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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23192 ‘Topological
Data Analysis and Applications’. The seminar brought together researchers with backgrounds in
mathematics, computer science, and different application domains with the aim of identifying and
exploring emerging directions within computational topology for data analysis. This seminar was
designed to be a followup event to two successful Dagstuhl Seminars (17292, July 2017; 19212,
May 2019). The list of topics and participants were updated to reflect recent developments and
to engage wider participation. Close interaction between the participants during the seminar
accelerated the convergence between mathematical and computational thinking in the development
of theories and scalable algorithms for data analysis, and the identification of different applications
of topological analysis.
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1 Executive Summary
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This Dagstuhl Seminar titled “Topology, Computation, and Data Analysis” brought together
researchers in mathematics, computer science, and visualization to engage in active discussions
on theoretical, computational, practical, and application aspects of topology for data analysis.

Context
Topology is considered one of the most prominent research fields in mathematics. It is
concerned with the properties of a space that are preserved under continuous deformations
and provides abstract representations of the space and functions defined on the space.
The modern field of topological data analysis (TDA) plays an essential role in connecting
mathematical theories to practice. It uses stable topological descriptors as summaries
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of data, separating features from noise in a robust way. The seminar brought together
researchers from mathematics, computer science, and application domains (e.g., materials
science, neuroscience, and biology) to accelerate emerging research directions and inspire
new ones in the field of TDA.

Goals
The Dagstuhl Seminars 17292 (July 2017) and 19212 (May 2019) were successful in enabling
close interaction between researchers from diverse backgrounds. The attendees consistently
remarked about the benefits of building bridges between the two communities. The goals
from the previous seminars were to strengthen existing ties, establish new ones, identify
challenges that require the two communities to work together, and establish mechanisms
for increased communication and transfer of results from one to the other. A key goal of
the current seminar was to additionally bring in experts from a few application domains to
provide the necessary context for identifying research problems in topological data analysis
and visualization. Furthermore, we also encouraged interaction between researchers who
worked within the same community to identify challenging problems in the area and to
establish new collaborations.

Topics
The research topics, listed below, reflect highly active and emerging areas in TDA. They
were chosen to span topics in theory, algorithms, and applications.

Multivariate data analysis. Topics include theoretical studies of multivariate topological
descriptors (including multiparameter persistence), efficient algorithms for computing and
comparing them, formal guarantees for data analysis based on such comparisons, and the
development of practical tools based on such analysis. Combining topological analysis
together with statistical learning-based methods were also of interest.

Geometry and topology of metric spaces. A cornerstone of TDA is the study of metric
and geometric data sets by means of filtrations of geometric complexes, formed by connecting
subsets of the data points according to some proximity parameter. The study of such filtrations
using homology leads to a multi-scale descriptor of the data that combines geometric and
topological aspects of its shape. Besides their use in TDA, geometric complexes also play
an important role in geometric group theory and metric geometry. The results and insights
from both areas carry great promise for mutual interactions, leading to a unified view on
computational and theoretical aspects.

Applications. TDA is an emerging area in exploratory data analysis and has received growing
interest and notable successes with an expanding research community. The application of
topological techniques to large and complex data has opened new opportunities in science,
engineering, and business intelligence. This seminar focused on a few key application areas,
including material sciences, neuroscience, and biology.

Parallel and distributed computation. The computational challenges in TDA call for the
use of advanced techniques of high-performance computing, including parallel, distributed,
and GPU-based software. Many of the core methods of TDA, including persistent homology,
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mapper, merge trees, and contour trees, have received implementations beyond serial com-
puting, and the interest in utilizing modern state-of-the-art techniques continues unabated.
The task of optimizing algorithms in TDA is not only a question of engineering. Many of
the key insights leading to breakthrough improvements are based on a careful utilization of
theoretical properties and insights.

Participants, schedule, and organization
The invitees were chosen based on their background in mathematics, computer science, and
application domains. We also ensured diversity in terms of gender, country or region of
workplace, and experience.

While welcoming theoretical talks, the attendees were strongly encouraged to prepare a
talk that is rooted in applications. The aim was to foster discussions on topics and projects
related to practical applications of topological analysis and visualization. The program for
the week consisted of talks of different lengths, breakout sessions, and summary / discussion
sessions with all participants. We scheduled a total of six long talks (35 minutes + 10 minutes
Q&A) on Day-1 and the morning session of Day-2, each providing an introduction either
to one of the four chosen topics of the seminar or to a specific application domain. The
talks were given by Yasu Hiraoka (Curse of dimensionality in persistence diagrams), Manish
Saggar (Precision dynamical mapping to anchor psychiatric diagnosis into biology), Andreas
Ott (Topological data analysis and coronavirus evolution), Kelin Xia (Mathematical AI
for molecular data analysis), Gunther Weber (Topological analysis for exascale computing:
challenges & approaches), and Facundo Mémoli (Some recent results about Vietoris-Rips
persistence). Short research talks (16 total, 15 minutes + 10 minutes Q&A) were scheduled
during the morning sessions of Day-2 through Day-5.

The afternoon sessions were devoted to discussions, working groups, and interactions.
On Monday, we led an open problem session where participants identified different open
problems and future directions for research. This initial discussion helped identify working
groups and topics for discussion during the week. We organized breakout sessions on Tuesday
and Thursday. On Tuesday, after a quick discussion regarding discussion topics, we identified
four topics of interest. Participants chose one of the four groups> the curse of dimensionality,
distances on Morse and Morse-Smale complexes, computation of generalized persistence
diagrams, Codistortion and Gromov–Hausdorff distance. After a quick discussion, we decided
to continue discussions on the four topics on Thursday, and some participants chose to join a
different group.

We organized an excursion to Trier on Wednesday afternoon followed by dinner at a
restaurant. Many participants attended the guided tour and the dinner.

All working groups summarized the discussion during their breakout sessions and presented
it to all participants on Thursday evening and Friday morning. These summary sessions were
also interactive and resulted in follow-up discussions between smaller groups of participants.
We organized a final discussion and feedback session on Friday morning to close the seminar
and to make future plans.
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Results and reflection
The schedule for the first day helped initiate interaction between participants and continue
the discussions during the week. While the introductory talks provided sufficient details
on interesting application domains, the open problem session allowed many participants to
quickly pose topics of interest. In particular, the format of this session extended beyond
proposing specific stated open problems, asking also for contributions, discussion points, and
thoughts that would not typically be brought up in such a session. This resulted in a very
lively and engaging discussion that encouraged participants to share their perspectives on
important current and future research directions.

In summary, we think that the seminar was successful in achieving the objective of
encouraging discussions and interaction between researchers with backgrounds in mathematics,
computer science, and application domains who are interested in the areas of topological data
analysis and visualization. It helped identify new directions for research and has hopefully
sparked the engagement of researchers from one community into the activities and research
workshops and venues of the other. We strongly believe that the seminar provided a highly
valuable contribution to bridging the gap between theory and applications in TDA.

The participants were highly appreciative of the balance between theoretical and applied
topics and between the participants and those who presented during the week. They
highlighted that the diverse group of participants sharing a strong interest in novel perspectives
and exchange of ideas made the workshop an exceptional experience. Several felt that the
discussions helped them identify topics for future research or introduced them to new
collaboration possibilities.
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3 Overview of Talks

3.1 Quantifying and tracking inter-feature separation
Talha Bin Masood (Linköping University, SE)
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Topological descriptors such as merge trees and extremum graphs have proven to be very
useful for multiscale feature-based analysis of scalar field data. However, in some applications
extraction of features is not enough, understanding the separation/topological distance
between the extracted features is also important. Intrinsic tree distance can be used
to quantify this topological distance. I will talk about two different applications where
quantifying feature separation is useful and has physically interpretable meaning. One of the
challenges that arise in the context of time-varying or ensemble scalar field data is tracking
and visualization of the change in inter-feature separation with the change in time or input
parameters. I will present some preliminary ideas and results in this direction.

3.2 Density-based Riemannian metrics and persistent homology
Ximena Fernández (Durham University, GB)

License Creative Commons BY 4.0 International license
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Joint work of Ximena Fernández, Eugenio Borghini, Gabriel Mindlin, Pablo Groisman
URL https://ximenafernandez.github.io/reveal.js-

presentations/slides/FermatDistance_Dagstuhl.html#/

Several methods for geometric inference relies in the choice of an appropriate metric in the
sample point cloud. Consider a scenario where the data is a noisy sample of a manifold
embedded in Euclidean space, drawn according to a positive density over the manifold. I
propose to learn a metric directly from the data (called *Fermat distance*) that turns out to
be an estimator of an intrinsic density-based metric over the underlying manifold. I will show
some convergence results, robustness properties of the use of this metric in the computation
of persistent homology and some applications in real data. I will also discuss a couple of
open questions.

3.3 Modified Finsler metrics for vector field visualization
Hans Hagen (RPTU – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
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Visualizing vector fields and their impact on free-form surface modelling like car hoods or
airplane wings is a hot topic. We can “use” these vector fields to “deform” the metric of
these surfaces, generating a Finsler metric. Can such a Finsler metric be useful for vector
field visualization?
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3.4 Persistent homology of a periodic filtration
Teresa Heiss (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 4.0 International license
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Joint work of Teresa Heiss, Herbert Edelsbrunner, Chiara Martyka, Dmitriy Morozov

Persistent homology is well-defined and well studied for tame filtrations, for example various
ones arising from finite point sets. However, periodic filtrations – for example used to study
periodic point sets, like the atom positions of a crystal – are not tame, because there are
infinitely many periodic copies of a homology class appearing at the same filtration value.
We therefore extend the definition of persistent homology to periodic filtrations, which is
a surprisingly difficult endeavor. In contrast to related work, we quantify how fast the
multiplicities of persistence pairs tend to infinity with increasing window size, in a way that is
stable under perturbations and invariant under different finite representations of the infinite
periodic filtration. This project is still ongoing research, but I’ll explain what we already
know and what we don’t know yet.

3.5 Curse of dimensionality in persistence diagrams
Yasuaki Hiraoka (Kyoto University, JP)
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It is well known that persistence diagrams stably behave under small perturbations to the
input data. This is the consequence of stability theorems, firstly proved by Cohen-Steiner,
Edelsbrunner, and Harer (2007), and then extended by several researchers. On the other
hand, if the input data is realized in a high-dimensional space with a small noise, the curse
of dimensionality (CoD) causes serious adverse effects on data analysis, especially leading
to inconsistency of distances. In this talk, I will show several examples of CoD appearing
in persistence diagrams (e.g., from single-cell RNA sequencing data in biology). Those
examples demonstrate that the classical stability theorems are not sufficient to guarantee
stable behaviors of persistence diagrams for high-dimensional data. Then I will show several
mathematical results about the existence and the (partial) resolution of CoD in persistence
diagrams. This is a joint work with Liu Enhao, Yusuke Imoto and Shu Kanazawa.

3.6 Topological feature tracking in visualization applications
Ingrid Hotz (Linköping University, SE)
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Topology in visualization – balance between beautiful concepts and practical needs
Tracking of features is a fundamental task in visual data analysis. In our work, we use

topological descriptors as an abstraction for tracking. An essential step thereby is the choice
of appropriate similarity measures to detect structural changes and establish a correspondence
between individual features respecting their spatial embedding. One way to approach both
demands is to consider labeled merge trees as the feature descriptor. In this talk, some
examples of such approaches for tracking features are discussed.
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3.7 The Density-Delaunay-Cech bifiltration
Michael Kerber (TU Graz, AT)
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The density-Rips bifiltration is a standard construction in multi-parameter persistence, but
suffers from the size explosion, as its single-parameter counterpart. On the other hand, it is
well-known that at least in low Euclidean dimensions, alpha filtrations are much faster to
compute and also geometrically more accurate. There are two major challenges to define
and compute alpha-filtrations for two parameters. I will propose a way how to handle them.
This is (very) ongoing work with Angel Alonso (TU Graz).

3.8 Towards a theory of persistence for gradient-like Morse-Smale
vector fields

Claudia Landi (University of Modena, IT)
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Joint work of Claudia Landi, Clemens Luc Bannwart

In topological data analysis, a function f : M −→ R is often studied through the homology
of its sublevel sets. One can obtain a topological summary of f in the form of a persistence
barcode [3]. By a result of Morse theory, if M is a closed manifold and f is nice enough,
then M is homotopy equivalent to a CW-complex with one k-cell for each critical point of
index k [5]. Persistent homology and Morse theory are closely related, since the values of f
at the critical points are equal to the start- and endpoints of the bars in the barcode. The
gradient of f induces a chain complex, where the boundary operator is defined by counting
the flow lines between critical points (see e.g. [1]). This process works more generally for
gradient-like Morse-Smale vector fields and also for combinatorial vector fields in the sense
of Forman [4]. However, for gradient-like Morse-Smale vector fields, there does not yet exist
a persistence barcode such as for functions.

We present a pipeline that takes as an input a gradient-like Morse-Smale vector field on
a surface, produces a parameterized epimorphic chain complex, and encodes it as a barcode.
More precisely, we produce a sequence of chain complexes, such that the first one is the chain
complex induced by the vector field and after that, each one is a quotient of the previous one.
These quotients correspond to topological simplifications of the vector field by certain moves
(introduced in [2]), and the times of taking the quotients depend on the value of a parameter
measuring the local robustness of the vector field. In the end we are left with a vector field
that has a very simple topological structure. Geometrically, for each move that is applied, we
extract a topological feature. Algebraically, for each quotient, we split off an indecomposable
contractible summand from the initial chain complex. Remembering the times when the
moves were applied then yields a barcode. Similarly to the usual persistent homology
construction for real valued functions, this pipeline paves the way for the development of a
theory of persistence for vector fields.
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3.9 The (not so) mysterious rhomboid bifiltration
Michael Lesnick (University at Albany, US)
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The multicover bifiltration is a density-sensitive extension of the union-of-balls bifiltration
commonly considered in TDA. It is robust to outliers, in a strong sense, and doesn’t
depend on any extra parameters. These properties make the multicover bifiltration a natural
candidate for applications, if it can be computed. With this in mind, Edelsbrunner and Osang
introduced a polyhedral bifiltration called the rhomboid bifiltration and gave a polynomial
time algorithm for computing it. Corbet et al. showed that this bifiltration is topologically
equivalent to the multicover bifiltration. In this talk, I’ll give a poset-theoretic definition of
the rhomboid tiling which is different from (but equivalent to) the one given by Edelsbrunner
and Osang. With this as inspiration, I’ll sketch a new proof of topological equivalence of the
multicover and rhomboid bilfiltrations.

3.10 A spontaneous demo of the Topology ToolKit (TTK)
Joshua A. Levine (University of Arizona – Tucson, US)
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In this short talk, I’ll give a brief of overview of some of the features of the Topology ToolKit,
a software package for topological data analysis of scalar fields. Rather than diving into
the implementation details, this presentation will focus on ease of use and applications. To
demonstrate, I’ll walk through a surprise demo.

TTK comes shipped with Kitware’s ParaView, and it can also be built from source. Many
more examples are available at https://topology-tool-kit.github.io/examples/index.
html.
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3.11 Some recent results about Vietoris-Rips persistence
Facundo Mémoli (Ohio State University – Columbus, US)
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Persistence barcodes provide computable signatures for datasets (metric spaces). These
signatures absorb both geometric and topological information from metric spaces in a stable
manner.

One question that motivated our work is: how strong are these signatures? A related
question is that of ascertaining their relationship to other more classical invariants such as
curvature.

In this talk I will describe some results about characterizing metric spaces via persistence
barcodes arising from Vietoris-Rips filtrations. Of particular interest is a relationship which
we established linking persistence barcodes to Gromov’s filling radius.

Another aspect I will mention is the determination of the Gromov-Hausdorff distance
between spheres (when endowed with their geodesic distance). In this case, VR-barcodes do
permit telling spheres apart, but 1/2 of the bottleneck distance does not match the exact
value of the GH-distance.

This work is joint with Sunhyuk Lim, Osman Okutan, and Zane Smith.

3.12 Topological optimization with big steps
Dmitriy Morozov (Lawrence Berkeley National Laboratory, US)

License Creative Commons BY 4.0 International license
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Joint work of Dmitriy Morozov, Arnur Nigmetov

Using persistent homology to guide optimization has emerged as a novel application of
topological data analysis. Existing methods treat persistence calculation as a black box and
backpropagate gradients only onto the simplices involved in particular pairs. We show how
the cycles and chains used in the persistence calculation can be used to prescribe gradients
to larger subsets of the domain. In particular, we show that in a special case, which serves
as a building block for general losses, the problem can be solved exactly in linear time. We
present empirical experiments that show the practical benefits of our algorithm: the number
of steps required for the optimization is reduced by an order of magnitude.
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3.13 Topological data analysis and coronavirus evolution
Andreas Ott (KIT – Karlsruher Institut für Technologie, DE)
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Joint work of Michael Bleher, Lukas Hahn, Maximilian Neumann, Juan Ángel Patiño-Galindo, Mathieu Carrière,
Ulrich Bauer, Raúl Rabadán, Andreas Ott, KIT Steinbuch Centre for Computing
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Topological methods have in recent years found applications in the life sciences. In this talk,
I will present an application of persistent homology to the surveillance of critical mutations
in the evolution of the coronavirus SARS-CoV-2. I will explain the underlying geometric
idea, how it connects with biology, its implementation in the CoVtRec pipeline, and some
concrete results from the analysis of current pandemic data.

3.14 Precision dynamical mapping to anchor psychiatric diagnosis into
biology

Manish Saggar (Stanford University, US)

License Creative Commons BY 4.0 International license
© Manish Saggar

URL https://braindynamicslab.github.io/projects/dp2/

Understanding the neurobiological underpinnings of psychiatric disorders has long been a
challenge in the field of neuroscience. This talk aims to address this issue by exploring
how noninvasive neuroimaging, despite its inherent limitations, can be leveraged to anchor
psychiatric disorders into neurobiology. Two main challenges in this endeavor are identified:
(a) the inherent noise in noninvasive neuroimaging devices, and (b) the limited utilization of
biophysical models.

To tackle the first challenge, we propose the application of Topological Data Analysis
(TDA), specifically Mapper, as a novel approach. I present some promising results on how
Mapper can capture evoked transitions during tasks, intrinsic transitions during resting
states, and changes in the landscape or shape associated with psychiatric disorders such
as Major Depressive Disorder (MDD), Attention Deficit Hyperactivity Disorder (ADHD),
as well as various pharmacological interventions (e.g., Methylphenidate, Psilocybin) and
neuromodulation techniques (e.g., sp-TMS, rTMS).

I will also highlight methodological advances in TDA that enhance its applicability in the
context of noninvasive neuroimaging studies. By harnessing the power of TDA, we can gain
deeper insights into the complex dynamics of brain activity and its relation to psychiatric
disorders.

Finally, the talk concludes by posing open questions that warrant further investigation.
These questions touch upon the potential integration of TDA with other analytical approaches,
the optimization of experimental protocols, and the translation of findings into clinical
practice. By addressing these open questions, we can foster a greater understanding of the
neurobiological basis of psychiatric disorders and pave the way for innovative therapeutic
strategies.
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3.15 Persistent homology of the multiscale clustering filtration
Dominik Schindler (Imperial College London, GB)
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In many applications in data clustering, it is desirable to find not just a single partition but
a sequence of partitions that describes the data at different scales, or levels of coarseness,
leading naturally to Sankey diagrams as descriptors of the data. The problem of multiscale
clustering then becomes how to to select robust intrinsic scales, and how to analyse and
compare the (not necessarily hierarchical) sequences of partitions. Here, we define a novel
filtration, the Multiscale Clustering Filtration (MCF), which encodes arbitrary patterns of
cluster assignments across scales. We prove that the MCF is a proper filtration, give an
equivalent construction via nerves, and show that in the hierarchical case the MCF reduces to
the Vietoris-Rips filtration of an ultrametric space. We also show that the zero-dimensional
persistent homology of the MCF provides a measure of the level of hierarchy in the sequence
of partitions, whereas the higher-dimensional persistent homology tracks the emergence
and resolution of conflicts between cluster assignments across scales. We briefly illustrate
numerically how the structure of the persistence diagram can serve to characterise multiscale
data clusterings.

3.16 Persistence diagrams and Mobius inversion
Primoz Skraba (Queen Mary University of London, GB & Jožef Stefan Institute – Ljubljana,
SI)

License Creative Commons BY 4.0 International license
© Primoz Skraba

Joint work of Primoz Skraba, Amit Patel

There are many ways of defining persistence diagrams. In this talk I will discuss the definition
based on the Mobius inversion function which was introduced by Amit Patel under the name
Generalized Persistence Diagrams. I will cover how this approach has appeared implicitly
and explicitly in various results on persistence as well as various implications of this approach
and (very) new developments. In particular, I will cover a surprising connection between
Euler characteristics and persistence diagrams and discuss the many questions and directions
which arise.
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3.17 Betti matching
Nico Stucki (TU München, DE)
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Segmentation models predominantly optimize pixel-overlap-based loss, an objective that is
actually inadequate for many segmentation tasks. In recent years, their limitations fueled a
growing interest in topology-aware methods, which aim to recover the topology of the segmen-
ted structures. However, so far, existing methods only consider global topological properties,
ignoring the need to preserve topological features spatially, which is crucial for accurate
segmentation. We introduce the concept of induced matchings from persistent homology to
achieve a spatially correct matching between persistence barcodes in a segmentation setting.
Based on this concept, we define the Betti matching error as an interpretable, topologically
and feature-wise accurate metric for image segmentation, which resolves the limitations of
the Betti number error. The Betti matching error is differentiable and efficient to use as a
loss function. We demonstrate that it improves the topological performance of segmentation
networks significantly across six diverse datasets while preserving the performance with
respect to traditional scores.

3.18 TGDA for graph learning?
Yusu Wang (University of California, San Diego – La Jolla, US)
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In recent years, graph neural networks have emerged as a power family of ML architectures
for graph learning and optimization. Nevertheless, various limitations and challenges remain.
In this talk, I will briefly introduce the message passing graph neural networks (MPNN), and
describe a few results in aiming to provide better understanding of GNNs or to enhance their
power using geometric and topological ideas. My goal is to stimulate further discussions /
interests / new perspectives in this interesting direction of TGDA + GNN.

3.19 Topological analysis for exascale computing: challenges and
approaches

Gunther Weber (Lawrence Berkeley National Laboratory, US)
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Simulation has quickly evolved to become the “third pillar of science” and supercomputing
centers provide the computational power needed for accurate simulations. The Exascale
Computing Project (ECP) is a concentrated effort to cross the next barrier and build a
supercomputer that can run simulations at quintillion calculations per second. Exascale
computing exacerbates the already existing I/O-bottleneck that makes it impossible to write
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all simulation results to disk. To mitigate this problem, in situ approaches perform data
analysis and visualization while the simulation is running. This talk provides an overview
over how topological data analysis enables automated choice of visualization parameters
like isovalue for isosurface extraction. It furthermore outlines the challenges that current
developments in supercomputer architecture pose to efficient algorithm design for topological
data analysis and presents solution approaches.

3.20 A distance for geometric graphs via labeled merge tree
interleavings

Erin Moriarty Wolf Chambers (St. Louis University, US)
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Geometric graphs appear in many real world datasets, such as road networks, sensor networks,
and molecules. We investigate the notion of distance between graphs and present a semi-
metric to measure the distance between two geometric graphs via the directional transform
combined with the labeled merge tree distance. Our distance is not only reflective of the
information from the input graphs, but also can be computed in polynomial time. We
illustrate its utility by implementation on a Passiflora leaf dataset.

3.21 Mathematical AI for molecular data analysis
Kelin Xia (Nanyang TU – Singapore, SG)
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Artificial intelligence (AI) based molecular data analysis has begun to gain momentum due
to the great advancement in experimental data, computational power and learning models.
However, a major issue that remains for all AI-based learning models is the efficient molecular
representations and featurization. Here we propose advanced mathematics-based molecular
representations and featurization (or feature engineering). Molecular structures and their
interactions are represented as various simplicial complexes (Rips complex, Neighborhood
complex, Dowker complex, and Hom-complex), hypergraphs, and Tor-algebra-based mod-
els. Molecular descriptors are systematically generated from various persistent invariants,
including persistent homology, persistent Ricci curvature, persistent spectral, and persistent
Tor-algebra. These features are combined with machine learning and deep learning mod-
els, including random forest, CNN, RNN, GNN, Transformer, BERT, and others. They
have demonstrated great advantage over traditional models in drug design and material
informatics.
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3.22 Minimal cycle representatives in persistent homology using linear
programming

Lori Ziegelmeier (Macalester College – St. Paul, US)
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Cycle representatives of persistent homology classes can be used to provide descriptions of
topological features in data. However, the non-uniqueness of these representatives creates
ambiguity and can lead to many different interpretations of the same set of classes. One
approach to solving this problem is to optimize the choice of representative against some
measure that is meaningful in the context of the data. In this work, we provide a study of
the effectiveness and computational cost of several ℓ1-minimization optimization procedures
for constructing homological cycle bases for persistent homology with rational coefficients
in dimension one, including uniform-weighted and length-weighted edge-loss algorithms as
well as uniform-weighted and area-weighted triangle-loss algorithms. We conduct these
optimizations via standard linear programming methods, applying general-purpose solvers to
optimize over column bases of simplicial boundary matrices.

Our key findings are: (i) optimization is effective in reducing the size of cycle representat-
ives, (ii) the computational cost of optimizing a basis of cycle representatives exceeds the
cost of computing such a basis in most data sets we consider, (iii) the choice of linear solvers
matters a lot to the computation time of optimizing cycles, (iv) the computation time of
solving an integer program is not significantly longer than the computation time of solving
a linear program for most of the cycle representatives, using the Gurobi linear solver, (v)
strikingly, whether requiring integer solutions or not, we almost always obtain a solution with
the same cost and almost all solutions found have entries in -1, 0, 1 and therefore, are also
solutions to a restricted ℓ0 optimization problem, and (vi) we obtain qualitatively different
results for generators in Erdős-Rényi random clique complexes.

4 Working groups

4.1 Codistortion and Gromov–Hausdorff distance
Ulrich Bauer (TU München, DE) and Facundo Mémoli (Ohio State University – Columbus,
US)

License Creative Commons BY 4.0 International license
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Let M be the collection of compact metric spaces. The Gromov–Hausdorff distance between
(X, dX) and (Y, dY ) in M is defined as

dGH(X,Y ) = 1
2 inf
ϕ:X↔Y :ψ

max(dis(ϕ),dis(ψ), codis(ϕ, ψ)),

where

dis(ϕ) = sup
x,x′∈X

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|,

codis(ϕ, ψ) = sup
x∈X,y∈Y

|dX(x, ψ(y)) − dY (ϕ(x), y)|
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are the distortion of a map and the codistortion of a pair of maps between metric spaces,
respectively. Separating the distortion and codistortion terms in this formula for the Gromov–
Hausdorff distance, we obtain the variants

d̂GH(X,Y ) = 1
2 inf
ϕ:X↔Y :ψ

max(dis(ϕ),dis(ψ)),

ďGH(X,Y ) = 1
2 inf
ϕ:X↔Y :ψ

codis(ϕ, ψ).

▶ Example 1. If ∗ denotes the one point metric space, then we have ďGH(X, ∗) = 1
2 rad(X).

Clearly d̂GH, ďGH ≤ dGH. The following facts about the distortion distance d̂GH are
known. Below ∼= denotes the equivalence relation of isometry on M.
1. d̂GH is a legit distance on the set of isometry classes of compact metric spaces M/ ∼=.
2. d̂GH and dGH generate the same topology.
3. d̂GH ̸= dGH.
4. d̂GH can be computed via curvature sets.
Less is known about the codistortion distance ďGH. We state a few interesting questions.
1. Is ďGH a distance on M/ ∼=?
2. Is ďGH bi-Lipschitz equivalent to dGH?
In our discussion group, we answered these questions to the affirmative.

▶ Proposition 2.

ďGH ≤ dGH ≤ 2ďGH.

▶ Remark. The inequality dGH ≤ 2ďGH is tight. To see this, consider the finite metric spaces
X consisting of two points at distance 4 and Y consisting of the three points {0, 2, 3} on the
real line (with the usual metric).

▶ Theorem 3. ďGH a legitimate distance on M/ ∼=.

The following lemma is key to relating distortion and codistortion.

▶ Lemma 4. Consider a pair of maps ϕ : X ↔ Y : ψ between metric spaces. Then
codis(ϕ, ψ) ≥ supx∈X dX(x, ψ ◦ ϕ(x)).
2 codis(ϕ, ψ) ≥ max(dis(ϕ),dis(ψ)),

Further insights and questions

1. d̂GH is not bi-Lipschitz equivalent to dGH. There is a family of pairs of finite ultrametric
spaces (Xk, Yk)k such that dGH(Xk, Yk) ≥ k

2 but d̂GH(Xk, Yk) ≤ 1.
2. For all compact metric spaces X and Y we have

ďGH(X,Y ) ≥ 1
4dB(dgm(X),dgm(Y )),

where dgm(X) denotes the usual persistence diagram of the Vietoris-Rips filtration of X.
Can this be improved to

ďGH(X,Y ) ≥ 1
2dB(dgm(X),dgm(Y ))?

The stronger bound, when combined with the fact that ďGH ≤ dGH, would imply an
improvement upon the usual Gromov–Hausdorff stability theorem for persistence diagrams
arising from Vietoris-Rips filtrations.
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3. Is it true that ďGH ≥ ďGH ◦ Hsl, where Hsl is single-linkage clustering, taking a finite
metric space to a finite ultrametric space?

4. Is there a case where ďGH < dGH?
5. What are natural lower bounds for ďGH? One of them is half the the difference of the

respective radii of the spaces:

ďGH(X,Y ) ≥ 1
2 |rad(X) − rad(Y )|.

6. If codis(ϕ, ψ) < δ, then codis(ϕ ◦ ψ ◦ ϕ, ψ ◦ ϕ ◦ ψ) < 2δ.
7. If X and Y are ultrametric, do we have ďGH(X,Y ) = dGH(X,Y )?
8. Is there a constant C > 0 such that dYH(ϕ(X), Y ), dXH(ψ(Y ), X) ≤ C · codis(ϕ, ψ)?

4.2 Curse of Dimensionality
Teresa Heiss (IST Austria – Klosterneuburg, AT), Ximena Fernández (Durham University,
GB), Yasuaki Hiraoka (Kyoto University, JP), Claudia Landi (University of Modena, IT),
Andreas Ott (KIT – Karlsruher Institut für Technologie, DE), Manish Saggar (Stanford
University, US), and Dominik Schindler (Imperial College London, GB)
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The stability result of Persistent Homology is not guaranteeing much in very high dimensions,
when noise of at most ε is added in each dimension to the data. Indeed, the ℓ2-distance
between a point x ∈ Rd and its perturbed point x+p with ||p||ℓ∞ < ε is ||p||ℓ2 ≤

√
dε. Hence,

the stability bound, namely the Hausdorff distance between the original and the perturbed
point set, is O(

√
dε) as well.

We prove that this effect, the curse of dimensionality, cannot be circumvented in full
generality, i.e., when an adversary is allowed to make the choices. This shows that we need
some assumption on the data. We list some ideas for possible assumptions, and approaches
that seem promising within these different assumptions.

Setting

The setting is for example motivated by gene expression data, with few (s) essential genes,
many more (d − s) housekeeping genes, and a small measuring error for each gene. The
persistence diagram of such data will, due to the curse of dimensionality, be very different
than the desired persistence diagram of only the essential genes.

Given ε > 0, s ∈ N, A ⊆ Rs, an integer d > s, an affine linear map L : Rs → Rd with
determinant 1, and for every a ∈ A, a vector pa with ||pa||ℓ∞ < ε. We denote the embedded
point set L(A) by X and the perturbed set {L(a) + pa | a ∈ A} by Y .

The Gromov-Hausdorff distance is dGH(A, Y ) = dGH(X,Y ) ≤ maxa∈A||pa||ℓ2 ≤
√
dε

and thus for d >> s the stability theorem does not give a good bound for the Vietoris-Rips
persistence diagrams:

dB(PD(V R(A)), PD(V R(Y ))) ≤ 2dGH(A, Y ) = O(
√
dε). (1)
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Note that since we consider getting dB(PD(V R(A)), PD(V R(Y ))) = O(1) by match-
ing everything to the diagonal as “cheating”, one might want to consider a distance
between persistence diagrams that does not allow matchings with the diagonal, like the
Hausdorff distance. Another approach is to keep using the bottleneck distance and
not be satisfied with dB(PD(V R(A)), PD(V R(Y ))) = O(1), but insisting on wanting
dB(PD(V R(A)), PD(V R(Y ))) = O(1)ε or o(1) as ε goes to 0.

We are searching for a modification Z ⊆ Rd of the observed data Y , such that
dB(PD(V R(A)), PD(V R(Z))) = o(1). For example by dimensionality reduction.

When the Adversary Makes the Choices

There cannot be any fix to the curse of dimensionality in full generality, as the following
argument shows. For every ε, and every s ≥ 1, an adversary can choose

the point set A as two points on the x-axis with distance 1 from each other,
the embedding dimension d > 1

ε2 ,
the affine linear map L with determinant 1 to map the x-axis to the direction spanned by
the vector (1, 1, . . . , 1),
and the two vectors p1 and p2 such that L(a1)+pa1 = L(a2)+pa2 , e.g. pa1 = 1√

d
(1, 1, . . . , 1)

and pa2 = 0. As 1√
d
< ε, such a perturbation is allowed.

Then, the observed set Y consists of two points in the same spot, and thus does not have
any non-essential homology, whereas A has a persistence pair with persistence 1. Hence,
the distance dB(PD(V R(A)), PD(V R(Y ))) = 1 does not converge to zero when ε goes to
zero. Furthermore, since all structure of A has been destroyed in Y , there is no hope to
reconstruct an adequate modification Z to reconstruct the persistence of A, since when only
given Y , we cannot know whether it has been created from a set A consisting of two points
in the same position that have not been perturbed at all or from the above set A.

This shows that in order to have a chance against the curse of dimensionality, we need
some assumptions on our data, instead of letting the adversary choose the data. Note that
in the proof above, it was essential to let the adversary choose the embedding dimension d,
the map L, and the perturbation vectors. Choosing A does not seem to be essential, it just
makes the proof more convenient.

Possible Assumptions

Since we want to talk about the curse of dimensionality, we do not want to bound the
embedding dimension d but instead keep letting the adversary choose d, or in other words
imagine d as very large. Instead we can make assumptions on the affine linear map L or on
the perturbation vectors:
1. A weak assumption would be assuming that the perturbation vectors have the form

pa = wava with wa > 0 an unknown constant depending on a, and va i.i.d. with an
unknown distribution.

2. One can strengthen this by assuming a fixed known distribution for the va.
3. Or assuming that wa = 1.
4. Another approach is assuming that the map L is axis-parallel or not too far from axis

parallel.
5. Maybe assuming that the data is sampled very densely (for example d

n converging to a
constant).
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Possible Solutions

Possible ideas how to pass from Y to Z:
Assuming Assumption 4 above, there are d− s coordinates that are pure noise. Hence,
choose the s coordinates with the most variance and set the other coordinates to zero. In
application where the noise pa might be approximately linearly depending on the length
||a||ℓ2 , one could for example replace the variance by the variance divided by the mean.
Assuming at least Assumption 1 above: Use neural network auto-encoder (and afterwards
possibly UMAP?) for dimensionality reduction from Y to Z.
Assuming assumption 2: Mimic what RECODE does, namely, if I understand correctly,
using a PCA technique that is designed by statisticians for weakening the curse of
dimensionality for that particular distribution.
Assuming at least Assumption 1 above: Dominik’s idea: apply some variant of hierarchical
clustering to observed data and obtain dendogram -> this leads to an ultrametric -> we can
analyze the new ultrametric space with Vietoris Rips Persistent Homology. Alternatively:
clustering and then MCF.
Assume at least Assumptions 1 and 5 above: Hope that something like the law of large
numbers would yield that the effects of the many strong (up to O(

√
dϵ)) perturbations

average each other out, such that a degree-Rips / density-Rips approach or something
similar to Ximena’s work might filter out the noise.
Assuming maybe Assumption 1 or 4 above: Some kind of bootstrap idea would be to
subsample, say s (or a bit more) out of d, dimensions many times, knowing that most of
the time one would mostly just get the noise, but maybe there is some way to distinguish
the non-noise persistence diagrams from the purely-noise ones. The advantage would be
that the diagram where the correct s dimensions are selected, would not have the curse
of dimensionality. But it seems difficult to extract this useful information from the huge
bag of persistence diagrams. Furthermore,

(
d
s

)
is very large, so it does not seem feasible

from a computational perspective.
Additional to the other ideas, Primoz Skraba said that it might help to look at persistence
rather as death divided by birth, rather than death – birth. However, that alone would
not be enough of course.

4.3 Computation of Generalized Persistence Diagrams
Michael Lesnick (University at Albany, US), Teresa Heiss (IST Austria – Klosterneuburg, AT),
Michael Kerber (TU Graz, AT), Dmitriy Morozov (Lawrence Berkeley National Laboratory,
US), Primoz Skraba (Queen Mary University of London, GB & Jožef Stefan Institute –
Ljubljana, SI), and Nico Stucki (TU München, DE)
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One breakout session was focused loosely on understanding the problem of computing
generalized persistence diagrams (GPDs), as defined by Kim and Mémoli.

Given a poset P , persistence module M : P → Vec, and a generalized interval (a.k.a.
spread) I ⊂ P , the generalized rank of M over I is the rank of the map

limIM → colimIM.
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The map sending each such I to its generalized rank is the generalized rank invariant (GRI)
of M . Taking the Möbius inversion of the GRI yields the generalized persistence diagram
(GPD), a kind of signed barcode for generalized persistence.

Signed barcodes have become a hot topic in TDA in the last few years. There are multiple
ways to define a signed barcode, namely, by taking Möbius inversions of different functions,
or by relative homological algebra with respect to different exact structures.

Among the various options, the GPD studied here is an appealing choice because it is
a relatively rich invariant and also has a very simple interpretation in the case of spread-
decomposable modules: On such modules, the GPD simply counts the number of copies of
each spread in the decomposition. In contrast, other types of signed barcodes can be rather
complicated on such modules. This makes the problem of computing the GPD interesting.
This problem is mostly open, in spite of some interesting recent work by Dey, Kim, Mémoli
on the related problem of computing the GRI at fixed indices.

Our group explored (in a very preliminary way), the following related questions:
What does the GPD look like on specific examples of non-spread decomposable modules?
How quickly does its size grow as the support of the module grows.
In the special case that M has a small encoding in the sense of Ezra Miller’s work (i.e.,
there exists a surjection of posets f : P → Q and a functor N : Q → Vec with f = N ◦ g
and |Q| small), is efficient computation of M possible? How does the complexity of
computing the GPD depend on |Q|? What bounds on |Q| can be expected in practical
2-parameter persistence computations? How does one compute f?
Can the ideas underlying recent work by Morozov and Patel on the output-sensitive
computation of signed barcodes for 2-parameter persistence also be useful for computing
GPDs?

There was some progress made. The first example we looked at was

k k2 k2

k k2

k

We made an attempt to understand if a module was nearly interval indecomposable, how
complex could the generalized rank invariant be. Under the appropriate choice of morphisms,
the above decomposes into many non-trivial pieces in the generalized rank invariant.

Following up on this, there was also a discussion on whether such non-interval indecom-
posables occur in practice/arises in random settings, e.g. from random point clouds. Michael
Kerber suggested a bifiltration example which was finite and the point positions were generic,
i.e. a positive but small perturbation does not affect the decomposition. We then showed
that this will occur in a uniform Poisson point process with probability 1 as the number of
points goes to ∞. The idea behind the proof is that one can define a random variable of the
event of such a configuration occurring, i.e. using the small neighborhood of the example.
As the configuration is finite and generic, the probability of the event is strictly positive.
As the expected number of such neighborhoods goes to ∞, the probability must go to 1.
Michael Kerber also reported his experimental results which indeed show that non-interval
indecomposables arise in many experiments.

While we did not make decisive progress, the discussions were illuminating and left us
with a better understanding of invariants and their computation.
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Given f : M → R, the Morse complexes partition M into ascending/descending manifolds of
minima/maxima. The Morse-Smale complex is the intersection of the two Morse complexes.
Given f1, f2, and their Morse-Smale complexes MSC1, MSC2, how to define distances or
metrics d(MSC1,MSC2)? This working group met on two days and focused on brainstorming
likely lists of ideas worth pursuing, hopefully sparking ideas for future work in the participants
when tackling this difficult and surprisingly open problem.

Summary from Day 1

We first discussed how the Morse and Morse-Smale complexes are defined, and how they can
differ. Note that we often require that f has some ‘niceness’ assumptions about how the
ascending/descending manifolds intersect, requires transversality, etc. These assumptions
are fairly common, and ensure controlled behavior such as degree constraints on the graph
and genericity of the resulting curves.

We then brainstormed a list of possible “objects” we could compute distances on (i.e.
which piece of the complex) and what sorts of distances we could compute on that object.
All of these objects are some structure given on the Morse complex, but some retain more
structure (i.e. just keeping the graph versus using information about the 2-dimensional pieces
of the complex).

1. First, we discussed just keeping a 1-dimensional skeleton (specifically, the Morse Graph
of separatrices), rather than the full complex. With this information, we could consider
any of the following distances:

Graph-based distances, e.g. interleaving and edit distances. There is a wealth of these
in the literature, but it is unclear if they utilize the real structure of the Morse complex.
Distances on geometrically-embedded graphs / metric graphs (e.g. edge lengths +
function values). These are well studied, but often computationally intractable.
Distances based on computational geometric measures (e.g. Frechet distances): These
are well studied in computational geometry, but again unclear how they match with
Morse graphs.
Distances based on optimal transport
Graph / graph kernel / spectral methods
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2. Using a 2D complex: This retains more information from the Morse complex, but higher
dimensional comparisons are plausibly more difficult. We considered the following options
for this structure:

Information-theoretic distances (KL divergence)
Partition-based distances (Rand index)
Interleaving distance on the Reeb space: While interleavings on Reeb graphs are more
well known, the basic idea should extend up a dimension to Reeb spaces as well.
Optimal transport: There is preliminary work on these in the viz community, so they
may be more tractable.
Haussdorf distance / CG metrics / Frechet: Many of these become NP-Hard on
two dimensional surfaces or even terrains or polygons with holes, but they are not
well-studied on Morse complexes.
Distance on the Hasse graph: This yields a much different graph, which perhaps would
be amenable to different types of computations but still captures much of the topology
and adjacency information.

3. Finally, we also mentioned a few alternatives and other objects we could use which are
based on the Morse complex as well:

One option was the extremal graph, which is a subset of the 1-skeleton, rather than
the full skeleton. This perhaps is a simpler object than the full skeleton retaining the
most ‘interesting’ information, although it is not clear what would be lost.
Dual graph of face adjacency: Again, this retains something interesting but flips the
graph to the dual, which in some cases in computational geometry will allow different
operations than the primal gives and/or can have nicer properties.

After discussing options of what objects we could to study, we then considered what
desirable properties of interest would exist for such metrics, both theoretical and practical.
These include:
1. Stability wrt small changes in scalar field, i.e. a bound on d(MSC1,MSC2) vs ∥f1 − f2∥
2. Stability wrt topological simplification of the field
3. Metric properties (i.e. triangle inequality, symmetric, etc)
4. Universality: This is an idea from topological data analysis, which looks for the most

descriptive option amongst stable metrics. There has been recent work on Reeb graphs,
which perhaps may be extended to the slightly more general Morse complex.

5. Discriminativity: Again drawing from Reeb graph metrics literature, there are many times
when one distance is strictly more powerful (often at the cost of complexity). This may
be a useful notion in order to compare the relative power of metrics on Morse complexes
as well.

6. Computability (and/or heuristics to reduce computation time)
7. Interpretability / Locality (i.e., edit distance can tell us which edits cost what, so the

cost has a discrete mapping which can be considered on its own)
8. Practicality, as opposed to worse case computational complexity: Which distances are

actually feasible to implement and/or approximate?

Summary from Day 2

Thursday began with a brief review, but then we focused on a couple of specific possible
directions, discussing how best to proceed in computing and/or using a distance computed
in that manner. We outlined several promising approaches, which we would like to propose
as likely directions for developing distances.
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First, we began with a discussion of what could be done when focusing on the full complex.
In this case, we considered the optimal transport approach, which seems most likely to
succeed in practice, although there are some interesting challenges.

We began by discussing how to compute optimal transport metrics, in terms of optimizing
the matching to connectivity while also preserving associated properties stored on vertices
(position, function value), edges (edge length, edge geometry), etc.
We then determined several strategies towards extending this notion to Morse complexes.
In particular, we see some complexity with extending the adjacency portion of these to a
cell-based metric. The basic construction we considered most likely creates a bipartite
graph of the adjacencies between cells of dimensions differing by 1. The challenge will
then be managing this across all dimensions in a consistent way.

While there are significant challenges with optimal transport, it nonetheless seems a
major alternative worth future study, given its success in other practical domains.

Our next portion of the discussion was based on the recent success of the study of Reeb
graph metrics. While perhaps less practical, these have desirable theoretical properties, and
so it seems worth investigating which might generalize to mroe general Morse or Morse-Smale
complexes.

Interleaving distances are well studied in topological data analysis, and in Reeb graphs
have a nice combinatorial characterization via the thickening functor. In addition,
interleavings are computable on general persistence modules and are fixed parameter
tractable on simple classes of Reeb graphs. To the best of our group’s knowledge, there
is no notion of interleavings formally defined on Morse complexes, but the theoretical
definitions would likely generalize.
Edit distances are well studied on graphs and combinatorial objects, and appeal to
computer scientists given their utility in other domains. On Reeb graphs, they have been
generalized in an unusual way in order to prove stability and universality in quite recent
work. We again are unaware of any work generalizing these edits distances to Morse
complexes.
Two more recently defined Reeb metrics are the functional distortion and contortion
distances, which draw inspiration from Gromov-Hausdorff notions of metrics. One possible
approach to generalize this to Morse complexes is to ‘thicken’ the space along the normal
direction of separatrices, rather than along the function value space.

Finally, the group discussed complexity. Unfortunately, we suspect many if not all of these
notions will be difficult to compute. There is perhaps hope of approximation or heuristics,
but work remains even on Reeb graphs.

We concluded with a general discussion of other computational geometry and topology
notions which have been used in simpler settings, such as Fréchet-based distances, local
homology, and persistence distortion. Unfortunately, none seemed obvious candidates for
study on Morse complexes.
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