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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23162 “New Frontiers
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between the two fields. The report collects the abstracts of talks and open problems presented in
the seminar, as well as brief progress reports from the working groups.
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1 Executive Summary
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In modern life, it is of paramount importance that computational tasks be performed both
precisely and efficiently. Thus, the design and analysis of algorithms to execute such tasks
lie at the heart of computer science. However, since the proof of the Cook-Levin theorem
in the 1970s, numerous problems have been shown to be NP-hard. Fortunately, the field
of parameterized complexity [7, 5, 10, 20], initiated in the 1980s by Downey and Fellows,
yields (in)tractability results that are both deeper and fine-grained. Specifically, it shows
that the “hardness” of an NP-hard problem can often be traced to particular parameters of
its instances.
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In a nutshell, a parameterization of a problem Π is the association of a parameter k

with every instance of Π, capturing how “structured” the instance is. The main goal in
parameterized complexity is to confine the combinatorial explosion in the runtime to a
suitable parameter k, rather than to let it depend on the entire input size n. So, fixed-
parameter algorithms naturally “scale” with the amount of structure of a given instance.
Formally, a problem is fixed-parameter tractable (in short, in FPT) with respect to a parameter
k if it can be solved by an algorithm, called a fixed-parameter algorithm, whose runtime
is bounded by f(k) · nO(1) for some computational function f of k. Over the past four
decades, the parameterized complexity paradigm has yielded a rich and deep theory, with
powerful approaches to obtain fixed-parameter algorithms for a variety of problems as well
as machinery that can rule out such algorithms. For problems in FPT, it also offers the
necessary tools to develop the fastest possible fixed-parameter algorithms (often with tight
conditional lower bounds).

While the parameterized paradigm can be applied in a wide range of different fields, the
focus of this Dagstuhl Seminar lay squarely on its potential synergies with graph drawing, a
self-standing discipline that has evolved tremendously over the last decades. Indeed, given
the ubiquity of graphs in many fields of science and technology, there is a strong interest
in algorithms that can provide effective graphical representations of graphs, for the sake
of both analysis and communication. Today, graph drawing is a mature area of computer
science [6, 17, 21, 22] with its own annual conference, the International Symposium on Graph
Drawing and Network Visualization (GD)1. The focus of graph drawing as a research area
today is on both fundamental and practical aspects, such as combinatorics and algorithm
design on the one hand, and the development of network visualization systems and interfaces
on the other hand. At a very high level, graph drawing deals with the construction and
analysis of geometric representations of graphs and networks subject to specific layout
conventions and constraints, such as different notions of planarity or more general crossing
constraints, grid layouts, orthogonal drawings, and many more. Notably, this gives rise
to many computational problems that are NP-hard in the classical sense but naturally
multivariate, making parameterized analysis particularly attractive. Yet, so far, research
at the intersection of parameterized complexity and graph drawing has not reached its full
potential.

Parameterized Graph Drawing. Most of the early efforts to conduct research at the
intersection of parameterized complexity and graph drawing have been directed at variants of
the classic Crossing Minimization problem, introduced by Turán in 1940 [23], parameterized
by the number of crossings. Here, the objective is to draw a given graph in the plane so as to
induce the minimum number of crossings, which was shown to be FPT already in 2001 [13].
A few subsequent works followed [18, 15], including the best paper of GD 2019 [16]. Other
examples of graph drawing problems successfully targeted by the parameterized paradigm
include crossing minimization in restricted settings [8, 19], crossing-sensitive subgraph
detection [1, 14], parameterized algorithms for stack and queue layouts [2, 3, 4], and drawing
extension problems [9, 11]. While these and other works already lay down the foundations of
possible positive synergies between the two fields, there still is a multitude of problems and
opportunities in graph drawing where parameterized analysis would be beneficial and has
not yet been carried out.

1 see www.graphdrawing.org

23162

www.graphdrawing.org


60 23162 – New Frontiers of Parameterized Complexity in Graph Drawing

Seminar Goals
The main goal of the seminar was to explore and initiate collaborations at the intersection of
Graph Drawing and Parameterized Complexity, with emphasis on new research frontiers. In
particular:

First, the seminar focused on prominent topics in Graph Drawing, encouraging the consid-
eration of topics that have been only little – or not at all – studied from the perspective
of Parameterized Complexity. Here, the discussions centered on the identification of open
problems of wide interest as well as directions for future research.
Second, the seminar focused on new tools and sub-areas of Parameterized Complexity,
such as structural parameterization, non-standard general decomposition theorems, and
FPT-approximation, which have been rarely – or not at all – examined in the context of
Graph Drawing. The aim was to understand their potential and relevance in the context
of the aforementioned topics.

The seminar included invited talks focused on the above goals, setting the ground for the
participants to propose problems (and, more generally, research directions) to work on, as
well as be familiar with relevant tools to work with. The final selection of problems targeted
by working groups was carried out during the seminar itself. This, in turn, also resulted in
the establishment of new and fruitful collaborations.

Seminar Program
We started the seminar week on Monday morning with short self-introduction presentations
of all participants, followed by the four invited overview talks mentioned above, which aimed
to set the grounds for the research discussions throughout the week. We invited two speakers
from each of the two communities coming together in this seminar to create a common
understanding of research questions, tools, and terminology. The first of these lectures was
given by Saket Saurabh on the topic of fixed-parameter tractability for geometric intersection
graphs. Next, Ignaz Rutter spoke about the widely used SPQR tree data structure for
representing planar graph embeddings. As the third speaker, Bart M. P. Jansen highlighted
three frontiers in parameterized graph drawing based on lossy (structural) kernelization
and hybrid parameterizations. Lastly, Giordano Da Lozzo presented complexity results and
parameterized algorithms for the upward book embedding problem. Further, we had a short
session for reports about the final results of working groups from the previous edition of the
seminar in 2021. Section 3 contains more detailed abstracts of the invited lectures and the
reports from Dagstuhl Seminar 21293.

The remainder of the seminar focused on research discussions on new frontiers of paramet-
erized graph drawing. In order to identify these frontiers, we had two open problem sessions,
one on Monday afternoon and one on Tuesday morning. A total of 13 open research questions
(see Section 4) were contributed by the participants. Based on a preference vote, we created
five working groups for the seminar week, each having six or seven participants mixed from
the two communities joined in this seminar. The following five topics were investigated in
depth:
1. Parameterized Complexity of the Maximum Bimodal Subgraph Problem
2. Parameterized Complexity of Upward Planarity and st-Planar Edge Completion Problems
3. Parameterized Algorithms for the Sequential Crossing Number Problem
4. Deleting Few Edges from Ordered Graphs to Make them k-Plane
5. Clustered Planarity and Planar F-Augmentations
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For each of the five working groups, Section 5 contains a detailed report of their current state
of research. During the seminar, on Tuesday and Thursday afternoon, we had plenary sessions
for the groups’ progress reports sharing their latest results and further plans. Wednesday
afternoon was reserved for the traditional excursion, for which we enjoyed a Treetop-Walk
near the Great Bend in the Saar and then hiked to Mettlach for a traditional brewery dinner.

Future Plans
The composition of the working groups was made having in mind two main criteria: balancing
the number of participants from the two communities, guaranteeing the presence of some
young researcher in each group. This strategy was indeed successful and it led to new
collaborations between researchers in the graph drawing and parameterized complexity
communities, as well as to new opportunities for young researchers. As a primary outcome
of the seminar, we expect research papers published at the core conferences and journals for
the graph drawing and parameterized complexity communities, for instance:

The International Symposium on Computational Geometry (SoCG),
The International Symposium on Graph Drawing and Network Visualization (GD),
The ACM-SIAM Symposium on Discrete Algorithms (SODA), and
The International Symposium on Algorithms and Computation (ISAAC).

In the mid- and long-term horizon, the seminar will also help to gradually blend the
boundary between the two communities, with young researchers building their academic
journey on the intersection of the two fields. In this respect, the seminar can also lead to the
development of new parameterized tools and techniques that are designed to deal with the
specific obstacles that arise when trying to apply parameterized approaches in the graph
drawing setting.

This Dagstuhl Seminar and its predecessor (Dagstuhl Seminar 21293) have revealed, in
a systematic way, the astounding wealth of problems in Graph Drawing that are naturally
multivariate and hence suitable for parameterized analysis. The two communities are now
aware of these problems, and the above mentioned conferences (among others) publish every
year a growing number of results making progress on these problems. Besides this, informal
feedback from the communities confirms the great interest in having such seminars on a
more regular basis. We therefore plan to have follow-up seminars to support the growth of
parameterized complexity in graph drawing.

Evaluation
Taking into account the results of the Dagstuhl survey conducted after the seminar and
informal feedback to the organizers, it is fair to say that the seminar was highly appreciated.
The participants provided significantly above-average scores for the seminar, particularly
in areas concerning new collaborative research projects, identification of novel research
directions, and collaboration between different research communities. Overall, we believe
that the seminar’s goals of identifying new research directions and initiating collaborations at
the intersection of the two different fields of Graph Drawing and Parameterized Complexity
were very successful. We are looking forward to seeing the first scientific outcomes of the
seminar in the near future and to continuing the efforts to support the growth of interest in
parameterized analysis of problems in Graph Drawing.

23162
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3 Overview of Talks

3.1 The Hitchhiker’s Guide to SPQR-trees
Ignaz Rutter (Universität Passau, DE)

License Creative Commons BY 4.0 International license
© Ignaz Rutter

SPQR-trees are a widely used tool in Graph Drawing that is at the heart of a large body of
algorithmic results that are concerned with embeddings of biconnected planar graphs. Their
key property is that they break down the complicated task of choosing a planar embedding
of a biconnected graph into multiple independent choices, each of which is either binary or
consists in arbitrarily choosing a permutation of a set of parallel subgraphs between two pole
vertices.

The talk gives an introduction to SPQR-trees that is aimed at a broad audience. To
cater to different backgrounds, we first give three different definitions of SPQR-trees that
are complementary to each other with respect to the properties that can be easily deduced
from them. In the second part of the talk we illustrate how to use SPQR-trees to solve
constrained embedding problems, i.e., how to find embeddings of planar graphs that satisfy
certain constraints. The talk finishes with a brief discussion of extensions of SPQR-trees
to planarity variants for directed graphs, such as upward- an level-planarity, where similar
structures can be defined for single-source graphs.

3.2 New frontiers for graph drawing: Lossy (structural) kernelization
and hybrid parameterizations

Bart M. P. Jansen (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
© Bart M. P. Jansen

URL https://www.win.tue.nl/ bjansen/talks/FrontiersGraphDrawing.pptx

The talk covers three frontiers for the study of graph drawing problems from the perspective of
parameterized complexity. The frontiers are illustrated by examples for 2-Layer Planarization,
a fruitfly for parameterized graph drawing. Additionally, a sample result on each frontier is
given based on my recent work.

The first frontier consists of kernelization for structural parameters. What is the strongest
parameterization that admits a polynomial kernel? This question was recently resolved for
the undirected Feedback Vertex Set problem, using the notion of elimination distance.

The second frontier is lossy kernelization, which aims to reduce instances in such a way
that an approximate solution to the reduced instance can be lifted to a (slightly worse)
approximation to the original. A constant-factor lossy kernel of polynomial size was recently
developed for Vertex Planarization.

The last frontier consists of hybrid parameterizations improving simultaneously on
parameterizations by solution size and treewidth. Fixed-parameter tractable algorithms for
such parameterizations were recently found for Vertex Planarization. The running time of
this algorithm is not much worse than for solution-size parameterizations.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.win.tue.nl/~bjansen/talks/FrontiersGraphDrawing.pptx
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3.3 Upward Book Embeddings: Complexity and Parameterized
Algorithms

Giordano Da Lozzo (University of Rome III, IT)

License Creative Commons BY 4.0 International license
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A k-page upward book embedding (kUBE) of a directed acyclic graph (a DAG, for short) is a
book embedding of the DAG on k pages with the additional requirement that the vertices
appear in a topological ordering along the spine of the book. The page number of a DAG is
the minimum k for which it admits a kUBE. In 1999, Heath and Pemmaraju conjectured
that the recognition problem of DAGs with page number 2, called 2UBE Testing, is
NP-complete [3]. After 23 years, Bekos et al. have finally settled this conjecture in the
affirmative [1]. In particular, this NP-completeness result holds even for planar st-graphs.
On the algorithmic side, Binucci et al. have complemented the previous negative result by
providing an O(f(β) · n + n3)-time algorithm for 2UBE Testing of planar st-graphs, where
β is the branchwidth of the input graph and f is a singly-exponential function on β [2]. In
this talk, we will review the previously mentioned main advancements in the complexity of
2UBE Testing. Moreover, we will survey interesting variants of the problem and highlight
promising research directions in the study of parameterized algorithms for these variants.
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3.4 Report from the Previous Edition: Product structure for h-framed
graphs

Petr Hlinený (Masaryk University – Brno, CZ)
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Joint work of Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, Michael Kaufmann
Main reference Michael A. Bekos, Giordano Da Lozzo, Petr Hlinený, Michael Kaufmann: “Graph Product Structure
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The focus of the working group from the 2021 seminar was on the product structure theorem
of Dujmovic, Joret, Micek, Morin, Ueckerdt, and Wood (J. ACM 2020). We were following
two research directions, to find nontrivial direct algorithmic applications of the product
structure theory (which do not seem to exist in this strict sense), and to suitably extend the
scope of the product structure beyond planarity, while still giving explicit small bounds. We
succeeded in the second direction as follows.
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A graph is h-framed, if it admits a drawing in the plane whose uncrossed edges induce a
biconnected spanning plane graph with faces of size at most h. For instance, every 1-planar
graph is a subgraph of a 4-framed graph, and every h-framed graph is O(h2)-planar. As the
main result, we have proved:

▶ Theorem. Let G be a not-necessarily simple h-framed graph with h ≥ 3. Then the
simplification of G is a subgraph of the strong product H ⊠ P ⊠ Kq, where H is a planar
graph with tw(H) ≤ 3, q = 3⌊ h

2 ⌋ + ⌊ h
3 ⌋ − 1, and P is a path.

We have used this theorem to improve known upper bounds on the queue number and
the non-repetitive chromatic number on 1-planar and optimal 2-planar graphs, and to give
explicit upper bounds on the twin-width of these graphs.

3.5 Report from the Previous Edition: Upward Planarity Testing
Kirill Simonov (Hasso-Plattner-Institut, Universität Potsdam, DE)
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Main reference Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou,

Kirill Simonov: “Parameterized Algorithms for Upward Planarity”, CoRR, Vol. abs/2203.05364,
2022.

URL https://doi.org//10.48550/arXiv.2203.05364

In Upward Planarity Testing, the input is a directed acyclic graph (DAG) G and the
question is whether there exists a planar drawing of G such that all edges are drawn upward,
i.e., all edges monotonically increase in the vertical direction. Upward Planarity Testing
has been extensively studied in the literature, and arises naturally in a number of situations
where the aim is to obtain easy-to-parse planar representations of DAGs. The problem
has been shown to be NP-complete already 25 years ago [5], and there are a few special
cases known when the problem can be solved in polynomial time. Among others, when G

is restricted to class of single-source DAGs [1], or the class of orientations of series-parallel
graphs [4]. There have also been a couple of fixed-parameter tractability results for Upward
Planarity Testing.

It was the goal of our working group at the previous edition of the seminar to push
the boundaries Upward Planarity Testing from the parameterized complexity per-
spective, generalizing and unifying the previous results. Our first target was to generalize
the polynomial-time single-source algorithm [1], which resulted in a single-exponential FPT
algorithm when parameterized by the number of sources [2]. We also considered the problem
parameterized by prominent structural parameters. We showed that Upward Planarity
Testing is XP parameterized by treewidth, and FPT parameterized by treedepth of the
underlying undirected graph [2]. All three algorithms are obtained using a novel framework
for the problem that combines SPQR tree-decompositions with parameterized techniques.
Finally, we used our improved analysis on the series-parallel case: We showed that Upward
Planarity Testing can be solved in time O(n2) on n-vertex series-paralled graphs [3],
while the previous-best algorithm runs in time O(n4) [4].
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3.6 Report from the Previous Edition: A Parameterized Approach to
Orthogonal Compaction
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Orthogonal graph drawings are used in applications such as UML diagrams, VLSI layout,
cable plans, and metro maps. We focus on drawing planar graphs and assume that we
are given an orthogonal representation that describes the desired shape, but not the exact
coordinates of a drawing. Our aim is to compute an orthogonal drawing on the grid that has
minimum area among all grid drawings that adhere to the given orthogonal representation.

This problem is called orthogonal compaction (OC) and is known to be NP-hard, even
for orthogonal representations of cycles [1]. We investigate the complexity of OC with
respect to several parameters. Among others, we show that OC is fixed-parameter tractable
with respect to the most natural of these parameters, namely, the number of kitty corners
of the orthogonal representation: the presence of pairs of kitty corners in an orthogonal
representation makes the OC problem hard. Informally speaking, a pair of kitty corners is a
pair of reflex corners of a face that point at each other. Accordingly, the number of kitty
corners is the number of corners that are involved in some pair of kitty corners.
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4 Open problems

4.1 The Maximum Bimodal Subgraph Problem
Walter Didimo (University of Perugia, IT)

License Creative Commons BY 4.0 International license
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Let G be a plane digraph, i.e., a directed planar graph with a fixed planar embedding. A
vertex v of G is bimodal if all its incoming edges (and hence all its outgoing edges) are
consecutive in the cyclic order around v. The graph G is bimodal if all its vertices are
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bimodal. When G is not bimodal, the maximum bimodal subgraph problem (MBS) asks to
extract from G an embedding preserving subgraph with the maximum number of edges. This
problem is known to be NP-hard by Binucci et al. [1], who also describe an efficient heuristic
and a branch-and-bound expnential-time algorithm.

The goal is to initiate the study of the MBS problem from the parameterized complexity
perspective. In particular, investigate the existance of a polynomial kernel of the MBS
parameterized by the number of non-bimodal vertices. Also, is the MBS problem in FPT for
some of its structural parameterizatons?
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4.2 Planar F-Augmentation of Clustered Graphs
Giordano Da Lozzo (University of Rome III, IT) and Siddharth Gupta (University of Warwick
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A flat clustered graph (for short flat c-graph) is a pair (G, V) where G is a graph and V is a
partition of the vertices of G. The parts of V are called clusters. A flat c-graph is independent
if each of its clusters induces an independent set. Given a family F of connected graphs
and an independent flat c-graph C = (G, V = {V1, . . . , Vk}), the Planar F-Augmentation
problem for C asks to test for the existence of sets Z1, . . . , Zk of non-edges of G such that
G ∪

⋃k
i=1 Zi is planar and G(Vi, Zi) ∈ F for i = 1, . . . , k. If F is the family of all paths,

then the problem coincides with the Clustered Planarity with Linear Saturators
problem, which is known to be NP-complete [1]. On the other hand, if F is the family of
all trees, then the problem coincides with the Clustered Planarity problem, which has
been recently shown to be solvable in polynomial time [2].

We highlight some interesting research directions in the study of the Planar F-
augmentation problem. First, concerning the setting in which F is the set of all paths,
the mentioned NP-completeness stimulates the search for exact parameterized and sub-
exponential algorithms for the problem, both in the fixed and in the variable embedding
setting. Moreover, albeit the problem is known to be NP-complete if all clusters, except one,
are trivial, i.e., they each consist of a single vertex, it is still unknown whether the problem
is para-NP-hard in the total number of clusters. Finally, as paths and trees may have linear
radius, we regard as an appealing question, at the other side of the radius spectrum, to settle
the complexity of the problem when F is the family of all stars. In this latter setting, it is
possible to show that the problem reduces to a constrained planarity problem on the graph
obtained by identifying all the vertices belonging to the same cluster, whose study may be of
independent interest.
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4.3 The complexity of recognizing Witness Graphs
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Witness graphs are a generalization of proximity graphs introduced by Aronov, Dulieu, and
Hurtado [1]. A witness graph G = (V, E) is defined by a quadruple (P, S, W, ±): P is a set
of points in plane and V = P ; S provides the geometric shapes (disks, squares, rectangles);
W is set of “witness” points/witnesses in plane; and uv ∈ E if and only if

if +: some s ∈ S covers u, v, w for some w ∈ W

if −: some s ∈ S covers u, v, but no w ∈ W

Examples of witness graphs include:
Any Delaunay Triangulation can be defined as (P, S, P, −), with S being the set of all
disks.
(P, S, ∅, −) defines a complete graph on P as the vertex set.
Witness Gabriel Graphs [2] are defined by (P, S, W, −), where S contains disks for pairs
u, v ∈ P , such that uv is diameter.

Open Questions

What is the complexity of the following problems:
1. Given a graph G and positive integer k, can we represent it as Witness Delaunay Graph/W.

Gabriel Graph/Witness Square Graph with at most k witnesses (i.e., |W | ≤ k)?
2. Given graph G, the set of points P , and S, can we find W such that G is witness graph

represented by (P, S, W, −) or (P, S, W, +)? A polynomial time algorithm is known for
Witness Gabriel Graph. However, the complexity of finding a minimum size W is open
even for Witness Gabriel Graph.
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4.4 Depth-first search trees of minimum height
Petr A. Golovach (University of Bergen, NO)
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Spanning trees, in particular, depth-first spanning trees (DFS-trees) are popular tools in graph
drawing. For these purposes, it may be convenient to consider DFS-trees with additional
properties like minimum/maximum number of leaves or minimum height. The additional
constraints usually make finding such trees NP-hard. The investigation of the parameterized
complexity of problems of this type was initiated by Fellows, Friesen, and Langston [1]. We
are interested in the parameterized complexity of Min Height DFS-Tree problem whose
task is, given a graph G and an integer h, to decide whether G has a DFS-tree of height
at most h. This problem is known to be NP-complete [1]. It can be observed that if G

has a DFS-tree of height at most h then the treedepth of G is upper bounded by h. This
implies that Min Height DFS-Tree is FPT when parameterized by h. Is it possible to
give an efficient, say, single-exponential direct algorithm for the problem? Another direction
of research is to investigate the (parameterized) approximability of the minimum height of a
DFS-tree.
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4.5 Sequential Crossing Number
Thekla Hamm (Utrecht University, NL)
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One of the most classically important features of graph drawings is a small number of
crossings and the Crossing Number problem, which asks for the minimum number of
crossings a graph can be drawn with , is arguably the most famous graph drawing problem. A
driving motivation of the field of graph drawing is the visualisation of graphs – a task which
is ubiquitous in areas such as the analysis of social networks, bioinformatics and linguistics
or generally when information can be captured by graphs. Often such information can evolve
over time and hence the treatment of temporal aspects is an important challenge in graph
drawing. In particular, is reasonable to require some “stability” of drawing of a graph that
changes over time in the sense that parts of the graph occur in consecutive time steps are
not redrawn in a different way.

Motivated by this, we define the Sequential Crossing Number problem as general-
isation of Crossing Number in which, given a sequence of graphs, we want to draw each
of them in a way that drawings of intersections of consecutive graphs agree, and the total
number of crossings (i.e. the sum of the number of crossings in each drawing) is minimised.

For i ∈ [t − 1] we say that Gi and Gi+1 are consecutive. Let us also point out two
alternative objectives that could be motivated in the same spirit: Instead of requiring∑

i∈[t] crn(Gi) ≤ k, it could also be interesting to require maxi∈[t] crn(Gi) ≤ k, i.e. minimise
the maximum number of crossings in any graph, or

∑
i∈[t] crn(Gi) − crn(Gi

∣∣
Gi∩Gi−1

) ≤ k, i.e.
minimise the total number of crossings but counting crossings the drawing of the intersection
of consecutive graphs only once.
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Of course, classic Crossing Number is captured by t = 1, and this already implies
NP-hardness of the problem. This is why our open problems will target parameterised
algorithms for Sequential Crossing Number. Unless specified otherwise, we consider the
parameterisation by k.

Sequential Crossing Number is closely related to the Simultaneous Crossing
Number problem [1] which was proposed as a natural generalisation of the well-known
Simultaneous Embedding with Fixed Edges problem (t-SEFE for short and most
prominently considered for t = 2) [2], but has not received a lot of attention since. The
conceptual difference between Sequential Crossing Number and Simultaneous Cross-
ing Number is that the former ensures stability of the drawings of subgraphs as long as
they appear, whereas the latter additionally ensures stability of drawings of subgraphs that
may disappear and reappear over time. t-SEFE is equivalent to Simultaneous Crossing
Number for k = 0.

Both problems are, by definition equivalent as soon as there is some graph H such that
∀i ∈ [t − 1] Gi ∩ Gi+1 = H. In particular, this means that the known NP-hardness for
t-SEFE on such instances, even if t = 3 and H is a star implies that we cannot hope for a
parameterised (even XP) algorithm for Sequential Crossing Number in k + t, even on
instances with a common pairwise intersection of consecutive graphs which is a star.

We pose the general open problem:

▶ P 1. Can we identify conditions on the pairwise intersections of consecutive graphs under
which there is an FPT or XP-algorithm for Sequential Crossing Number in k or k + t?

We propose two concrete directions for such conditions: In the special case that k = 0 and
each intersection of consecutive graphs is 3-connected, the Sequential Crossing Number
is equivalent to testing the planarity of each graph, and hence polynomial-time solvable.
Moreover, branching and rigidising the drawings of intersections of consecutive graphs which
contain crossings and branching on the graphs whose drawings contain crossings involving
edges outside of any consecutive intersection in a hypothetical solution reduces Sequential
Crossing Number on instances in which the pairwise intersections of consecutive graphs
are 3-connected to Partially Predrawn Crossing Number (the problem of deciding
the minimum number of crossings required to extend a drawing of a subgraph to the entire
graph). Partially Predrawn Crossing Number is known to be in FPT [3]. From this
it can be argued that Sequential Crossing Number on instances in which the pairwise
intersections of consecutive graphs are 3-connected is in XP.

▶ P 2. Is Sequential Crossing Number on instances in which the pairwise intersections
of consecutive graphs are 3-connected in FPT?

A similar idea would be to rigidise branched drawings for small intersections of consecutive
graphs which could yield an XP-algorithm for Sequential Crossing Number parameterised
by k + t + maxi∈[t−1] |E(Gi ∩ Gi+1)|.

▶ P 3. Is Sequential Crossing Number in FPT parameterised by k+t+maxi∈[t−1] |E(Gi∩
Gi+1)|?

In a different direction polynomial-time algorithm known for t-SEFE on instances with a
common pairwise intersection of all input graphs requires that the pairwise intersection of
graphs be 2-connected. It would be interesting to extend this result:

▶ P 4. Is Sequential Crossing Number on instances with a common pairwise 2-
connected intersection of consecutive graphs in FPT? Is this even in XP? What about the
parameterisation by (k + t)?
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The concept of a left-aligned BFS tree of a planar graph, defined below, was formulated by
P. Hliněný while working on an upper bound on the twin-width of planar graphs. It is an
important ingredient in the currently best such bound of 8 by Hliněný and Jedelský (briefly
noting, without left-aligned BFS trees the same proof would yield only an upper bound of
11). A left-aligned BFS tree can be computed in linear time for a given planar embedding.
The featured question (or open problem) is whether the concept of a left-aligned BFS tree
can find other applications in algorithmic problems related to planarity, and in particular in
the graph drawing area.

▶ Definition. Consider a plane graph G, and a BFS tree T spanning G and rooted in a
vertex r of the outer face of G, and picture (for clarity) the embedding G such that r is the
vertex of G most at the top. An informal intention is to have a BFS tree T such that there
is no other BFS tree of G which is “to the left” of T in at least some place of the geometric
picture of G and T . Formally, for two adjacent vertices u, v ∈ V (G), {u, v} ∈ E(G), we say
that u is to the left of v (wrt. T ) if neither of u, v lies on the vertical path from r to the other,
and the following holds; if r′ is the least common ancestor of u and v in T and Pr′,u (resp.,
Pr′,v) denote the vertical path from r′ to u (resp., v), then the cycle (Pr′,u ∪ Pr′,v) + uv has
the triple (r′, u, v) in this counter-clockwise cyclic order. A BFS tree T of G with the BFS
layering L = (L0, L1, . . .) is called left-aligned if there is no edge f = uv of G such that, for
some index i, u ∈ Li−1 and v ∈ Li, and u is to the left of v.

We remark that this concept might seem closely related to the previously used leftist
canonical ordering of planar graphs by Badent, Baur, Brandes, and Cornelsen, but it is not
that close since the latter does have have the BFS property. Yet, possible applications of
both notions may lie in similar areas.
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4.7 The st-Planar Graph Augmentation Problem
Fabrizio Montecchiani (University of Perugia, IT)
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A directed graph G is an st-planar graph if it admits a planar embedding such that: (i) it
contains no directed cycle; (ii) it contains a single source vertex s and a single sink vertex t;
and (iii) s and t both belong to the outer face of the planar embedding. A popular result in
graph drawing states that a directed acyclic graph (DAG) G has an upward planar drawing
if and only if G is a subgraph of an st-planar graph. Since testing upward planarity is
NP-complete, it follows that testing if a graph is a subgraph of an st-planar graph is also
hard. On the other hand, checking if a DAG is st-planar can be easily done in polynomial
time.

Based on this motivation we propose to study the st-Planar Graph Augmentation Problem
(stPA), which is defined as follows. Let G = (V, E) be a DAG, and let k be a positive integer.
Is it possible to add at most k edges to G such that the resulting graph is an st-planar graph
up to the addition of a super source s and of a super sink t in the outer face of the graph? As
a natural open problem, we ask whether stPA admits a fixed-parameter tractable algorithm
when parameterized in its natural parameter k.

4.8 The parameterized complexity of Queue Number using structural
parameters

Sebastian Ordyniak (University of Leeds, GB)
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The Queue Number of an undirected graph G is the minimum number of pages h such that
G has s h-queue layout (see also https://en.wikipedia.org/wiki/Queue_number).

An h-queue layout of G = (V, E) is an ordering <q of the vertices together with a partition
P of the edge set of G into h sets such that for every P ∈ P, if the vertices of G are drawn
on the line according to the ordering <q, then no two edges in P form a rainbow, i.e., there
are no two edgese = (u, v) and e = (x, y) in P such that u < x < y < v. The following is
known about Queue Number:

NP-complete even for one page.
polynomial-time for fixed ordering (due to k-rainbow obstructions)
For one page: known to be fpt by treedepth [1]
FPT by vertex cover for arbitrary number of pages

Open Problems:
For one page: FPT by treewidth or feedback edge number?
For arbitrary number of pages: FPT by feedback edge number, treedepth, treewidth?
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4.9 Upward Planarity Testing Parameterized by Treewidth
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In Upward Planarity Testing, the input is a directed acyclic graph (DAG) G and the
question is whether there exists a planar drawing of G such that all edges are drawn upward,
i.e., all edges monotonically increase in the vertical direction. Upward Planarity Testing
has been extensively studied, and was shown to be NP-complete already 25 years ago [1],
while many polynomial-time algorithms in special cases were also known.

As an outcome of the previous edition of the seminar, it has been shown that Upward
Planarity Testing admits an algorithm with running time nO(tw) [2], where n is the
number of vertices in the graph and tw is its treewidth. In parameterized complexity terms,
Upward Planarity Testing is thus in XP when parameterized by the treewidth of the
underlying undirected graph.

A natural question is then whether the algorithmic result above can be improved. Spe-
cifically, is Upward Planarity Testing W[1]-hard or FPT parameterized by treewidth?
If the former holds, is the running time of nO(tw) tight. For example, can it be shown that
there is no no(tw)-time algorithm under the ETH?
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4.10 Graph embeddings: Drawing vs. learning
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Graph drawing is about finding embeddings of graphs in low-dimensional space. I proposed
to look at the embedding problem from a new angle, namely, from a machine-learning point
of view. In machine learning, embeddings are also mappings into a low-dimensional space,
that represents a condensed form of information, from a high-dimensional space, such as the
space of human-written documents or the space of graphs from an application area. The
goals of the classical embedding in graph drawing and embedding in machine learning are
related, but different: In graph drawing, we usually aim for readability by, e.g., minimizing
the number of crossings. In machine learning, we aim to embed similar entities (such as
Dagstuhl open problem descriptions) close to each other in the embedding space. A famous
embedding algorithm in the machine-learning realm is Node2vec [1], which aims to map the
vertex set of a given graph to a low-dimensional embedding space such that similar vertices,
as measured by a certain neighborhood relation based on co-occurrence in random walks, are
close to each other in the embedding space.

It seems interesting to:
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1. Explore machine-learning embedding problems from a visualization point of view, i.e., is
a graph easier to understand if we embed similar vertices close to each other in 2d-space,
like in Node2vec?

2. Consider discrete variants of embedding problems: The dimensions in the embedding
space can be thought of as underlying features of the data. For interpretability, it would
be desirable to have few easy-to-understand features. I.e., it would be interesting to map
to low-dimensional spaces where each dimension has only small domain, that is, a small
number of admissible values.

3. Develop efficient algorithms that exploit properties such as the low dimensionality of the
embedding space, small domains, and input graph structure.

For a concrete starting point, we may look at a simplified version of Node2vec: Here, we
are given a graph G = (V, E) and we aim to find a mapping f : V → Rd for some small d

such that
∑

u∈V log Pr(N(u) | f(u)) is maximized. Intuitively and simplified, we want to
maximize the number of vertices with the same neighborhood that are mapped to the same
point in the embedding space. After several approximations, Grover and Leskovec [1] arrive
at the objective to maximize

∑
u∈V

− log(Zu) +
∑

v∈NS(u)

f(u)f(v)

 ,

where Zu =
∑

v∈V exp(f(u)f(v)). Herein, we can think of the logarithmic term as a baseline
and each term in the sum measures the deviation from the baseline. Simplifying further, we
may observe that in the vertices in the baseline term are weighed lower (due to taking the
logarithm) than the vertices in the other term. If we weigh both at exactly half instead, we
obtain the following objective:

∑
u∈V

 ∑
v∈N(u)

(f(u)f(v)) −
∑

v∈V \N(u)

f(u)f(v)

 .

For instance, if we simply want to find an embedding into binary, one-dimensional space
{0, 1}, we thus want to find an induced subgraph (corresponding to the vertices assigned 1)
that maximizes the number of edges contained in the subgraph minus the number of nonedges
in the subgraph. A natural first step is to find some baseline complexity results or promising
algorithms by looking at such special cases and then generalize to larger domains and
dimensions.

References
1 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In

Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and
Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
pages 855–864. ACM, 2016. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939754. URL
https://doi.org/10.1145/2939672.2939754.

23162

https://doi.org/10.1145/2939672.2939754


78 23162 – New Frontiers of Parameterized Complexity in Graph Drawing

4.11 Drawing Hypergraphs “Nicely”
Yushi Uno (Osaka Metropolitan University, JP)
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Hypergraphs [1] are not only theoretically interesting as a generalized notion of graphs, but
also has a wide range of applications in many fields, such as database theory, biology, and so
on [3]. Therefore, drawing and visualizing hypergraphs is useful for understanding practical
cases in applied fields.

Examples of such visualized hypergraphs have been appeared in typical textbooks or
papers [1, 2], however, there are many different ways to draw them, and a unified approach
has not yet been fully established. On the other hand, it is often experienced that the level
of understanding a hypergraph varies greatly depending on how it is drawn, and there is a
need for “nice” drawing of hypergraphs.

The criteria for goodness or understandability of a hypergraph drawing could simply be
the number of crossings of hyperedges or the number of curved lines, for example, but the
definition of the crossings itself is not necessarily trivial that might be depending on the
drawing model. Thus, for example, the following kind of problem can be considered:

Minimum Number of Curved Lines
Input: a k-uniform hypergraph (k ≥ 3),
Output: under “straight and curved line model”, what is the minimum number of
curved lines, and what is its node layout?

We would then like to discuss drawing algorithms that optimize such criteria and analyze
these algorithms in terms of their parameterized computational complexity. Possible para-
meters include the number of hyperedges, the number of crossings, the maximum degree,
uniformity, and so on.

This topic is closely related to the notion of set visualization, e.g., https://www.dagstuhl.
de/en/seminars/seminar-calendar/seminar-details/22462, so we have to scrutinize the
results in that field.
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5 Working groups

5.1 A Subexponential FPT Algorithm for Deleting Few Edges from
Ordered Graphs to Make Them p-Plane

Akanksha Agrawal (Indian Institute of Techology Madras, IN), Sergio Cabello (University
of Ljubljana, SI), Michael Kaufmann (Universität Tübingen, DE), Saket Saurabh (The
Institute of Mathematical Sciences – Chennai, IN), Roohani Sharma (MPI für Informatik –
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(Universität Würzburg, DE)
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Introduction
Since (many) crossings usually make it hard to understand the drawing of a graph, much
effort in the area of Graph Drawing has been directed towards reducing the number of
crossings in drawings of graphs. In terms of parametrized complexity, several facets of this
problem have been considered. For example, there are FPT algorithms that, given a graph
G and an integer k, decide whether G can be drawn with at most k crossings [8, 12].

Crossing minimization has also been considered in the setting where each vertex of
the given graph must lie on one of two horizontal lines. This restricted version of crossing
minimization is an important subproblem in drawing layered graphs according to the so-called
Sugiyama framework [17]. There are two variants of the problem; either the vertices on
both lines may be freely permuted or the order of the vertices on one line is given. These
variants are called two-layer and one-layer crossing minimization, respectively. For both,
FPT algorithms exist [5, 13].

Surprisingly, crossing minimization remains NP-hard even when restricted to graphs that
have a planar subgraph with just one edge less [2]. Another way to deal with crossings is
to remove a small number of vertices or edges such that the remaining graph can be drawn
without crossings. In fact, it is known that vertex deletion to planarity is FPT with respect
to the number of deleted vertices [9, 11, 15]. However, the running times of these algorithms
depends at least exponentially on the number of deleted vertices. On the kernelization front,
there exists an α-approximate kernel for vertex deletion to planarity [10], whereas vertex
deletion to outerplanarity is known to admit an (exact) polynomial kernel [4].

In the following, we consider a restricted setting that allows us to obtain substantially
better running times although the graphs to which we delete are more complex than (outer-)
planar graphs.

An ordered graph (G, σ) consists of a graph G and an ordering σ : V (G) → {1, . . . , |V (G)|}
of the vertices of G. For two edges e = (u, v) and e′ = (u′, v′) of an ordered graph
(G, σ), we say that e and e′ cross with respect to σ if σ(u) < σ(u′) < σ(v) < σ(v′) or if
σ(u′) < σ(u) < σ(v′) < σ(v). Let cross(G,σ)(e) denote the set of edges of G that cross e

with respect to σ. We drop the subscript (G, σ) when it is clear from the context. The
ordered graph models the scenario where the vertices of G are placed along a horizontal
line in the order given by σ and all the edges are drawn above the line using curves that
cross as few times as possible. Whenever e and e′ cross with respect to σ, their curves must
intersect. Whenever e and e′ do not cross with respect to σ, their curves can be drawn
without intersections; for example, we may use halfcircles. In this setting, we get a drawing
such that two edges of G cross precisely if and only if they cross with respect to σ.
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We consider the edges of G as directed from the vertex with smaller index to that of
larger index, that is, edge uv is directed (u, v) if σ(u) < σ(v). Given a positive integer p, we
say that an ordered graph (G, σ) is p-plane if every edge in G is crossed by at most p other
edges. We study the parameterized complexity of the following problem.

Ordered Graph Edge Deletion to p-Plane Parameter: k

Input: An ordered graph (G, σ), and a positive integer k

Question: Does there exist a set S ⊆ E(G) of at most k edges such that (G − S, σ) is
p-plane.

An instance of this problem is denoted ((G, σ), k) or simply (G, σ, k).
Given an ordered graph (G, σ), define the conflict graph H(G,σ) as the graph that has

a vertex for each edge of G and an edge for each pair of crossing edges of G. Using this
notion, we can express Ordered Graph Edge Deletion to p-Plane equivalently as the
problem of deleting from H(G,σ) a set of at most k vertices such that the remaining graph has
maximum degree at most p. For general graphs, this problem is called Vertex Deletion
to Degree-p [16]; it admits a quadratic kernel [7, 18].

A Fast FPT Algorithm
The main result of this report is as follows.

▶ Theorem 1. Ordered Graph Edge Deletion to p-Plane admits an algorithm with
running time 2O(p

√
k log(p+k)) · nO(1).

In other words, we obtain a subexponential fixed-parameter tractable algorithm para-
meterized for Ordered Graph Edge Deletion to p-Plane parameterized by k; note
that we consider p to be a constant here (although we made explicit how the running time
depends on p). Our algorithm to prove Theorem 1 has two steps. First it branches on edges
that are crossed by at least p +

√
k other edges. When such edges do not exist, we show

that the conflict graph H(G,σ) has treewidth O(p +
√

k), which allows us to use a known
(folklore) algorithm [14] for Vertex Deletion to Degree-p whose dependency is singly
exponential in the treewidth of H(G,σ).

Branching

We show that we can use branching to reduce any instance to a collection of instances where
each edge e of the graph satisfies |cross(e)| < p +

√
k.

Let e be an edge of G with |cross(e)| ≥ p + ⌈
√

k⌉. If |cross(e)| > p + k, then e

must be deleted, as we cannot afford to keep e and delete enough edges from cross(e). If
|cross(e)| ≤ p + k, then either e must be deleted or at least |cross(e)| − p many edges from
cross(e) must be deleted, so that at most p edges of cross(e) stay. This results in the
following branching rule, where we return an OR over the answers of the following instances:
1. Recursively solve the instance (G − e, σ, k − 1). This branch is called the light branch.
2. If |cross(e)| > p + k, we do not consider other branches. Otherwise, for each subset X of

cross(e) with |cross(e)|−p many edges, recursively solve the instance (G−X, σ, k−|X|).
Each of these branches are called heavy branches.
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We are going to show that the recursion tree has 2O(p
√

k log(p+k)) branches. Note that we
have(

|cross(e)|
|cross(e)| − p

)
≤

(
|cross(e)|

p

)
≤

(
p + k

p

)
≤ (p + k)p

possible heavy branches at each node. Let κ = (p + k)p.
To prove the desired upper bound we interpret the branching tree as follows. First note

that, in each node, we have at most κ heavy branches. We associate a distinct word over the
alphabet Σ = {0, 1, . . . , κ} to each leaf (root to leaf path) of the recurrence tree. For each
node of the recurrence tree, associate a character from Σ in each of its children such that the
child node corresponding to the light branch gets appended the character 0 and the other
nodes (corresponding to the heavy branches) get a distinct character from Σ. Now a word
over the alphabet Σ for a leaf ℓ of the recurrence tree is obtained by taking the sequence
of character on the nodes of the root to leaf ℓ, in order. In order to bound the number of
leaves (and hence the total number of nodes) of the recurrence tree, it is enough to bound
the number of such words. The character 0 is called a light label and all other characters are
called heavy labels. Recall that a light label corresponds to the branch where k drops by 1,
while the heavy labels correspond to the branches where k drops by |cross(e)| − p ≥

√
k.

This implies that each word (that is associated with the leaf of the recurrence tree) has at
most

√
k heavy labels. In order to bound the number of such words, we first guess the places

in the word that are occupied by heavy labels and then we guess the (heavy) labels itself at
these selected places. All other positions have the light label on them and there is no choice
left. Hence, the number of such words is upper bounded by

√
k∑

i=0

(
k

i

)
κi ≤

√
k

(
k√
k

)
κ

√
k ≤

√
k

(
k√
k

)
((p + k)p)

√
k = 2O(p

√
k log(p+k)).

This shows that the number of such words are upper bounded by 2O(p
√

k log(p+k)), and
hence the number of leaves (and nodes) of the recurrence tree are upper bounded by
2O(p

√
k log(p+k)).

Balanced Separators

Let (G, σ) be an ordered graph. For any edge e = (u, v) of G, let span(G,σ)(e) be the set of
all edges (u′, v′) ̸= e of G such that σ(u) ≤ σ(u′) ≤ σ(v′) ≤ σ(v). For any vertex w of G, let
left(G,σ)(w) be the set of all edges (u, v) of G such that σ(u) < σ(v) ≤ σ(w). Whenever it
is clear from the context, we will drop the subscript (G, σ). We say that an edge e of G is
maximal if G contains no edge e′ such that e ∈ span(e′),

▶ Lemma 2 (Balanced Separator). If (G, σ) is an ordered q-plane graph, then G contains a
set X of at most 2(q + 1) edges such that E(G) \ X = E1 ⊎ E2, |E1| ≤ 2m/3, |E2| ≤ 2m/3,
and no edge e1 ∈ E1 crosses an edge e2 ∈ E2 with respect to σ.

Proof. We consider three cases depending on the spans of the edges of G.
Case 1: There exists an edge e = (u, v) ∈ E(G) such that m/3 ≤ |span(e)| ≤ 2m/3.
In this case, let X = cross(e) ∪ {e}, let E1 = span(e), and let E2 = E(G − X) \ E1.
Note that |X| ≤ q + 1, |E1| ≤ 2m/3, and |E2| ≤ 2m/3. Now let e1 = (u1, v1) ∈ E1 and
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Figure 1 Case distinction for the proof of theorem 2.

e2 = (u2, v2) ∈ E2. Since e1 ∈ E1, we have σ(u) ≤ σ(u1) < σ(u2) ≤ σ(v); see Case 1, fig. 1.
Since e2 ∈ E2, we have σ(v2) < σ(u) or σ(v) < σ(u2); see the black and the gray version
of e2 in Case 1, fig. 1, respectively. In both cases, e1 and e2 do not cross.

Case 2: For every edge e ∈ E(G), it holds that |span(e)| ≤ m/3.
Let M ⊆ E(G) be the collection of all maximal edges of G in σ. Let µ = |M |, and let
M = {(u1, v1), . . . , (uµ, vµ)}, where σ(u1) < σ(u2) < · · · < σ(uµ). Note that |left(u1)| ≤
· · · ≤ |left(uµ)| and that |left(u1)| = 0. The equality is due to the fact that u1 is the first
non-isolated vertex of G in σ (and v1 is the rightmost neighbor of u1).

Let a ∈ [p] be the largest index such that |left(ua)| ≤ m/3. Since |left(u1)| = 0, it is
clear that such an index a exists.

We claim that m/3 < |left(ua+1)| ≤ 2m/3 + q. From the choice of a, it is clear that
|left(ua+1)| > m/3. Note that left(ua+1) ⊆ left(ua) ∪ span((ua, va)) ∪ cross((ua, va));
see Case 2, fig. 1. This yields our claim since |left(ua+1)| ≤ |left(ua)| + |span((ua, va))| +
|cross((ua, va))| ≤ 2m/3 + q.

Now let X = cross((ua+1, va+1)) ∪ {(ua+1, va+1)}, E1 = left(ua+1) and E2 = E(G −
X) \ E1. Since m/3 ≤ |left(ua+1)| ≤ 2m/3 + p, |E1| ≤ 2m/3 + p, and |E2| ≤ 2m/3. Finally,
we simply move p edges from E1 to X. Then |X| ≤ 2p + 1 and |E1| ≤ 2m/3. Given our
construction, it is clear that no edge in E1 crosses any edge in E2; see Case 2, fig. 1.

Case 3: There exists an edge e∗ ∈ E(G) such that |span(e∗)| > 2m/3.
Let e = (u, v) be an edge of G such that |span(e)| > 2m/3, and there is no e′ ∈ |span(e)|
such that |span(e′)| > 2m/3. Since Case 1 does not apply, for each e′ ∈ span(e), we have
|span(e′)| ≤ m/3. Let Vuv = {w ∈ V (G) : σ(u) ≤ σ(w) ≤ σ(v)}. Let Guv = G[Vuv], and let
σuv be the restriction of σ to Vuv.

Now we apply Case 2 to the ordered graph (Guv, σuv). This yields a set Xuv ⊆ E(Guv)
of size at most q + 1, and edge sets Euv

1 and Euv
2 such that E(Guv) \ Xuv = Euv

1 ⊎ Euv
2 ,

m/3 ≤ |Euv
1 | ≤ 2m/3, |Euv

2 | ≤ 2m/3, and no edge in Euv
1 crosses any edge in Euv

2 .
Let X = Xuv ∪ cross(e) ∪ {e}. Then |X| ≤ 2(q + 1). Let E1 = Euv

1 and E2 =
E(G − X) \ Euv

1 . Since m/3 ≤ |Euv
1 | ≤ 2m/3, clearly |E2| ≤ 2m/3. It remains to show that

no edge of E2 crosses any edge of E1; see Case 3, fig. 1. By construction, no edge of Euv
2

crosses any edge of Euv
1 . The edges in E2 \ Euv

2 neither cross e nor do they lie in span(e), so
they cannot cross any edge in E1 ⊆ span(e). ◀

Proof of Theorem 1. We now need to establish a relation between the treewidth of the
graph and the size of a balanced separator in it. For this we use the result of Dvořák and
Norin [6] that shows a linear dependence between the treewidth and the separation number of
a graph: the separation number of a graph is the smallest integer s such that every subgraph
of the given graph has a balanced separator of size at most s. In other words, they show
that if the separation number of the graph is s, then the treewidth of such a graph is O(s).
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Recall that (G, σ, k) is an instance of Ordered Graph Edge Deletion to p-Plane.
By Lemma 2, if the ordered graph (G, σ) is (p +

√
k)-plane, then the conflict graph H(G,σ)

has a balanced separator of size at most 2(p +
√

k + 1). Thus, due to the result of Dvořák
and Norin [6], the treewidth of H(G,σ) is O(p +

√
k).

Given a graph with N vertices and treewidth t, one can compute, in (d + 2)t · NO(1)

time, the smallest set of vertices whose deletion results in a graph of degree at most d [14,
Folklore]. Applying this result to the conflict graph H(G,σ), which has at most |V (G)|2 = n2

vertices and treewidth O(p +
√

k), we conclude that Ordered Graph Edge Deletion
to p-Plane can be solved in 2O((p+

√
k) log p) · nO(1) time if the given ordered graph (G, σ) is

(p +
√

k)-plane.
From Branching, we can assume, at the expense of a multiplicative factor of 2O(p

√
k log(k+p))

on the running time, that the given ordered graph (G, σ) is (p +
√

k)-plane. Thus, given
(G, σ, k), we can solve Ordered Graph Edge Deletion to p-Plane in 2O(p

√
k log(p+k))

time. This concludes the proof of Theorem 1. ◀

Open Problems
1. Could we use the concept of the conflict graph for other crossing reduction problems?
2. Is Ordered Graph Edge Deletion to p-Plane W [1]-hard with respect to the natural

parameter k if p is part of the input? Can we reduce from Independent Set? Note
that Vertex Deletion to Degree-p is W [1]-hard with respect to treewidth [1] and
that outer-p planar graphs have treewidth O(p) [3] (which also follows from theorem 2).

3. What if the vertex order is not given? In other words, what is the parametrized complexity
of edge deletion to outer-p planarity?

4. What about computing the crossing number of an ordered graph? Of course, the total
number of crossings is always at least the number of crossings per edge.
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A flat clustered graph (for short flat c-graph) is a pair (G, V) where G is a graph and V is a
partition of the vertices of G. The parts of V are called clusters. A flat c-graph is independent
if each of its clusters induces an independent set. Given a family F of connected graphs
and an independent flat c-graph C = (G, V = {V1, . . . , Vk}), the Planar F-augmentation
problem for C asks to test for the existence of sets Zi of edges joining pairs of vertices in Vi

for i = 1, . . . , k, such that G ∪
⋃k

i=1 Zi is planar and G(Vi, Zi) ∈ F for i = 1, . . . , k. If F is
the family of all paths, then the problem coincides with the Clustered Planarity with
Linear Saturators problem, which is known to be NP-complete [1]. On the other hand,
if F is the family of all trees, then the problem coincides with the Clustered Planarity
problem, which has been recently shown to be solvable in polynomial time [2].

We consider Planar F-augmentation for two classes F , i.e., the set P of all paths and
the set S of all stars. Since it is known that Planar P-augmentation is NP-hard even if
the input graph has no edges, but has many non-trivial clusters (clusters containing more
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than one vertex), we tried to obtain an fpt-algorithm for the parameter treewidth plus the
number of non-trivial clusters using SPQR-trees. Unfortunately, after some consideration,
we had to abandon this approach, after realizing that we were not able to handle spiralling
paths in the solution; see also Figure 4b) in [3] giving a worst-case example for spiralling
paths.

We then focused on obtaining exact algorithms for Planar P-augmentation and we
are now pretty confident that we can obtain a single-expoential 2O(n) algorithm for the
problem in the variable embedding case as well as a subexponential 2O(log n

√
n) algorithm in

the fixed embedding case (if the initial graph is connected). Both algorithms start by guessing
a separator of the solution graph. Then, in the variable embedding case we additionally
guess the partition of the separation (which dominates the run-time in this case and is
the reason that we do not obtain a subexponential-time algorithm). After doing so the
algorithm proceeds recursively in both parts. In the fixed embedding and connected case,
we can circumvent guessing the partition, by guessing the curve through the separator,
which leaves only n

√
n = 2O(log n

√
n) many choices. We leave it open whether either the

variable-embedding case can be improved to a subexponential-time algorithm and whether
we can avoid the log n factor in the exponent for the fixed-embedding case.

Our second main result concerns the Planar S-augmentation problem. Here, we can
show that if the input graph is bi-connected, then Planar S-augmentation can be solved
in polynomial-time in the variable-embedding case. The main ideas behind this algorithm
are as follows. Consider the graph H obtained from G after contradicting every cluster into
a single vertex such that every half-edge in H is assigned the color that is equal to the vertex
in the cluster that it originated from. Our first observation is that G has a solution if and
only if H has a drawing such that all but one color of the half-edges around every vertex is
consecutive. In other words there is at most one color that is split at every vertex. We now
employ a dynamic programming algorithm along an SPQR-tree of H to decide whether H

admits such a drawing. To do so we define the following records for every pertinent graph
corresponding to an artificial arc st: a record stores the colors of the two outermost half-edges
incident to s, the colors of the two outermost half-edges incident to t, and the color that is
split (if there is no split color this remains undefined). It is important to note that every
pertinent graph st has at most 3 colors that also occur outside (otherwise at least two colors
are split and there is no solution for H) and that we do not need to know the identity of any
color that does not occur outside. Therefore, the number of possible colors that we store for
every entry of the record is at most 4, i.e., the color could be one of the at most 3 colors
that also occur outside or it could be another color (which we will denote with the symbol
u). Therefore, the number of records for a pertinent graph is at most 44 + 5 (4 options
for the colors of the outer half-edges and 5 options for the split color). It is then relatively
straightforward to show how the records are computed for S-nodes. For P -nodes, we design
a slightly more involved greedy algorithm that guesses the colors of the outer half-edges
and then proceeds by computing the forced implications. Rather more complicated is the
algorithm for computing R-nodes. Here, we manage to obtain an encoding into 2-SAT after
some preprocessing of the instance. It is not clear to us how to get around the condition
that G has to be bi-connected. Neither do we know, whether a similar approach can be
used for the fixed-embedding case. The main problem with using our approach for the fixed
embedding case is that our initial observation about contradicting every cluster into one
vertex does not longer preserve solutions. This is because the color that is split at any vertex
depends on, where the contracted vertex is placed within the drawing.
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A plane digraph G is a directed planar graph with a given planar embedding. In particular,
the embedding of G defines the circular ordering of the edges incident to each vertex. A
vertex v of G is bimodal if all its incoming edges (and hence all its outgoing edges) are
consecutive in the cyclic order around v. A plane digraph is bimodal if all its vertices are
bimodal. For example, the plane digraph of Figure 2(a) is not bimodal, namely the vertices
3, 4, 5, 7 are bimodal while the vertices 1, 2, 6 are not.

Bimodality is a central property for many graph drawing styles. In particular, it is a
necessary condition for the existence of level-planar and upward planar drawings, where the
edges are represented as curves monotonically increasing in the upward direction according
to their orientations [11, 12, 13, 18]. Bimodality becomes also a sufficient condition for the
existence of embedding-preserving quasi-upward planar drawings, in which edges are allowed
to violate the upward monotonicity a finite number of times at points called bends [5, 6, 7].
Recently, it has been shown that bimodality is also sufficient for the existence of planar
L-drawings of digraphs, in which distinct L-shaped edges may overlap but not cross [1, 2, 3].

Given a digraph G it is possible to decide in linear time if G admits a bimodal planar
embedding, by simply transforming the problem into a planarity testing problem on a suitable
digraph obtained by splitting each non-bimodal vertex of G into two vertices [5]. However,
when G is not bimodal, a problem that naturally arises is to extract from G a subgraph of
maximum size (i.e., with the maximum number of edges) that is bimodal. Unfortunately,
this problem is known to be NP-hard, even when G has a given planar embedding and we
look for an embedding-preserving maximum bimodal subgraph [8]. This problem is called
the Maximum Bimodal Subgraph (MBS) problem. For example, Figure 2(b) shows a bimodal
subgraph of maximum size for the graph of Figure 2(a).

Binucci et al. [8] describe a heuristic and an exponential-time branch-and-bound algorithm
to solve MBS, by also addressing the more specific problem of extracting from the input
plane digraph G an upward planar digraph of maximum size.
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Figure 2 (a) A plane digraph G. (b) A maximum bimodal subgraph of G that preserves its
embedding.

Contribution
During the Dagstuhl Seminar we studied the MBS problem from the parameterized complexity
and approximability perspectives (we refer to the books [10, 15] for an introduction to the
parameterized complexity area). More precisely, we considered the following more general
version of the problem with weighted edges, which coincides with MBS if we restrict to unit
edge weights.
MWBS(G, w) (Maximum Weighted Bimodal Subgraph). Given a plane digraph G and an
edge-weight function w : E(G) → Q+, compute a bimodal subgraph of G of maximum weight,
i.e., whose sum of the edge weights is maximum over all bimodal subgraphs of G.

We studied different parameters for the MWBS(G, w) problem and mainly focused on the
following: (i) the number b of non-bimodal vertices of the input graph G, which intrinsically
captures the nature and the difficulty of the problem; (ii) the branchwidth and the treewidth
of the undirected underlying graph of G, which are structural parameters commonly adopted
in parameterized complexity. Our main results can be summarized as follows.

Structural parameterization. We show that MWBS is FPT when parameterized by the
branchwidth of the input digraph G or, equivalently, by the treewidth of G, which is
correlated to the branchwidth by a constant factor [19]. Our algorithm deviates from a
standard dynamic approach for graphs of bounded treewidth. Since we have to incorporate
the “topological” information about the given embedding in the dynamic program, we
exploit the sphere-cut decomposition of Dorn et al. [14].
Kernelization. We prove the existence of a polynomial kernel for the decision version
of MWBS parameterized by the number b of non-bimodal vertices. Our kernelization
consists of several steps. First we show how to reduce the instance to an equivalent
instance whose branchwidth is O(

√
b). Second, by using specific gadgets, we compress the

problem to an instance of another problem whose size is bounded by a polynomial of b.
Finally, by the standard arguments, [15, Theorem 1.6], based on a polynomial reduction
between any NP-complete problems, we obtain a polynomial kernel for MWBS.
By pipelining the crucial step of the kernelization algorithm with the branchwidth
algorithm, we obtain a parameterized subexponential algorithm for MWBS of running
time 2O(

√
b) · nO(1). Since b ≤ n, this also implies an algorithm of running time 2O(

√
n).

We remark that our algorithms are asymptotically optimal up to the Exponential Time
Hypothesis (ETH) [16, 17]. The NP-hardness result of MBS (and hence of MWBS) given
in [8] exploits a reduction from Planar-3SAT. The number of non-bimodal vertices
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in the resulting instance of MBS is linear in the size of the Planar-3SAT instance.
Using the standard techniques for computational lower bounds for problems on planar
graphs [10], we obtain that the existence of an 2o(

√
b) · nO(1)-time algorithm for MBWS

would contradict ETH.
Approximability. We provide an Efficient Polynomial-Time Approximation Scheme
(EPTAS) for MWBS, based on Baker’s (or shifting) technique [4]. More precisely, using
our algorithm for graphs of bounded branchwidth, we give an (1 + ϵ)-approximation
algorithm that runs in 2O(1/ϵ) · nO(1) time.

Future research
A natural future research direction is to extend our study to a generalization of bimodality,
called k-modality. Given a positive even integer k, a plane digraph is k-modal if the
edges at each vertex can be grouped into at most k sets of consecutive edges with the
same orientation [20]. For example, it is known that 4-modality is necessary for planar
L-drawings [9].
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A driving motivation of the field of graph drawing is the visualisation of information that can
be captured by graphs. Often such information can evolve over time and hence the treatment
of temporal aspects is an important challenge in graph drawing. In this context it makes
sense to require some “stability” of the drawing of a graph that changes over time in the
sense that parts of the graph continue to occur in consecutive time steps are not redrawn in
a different way. Motivated by this we define the following crossing-minimal drawing variant.
Below cr(G) for a drawing G of a graph denotes the number of edge crossings in the drawing.

Sequential Crossing Number (SCN):
Problem: A sequence G1, G2, . . . , Gt of (in general non-disjoint) graphs, an integer k.
Question: Is there a drawing Gi of each Gi such that for each i ∈ [t − 1] we have

Gi|Gi∩Gi+1 = Gi+1|Gi∩Gi+1 and
∑
i∈[t]

cr(Gi) ≤ k?
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Relations to other problems and implied hardness results
SCN is obviously more general than the classical crossing number problem, which corresponds
to the setting in which t = 1, and it is also more general than the partially predrawn crossing
number problem [5] which can be captured using t = 2, having as G1 the rigidised (also
adding many parallel edges) prescribed partial drawing of the graph and as G2 the graph to
which the partial predrawing should be extended.

Moreover, in the special case that for all i, j ∈ [t], Gi ∩ Gj =
⋂

ℓ∈[t] Gi, i.e. the pairwise
intersection of all given graphs is the same, then we speak of sunflower instances, and refer
to

⋂
ℓ∈[t] Gi as the core (in line with terminology used for Simultaneous Embedding with

Fixed Edges (SEFE) [2]). On sunflower instances, SEFE and SCN with k = 0 are easily
seen to be completely equivalent.

Indeed, there is even a simple reduction from SEFE on general (not necessarily sunflower)
instances to SCN with k = 0 by considering, for an input G1, . . . , Gt of SEFE, the instance
of SCN (on sunflower instances) given by Gℓ ∪

⋃
i,j∈[t] Gi ∩ Gj , for ℓ ∈ [t], and k = 0.

From the known hardness of SEFE on sunflower instances with t = 3 and the core being
a star[1], we obtain the following.

▶ Theorem 1. SCN is NP-hard, even on sunflower instances with the core being a star,
t = 3 and k = 0.

A generalisation of SEFE to allow for drawings with crossings in which the total number
of crossings over any single graph is considered as the decision value has been proposed as
Simultaneous Crossing Number [3], and can be reduced to SCN (with general k) in
the same way. Of course, since both problems are NP-complete, there is also a polynomial
reduction from SCN to the simultaneous crossing number problem. However, a difference
between both reductions is that, in the direction from Simultaneous Crossing Number
to SCN, we never increase the structural complexity of the union of all instance graphs,
whereas this is necessary in the direction from SCN to Simultaneous Crossing Number
to allow for ‘reappearing’ parts of graphs to be drawn differently.

SCN with k = 0 also generalises planarity of streamed graphs [4]. A streamed graph with
time window w ∈ N and backbone is given by a vertex set V , a set of edges B on V called
a backbone, and an ordered non-repeating sequence of edges e1, . . . , em on V which are not
in B. By definition, this streamed graph is planar if and only if the following is a yes-instance
for SCN with k = 0: For t = m and for i ∈ [t], Gi := (V, B ∪ {ej | i ≤ j < i + w}).

From the hardness result for testing planarity of streamed graphs with time window 5
and empty backbones [4] we can infer the following for SCN.

▶ Theorem 2. SCN is NP-hard, even on instances with |E(Gi)| ≤ 5 for all i ∈ [t] and k = 0.

Parameterised Algorithms for Sequential Crossing Number
In view of the above hardness results, our main target during the seminar was to formulate
parameterised algorithms for SCN. Notably, we believe to be able to give the following
results.
1. SCN parameterised by k + maxi∈[t−1] |V (Gi) ∩ V (Gi+1)| is in FPT.
2. SCN parameterised by k is in XP on inputs in which for all i ∈ [t − 1], Gi ∩ Gi+1 is

3-connected. (This is subsumed by the next FPT result but also used in its proof with
k = 0.)



R. Ganian, F. Montecchiani, M. Nöllenburg, M. Zehavi, and L. Khazaliya 91

3. SCN parameterised by k is in FPT on inputs in which for all i ∈ [t − 1], Gi ∩ Gi+1 is
3-connected.

4. SCN parameterised by k + t + r is in FPT, where r is an upper bound on the maximum
number of bridges of a P-node in the SPQR-tree and the maximum degree of a vertex in
the block cut tree of the intersection of two consecutive input graphs, on instances in
which for all i ∈ [t − 1], Gi ∩ Gi+1 is connected.

Notice that for 3-connected consecutive intersections, r = 0 and the condition is
obviously satisfied. The only reason that this result does not subsume the FPT-result
for 3-connected consecutive intersections is the additional parameterisation on t.
The hardness from Theorem 1 implies that we cannot hope to drop r – the maximum
degree of a vertex in the block cut tree of the intersection of two consecutive input
graphs, from the problem parameter.

In terms of techniques, the first two results are achieved by dynamic programming and
branching algorithms, respectively, the former of which we briefly sketch:

▶ Theorem 3. SCN parameterised by k + maxi∈[t−1] |V (Gi) ∩ V (Gi+1)| is in FPT.

Idea. We carry out dynamic programming on t, where the dynamic programming table is
indexed by pairs of a drawing of Gi−1 ∩ Gi and a drawing of Gi ∩ Gi+1 with at most k

crossings in total. The number of such pairs of drawings is easily seen to be bounded in the
considered parameter. Each table entry stores the minimum total number of crossings so far
(using the state from the previous dynamic programming step) under the condition that the
drawing of Gi coincides with the index-prescribed drawings of Gi−1 ∩ Gi and Gi ∩ Gi+1. To
compute an entry for a table index we use the FPT-algorithm for partially predrawn crossing
number [5]. ◀

The second two results are far more involved: Similarly to the fixed-parameter algorithm
we use a bicriteria approach to reduce the treewidth of the input graphs to a function of
the considered parameters – and, more importantly, the treewidth of a derived auxiliary
graph that arises from the disjoint union of all Gi by identifying vertices in the intersections
(both edges and vertices) of consecutive Gi with one another. For Result 3 this needs to
be preceded by a careful reduction of t to a function of k using Result 2. Once we are in a
situation of bounded treewidth, we want to invoke Courcelle’s theorem on a bounded-length
MSO-formula that encodes the fact that the considered auxiliary graph has a drawing with
at most k-crossings. However, previously no such formula was known. To overcome this
difficulty, we formulate a result of independent interest:

We give an f(k)-length MSO-formula for expressing the existence of a drawing of a
connected graph G with at most k crossings on a graph derived in polynomial time from
G in a way that crossings and rotations around cut vertices of P-nodes and high-degree
cut vertices are given by the interpretation of the free variables.

The crucial advantage over the known formulations for expressing the existence of a
drawing of a connected graph G with at most k crossings via excluding Kuratowski minors
after identifying crossings (which is also used in the known FPT-algorithm for Crossing
Number) is that the known formulations give us no direct knowledge of the drawing. Let us
highlight the fact that the graph derived from G has treewidth bounded in tw(G) + r, which
is where r comes in as a parameter in Result 4.
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5.5 Upward and Rectilinear Planarity Testing and st-Planar Edge
Completion
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The first problems considered by this working group are Upward and Rectilinear
Planarity Testing. Given a directed acyclic graph G, upward planarity testing asks
whether G admits a crossing-free drawing where all edges are monotonically increasing in
a common direction, which is conventionally called the upward direction; see Fig.3. For
an undirected graph G, rectilinear planarity testing asks whether G admits a crossing-free
drawing such that each edge is either a horizontal or a vertical segment; see Fig.3. Both
upward planarity and rectilinear planarity testing are classical and extensively investigated
topics in graph drawing (see, e.g. [1, 19, 15, 18]). It is known that they are both NP-complete
in the so-called variable embedding setting, that is when the testing algorithm must verify
whether the input graph has a combinatorial structure of its faces which allows the balancing
of angles described above. Again unsurprisingly, both proofs of NP-completeness follow the
same logic based on a reduction from a common flow problem on planar graphs [20]. These
NP-completeness results have motivated a flourishing literature describing both polynomial-
time solutions for special classes of graphs and parameterized solutions for general graphs.
For example, polynomial-time solutions are known for both problems when the input graph
has treewidth at most two [10, 12, 13, 6, 11]; also, rectilinear planarity testing can be solved
in linear time if the maximum degree of the input graph is at most three [14], and upward
planarity testing can be solved in linear time if the digraph has only one source vertex [2, 4, 21].
Concerning parameterized solutions, upward planarity testing is fixed-parameter tractable
when parameterized by the number of triconnected components [5], by the treedepth [7], and
by the number of sources [7].

https://creativecommons.org/licenses/by/4.0/
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Figure 3 A directed graph −→
G , an upward planar drawing of −→

G , and a rectilinear planar drawing
of its underlying undirected graph G.

The research in this paper is motivated by the fact that both upward planarity and
rectilinear planarity testing are known to lie in XP when parameterized by treewidth [7, 11].
Determining whether these two parameterized problems are in FPT are mentioned as open
problems in both [7, 11]. The main contribution of this paper is as follows.

▶ Theorem 1. Upward planarity testing and rectilinear planarity testing parameterized by
treewidth are both W[1]-hard. Moreover, assuming the Exponential Time Hypothesis, neither
problem can be solved in time f(k) · no(k) for any computable function f , where k is the
treewidth of the input graph.

Fig.1 implies that, under the standard hypothesis FPT ̸= W[1] in parameterized complexity,
there exists no fixed-parameter tractable algorithm for either problem parameterized by
treewidth, hence answering the above mentioned open problems. To obtain our results we
analyze the auxiliary flow problem used as a common starting point in the NP-completeness
proof of both planarity problems. It closely resembles the All-or-Nothing Flow problem
(AoNF), which asks for an st-flow of prescribed value in an edge-capacitated flow network
such that each edge is either used fully, or not at all. The AoNF problem parameterized by
treewidth was recently shown to be W[1]-hard (in fact, even XNLP-complete) on general
graphs by Bodlaender et al. [3]. By a significant adaptation of their construction, we can
prove that AoNF parameterized by treewidth remains W[1]-hard on planar graphs. By
revisiting the chain of reductions to the planarity testing problems, passing through the
Circulating Orientation problem in between, we show they can be carried out without
blowing up the treewidth of the graph and thereby obtain Fig.1.

Last but not least, we also considered the related st-Planar Edge Completion Problem.
Let G = (V, E) be a digraph. A vertex of G with no incoming edges is a source of G, while a
vertex without outgoing edges is a sink of G. A digraph G is an st-planar graph if it admits a
planar embedding such that: (1) it contains no directed cycle; (2) it contains a single source
vertex s and a single sink vertex t; (3) s and t both belong to the external face of the planar
embedding.

Upward planarity, as was also mentioned above, is a rather natural and well-studied
notion of planarity for directed graphs (see, e.g., [7, 8, 1, 9, 20, 16]). In particular, a planar
digraph is upward if it admits a planar drawing where all edges are oriented upward. A
well-known result in graph drawing states that a digraph G is upward if and only if G is a
subgraph of an st-planar graph [1, 9]2. However, since testing for upward planarity is an
NP-complete problem already for biconnected graphs [20], determining whether a biconnected

2 From the proof in Lemma 4.1 of [9], one can in fact observe that a digraph is upward planar if and only
if it is a subgraph of an st-planar graph defined over the same set of vertices.
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Figure 4 (a) A digraph G with 2k + 1 = 7 sources and 1 sink; G has a unique planar embedding
up to the choice of the external face; (b) A completion of G to an st-planar graph obtained by
adding 2k = 6 edges; (c) An upward planar drawing of the completion of G.

Figure 5 (a) A biconnected digraph G with 4 sources and 4 sinks; (b) With the given embedding,
6 edges have to be added to complete G to an st-planar graph; (c) With a different embedding,
adding 3 edges is sufficient.

graph is a subgraph of an st-planar graph is also computationally challenging. On the other
hand, checking whether a digraph is st-planar can be done efficiently in polynomial time.
This observation motivates for the investigation of the following problem.

st-Planar Edge Completion (st-PEC)
Input: A biconnected digraph G

Parameter: k ∈ N
Question: Is it possible to add at most k edges to G such that the resulting graph is an
st-planar graph?

We came up with a fixed-parameter tractable algorithm for the st-Planar Edge
Completion problem. To help understanding the combinatorial and algorithmic challenges
behind the problem, we make the observation that the parameter k provides an upper bound
on the number of sources and sinks in the input digraph G. Since an edge can remove the
presence of at most one source and one sink, if the total number of sources and sinks in
G exceeds 2k + 2, we can promptly reject the instance. Conversely, a positive answer to
st-Planar Edge Completion implies that G is upward planar. In this respect, it is worth
mentioning that Chaplick et al. [7] have previously demonstrated that testing a digraph
for upward planarity is fixed-parameter tractable when parameterized by the number of its
sources. However, for every k ≥ 1, there are upward planar digraphs with at most 2k + 1
sources that cannot be augmented to an st-planar graph by adding k edges; refer to Fig.4 for
an illustration. Furthermore, while an upward planarity test halts upon finding an upward
planar embedding, not all upward planar embeddings of the same digraph can lead to an
st-planar graph after the addition of k edges. Fig.5 demonstrates an upward planar digraph
along with two of its upward planar embeddings: the embedding in Fig.5 requires 6 edges to
be augmented into an st-planar digraph, whereas the embedding in Fig.5 can be augmented
with 3 edges.
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In order to overcome the above technical challenges, our result is based on a structural
decomposition of the digraph into its triconnected components using SPQR-trees (similarly
as done in [7]), as well as on novel insights regarding the combinatorial properties of upward
planar digraphs.
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