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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23211 “Scalable Data
Structures”. Data structures enable the organization, storage and retrieval of data across a variety
of applications. As they are deployed at unprecedented scales, data structures can profoundly
affect the efficiency of almost all computational tasks. The study of data structures thus continues
to be an important and active area of research with an interplay between data structure design
and analysis, developments in computer hardware, and the needs of modern applications. The
extended abstracts included in this report give a snapshot of the current state of research on
scalable data structures and establish directions for future developments in the field.
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About the seminar
The scale at which data is generated and processed is increasing unabated and novel
applications continue to arise, posing new challenges for data structure design and analysis.
The performance of data structures can dramatically affect the overall efficiency of computing
systems, motivating research on scalable data structures along the entire spectrum from
purely theoretical to purely empirical.
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The focus of data structure research has continuously shifted to better align with the
changing realities of the underlying hardware (e.g. by refining computational models to
capture memory hierarchies and parallelism), and the requirements of applications (e.g. by
finding the right input models, novel modes of operation, and special requirements such as
data privacy or adapting to side-information). Suitable data structuring abstractions have
often been crucial components of algorithmic breakthroughs, for instance in static or dynamic
graph algorithms, e.g. for maximum flow or minimum spanning trees. Research on classical
problems and long-standing open questions continues, with surprising recent improvements,
e.g. for list labeling.

Data structure research has been a core part of computer science from the beginnings,
and the field appears as vibrant as ever, with research continuing on deep old questions, as
well as on new directions reflecting the changing realities of the computational landscape.

This seminar was the 15th in a series of loosely related Dagstuhl Seminars on data
structures, bringing together researchers from several research directions to illuminate various
aspects and solutions to the problem of data structure scalability. Following the previous,
purely virtual meeting, the seminar was organized as a fully on-site event.

Topics
The presentations covered both advances in classic data structure fields, as well as insights
that addressed the scalability of computing in different models of computation and across a
diverse range of applications.

Parallelism was an important theme of the seminar. Blelloch (Section 4.1) discussed
possible ways of making parallelism a core part of a computer science curriculum, Agrawal
(Section 4.12) talked about incorporating data structures in parallel algorithms, and Sun
(Section 4.5) presented algorithms for Longest Increasing Subsequence, building on parallel
data structures.

Classic questions of data structure design and analysis in the comparison- or pointer-based
models were the topic of multiple talks. Tarjan (Section 4.17) discussed various self-adjusting
heaps and new results on their amortized efficiency. Munro (Section 4.24) talked about the
ordered majority problem. Sorting was the subject of a series of talks: Wild (Section 4.3)
talked about new, practically efficient sorting algorithms used in Python. Nebel (Section 4.6)
talked about the practical efficiency of Lomuto’s QuickSort variant. Pettie (Section 4.21)
studied efficiently sorting inputs with pattern-avoiding properties, and Jacob (Section 4.27)
studied variants of the sorting problem with priced comparisons.

Several talks reflected the central importance of hashing in scalable data structures,
giving a broad picture of modern developments in this area. Conway (Section 4.2) presented
Iceberg Hashing and Mosaic Pages. Sanders (Section 4.7) presented Sliding Block Hashing.
Farach-Colton (Section 4.9) considered a simplified hash table design with strong guarantees.
Bercea (Section 4.18) presented a data structure for incremental stable perfect hashing,
Johnson (Section 4.22) presented Maplets, and Even (Section 4.29) talked about dynamic
filters with one memory access.

The very recent O(log3/2 n)-time online list labeling result was presented by Wein (Sec-
tion 4.28) and results for the online list labeling problem with machine learning advice were
presented by Singh (Section 4.8).

Static and dynamic graph algorithms were the topic of several presentations. Kyng
(Section 4.12) talked about dynamic spanners and data structuring problems arising in
the context of minimum cost flow. King (Section 4.13) presented algorithms for dynamic
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connectivity and Rotenberg (Section 4.15) presented dynamic graph algorithms that are
adaptive to sparsity of the input. For data structures in string problems, Gørtz (Section 4.20)
discussed regular expression matching and Kopelowitz (Section 4.16) presented speedups of
the dynamic program for the Dyck edit distance problem.

Multiple talks reflected the interplay between data structures and computational geometry:
Dallant (Section 4.30) spoke about conditional lower bounds for dynamic geometric problems,
Oh (Section 4.25) presented an algorithm for the planar disjoint paths problem, and Arseneva
(Section 4.23) talked about morphing graph drawings, including results obtained jointly with
Oh during the seminar.

Possible computational models for designing algorithms for GPUs were addressed by
Sitchinava (Section 4.19) and models of in-memory processing were presented by Silvestri
(Section 4.26).

Phillips (Section 4.10) presented the design and analysis of a large-scale stream monitoring
system. Liu (Section 4.4) discussed the role of scalable data structures in the context of
differential privacy for graph data. Xu (Section 4.11) presented a search-optimized layout for
packed memory arrays.

Final Thoughts
The organizers would like to thank the Dagstuhl team for their continuous support and also
thank all participants for their contributions to this seminar. Following the earlier virtual
seminar, the current (15th) seminar was fully on-site. The opportunity to personally meet
and interact was highly appreciated by the community, as reflected by a very strong response
to the first round of invitations and subsequent positive feedback. The seminar fills a unique
need in bringing together data-structures-researchers from around the world and facilitating
collaboration and exchange of ideas between them.

Earlier seminars in the series had few female participants. An important focus of the
previous and the current seminar was to significantly increase female attendance. In the
current seminar, 48% of the invited participants were female, resulting in a 37% female
attendance. Another important focus of the seminar is to encourage the interaction between
senior and early career researchers, the latter comprising 27% of the invited participants and
32% of the eventual attendees.

In the post-seminar survey the diversity of junior/senior and female/male participants
were both appreciated, respondents also drawing attention to the importance of tactful and
clear communication on these matters. The survey respondents also praised the coverage of
a diverse range of research topics, as well as the mix between theoreticians and more applied
researchers.
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3 Seminar program

Sunday May 21, 2023
18:00 Dinner buffet

Monday May 22, 2023
07:30 Breakfast
09:00 Opening & Introductions
10:30 Coffee break

11:00 Should We Teach Parallelism throughout Undergraduate Algorithm Courses?
Guy E. Blelloch

12:15 Lunch
15:30 Coffee & Cake

16:00 Iceberg Hashing and Mosaic Pages: A Data-Structural Approach to Faster Virtual
Address Translation
Alexander Conway

16:35 Quicksort, Timsort, Powersort – Python’s new Sorting Algorithm
Sebastian Wild

17:10 Scalable Data Structures for Privacy on Graphs
Quanquan C. Liu

18:00 Dinner

Tuesday May 23, 2023
07:30 Breakfast

09:00 Parallel Longest Increasing Subsequence and van Emde Boas Trees
Yihan Sun

09:30 Lomuto’s Comeback or the Unpredictability of Program Efficiency
Markus E. Nebel

10:00 Sliding Block Hashing
Peter Sanders

10:30 Coffee break

11:00 Open problem session

12:15 Lunch
15:30 Coffee & Cake

16:00 Online List Labeling with Predictions
Shikha Singh

16:24 Simple Hash Tables
Martin Farach-Colton

16:48 Write-Optimized Algorithms for Stream Monitoring
Cynthia A. Phillips

17:12 Optimizing Search Layouts in Packed Memory Arrays
Helen Xu

17:38 Using Data Structures within Parallel Algorithms
Kunal Agrawal

18:00 Dinner
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Wednesday May 24, 2023
07:30 Breakfast

09:00 Dynamic Spanners
Rasmus Kyng

09:30 Batch Parallel fast Worst Case Dynamic Connectivity
Valerie King

10:00 Sparsity-Adaptive Dynamic Graph Algorithms
Eva Rotenberg

10:30 Coffee break

11:00 The k-Dyck Edit Distance Problem
Tsvi Kopelowitz

11:30 Heaps
Robert Tarjan

12:00 Group picture
12:15 Lunch
14:00 Hike
15:30 Coffee & Cake
18:00 Dinner

Thursday May 25, 2023
07:30 Breakfast

09:00 An Extendable Data Structure for Incremental Stable Perfect Hashing
Ioana-Oriana Bercea

09:30 How to design algorithms for GPUs
Nodari Sitchinava

10:00 Sparse Regular Expressions
Inge Li Gørtz

10:30 Coffee break

11:00 Sorting pattern-avoiding permutations and forbidden 0-1 matrices
Seth Pettie

11:30 Maplets and their Application
Rob Johnson

12:15 Lunch
15:30 Coffee & Cake

16:00 Morphing Graph Drawings
Elena Arseneva

16:30 Ordered Majority
Ian Munro

17:00 Parameterized algorithm for the planar disjoint paths problem
Eunjin Oh

17:30 Algorithms for Processing in Memory
Francesco Silvestri

18:00 Dinner
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Friday May 26, 2023
07:30 Breakfast

09:00 Sorting with Priced Comparisons: The General, the Bichromatic, and the Universal
Riko Jacob

09:30 Online List Labeling: Breaking the log2 n Barrier
Nicole Wein

10:00 Dynamic Filters and Retrieval with one Memory Access
Guy Even

10:30 Conditional Lower Bounds for Dynamic Geometric Problems
Justin Dallant

11:00 Coffee break
12:15 Lunch

4 Overview of Talks

4.1 Should We Teach Parallelism throughout Undergraduate Algorithm
Courses?

Guy E. Blelloch (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Guy E. Blelloch

4.2 Iceberg Hashing and Mosaic Pages
Alexander Conway (VMware Research – Palo Alto, US)

License Creative Commons BY 4.0 International license
© Alexander Conway

Joint work of Alexander Conway, Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N. Mubarek,
Nirjhar Mukherjee, Karthik Sriram, Guido Tagliavini, Evan West, Michael A. Bender, Abhishek
Bhattacharjee, Martin Farach-Colton, Jayneel Gandhi, Rob Johnson, Sudarsun Kannan, Donald E.
Porter

Main reference Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N. Mubarek, Nirjhar Mukherjee,
Karthik Sriram, Guido Tagliavini, Evan West, Michael A. Bender, Abhishek Bhattacharjee, Alex
Conway, Martin Farach-Colton, Jayneel Gandhi, Rob Johnson, Sudarsun Kannan, Donald E. Porter:
“Mosaic Pages: Big TLB Reach with Small Pages”, in Proc. of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3,
ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, pp. 433–448, ACM, 2023.

URL https://doi.org//10.1145/3582016.3582021

In this talk, I present an algorithmic approach to co-designing TLB hardware and the paging
mechanism to increase TLB reach without the fragmentation issues incurred by huge pages.
Along the way, I’ll introduce a new hash-table design that overcomes existing tradeoffs, and
achieves better performance than state-of-the-art hash tables both in theory and in practice.
Key to these results are “tiny pointers,” an algorithmic technique for compressing pointers.
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4.3 Quicksort, Timsort, Powersort – Algorithmic ideas, engineering
tricks, and trivia behind CPython’s new sorting algorithm

Sebastian Wild (University of Liverpool, GB)

License Creative Commons BY 4.0 International license
© Sebastian Wild

Main reference J. Ian Munro, Sebastian Wild: “Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs”, in Proc. of the 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, LIPIcs, Vol. 112, pp. 63:1–63:16,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

URL https://doi.org//10.4230/LIPIcs.ESA.2018.63

Writing a sorting function is easy – coding a fast and reliable reference implementation less
so. In this talk, I tell the story behind CPython’s latest updates of the list sort function.

After using Quicksort for a long while, Tim Peters invented Timsort, a clever Mergesort
variant, for the CPython reference implementation of Python. Timsort is both effective in
Python and a popular export product: it is used in many languages and frameworks, notably
OpenJDK, the Android runtime, and the V8 JavaScript engine.

Despite this success, algorithms researchers eventually pinpointed two flaws in Timsort’s
underlying algorithm: The first could lead to a stack overflow in CPython (and Java);
although it has meanwhile been fixed, it is curious that 10 years of widespread use didn’t
bring it to surface. The second flaw is related to performance: the order in which detected
sorted segments, the “runs” in the input, are merged, can be 50% more costly than necessary.
Based on ideas from the little known puzzle of optimal alphabetic trees, the Powersort merge
policy finds nearly optimal merging orders with negligible overhead, and is now (Python
3.11.0) part of the CPython implementation.

References
1 J. Ian Munro and Sebastian Wild. Nearly-Optimal Mergesorts: Fast, Practical Sorting

Methods That Optimally Adapt to Existing Runs. ESA 2018
2 William Cawley Gelling, Markus E. Nebel, Benjamin Smith, and Sebastian Wild. Multiway

Powersort. ALENEX 2023

4.4 Scalable Data Structures for Privacy on Graphs
Quanquan C. Liu (Northwestern University – Evanston, US)

License Creative Commons BY 4.0 International license
© Quanquan C. Liu

Joint work of Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian Shun, Shangdi Yu
Main reference Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian Shun, Shangdi Yu:

“Differential Privacy from Locally Adjustable Graph Algorithms: k-Core Decomposition, Low
Out-Degree Ordering, and Densest Subgraphs”, in Proc. of the 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022,
pp. 754–765, IEEE, 2022.

URL https://doi.org//10.1109/FOCS54457.2022.00077
Main reference Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, Adam D. Smith: “Triangle Counting with

Local Edge Differential Privacy”, in Proc. of the 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, LIPIcs, Vol. 261,
pp. 52:1–52:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

URL https://doi.org//10.4230/LIPIcs.ICALP.2023.52

Differential privacy is the gold standard for rigorous data privacy guarantees where the
traditional central model assumes a trusted curator who takes private input and outputs
privatized answers to user queries. However, one major assumption in this model is that
the trusted curator always keeps the input private. Unfortunately, such a strong notion of
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trust is too ideal in today’s world where massive data leaks occur. Thus, in this talk, I’ll
discuss private graph algorithms in the local model, where nodes trust no one with their
private information. One major issue in the local privacy model for graphs is scalability.
Scalability is often an issue for graph algorithms in the local privacy model because many
techniques for making graph algorithms private change the density of the input graph (i.e.
making the graph much denser than it was previously). I’ll present the first local edge
differentially private (LEDP) algorithms for k-core decomposition, low out-degree ordering,
and densest subgraph. Furthermore, our algorithms are scalable and can be implemented in
distributed and parallel models without the issue of changing graph density. Our algorithm’s
approximation factor matches that of the currently best non-private distributed algorithm
for k-core decomposition with only an poly(log n)/ϵ additive error. I’ll conclude with a
discussion of some open questions and potential future work.

4.5 Parallel Longest Increasing Subsequence and Van Emde Boas Trees
Yihan Sun (University of California – Riverside, US)

License Creative Commons BY 4.0 International license
© Yihan Sun

Joint work of Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, Zijin Wan
Main reference Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, Zijin Wan: “Parallel Longest Increasing Subsequence

and van Emde Boas Trees”, in Proc. of the 35th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2023, Orlando, FL, USA, June 17-19, 2023, pp. 327–340, ACM, 2023.

URL https://doi.org//10.1145/3558481.3591069

This paper studies parallel algorithms for the longest increasing subsequence (LIS) problem.
Let n be the input size and k be the LIS length of the input. Sequentially, LIS is a simple
problem that can be solved using dynamic programming (DP) in O(n log n) work. However,
parallelizing LIS is a long-standing challenge. We are unaware of any parallel LIS algorithm
that has optimal O(n log n) work and non-trivial parallelism (i.e., Õ(k) or o(n) span). This
paper proposes a parallel LIS algorithm that costs O(n log k) work, Õ(k) span, and O(n)
space, and is much simpler than the previous parallel LIS algorithms. We also generalize the
algorithm to a weighted version of LIS, which maximizes the weighted sum for all objects in
an increasing subsequence. To achieve a better work bound for the weighted LIS algorithm,
we designed parallel algorithms for the van Emde Boas (vEB) tree, which has the same
structure as the sequential vEB tree, and supports work-efficient parallel batch insertion,
deletion, and range queries.

We also implemented our parallel LIS algorithms. Our implementation is light-weighted,
efficient, and scalable.

4.6 Lomuto’s comeback or the unpredictability of program efficiency
Markus E. Nebel (Universität Bielefeld, DE)

License Creative Commons BY 4.0 International license
© Markus E. Nebel

Joint work of Markus E. Nebel, David Komnick
Main reference https://dlang.org/blog/2020/05/14/lomutos-comeback/

We report experimental results for a Quicksort variant based on Lomuto’s partitioning
suggested by Andrei Alexandrescu. This variant eliminates branches inside the main loop of
the partitioning process for the price of an increased number of overall executed instructions.
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However, the resulting reduction of mispredicted branches gives rise to a heavily used
pipeline. As a consequence, the resulting Quicksort implementation runs faster than one
using Hoare/Sedgewick partitioning. Our adaptations of the latter to different branch free
versions imply a similar overhead of instructions and a comparable reduction of branch
misses. However, the speedup observed due to improved pipelining is way smaller than for
the Lomuto variant and results in an overall worse runtime. So far we have no explanation
for this.

4.7 Sliding Block Hashing (Slick)
Peter Sanders (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 4.0 International license
© Peter Sanders

Joint work of Hans-Peter Lehmann, Peter Sanders, Stefan Walzer
Main reference Hans-Peter Lehmann, Peter Sanders, Stefan Walzer: “Sliding Block Hashing (Slick) – Basic

Algorithmic Ideas”, CoRR, Vol. abs/2304.09283, 2023.
URL https://doi.org//10.48550/arXiv.2304.09283

We present Sliding Block Hashing (Slick) a simple hash table data structure that combines
high performance with very good space efficiency.

4.8 Online List Labeling with Predictions
Shikha Singh (Williams College – Williamstown, US)

License Creative Commons BY 4.0 International license
© Shikha Singh

Joint work of Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Shikha Singh
Main reference Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Shikha Singh: “Online List Labeling with

Predictions”, CoRR, Vol. abs/2305.10536, 2023.
URL https://doi.org//10.48550/arXiv.2305.10536

A growing line of work shows how learned predictions can be used to break through worst-cast
barriers to improve the running time of an algorithm. However, incorporating predictions
into data structures with strong theoretical guarantees remains underdeveloped. This work
takes a step in this direction by showing that predictions can be leveraged in the fundamental
online list labeling problem. In the problem, n items arrive over time and must be stored in
sorted order in an array of size Θ(n). The array slot of an element is its label and the goal is to
maintain sorted order while minimizing the total number of elements moved (i.e., relabeled).
We present a new list labeling data structure and bound its performance in two models. In
the worst-case learning-augmented model, we give guarantees in terms of the error in the
predictions. Our data structure provides strong theoretical guarantees— it is optimal for any
prediction error and guarantees the best-known worst-case bound even when the predictions
are entirely erroneous. We also consider a stochastic error model and bound the performance
in terms of the expectation and variance of the error. Finally, the theoretical results are
demonstrated empirically. In particular, we show that our data structure performs well on
numerous real datasets, including temporal data sets where predictions are constructed from
elements that arrived in the past (as is typically done in a practical use case).
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4.9 Simple Hash Tables
Martin Farach-Colton (Rutgers University – Piscataway, US)

License Creative Commons BY 4.0 International license
© Martin Farach-Colton

We present a hash table that achieves nearly the state of the art but requires only basic
analytical techniques. The aim is to present an algorithm that can be taught to graduate
students (or perhaps advanced undergrads).

4.10 Write-Optimized Algorithms for Stream Monitoring
Cynthia A. Phillips (Sandia National Labs – Albuquerque, US)

License Creative Commons BY 4.0 International license
© Cynthia A. Phillips

Joint work of Shikha Singh, Prashant Pandey, Michael Bender, Jonathan Berry, Daniel Delayo, Martin
Farach-Colton, Rob Johnson, Thomas Kroeger, Cynthia Phillips, David Tench, Eric Thomas

Main reference Shikha Singh, Prashant Pandey, Michael A. Bender, Jonathan W. Berry, Martin Farach-Colton, Rob
Johnson, Thomas M. Kroeger, Cynthia A. Phillips: “Timely Reporting of Heavy Hitters Using
External Memory”, ACM Trans. Database Syst., Vol. 46(4), pp. 14:1–14:35, 2021.

URL https://doi.org//10.1145/3472392

We describe data structures and data-management algorithms for monitoring cyber streams.
We wish to identify specific patterns that arrive slowly over time, hidden among high-
speed streams of normal traffic. The key piece of the Firehose benchmark that models this
application is a variant of the heavy-hitters problem: report a key after it has been seen a
specific constant number of times. To solve this without false negatives requires Ω(N) space
for partial-pattern storage for a stream of size N . We give write-optimized external-memory
algorithms to accurately monitor high-speed streams with provable tunable trade-off between
reporting delay and I/O overhead. Our experimental results show that a multithreaded
version of our algorithm has throughput comparable to an engineered in-RAM reference
implementation, but our method reports all reportable keys, while the in-RAM method can
miss almost all reports for sufficiently large key space. We describe extensions to unending
streams.

4.11 Optimizing Search Layouts in Packed Memory Arrays
Helen Xu (Lawrence Berkeley National Laboratory, US)

License Creative Commons BY 4.0 International license
© Helen Xu

Joint work of Brian Wheatman, Randal C. Burns, Aydin Buluç, Helen Xu
Main reference Brian Wheatman, Randal C. Burns, Aydin Buluç, Helen Xu: “Optimizing Search Layouts in Packed

Memory Arrays”, in Proc. of the Symposium on Algorithm Engineering and Experiments, ALENEX
2023, Florence, Italy, January 22-23, 2023, pp. 148–161, SIAM, 2023.

URL https://doi.org//10.1137/1.9781611977561.ch13

This talk covers Search-optimized Packed Memory Arrays (SPMAs), a collection of data
structures based on Packed Memory Arrays (PMAs) that address suboptimal search via
cache-optimized search layouts. Traditionally, PMAs and B-trees have tradeoffs between
searches/inserts and scans: B-trees were faster for searches and inserts, while PMAs were
faster for scans. Our empirical evaluation shows that SPMAs overcome this tradeoff for
unsorted input distributions: on average, SPMAs are faster than B+-trees (a variant of
B-trees optimized for scans) on all major operations.
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4.12 Using Data Structures within Parallel Algorithms
Kunal Agrawal (Washington University – St. Louis, US)

License Creative Commons BY 4.0 International license
© Kunal Agrawal

4.13 Dynamic Spanners
Rasmus Kyng (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Rasmus Kyng

Joint work of Li Chen, Yang Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva
Main reference Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant

Sachdeva: “Maximum Flow and Minimum-Cost Flow in Almost-Linear Time”, CoRR,
Vol. abs/2203.00671, 2022.

URL https://doi.org//10.48550/arXiv.2203.00671

I gave a presentation on two topics:
1. How to use an L1 IPM to turn the task of solving an LP into a sequence data structure

queries, and how this can be applied to solve minimum-cost flow problems via min-ratio
cycle updates.

2. How to design dynamic spanners that allow for edge insertions and deletions and vertex
splits.

4.14 Batch Parallel fast Worst Case Dynamic Connectivity
Valerie King (University of Victoria, CA)

License Creative Commons BY 4.0 International license
© Valerie King

The dynamic connectivity problem is to process an online sequence of edge insertions and
deletions in a graph while answering connectivity queries. Here we simplify and parallelize
the sequential Monte Carlo algorithms of King et al. as improved by Wang for dynamic
connectivity, which requires polylogarithmic time per update and per query in the worst-case.
Our simplification adds no cost to the asymptotic sequential running time. It enables us to
rely strictly on ET-trees, rather than more complicated path compression data structures,
making it simpler to perform batch-parallel updates.

4.15 Sparsity-adaptive dynamic graph algorithms
Eva Rotenberg (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 4.0 International license
© Eva Rotenberg

Joint work of Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Krzysztof Nowicki, Eva Rotenberg,
Chris Schwiegelshohn, Carsten Thomassen

The arboricity α of a graph is the number of forests it takes to cover all its edges. Being
asymptotically related to the graph’s degeneracy and maximal subgraph density, arboricity
is considered a good measure of the sparsity of a graph. Natural computational questions
about arboricity include: computing the arboricity, obtaining a decomposition of the edges
into few forests, and orienting the edges so that each vertex has only close to α out-edges.
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In this talk, we will address these questions in the dynamic setting, in which the graph is
subject to arbitrary, adversarial insertions and deletions of edges. We will see how maintaining
an orientation with few out-edges from each vertex leads to efficient dynamic algorithms for
matching, colouring, and decomposing into O(α) forests; And we will see how to efficiently
balance the number of out-edges in an orientation of the dynamic graph, via an almost local
reconciliation between neighbouring vertices.

References
1 Aleksander B. G. Christiansen, Jacob Holm, Eva Rotenberg, and Carsten Thomassen. On

Dynamic α + 1 Arboricity Decomposition and Out-Orientation. In Stefan Szeider, Robert
Ganian, and Alexandra Silva, editors, 47th MFCS, volume 241 of LIPIcs, pages 34:1–34:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

2 Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg, and Chris
Schwiegelshohn. Adaptive Out-Orientations with Applications. CoRR, abs/2209.14087,
2022.

3 Aleksander Bjørn Grodt Christiansen, Krzysztof Nowicki, and Eva Rotenberg. Improved
Dynamic Colouring of Sparse Graphs. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual STOC, pages 1201–1214. ACM, 2023.

4 Aleksander B. G. Christiansen and Eva Rotenberg. Fully-Dynamic α + 2 Arboricity
Decompositions and Implicit Colouring. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th ICALP 2022, volume 229 of LIPIcs, pages 42:1–42:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

4.16 The k-Dyck Edit Distance Problem
Tsvi Kopelowitz (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 4.0 International license
© Tsvi Kopelowitz

Joint work of Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, Tatiana Starikovskaya
Main reference Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, Tatiana Starikovskaya:

“An Improved Algorithm for The k-Dyck Edit Distance Problem”, in Proc. of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 – 12, 2022, pp. 3650–3669, SIAM, 2022.

URL https://doi.org//10.1137/1.9781611977073.144

A Dyck sequence is a sequence of opening and closing parentheses (of various types) that
is balanced. The Dyck edit distance of a given sequence of parentheses S is the smallest
number of edit operations (insertions, deletions, and substitutions) needed to transform S

into a Dyck sequence. We consider the threshold Dyck edit distance problem, where the
input is a sequence of parentheses S and a positive integer k, and the goal is to compute
the Dyck edit distance of S only if the distance is at most k, and otherwise report that
the distance is larger than k. Backurs and Onak [PODS’16] showed that the threshold
Dyck edit distance problem can be solved in O(n + k16) time. In this work, we design new
algorithms for the threshold Dyck edit distance problem which costs O(n + k4.782036) time
with high probability or O(n + k4.853059) deterministically. Our algorithms combine several
new structural properties of the Dyck edit distance problem, a refined algorithm for fast (min,
+) matrix product, and a careful modification of ideas used in Valiant’s parsing algorithm.
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4.17 Heaps
Robert E. Tarjan (Princeton University, US)

License Creative Commons BY 4.0 International license
© Robert E. Tarjan

The heap, or priority queue data structure supports fast access to the smallest of a set of items
subject to insertions, deletions, and decreases in value. We describe recent results giving tight
and almost-tight amortized efficiency bounds for three self-adjusting heap implementations,
the slim heap, the smooth heap, and the multipass pairing heap.

4.18 An Extendable Data Structure for Incremental Stable Perfect
Hashing

Ioana Oriana Bercea (IT University of Copenhagen, DK)

Joint work of Ioana Oriana Bercea, Guy Even
License Creative Commons BY 4.0 International license
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Main reference Ioana Oriana Bercea, Guy Even: “An extendable data structure for incremental stable perfect

hashing”, in Proc. of the STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of
Computing, Rome, Italy, June 20 – 24, 2022, pp. 1298–1310, ACM, 2022.

URL https://doi.org//10.1145/3519935.3520070

The talk is about recent advancements in the design of dictionaries and other related data
structures. A dynamic dictionary is a data structure that maintains sets under insertions
and deletions and supports membership queries of the form “is an element x in the set or
not?”. A related problem is that of maintaining a perfect hash function over the set, in which
the data structure assigns a unique hashcode to each element in the set (but does not need
to support membership queries). We specifically focus on showing a perfect hashing data
structure whose space is proportional to the cardinality of the set at all points in time and
whose hashcodes are stable in the incremental setting (i.e., when only insertions are allowed,
the hashcode of an element does not change while the element is in the set). This is joint
work with Guy Even, based on our STOC 2022 paper.

4.19 How to design algorithms for GPUs
Nodari Sitchinava (University of Hawaii at Manoa – Honolulu, US)

License Creative Commons BY 4.0 International license
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In this talk we will briefly review the models of computation used for designing algorithms
on GPUs. We will also discuss recent algorithmic results on how to avoid bank conflicts
when designing algorithms for GPUs.
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4.20 Sparse Regular Expression Matching
Inge Li Gørtz (Technical University of Denmark – Lyngby, DK)
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2019.
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A regular expression specifies a set of strings formed by single characters combined with
concatenation, union, and Kleene star operators. Given a regular expression R and a string
Q, the regular expression matching problem is to decide if Q matches any of the strings
specified by R. Regular expressions are a fundamental concept in formal languages and
regular expression matching is a basic primitive for searching and processing data. A standard
textbook solution [Thompson, CACM 1968] constructs and simulates a nondeterministic
finite automaton, leading to an O(nm) time algorithm, where n is the length of Q and m is
the length of R. Despite considerable research efforts only polylogarithmic improvements of
this bound are known. Recently, conditional lower bounds provided evidence for this lack of
progress when Backurs and Indyk [FOCS 2016] proved that, assuming the strong exponential
time hypothesis (SETH), regular expression matching cannot be solved in O((nm)1−ϵ), for
any constant ϵ > 0. Hence, the complexity of regular expression matching is essentially
settled in terms of n and m.

In this paper, we take a new approach and go beyond worst-case analysis in n and m.
We introduce a density parameter, ∆, that captures the amount of nondeterminism in the
NFA simulation on Q. The density is at most nm + 1 but can be significantly smaller. Our
main result is a new algorithm that solves regular expression matching in

O
(

∆ log log nm

∆ + n + m
)

time.
This essentially replaces nm with ∆ in the complexity of regular expression matching.

We complement our upper bound by a matching conditional lower bound that proves that we
cannot solve regular expression matching in time O(∆1−ϵ) for any constant ϵ > 0 assuming
SETH.

4.21 Sorting Pattern-avoiding Permutations and Forbidden 0-1 Matrices
Seth Pettie (University of Michigan – Ann Arbor, US)
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Joint work of Parinya Chalermsook, Seth Pettie, Sorrachai Yingchareonthawornchai
Main reference Parinya Chalermsook, Seth Pettie, Sorrachai Yingchareonthawornchai: “Forbidden 0-1 Matrices and

the Complexity of Sorting Pattern-Avoiding Permutations”. Manuscript (2023).

An n-permutation S “avoids” a k-permutation π if there are no k indices i1 < · · · < ik such
that S(ij) < S(ij′) iff π(j) < π(j′). Chalermsook et al. (2015) and Kozma and Saranurak
(2019) presented two algorithms for sorting such permutations in O(n · 2(α(n))3k/2) time.
Their upper bound was derived by transcribing the behavior of the algorithm as an n × n

0-1 matrix and proving that this matrix avoids a certain pattern, which is the Kronecker
product of a permutation (encoding π) and a “hat” pattern. In this talk I prove that both of
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these algorithms actually run in O(n · 2(1+o(1))α(n)) time, by bounding the extremal function
of all such patterns. I also show that this bound is essentially tight, and that most such
patterns have an extremal function that is Ω(n · 2α(n)).

4.22 Maplets and their Application
Rob Johnson (VMware – Palo Alto, US)

License Creative Commons BY 4.0 International license
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Filters, such as Bloom, quotient, cuckoo, xor, and ribbon filters, are space-efficient, lossy
representations of sets. They have become widely used in systems and extensively researched
by data structures designers. In this talk, we argue that most applications would be
better served by maplets, i.e. space efficient, lossy maps, rather than filters. We explain
how to generalize the filter notion of lossiness to maps, show how several classic filter
applications can be dramatically improved by using maplets, and show how to construct
maplets straightforwardly from many of today’s filters.

4.23 Morphing planar drawings of graphs: main results, morphing
queries and a progress report

Elena Arseneva (University of Lugano, CH)

License Creative Commons BY 4.0 International license
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Joint work of Elena Arseneva, Eunjin Oh

Given two planar (straight-line) drawings of a planar graph, can one drawing be transformed
to the other in a little number of steps, where during each step every vertex moves along a
straight line segment with a uniform speed? It is crucially required that there is no crossing
between any elements of a drawing at any moment. Such transformation is called a morph. If
the drawings are topologically equivalent, then a 2D morph is always possible in O(n) steps,
and sometimes a linear number of steps is necessary [1]. Allowing intermediate drawings to
lie in 3D reduces the upper bound on the number of steps to O(log n) for trees [2], and lifts
the topologically equivalent requirement for arbitrary graphs, however at a cost of quadratic
number of steps [3]. No non-trivial lower bound for this setting is known. During the seminar
I proposed a query variant of the graph morphing problem, and jointly with Eunjin Oh we
obtained the first result in this direction:

A planar drawing Gamma of an n-vertex graph G can be preprocessed in O(n5/3 log2 n)
expected time and O(n log n) space for the following queries: given a vertex v of G, and a
point t in R2, can v be moved from its position in Gamma to the point t, such that the
morph is non-crossing?

After the above preprocessing, this query can be answered in O(log m log2 n) time, when
m is the degree of vertex v. We hope to further improve this runtime and generalise our data
structure to availability region queries, updates and 3D morphs.

This result is a joint work during the seminar with its participant Eunjin Oh.
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4.24 The Ordered Majority Problem
Ian Munro (University of Waterloo, CA)
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We examine the well-known problem of determining whether some value occurs in the
majority of positions in an array. The twist is that in the past comparisons have been (=, ̸=),
while here we focus on a three way outcome (<, =, >). We show, that like the (=, ̸=) version,
3n/2 − o(1) comparisons are necessary (and sufficient) in the worst case, but give a Las Vegas
algorithm requiring an expected n + o(1) comparisons and n − o(n) lower bound, in contrast
with a 1.059...n lower bound for the (=, ̸=) version.

4.25 Parameterized algorithm for the planar disjoint paths problem
Eunjin Oh (POSTECH – Pohang, KR)
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Given a planar graph G with n vertices and a set T = {(s1, t1), . . . , (sk, tk)} of k terminal
pairs, the disjoint paths problem asks for computing a set of vertex disjoint paths P1, . . . , Pk

such that Pi connects si and ti. In this talk, I will introduce a 2O(k2)n-time algorithm for
the planar disjoint paths problem. This improves the previously best-known algorithm with
running times of 2O(k2)n6 and 22O(k)

n.
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4.26 Algorithms for Processing-In-Memory
Francesco Silvestri (University of Padova, IT)

License Creative Commons BY 4.0 International license
© Francesco Silvestri

Joint work of Lorenzo Asquini, Juan Gomez-Luna, Francesco Silvestri

Processing-In-Memory (PIM) is a hardware architecture that allows reducing the memory
bottleneck: while data are sent from the memory to the CPU in the traditional memory
hierarchy, in a PIM architecture the computation is sent to the memory. The main idea is
to add a small computing unit within each memory module: this is an almost 40-year-old
theoretical idea; however, only recently PIM architectures have been successfully implemented
and commercialized (e.g., by UPMEM). In this talk, we will see a computational model for
designing efficient algorithms that fully exploit PIMs, and introduce PIM algorithms for
binary search and triangle counting.

4.27 Sorting with Priced Comparisons: The General, the Bichromatic,
and the Universal

Riko Jacob (IT University of Copenhagen, DK)
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Main reference Mayank Goswami, Riko Jacob: “Universal Sorting: Finding a DAG using Priced Comparisons”,

CoRR, Vol. abs/2211.04601, 2022.
URL https://doi.org//10.48550/arXiv.2211.04601

We address two open problems in sorting with priced information, introduced by [Charikar,
Fagin, Guruswami, Kleinberg, Raghavan, Sahai (CFGKRS), STOC 2000]. In this setting,
different comparisons have different (potentially infinite) costs. The goal is to find a sorting
algorithm with small competitive ratio, defined as the (worst-case) ratio of the algorithm’s
cost to the cost of the cheapest proof of the sorted order.

1) When all costs are in {0, 1, n, ∞}, we give an algorithm that has Õ(n3/4) competitive
ratio. Our result refutes the hypothesis that a widely cited Ω(n) lower bound on the
competitive ratio for finding the maximum extends to sorting. This lower bound by [Gupta,
Kumar, FOCS 2000] uses costs in {0, 1, n, ∞} and was claimed as the reason why sorting with
arbitrary costs seemed bleak and hopeless. Our algorithm also generalizes the algorithms for
generalized sorting (all costs in {1, ∞}), a version initiated by [Huang, Kannan, Khanna,
FOCS 2011] and addressed recently by [Kuszmaul, Narayanan, FOCS 2021].

2) We answer the problem of bichromatic sorting posed by [CFGKRS]: We are given two
sets A and B of total size n, and the cost of an A − A comparison or a B − B comparison is
higher than an A − B comparison. The goal is to sort A ∪ B. An Ω(log n) lower bound on
competitive ratio follows from unit-cost sorting. We give a randomized algorithm with an
almost-optimal w.h.p. competitive ratio of O(log3 n).

We also study generalizations of the problem universal sorting and bipartite sorting (a
generalization of nuts-and-bolts). Here, we define a notion of instance optimality, and develop
an algorithm for bipartite sorting which is O(log3 n) instance-optimal. Our framework of
instance optimality applies to other static problems and may be of independent interest.
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4.28 Online List Labeling: Breaking the log2 n Barrier
Nicole Wein (Rutgers University – Piscataway, US)
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Nicole Wein: “Online List Labeling: Breaking the log2n Barrier”, CoRR, Vol. abs/2203.02763, 2022.
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The online list labeling problem is a basic primitive in data structures. The goal is to store
a dynamically-changing set of n items in an array of m slots, while keeping the elements
in sorted order. To do so, some items may need to be moved over time, and the goal is
to minimize the number of items moved per insertion/deletion. When m = Cn for some
constant C > 1, an upper bound of O(log2 n) items moved per insertion/deletion has been
known since 1981. There is a matching lower bound for deterministic algorithms, but for
randomized algorithms, the best known lower bound is Ω(log n), leaving a gap between upper
and lower bounds. We improve the upper bound, providing a randomized data structure
with expected O(log3/2 n) items moved per insertion/deletion.

4.29 Dynamic Filter and Retrieval with One Memory Access
Guy Even (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
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We present two dynamic data-structures in the word RAM model. The first data structure is
a filter that supports approximate membership queries that is characterized by the following
properties:
1. Dynamic: supports insert, delete, and membership-query operations.
2. Can store a dataset of cardinality at most n (insertions may fail with probability

o(1/poly(n))).
3. Adjustable false-positive probability ε, provided that ε = Ω(1/(polylog n)).
4. Space-efficient: (1 + o(1)) · n log2(1/ϵ) + O(n) bits.
5. Worst case constant time for every operation.
6. Single memory access per operation (not including hash function evaluation).

The second data structure is a retrieval data structure that supports value queries and is
characterized by the following properties:
1. Supports the following operations: insert key-value pairs, delete a key, and query the

value of a key.
2. Can store a set of at most n key-value pairs (insertions may fail with probability

1/poly(n)).
3. Values are binary strings of length O(log log n) bits.
4. Space-compact: O(n log log n) bits.
5. Worst case constant time for every operation.
6. The expected number of memory accesses per operation is 1+1/polylog(n) (not including

hash function evaluation).
The retrieval data structure has an additional “false-positive” feature: the response to a
query for a key not in the dataset is NULL with probability at least 1 − 1/polylog(n).
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4.30 Conditional Lower Bounds for Dynamic Geometric Measure
Problems

Justin Dallant (UL – Brussels, BE)
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We give new polynomial lower bounds for a number of dynamic measure problems in
computational geometry. These lower bounds hold in the Word-RAM model, conditioned on
the hardness of either 3SUM, APSP, or the Online Matrix-Vector Multiplication problem
[Henzinger et al., STOC 2015]. In particular we get lower bounds in the incremental and
fully-dynamic settings for counting maximal or extremal points in R3, different variants
of Klee’s Measure Problem, problems related to finding the largest empty disk in a set of
points, and querying the size of the i’th convex layer in a planar set of points. We also
answer a question of Chan et al. [SODA 2022] by giving a conditional lower bound for
dynamic approximate square set cover. While many conditional lower bounds for dynamic
data structures have been proven since the seminal work of Patrascu [STOC 2010], few of
them relate to computational geometry problems. This is the first paper focusing on this
topic. Most problems we consider can be solved in O(n log n) time in the static case and their
dynamic versions have only been approached from the perspective of improving known upper
bounds. One exception to this is Klee’s measure problem in R2, for which Chan [CGTA
2010] gave an unconditional Ω(

√
n) lower bound on the worst-case update time. By a similar

approach, we show that such a lower bound also holds for an important special case of Klee’s
measure problem in R3 known as the Hypervolume Indicator problem, even for amortized
runtime in the incremental setting.
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