(ish)
arrays
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42 23161 – Pushing the Limits of Computational Combinatorial Constructions

In the remaining time participants were partitioned into five working groups, brainstorming
and exchanging ideas:

Improving reliability and usability of computational projects
SAT working group
Isomorphism Solvers
Design theory working group
Tactical decompositions working group
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3 Overview of Talks

3.1 SAT + Isomorph-free Generation ...and the Quest for the Minimum
Kochen–Specker System

Curtis Bright (University of Windsor, CA)

License Creative Commons BY 4.0 International license
© Curtis Bright

Joint work of Zhengyu Li, Curtis Bright, Vijay Ganesh
Main reference Zhengyu Li, Curtis Bright, Vijay Ganesh: “An SC-Square Approach to the Minimum

Kochen–Specker Problem, SC-Square Workshop, 2022.
URL https://cs.uwaterloo.ca/ cbright/reports/sc2-ks-preprint.pdf

I will describe a new approach for exhaustively generating combinatorial objects by combining
a satisfiability (SAT) solver with an isomorph-free exhaustive generation method such as
orderly generation. The SAT solver is able to limit the search to objects that satisfy given
criteria, while the isomorph-free generation method ensures that the objects are generated
up to isomorphism. The combined search procedure performs orders-of-magnitude faster
than a pure SAT or pure computer algebraic approach, as the SAT solver tailors the search
to the object in question while the isomorph-free generation avoids duplication of work when
the search space is highly symmetrical.

As a motivating example, I will discuss how this approach can be applied to search for
Kochen–Specker (KS) systems, an important combinatorial object arising in quantum physics.
An exhaustive computer search in 2016 was able to disprove the existence of a KS system of
21 or fewer vectors. Our SAT and orderly generation approach is over 32,000 times faster
than the previously used approach and has also ruled out the existence of a KS system with
22 vectors.

References
1 J. Conway, S. Kochen. The Free Will Theorem. Foundations of Physics, 2006.
2 S. Uijlen, B. Westerbaan. A Kochen-Specker System Has at Least 22 Vectors. New Generation

Computing, 2016.
3 C. Bright, J. Gerhard, I. Kotsireas, V. Ganesh. Effective Problem Solving Using SAT Solvers.

Maple Conference 2019.
4 C. Bright, K. Cheung, B. Stevens, D. Roy, I. Kotsireas, V. Ganesh. A nonexistence

certificate for projective planes of order ten with weight 15 codewords. Applicable Algebra
in Engineering, Communication and Computing, 2020.

5 C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based Resolution of
Lam’s Problem. AAAI 2021.

6 T. Junttila, M. Karppa, P. Kaski, J. Kohonen. An adaptive prefix-assignment technique for
symmetry reduction. Journal of Symbolic Computation, 2020.

7 J. Savela, E. Oikarinen, M. Järvisalo. Finding periodic apartments via Boolean satisfiability
and orderly generation. LPAR 2020.

8 M. Kirchweger, M. Scheucher, S Szeider. A SAT Attack on Rota’s Basis Conjecture. SAT
2022.

9 Z. Li, C. Bright, V. Ganesh. An SC-Square Approach to the Minimum Kochen–Specker
Problem, SC-Square Workshop, 2022.

10 C. Bright, I. Kotsireas, V. Ganesh. When Satisfiability Checking Meets Symbolic Computa-
tion. Communications of the ACM, 2022.
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3.2 Enumerating Steiner Triple Systems: Counting STS(21)s
Daniel Heinlein (Aalto University, FI)

License Creative Commons BY 4.0 International license
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Joint work of Östergård, Patric R. J.
Main reference Daniel Heinlein, Patric R. J. Östergård: “Enumerating Steiner Triple Systems”, CoRR, Vol.

abs/2303.01207, 2023
URL https://arxiv.org/abs/2303.01207

Steiner triple systems (STSs) have been classified up to order 19. Earlier estimations of the
number of isomorphism classes of STSs of order 21, the smallest open case, are discouraging
as for classification, so it is natural to focus on the easier problem of merely counting the
isomorphism classes. Computational approaches for counting STSs are here considered and
lead to an algorithm that is used to obtain the number of isomorphism classes for order 21:
14,796,207,517,873,771.

3.3 On higher-dimensional designs
Vedran Krčadinac (University of Zagreb, HR)

License Creative Commons BY 4.0 International license
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Joint work of Vedran Krčadinac, Mario Osvin Pavčević, Kristijan Tabak
Main reference Vedran Krčadinac, Mario Osvin Pavčević, Kristijan Tabak: “Cubes of symmetric designs”, CoRR,

Vol. abs/2304.05446, 2023.
URL https://doi.org/10.48550/arXiv.2304.05446

Higher-dimensional Hadamard matrices were introduced in the 1970s by Paul Shlichta [3, 4].
In 1990, Warwick de Launey [1] developed a general framework for higher-dimensional designs
of various types, including symmetric designs, Hadamard matrices, and their generalizations.
In this talk I will focus on n-dimensional Hadamard matrices and symmetric designs. I will
give an overview of the known constructions and present a new construction giving examples
that may have inequivalent slices. The new construction was recently discovered in a joint
work with Mario Osvin Pavčević and Kristijan Tabak [2]. There are many open questions in
this area, including the existence of symmetric designs for some small parameters (v, k, λ)
and dimensions n ≥ 3 when they are known to exist for n = 2. Some of these problems could
be good candidates for clever computer constructions.

References
1 W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs,

Combinatorial mathematics and combinatorial computing, Vol. 1 (Brisbane, 1989). Australas.
J. Combin. 1 (1990), 67–81.

2 V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023.
http://arxiv.org/abs/2304.05446

3 P. J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16
(8) (1971), 825–826.

4 P. J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25
(1979), no. 5, 566–572.

23161

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2303.01207
https://arxiv.org/abs/2303.01207
https://arxiv.org/abs/2303.01207
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2304.05446
https://doi.org/10.48550/arXiv.2304.05446
https://doi.org/10.48550/arXiv.2304.05446
http://arxiv.org/abs/2304.05446


46 23161 – Pushing the Limits of Computational Combinatorial Constructions

3.4 SURGE : A fact open-source chemical graph generator
Brendan McKay (Australian National University – Acton, AU)
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Chemical structure generators are used in cheminformatics to produce or enumerate virtual
molecules based on a set of boundary conditions. The result can then be tested for properties
of interest, such as adherence to measured data or for their suitability as drugs. The starting
point can be a potentially fuzzy set of fragments or a molecular formula. In the latter case,
the generator produces the set of constitutional isomers of the given input formula. Here we
present the novel constitutional isomer generator surge based on the canonical generation
path method. Surge uses the nauty package to compute automorphism groups of graphs.
We outline the working principles of surge and present benchmarking results which show
that surge is currently the fastest structure generator. Surge is available under a liberal
open-source license.

3.5 Three stories about computational combinatorics
Gordon Royle (The University of Western Australia – Crawley, AU)
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I discuss three projects in computational combinatorics that highlight issues relating to
correctness, reliability and re-usability of the results obtained by such projects.

The three projects discussed are the proof of the four-colour theorem, the proof of the
non-existence of a projective plane of order 10 and the construction of the catalogue of
8-element matroids.

3.6 Using SAT Solvers in Combinatorics and Geometry
Manfred Scheucher (TU Berlin, DE)

License Creative Commons BY 4.0 International license
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In this talk, we discuss how modern SAT solvers can be used to tackle mathematical problems.
We discuss various problems to give the audience a better understanding, which might be
tackled in this fashion, and which might not. Besides the naive SAT formulation further
ideas are sometimes required to tackle problems. Additional constraints such as statements
which hold “without loss of generality” might need to be added so that solvers terminate in
reasonable time.
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https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1186/s13321-022-00604-9
https://doi.org//10.1186/s13321-022-00604-9
https://doi.org//10.1186/s13321-022-00604-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


L. Moura, A. Nakic, P. Östergård, A. Wassermann, and C. Weiß 47

3.7 Automorphisms, Isomorphisms and Canonization: recent
developments

Pascal Schweitzer (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
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Joint work of Markus Anders, Jendrik Brachter, Martin Grohe, Pascal Schweitzer, Julian Stieß, Daniel Wiebking

The Graph Isomorphism Problem, the task of computing automorphisms groups, and
Canonization are closely related tasks revolving around symmetries. Indeed, the task
of computing symmetries is known to be equivalent to the isomorphism problem, both
theoretically and practically. In my talk I will survey two recent advances in the area of
algorithmic symmetry detection and exploitation.

I will describe recent improvements in practical graph isomorphism solvers. I will also
hint at new insights regarding the structure of automorphism groups of graphs subject to
various restrictions. Finally, I will relate canonization algorithms of general combinatorial
objects to canonization of graphs and describe new algorithmic ideas for this problem.

The talk reports on various papers including joint work with Markus Anders, Jendrik
Brachter, Martin Grohe, Julian Stieß, and Daniel Wiebking.

References
1 Markus Anders, Jendrik Brachter, and Pascal Schweitzer. A characterization of

individualization-refinement trees. In Hee-Kap Ahn and Kunihiko Sadakane, editors,
32nd International Symposium on Algorithms and Computation, ISAAC 2021, December
6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021.

2 Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism test.
In Martin Farach-Colton and Sabine Storandt, editors, Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference, January
10-11, 2021, pages 73–84. SIAM, 2021.

3 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries.
In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European
Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual
Conference), volume 204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021.

4 Markus Anders and Pascal Schweitzer. Search problems in trees with symmetries: Near
optimal traversal strategies for individualization-refinement algorithms. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 16:1–16:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

5 Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a preprocessor for
symmetry detection. In 21st International Symposium on Experimental Algorithms, SEA
2023, July 24-26, 2023, Barcelona, Spain, 2023. to appear.

6 Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms
canonizing combinatorial objects. In Moses Charikar and Edith Cohen, editors, Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 1247–1258. ACM, 2019.
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3.8 Thoughts on Computational Design Theory
Brett Stevens (Carleton University – Ottawa, CA)

License Creative Commons BY 4.0 International license
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I will briefly review a history of computational design theory with a bias towards highlighting
the breadth of approaches available. I will state three theoretical ideas which seem to be highly
relevant to implementing searches: the existence of designs with prescribed automorphism
groups, the relationship between designs and codes and the existence of designs derived
from other designs. There is a small set of particular algorithms which are heavily used and
software systems and implementations which are very useful. I will end with some open
problems from large and significant to modest, personal and idiosyncratic.

3.9 Computational methods in finite geometry
Leo Storme (Ghent University, BE)

License Creative Commons BY 4.0 International license
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In finite geometries, many different substructures are investigated. Many are investigated for
their geometrical interest, but many are also investigated because of their relevance for other
domains, such as coding theory.

Many examples of substructures have not yet been found. It is therefore a good idea
to search for examples of substructures in finite geometries. It is also good to classify
substructures with computational methods. Some computational methods search specifically
for substructures in the respective finite geometries. But there are also many graphs associated
to finite geometries, so some searches for substructures can be retranslated to clique or
coclique problems in the corresponding graphs.

Concrete problems that can be investigated via computational methods:
searches for large partial spreads in finite projective spaces and in finite classical polar
spaces [4],
searches for even sets in the projective plane PG(2, q), q even,
2-colorings in Grassmann graphs [3],
computational searches for open problems on strongly regular graphs [2],
Cameron-Liebler sets in finite projective spaces and in finite classical polar spaces, and
the classification of small affine vector subspace partitions in AG(5, 2) [1].

References
1 J. Bamberg, Y. Filmus, F. Ihringer, and S. Kurz, Affine vector space partitions, preprint,

2022. http://arxiv.org/abs/2211.16561.
2 A.E. Brouwer and H. Van Maldeghem, Strongly regular graphs. Encyclopedia of Mathematics

and its Applications, 182. Cambridge University Press, Cambridge, 2022.
3 S. De Winter and K. Metsch, Perfect 2-Colorings of the Grassmann Graph of Planes.

Electron. J. Combin. 27 (2020), no. 1, Paper No. 1.21, 19 pp.
4 S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence, The maximum size of

a partial 3-spread in a finite vector space over GF(2). Des. Codes Cryptogr. 54 (2010),
101-107.
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3.10 Open problems on orthogonal(ish) arrays
Ian M. Wanless (Monash University – Clayton, AU)

License Creative Commons BY 4.0 International license
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Joint work of Ian M. Wanless, Michael Gill, Balázs Pozsgay, Marton Mestyan

A famous combinatorial problem is to find the largest set of MOLS (Mutually orthogonal
Latin squares) of order 10. After more than 200 years of research on this question, all that is
known is that the answer is in the interval [2,6]. In 2014 Dukes and Howard showed that
any set of 4 or more MOLS of order 10 must satisfy two non-trivial relations; that is linear
dependencies in their incidence matrix. In recent work with my student Michael Gill we have
ruled out any relations on pairs of MOLS of order 10. The logical next step is to attempt a
computation of triples of MOLS that satisfy two relations. I discussed the feasibility of such
a computation and some of the theory of relations.

Another open problem that I discussed was motivated by recent work on multidirectional
unitary operators in quantum information theory. That work has inspired us to define
a new combinatorial object called a cyclically orthogonal array (COA). This is a variant
of traditional orthogonal arrays where we now only require (combinatorial) orthogonality
between sets of columns that are cyclically consecutive. Many open problems were discussed,
since this is a brand new field. From the physics point-of-view there is interest in COAs that
have symmetries which result in space-reflexive or time-reflexive unitary operators.

References
1 M. J. Gill and I. M. Wanless, Pairs of MOLS of order ten satisfying non-trivial relations,

Des. Codes Cryptogr. 91 (2023), 1293–1313.
2 M. Mestyán, B. Pozsgay and I. M. Wanless, Multi-directional unitarity and maximal entan-

glement in spatially symmetric quantum states, preprint, 2022. http://arxiv.org/abs/
2210.13017.

4 Working groups

4.1 Improving reliability and usability of computational projects
Gordon Royle (The University of Western Australia – Crawley, AU)

License Creative Commons BY 4.0 International license
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Joint work of Working group members

We had a wide-ranging discussion on a variety of issues relating to the practice of combinatorial
computing.

This included discussions about a number of aspects:
Making data sets accessible and persistent, even if its creator retires, dies or loses interest.
Certificates of non-existence of solutions for SAT and/or ILP and CSP solvers.
What journals should do with respect to computational papers in terms of how much
detail of the computation is needed, and how to permit referees and/or readers to replicate
the results.
Discussion of other attempts to tackle this question, such as funding bodies’ requirements
for “data management plans” and initiatives like MARDI.
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A variety of other anecdotes, personal viewpoints, pointers to successful and unsuccessful
examples of how data can or should be shared, discussion on programs such as GAP,
Magma and SageMath.

This was all useful and interesting, but it was more a sharing of opinions and knowledge,
and we do not have a specific ongoing “problem” to be solved.

4.2 SAT working group
Manfred Scheucher (TU Berlin, DE), Curtis Bright (University of Windsor, CA), Daniel
Heinlein (Aalto University, FI), Petteri Kaski (Aalto University, FI), Leonard H. Soicher
(Queen Mary University of London, GB), and Alfred Wassermann (Universität Bayreuth,
DE)

License Creative Commons BY 4.0 International license
© Manfred Scheucher, Curtis Bright, Daniel Heinlein, Petteri Kaski, Leonard H. Soicher, and Alfred
Wassermann

In this working group we have discussed how to model various mathematical problems. Alfred
Wassermann and Leonard Soicher both presented interesting instances of the exact cover
problem, but for none of the instances we managed to find a solution or disprove existence
yet. Apparently, the clique finding tools by Leonard Soicher still outperformed the sat solvers.
Together with Curtis Bright we successfully tackle a problem by Ian Wanless on maximally
nonassociative quasigroups. More specifically, while the solver managed to show that there
exists a unique example on 9 elements in about 10 CPU hours, further engineering (dynamic
symmetry breaking) will be required to progress on 10 and 11 elements.

4.3 Isomorphism Solvers
Pascal Schweitzer (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Pascal Schweitzer

Among other things, graph isomorphism solvers and canonization tools find application in
the context of isomorphism-free exhaustive generation.

The Working Group on Isomorphism Solvers discussed numerous recent developments
regarding theoretical and practical aspects of the development of symmetry detection,
isomorphism, and canonization tools. The discussions extended to the limits of current
solvers, recent new algorithmic ideas, and low-level implementation details in the core
subroutines of existing libraries.

Specifically, the following topics were discussed: current implementations of the software
libraries nauty/traces, bliss, and dejavu, the performance of isomorphism solvers on
Latin squares and similar combinatorial objects, and efficient implementations of color
refinement. We also discussed design questions regarding the interface that isomorphism
solvers do, and should, provide. Finally, the current benchmark library for isomorphism
testing was discussed. The authors of the symmetry software libraries present in the Working
Group expressed that they welcome the challenging instances that other participants may
encounter in their research.
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4.4 Design theory working group
Ian M. Wanless (Monash University – Clayton, AU), Ilias S. Kotsireas (Wilfrid Laurier
University – Waterloo, CA), Denis Krotov (Sobolev Institute of Mathematics – Novosibirsk,
RU), and Leo Storme (Ghent University, BE)
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A number of open problems in design theory were discussed, involving areas as diverse as
Golay pairs, Hadamard matrices, orthogonal arrays and finite geometry.

4.4.1 Cyclically orthogonal arrays

Motivated by recent work in quantum physics we studied objects called cyclically orthogonal
arrays (COAs). These are similar to standard orthogonal arrays except that the orthogonality
is only required for sets of columns which are consecutive (in a cyclic order). We found that
linear cyclic COAs can be built using cyclotomic polynomials. Also linear space- or time-
reflexive examples can be made using generator matrices that satisfy particular symmetries.
We also found that non-linear COAs can be built from right-inverse-property quasigroups.

4.4.2 Hadamard matrices

A conjecture of O’Cathain and Wanless [1] states that any trade in a complex Hadamard
matrix of order n must contain at least n entries. This conjecture is known to be true for
real Hadamard matrices, and for trades that result from multiplying a rectangular subarray
by a scalar. A special case of Hadamard matrices with a trade of size n placed in diagonal
entries has a skew structure in the real case and skew or mixed-skew structure in the case of
complex Hadamard {1, −1, i, −i}-matrices. The existence of mixed-skew Hadamard matrices
is known only for several small orders. Bicyclic mixed-skew complex Hadamard matrices of
order 2n are equivalent to i-reversible periodic complex Golay pairs of sequences of length n,
whose existence is also unknown for large n.

4.4.3 Golay pairs

Periodic Golay pairs constitute the periodic analog of the well-studied Golay pairs. The
computational state-of-the-art in Periodic Golay pairs is contained in the 3 papers [2, 3, 4].
We pose as an open problem the construction of Periodic Golay pairs of order 90. Given that
90 is a highly composite number, the method of compression seems like an appropriate tool.

4.4.4 Finite geometry

See the separate abstract by Leo Storme in Section 3.9.

References
1 P. Ó Catháin and I. M. Wanless, Trades in complex Hadamard matrices, in C. J. Colbourn

(ed.), Algebraic Design Theory and Hadamard Matrices, Springer Proceedings in Mathematics
and Statistics 133 (2015), 213–221.

2 D.Z. Djoković, I.S. Kotsireas, Periodic Golay pairs of length 72. Algebraic design theory
and Hadamard matrices, 83–92, Springer Proc. Math. Stat., 133, Springer, Cham, 2015.

3 D.Z. Djoković, I.S. Kotsireas, Some new periodic Golay pairs. Numer. Algorithms 69 (2015),
no. 3, 523–530.

4 D.Z. Djoković, I.S. Kotsireas, D. Recoskie, J. Sawada, Charm bracelets and their application
to the construction of periodic Golay pairs. Discrete Appl. Math. 188 (2015), 32–40.

23161

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


52 23161 – Pushing the Limits of Computational Combinatorial Constructions

4.5 Tactical decompositions working group
Alfred Wassermann (Universität Bayreuth, DE)
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Combinatorial designs. A combinatorial t-(v, k, λ) design (V, D) is a set V consisting of v

points together with a set D of k-subsets of V called blocks such that each t-subset of V is
contained in exactly λ blocks, see e.g. [1, 2] or [7]. The q-analogs of combinatorial designs
are called subspace designs, see [5] for an introduction and overview.

It is well known that a t-(v, k, λ) design (V, D) is also an s-(v, k, λs) design for 0 ≤ s ≤ t

where

λs = λ

(
v−s
t−s

)(
k−s
t−s

) .

In particular, λ0 is the number of blocks of the design and λ1 is the number of blocks each
point is contained in, which is called the replication number. It is also well known that for a
t-(v, k, λ) design the number of blocks which contain a given i-set of points and are disjoint
to a given j-set of points is equal to

λi,j = λ

(
v−i−j

k−j

)(
v−t
k−t

) ,

see e.g. [7, II.4.2, p. 80].

Incidence matrices. The v × λ0 point-block incidence matrix N of a t-(v, k, λ) design (V, D)
is defined by

NP,B =
{

1, if P ∈ B,
0, otherwise

for P ∈ V and B ∈ D. Bose [4] showed for the point-block incidence matrix N of a 2-(v, k, λ)
design the equation

NN⊤ = λ1I + λ(J − I), (1)

where I is the v × v identity matrix and J is the v × v all-ones matrix.

For a general t-(v, k, λ) design with t ≥ 2, the
(

v
e

)
× λ0 higher incidence matrix N (e) for

e ≤ k is defined by

N
(e)
E,B =

{
1, if E ⊂ B,
0, otherwise

for E ∈
(

V
e

)
and B ∈ D. The

(
v
s

)
×

(
v
e

)
incidence matrix W (se) between s-subsets and all

e-subsets of V is defined by

W
(se)
S,E =

{
1, if S ⊂ E,
0, otherwise

https://creativecommons.org/licenses/by/4.0/
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for S ∈
(

V
s

)
and E ∈

(
V
e

)
. Wilson [18] showed for e + f ≤ t the equation

N (e) (N (f))⊤ =
min{e,f}∑

i=0
λe+f−i, i(W (ie))⊤ W (if) . (2)

Note that N (e)(N (f))⊤ contains in the row labeled by the e-subset E and in the column
labeled by the f -subset F the number of blocks of the design which contain both E and F .
It is clear that this number is λe+f−µ with µ = #(E ∩ F ), i. e.(

N (e) (N (f))⊤)
E,F

= λ#(E∪F ) .

Also in [18], Wilson proved among others the equation

W (ie) N (e) =
(

k − i

e − i

)
N (i) for 0 ≤ i ≤ e ≤ k . (3)

For e = 1 and i = 0 equation (3) simply states that each block of the design contains k

points.

Tactical decomposition matrices. The use of tactical decompositions in design theory
has been initiated by Dembowski [9], see also [10] and Beutelspacher [3, pp. 210–220].
Dembowski’s main interest was to use tactical decompositions to study properties of symmetric
designs. From an algorithmic point of view, tactical decompositions were first used by Janko
and Tran Van Trung [11] to construct symmetric (78, 22, 6) designs. Their method was picked
up and generalized in numerous papers, see [6, 8, 14] to name just a few. In [17] the use of
tactical decompositions has been generalized to subspace designs.

Dembowski [9, 10] studied tactical decompositions of incidence structures from group
actions, see also Beutelspacher [3, pp. 210–220].

Let (V, D) be a 2-(v, k, λ) design invariant under some group G. The action of G partitions
V into orbits P1, . . . , Pm and D into orbits B1, . . . , Bn. Let N be the point-block incidence
matrix of (V, D) and for i ∈ {1, . . . , m} and j ∈ {1, . . . , n} let Ni,j be the submatrix of N

whose rows are assigned to the elements Pi and whose columns to the elements of Bj . Then
Ni,j has a constant number of ones in each row and a constant number of ones in each
column. Such a decomposition of N into submatrices Ni,j is called tactical.

If we replace for all i, j the submatrix Ni,j by the number of ones in each row we get an
(m × n)-matrix ρ, and if we replace the submatrix Ni,j by the number of ones in each column
we get an (m × n)-matrix κ. The matrices ρ and κ are both called tactical decomposition
matrix. In [9] the following properties of ρ and κ and the matrices P = diag(#Pi) and
B = diag(#Bi) are shown:

P · ρ = κ · B (4)
ρ · (1, . . . , 1)⊤ = (λ1, . . . , λ1)⊤ (5)

(1, . . . , 1) · κ = (k, . . . , k) (6)
ρ · κ⊤ = (λ1 − λ) · I + λ · P · J (7)

The general approach outlined by Janko and Tran Van Trung is to first enumerate all
tactical decomposition matrices of designs with prescribed automorphisms up to permutations
of rows and columns. For this, Dembowski [9] has given powerful constraints for a matrix to
be a tactical decomposition of the point-block incidence matrix of a 2-design. In a second
step, all remaining tactical decomposition matrices are expanded – if possible – to point-block
incidence matrices of designs.
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Compared with the well-known method of Kramer and Mesner [13] which also restricts
the search space to designs with prescribed automorphisms, the method of Janko and Tran
Van Trung has the advantage that it is not necessary to compute all orbits of k-subsets of V

and therefore allows the search for 2-(v, k, λ) designs with larger k and smaller automorphism
group. The drawback however is that it does not reduce the search space if the prescribed
group of automorphisms is point-transitive, and that it seemed to be restricted to 2-designs
for a long time.

In recent years two generalizations to t-designs for t ≥ 2 have been published.

The first generalization in [14, 15, 16] gives constraints for the tactical decomposition of
the point-block incidence matrix of a t-design of general strength t ≥ 2:

▶ Theorem 1. Let 1 ≤ s ≤ t and m1, . . ., Ms be positive integers, such that ms +· · ·+ms ≤ t.
Let Pi1 , . . ., Pis

be mutually distinct. Then
n∑

j=1
ρi1jκm1−1

i1j κm2
i2j · · · κms

isj =
∑
ω∈Ω

λω1+···+ωs

{
m1
ω1

}
(#Pi1 − −1)ω1−1

s∏
j=2

{
mj

ωj

}
(#Pij

)ωj
,

where

Ω = {(ω1, . . . , ωs) | 1 ≤ ωj ≤ mi},{
n

k

}
are the Stirling numbers of second kind and (x)n =

∏n−1
i=0 (x − i) is the falling factorial.

The second generalization in [12] defines higher tactical decomposition matrices and
shows the Wilson’s equations can be generalized to these higher tactical decomposition
matrices.

For x ∈ {0, . . . , v}, let Px be a partition of the set
(

V
x

)
. The part of Px containing some

X ∈
(

V
x

)
will be denoted by [X]. We call (P0, . . . ,Pv) a tactical sequence of partitions on V

if for all x, y ∈ {0, . . . , v} with x ≤ y and for all [X], X ∈ Px and [Y ], Y ∈ Py, the numbers

R
(xy)
[X],Y = #{Y ∈ Y | X ⊆ Y } and K

(xy)
X ,[Y ] = #{X ∈ X | X ⊆ Y }

are well-defined, i. e. they do not depend on the choice of the representative X of [X] nor
of the representative Y of [Y ]. In this case, the above defined numbers yield matrices
R(xy), K(xy) ∈ ZPx×Py . A common source of tactical sequences of partitions are permutation
groups G ≤ SV , where for all x ∈ {0, . . . , v} the partition Px is the set of orbits of the
induced action of G on

(
V
x

)
.

In the following, a tactical sequence (P0, . . . ,Pv) of partitions on V is fixed. The matrices
R(xx) and K(xx) are #Px × #Px identity matrices. The matrices R(0x) and K(0x) are of size
1×#Px, where all entries of K(0x) are 1, and R(0x) contains the part sizes, i. e. R

(0x)
{∅},X = #X .

Let (V, D) be t-(v, k, λ) design with t ≤ k ≤ v − t, such that the block set is the union of
parts in Pk, i. e. D =

⋃
B with B ⊆ Pk.

For x ∈ {0, . . . , k} we define the tactical decomposition matrices ρ(x), κ(x) ∈ ZPx×B via

ρ
(x)
[X],B = #{B ∈ B | X ⊆ B} and κ

(x)
X ,[B] = #{X ∈ X | X ⊆ B}.

By the properties of the fixed tactical sequence (P0, . . . ,Pv) of partitions on V , this definition
does not depend on the choice of the representatives. Note that ρ(x) is the restriction of
R(xk) to the columns whose labels are contained in B. In particular, ρ(0) and κ(0) are of size
1 × #B, where all entries of κ(0) are 1, and ρ(0) contains the sizes of the block parts.

In [12] the following theorem has been proved for these higher tactical decomposition
matrices.
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▶ Theorem 2. Let V be a finite set of size v and let (P0, . . . ,Pv) be a tactical sequence of
partitions on V . Let (V, D) be a non-empty t-(v, k, λ) design with t ≤ k ≤ v − t, such that
the block set has the form D =

⋃
B with B ⊆ Pk. Let e, f be non-negative integers with

e + f ≤ t.
Then

ρ(e) (κ(f))⊤ =
min(e,f)∑

j=0
λe+f−−j, j (K(je))⊤R(jf).

Moreover, for non-negative integers x, y with x ≤ y ≤ k

R(xy) ρ(y) =
(

k − x

y − x

)
ρ(x) and K(xy) κ(y) =

(
k − x

y − x

)
κ(x).

It should be noted that the above theorem has a q-analog version for subspace designs.

Summary of the work. In the working group an introduction to tactical decomposition
matrices has been given. This was followed by a long discussion in which the two generaliza-
tions were compared and where it was attempted to derive the first generalization from the
second. As a result, the exact relation of the two generalizations could not be determined
easily and will be subject of future research work.

Next, algorithmic use of the second generalization was studied. The participants of the
working group agreed that the approach by Janko and Tran van Trung might be generalized
to higher tactical decompositions, however its applicability will be restricted to a very specific
set of parameters of combinatorial designs and choice of prescribed automorphism groups.

As a followup, research groups from Zagreb and Bayreuth are planning to write a
proposal for a joint research project to develop a practical algorithm based on higher tactical
decomposition matrices.

Another topic of the working group was the indexing step of the Janko-Tran van Trung
algorithm and possible generalizations.

Finally, for graphs and hypergraphs the concept of tactical decomposition matrices is
known as equitable partitions. Main contributions for these have been given by the research
group in Novosibirsk. The presentation of results on equitable partitions lead to surprising
connections to the so called Hartman’s conjecture in design theory. This was explored and
further research on this connection seems to be promising.
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