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Abstract
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This Dagstuhl Seminar constituted a biennial gathering of computational geometers at the
Dagstuhl venue to share recent results, and further research on some of the most important
problems of the time in that field. This year, the seminar focused on two of the most
exciting sub-areas within computational geometry: (1) reconfiguration, and (2) processing
and applications of uncertain and probabilistic geometric data. Within the reconfiguration
topic, two overview talks focused on triangulation and graph reconfiguration, and on how
reconfiguration plays a role in puzzle complexity. A highlight of the seminar were the set
of three-dimensional reconfiguration puzzles brought by Ryuhei Uehara, which occupied
attendees endlessly, and brought the challenge of modelling such puzzles to life. In the
second theme on uncertainty, one overview talk covered uncertainty issues in spatial data,
and another focused on how uncertainty connects to differential privacy in geometric settings.
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Other results were shared by participants connecting these topics to diverse motivations
ranging from robotics to data analysis to graph drawing. Exciting open problems were
proposed, and were used to focus the discussion for the span of the seminar.
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3 Overview of Talks

This section contains short abstracts of the various talks that were given throughout the
seminar. Four speakers (K. Buchin, A. Lubiw, R. Uehara, and K. Yi) were invited to give an
overview of the state of the art and to highlight challenges in the two seminar themes, and
helped set the stage for the rest of the seminar. In addition, nine participants gave shorter
talks throughout the week, which helped exchange ideas and focus the discussions.

3.1 Uncertain Points and Trajectories
Kevin Buchin (TU Dortmund, DE, kevin.buchin@tu-dortmund.de)

License Creative Commons BY 4.0 International license
© Kevin Buchin

Location data often comes with some error. For instance, the measurements might be
imprecise, or the exact location might be obfuscated to preserve privacy. Nonetheless, most
algorithms treat these data as if the exact locations are known. The computational geometry
of uncertain points is about designing algorithms that deal with the uncertainty explicitly.

In my talk, I first present how uncertain points are commonly modelled and give an
overview of algorithmic results on uncertain points for a variety of geometric problems. Then
I focus on uncertain trajectories and discuss in particular the problem of computing the
Fréchet distance between uncertain curves in detail. I finish my talk with a discussion of
open challenges.

3.2 Recent Progress in Geometric Random Walks and Sampling
Ioannis Z. Emiris (Athena Research Center – Marousi, GR & National and Kapodistrian
University of Athens – Zografou, GR, emiris@athenarc.gr)

License Creative Commons BY 4.0 International license
© Ioannis Emiris

Joint work of Ioannis Emiris, Apostolos Chalkis, Vissarion Fisikopoulos

We overview recent advances in geometric random walks for producing a sample of points in
convex polyhedra, and applications of such random samples. The main motivation comes
from polynomial-time randomized approximation schemes for computing the volume of
H-polytopes, i.e. presented as intersection of halfspaces; our methods tackle inputs whose
dimension is in the thousands. We extend these algorithms to V-polytopes and zonotopes and
present algorithmic results and implementations that show that in practice such polytopes
can also be handled efficiently in dimension around 100. Here we have used the existing
random walks but optimized the sequence of bodies employed in the standard multiphase
Monte Carlo approach. The second part of the talk concentrates on non-linear bodies such
as spectrahedra, and an application in systems biology. We conclude with open questions on
employing these methods to optimization, and to devising efficient approximate polytope
oracles.
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3.3 Geometric Reconfiguration: Triangulations, Spanning Trees, Graphs
Anna Lubiw (University of Waterloo, CA, alubiw@uwaterloo.ca)

License Creative Commons BY 4.0 International license
© Anna Lubiw

I discuss recent results and open questions on three topics in geometric reconfiguration.
1. Reconfiguring triangulations of a set of n points in the plane. A flip, or reconfiguration

step, replaces one edge by another to give a new triangulation. It is known that if some
edges are fixed (i.e. required to be present in all the triangulations) then reconfiguration
is still possible via the constrained Delaunay triangulation. I show some results about
forbidding some edges. Reconfiguration is no longer always possible, i.e. the flip graph
may become disconnected, even by forbidding a single edge. However, for points in convex
position, we must forbid n − 3 edges in order to disconnect the flip graph.

2. Reconfiguring non-crossing spanning trees on a set of n points in the plane. A flip replaces
one edge by a new edge to give a new non-crossing spanning tree. Reconfiguring one
non-crossing spanning tree to another takes at most 2n flips [1] and (in the worst case)
at least 1.5n flips, even for points in convex position. I show some improvements in the
upper bound for points in convex position, and for some cases where one tree is a path.
There are still gaps, and the complexity of finding the minimum flip distance (in P or
NP-complete) is open.

3. Reconfiguring planar graph drawings by moving the points (aka morphing). One straight-
line planar drawing of an n-vertex graph can be morphed to another (with the same
combinatorial embedding) via O(n) unidirectional morphs that move vertices along
parallel lines at uniform speeds. If the original drawings lie on a small grid, can the O(n)
intermediate drawings be constrained to a small grid?

References
1 David Avis and Komei Fukuda. Reverse Search for Enumeration. Discrete Applied Mathem-

atics, 65(1–3):21–46, 1996. doi:10.1016/0166-218X(95)00026-N.

3.4 Oblivious Sketching for Sparse Linear Regression
Alexander Munteanu (TU Dortmund, DE, alexander.munteanu@tu-dortmund.de)

License Creative Commons BY 4.0 International license
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Joint work of Alexander Munteanu, Tung Mai, Cameron Musco, Anup B. Rao, Chris Schwiegelshohn, David P.
Woodruff

Main reference Tung Mai, Alexander Munteanu, Cameron Musco, Anup Rao, Chris Schwiegelshohn, David
Woodruff: “Optimal Sketching Bounds for Sparse Linear Regression”, in Proc. of The 26th
International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning
Research, Vol. 206, pp. 11288–11316, PMLR, 2023.

URL https://proceedings.mlr.press/v206/mai23a.html

Oblivious sketching enables efficient algorithms for analysing data streams and distributed
data by reducing the number of data points while preserving a (1 + ε)-approximation for
various regression loss functions such as lp-norms, or logistic loss. For dense models, a
sketching complexity of Ω(d) is immediate. For very high-dimensional data, model sparsity
is a common assumption, where we do not regress on all, but only on at most k ≪ d

dimensions. While the computational complexity for solving this problem becomes hard, the
assumption allows us to sketch to a smaller o(d) size. We show that reducing to k log(d/k)

ε2 is
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essentially optimal for any sketching algorithm under several regression losses, combining
high-dimensional probability and geometry, information-theoretic arguments, and metric
embedding theory.

3.5 Parameterized Algorithm for the Planar Disjoint Path Problem
Eunjin Oh (POSTECH – Pohang, KR, eunjin.oh@postech.ac.kr)

License Creative Commons BY 4.0 International license
© Eunjin Oh

Joint work of Eunjin Oh, Kyeongjin Cho, Seunghyeok Oh
Main reference Kyungjin Cho, Eunjin Oh, Seunghyeok Oh: “Parameterized Algorithm for the Disjoint Path

Problem on Planar Graphs: Exponential in k2 and Linear in n”, in Proc. of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pp. 3734–3758, SIAM, 2023.

URL https://doi.org//10.1137/1.9781611977554.ch144

In this talk, I present a parameterized algorithm for the planar disjoint paths problem. Given
a planar graph G = (V, E) and a set T = {(s1, t1), . . . , (sk, tk)} of terminal pairs, the goal is
to compute a set of vertex-disjoint paths, each connecting si and ti. This problem is NP-hard
if we measure the running time as a function of the input size, but if we measure the running
time as a function of n and k, we can achieve a non-trivial bound. In this talk, I give a
sketch of this algorithm with running time of 2O(k2)n. This improves the two previously best
known algorithms running in 2O(k2)n6 and 22O(k)

n time, respectively.

3.6 Homology of Reeb Spaces and the Borsuk–Ulam Theorem
Salman Parsa (DePaul University – Chicago, IL, US, s.parsa@depaul.edu)

License Creative Commons BY 4.0 International license
© Salman Parsa

Joint work of Salman Parsa, Sarah Percival

In this talk, I prove an extension of the Borsuk–Ulam theorem for maps from 2-sphere into
R. The extension says that there are always two antipodal points S2 ∋ x, −x such that
f(x) = f(−x) and the two points are connected in the preimage.

The proof uses the concept of the Reeb graph. We also consider the relationship between
extra homology of the Reeb space of f : Sn → Rn−1 and the existence of the analogous
extensions of the Borsuk–Ulam theorem.
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3.7 Random Projections for Curves in High Dimensions
Ioannis Psarros (Athena Research Center – Marousi, GR, ipsarros@athenarc.gr)

License Creative Commons BY 4.0 International license
© Ioannis Psarros

Joint work of Ioannis Psarros, Dennis Rohde
Main reference Ioannis Psarros, Dennis Rohde: “Random Projections for Curves in High Dimensions”, in Proc. of

the 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023,
Dallas, Texas, USA, LIPIcs, Vol. 258, pp. 53:1–53:15, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023.

URL https://doi.org//10.4230/LIPIcs.SoCG.2023.53

Modern time series analysis requires the ability to handle datasets that are inherently
high-dimensional; examples include applications in climatology, where measurements from
numerous sensors must be taken into account, or inventory tracking of large shops, where
the dimension is defined by the number of tracked items. The standard way to mitigate
computational issues arising from the high dimensionality of the data is by applying some
dimension reduction technique that preserves the structural properties of the ambient space.
The dissimilarity between two time series is often measured by “discrete” notions of distance,
e.g. the dynamic time warping or the discrete Fréchet distance. Since all these distance
functions are computed directly on the points of a time series, they are sensitive to different
sampling rates or gaps. The continuous Fréchet distance offers a popular alternative which
aims to alleviate this by taking into account all points on the polygonal curve obtained by
linearly interpolating between any two consecutive points in a sequence.

We study the ability of random projections à la Johnson and Lindenstrauss to preserve
the continuous Fréchet distance of polygonal curves by effectively reducing the dimension.

3.8 Using SAT Solvers in Combinatorics, Combinatorial Geometry, and
Graph Drawing

Manfred Scheucher (TU Berlin, DE, scheucher@math.tu-berlin.de)

License Creative Commons BY 4.0 International license
© Manfred Scheucher

In this talk, we discuss how modern SAT solvers can be used to tackle mathematical problems.
We discuss various problems to give the audience a better understanding, which might be
tackled in this fashion, and which might not. Besides the naïve SAT formulation further
ideas are sometimes required to tackle problems. Additional constraints such as statements
which hold “without loss of generality” might need to be added so that solvers terminate in
reasonable time.
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3.9 Modular Robot Reconfiguration: Sliding Squares
Willem Sonke (TU Eindhoven, NL, w.m.sonke@tue.nl)

License Creative Commons BY 4.0 International license
© Willem Sonke

Joint work of Willem Sonke Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada,
Bettina Speckmann, Ryuhei Uehara, Jules Wulms

Main reference Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke,
Bettina Speckmann, Ryuhei Uehara, Jules Wulms: “Compacting Squares: Input-Sensitive In-Place
Reconfiguration of Sliding Squares”, in Proc. of the 18th Scandinavian Symposium and Workshops
on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands, LIPIcs, Vol. 227,
pp. 4:1–4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

URL https://doi.org//10.4230/LIPIcs.SWAT.2022.4

Modular robots consist of a large number (say n) of small identical modules that can move
along each other to change the overall shape of the robot. A well-established model for
modular robots is called sliding squares. Here, each module is represented by a square in the
2D grid, which form an edge-connected configuration. Modules can perform two types of
moves: slides and convex transitions.

The main question now is: given a source and target configuration, can we find a short
move sequence to transform the source into the target? In this talk I show an algorithm
named Gather&Compact that finds such a move sequence of length O(Pn) where P is the
circumference of the configurations’ bounding box. Furthermore, I show that it is NP-hard
to find a move sequence of minimum length.

3.10 Deep Neural Network Training Acceleration with Geometric Data
Structures

Konstantinos Tsakalidis (University of Liverpool, GB, tsakalid@liverpool.ac.uk)

License Creative Commons BY 4.0 International license
© Konstantinos Tsakalidis

The efficiency of deep learning applications deteriorates significantly as the sizes of the
training data and of the neural networks grow larger. In this talk we identify beyond-state-
of-the-art open problems in the intersection of deep learning with computational geometry.
Motivated by the recent application of dynamic data structures for geometric halfspace range
searching in the acceleration of deep neural networks’ training and preprocessing complexity,
we revisit efficient algorithms for constructing geometric multi-dimensional data structures
and maintaining them dynamically.
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3.11 Computational Complexity of Puzzles (In the Context of
Reconfiguration)

Ryuhei Uehara (JAIST – Nomi, Ishikawa, JP, uehara@jaist.ac.jp)

License Creative Commons BY 4.0 International license
© Ryuhei Uehara

Main reference Ryuhei Uehara: “Computational Complexity of Puzzles and Related Topics”, Interdisciplinary
Information Sciences, Vol. 29(2), pp. 119–140, 2023.

URL https://doi.org//10.4036/iis.2022.R.06

I first give a short history of computational complexity of puzzles and games, including
combinatorial reconfiguration ones. In this context, there are three open problems.
1. The Rubik’s cube has a similar property to one of the n2 − 1 puzzles. Then what is the

counterpart of the sliding block puzzle?
Is there some PSPACE-complete problem in general?
What about rectangular faces?

2. Reconfiguration of triangulations of a simple polygon also has a similar property. Then,
again, can we have a counterpart of the sliding block puzzle that leads us to PSPACE-
complete variant in general?

How about non-simple polygon with holes?
Can the diameter of the configuration space be super-poly? (Otherwise, it is in NP
since we have a poly-length witness.)

3. Computational complexity of slide-and-pack puzzles. By some observations, it seems to
be PSPACE-complete in general. Do we have some tractable restrictions?

3.12 Combinatorial Reconfiguration via Triangle Flips
Birgit Vogtenhuber (TU Graz, AT, bvogt@ist.tugraz.at)

License Creative Commons BY 4.0 International license
© Birgit Vogtenhuber

Joint work of Birgit Vogtenhuber, Oswin Aichholzer, Man-Kwun Chiu, Stefan Felsner, Hung P. Hoang, Michael
Hoffmann, Yannic Maus, Johannes Obenaus, Sandro Roch, Manfred Scheucher, Alexandra
Weinberger

In this talk we discuss the reconfiguration of arrangements of simple curves in the plane or
on the sphere via triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers
to the act of moving one edge of a triangular cell formed by three pairwise crossing curves
over the opposite crossing of the cell, via a local transformation. We study two types of
arrangements, namely, arrangements of pseudocircles in the plane and simple drawings of
graphs on the sphere.

An arrangement of pseudocircles is a finite collection of simple closed curves in the plane
such that every pair of curves is either disjoint or intersects in two crossing points. We
show that triangle flips induce a connected flip graph on intersecting arrangements, i.e. on
arrangements where every pair of pseudocircles intersects. To obtain this result, we first
show that every intersecting arrangement can be flipped into some cylindrical arrangement,
i.e. an arrangement where a single point stabs the interior of every pseudocircle. Then we
show that the cylindrical arrangement can be flipped to a canonical arrangement, which also
shows the connectivity of cylindrical intersecting arrangements of pseudocircles under triangle
flips. With a careful analysis we obtain that the diameter of both flip graphs is cubic in
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the number of pseudocircles. The construction of the two flipping sequences makes essential
use of variants of the sweeping lemma for pseudocircle arrangements due to Snoeyink and
Hershberger [1].

A simple drawing of a labelled graph is a drawing in which the vertices are distinct points
and the edges are simple curves connecting their endpoints. Moreover, any two edges share
at most one point, which is either a common endpoint or a crossing. The extended rotation
system of such a drawing is the collection of the rotations of all vertices and crossings of
the drawing. The rotation of a vertex or crossing is the cyclic order in which the edges
emanate from it. Gioan’s Theorem states that for any two simple drawings of the complete
graph Kn with the same crossing edge pairs, one drawing can be transformed into the other
by a sequence of triangle flips. We investigate to what extent Gioan-type theorems can be
obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for
two drawings of a graph to be transformable into each other by a sequence of triangle flips
is that they have the same ERS. We show that for the large class of complete multipartite
graphs, this necessary condition is in fact also sufficient and give bounds on the diameter of
the resulting flip graph. We further show that this result is essentially tight in the sense that
there exist drawings of multipartite graphs plus one edge or minus two edges which cannot
be transformed into each other via triangle flips.
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3.13 Differential Privacy and Computational Geometry
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Differential privacy has become the de facto standard for personal information privacy,
and has been recently widely adopted in both governments and the industry. Roughly
speaking, a differentially private algorithm should have indistinguishable output distributions
on neighbouring instances, which differ by one individual’s data. Such a definition also
applies to geometric data, where one input point set has one more point than the other. In
this talk, I give an overview of existing differentially private algorithms for geometric data,
including range counting, mean estimation, and convex hull. I also discuss geometric privacy,
a variant of differential privacy that is more suitable for certain geometric problems.

4 Open Problems

This section contains short summaries of specific relevant open questions that were proposed
at the start of the seminar and discussed in more depth during the week. Partial progress was
made towards resolving these questions, and we expect there will be further collaboration on
these topics between seminar participants beyond the duration of the seminar.
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4.1 Largest Precise Subset (Making Points Precise)
Peyman Afshani (Aarhus University, DK, peyman@cs.au.dk)
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Imprecision through Precision

In geometric computation, it is useful to be able to answer geometric predicates, e.g. a
sidedness test with respect to points in the plane. To model imprecision, it is common to
replace points with disks in 2D.

First we fix our geometric predicate. If we replace every point with an imprecise point
modelled as a circle, then the test can still be resolved on the points if there is no line that
intersects three circles; let S be the set of input circles. We call S a precise point set (w.r.t.
the sidedness test). The motivation is that any algorithm that can uses only sidedness test
can be run without any modifications on the set S.

Some Open Problems

Selecting a large precise set. One open question could be to select a large precise subset
of an imprecise points. Let S be a set of circles such that any line intersects at most ℓ circles.
What is the largest precise subset of H ⊂ S one can select, so that no three circles in H

should be stabbed by any line?
Using standard techniques (random sample and refine), it is easy to show that we can
take H = Ω(√

n/ℓ).
There are also previous results on similar questions but when input is a set of points
rather than circles. This line of work is studied under the name of general position subset
selection problem. For example, it is known that given a set of n points such that no
ℓ of them are on a line, one can select a subset of size Ω(

√
n/log ℓ) that is in general

position [1]. Observe that this bound is much better than the our trivial bound. However,
to prove it, the authors use incidence bounds that we do not have for a set of circles.

Open question 1. Improve the bound for the circles.

Open question 2. Motivated by the techniques in the above mentioned paper, we can
also ask the following question. Let S be a set of circles such that no ℓ of them are on a
line. What is the maximum number of triples of circles (ci, cj , ck) such that all three can
be stabbed by a line? The trivial upper bound is O(n2ℓ3), because we have at most O(n2)
combinatorially different lines and each line can stab ℓ, so we can select O(ℓ3) triples out of
them. The trivial lower bound is Ω(min(n2, nℓ2)) obtained by either using a (3 × n/3)-grid or
placing n/ℓ groups of ℓ circles on a line.

Open question 3. For the general position subset selection problem, there exists an o(n)
upper bound through Hales–Jewett theorem (referenced in the paper [1]). Can we improve the
upper bound for the circles? Note that for this upper bound problem, having the possibility
of replacing a point by a circle should make the upper bound problem easier.
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4.2 Partial Vertex Cover in Planar Bipartite Graphs
Peyman Afshani (Aarhus University, DK, peyman@cs.au.dk)
Kevin Buchin (TU Dortmund, DE, kevin.buchin@tu-dortmund.de)
Fabian Klute (UPC Barcelona Tech, ES, fmklute@gmail.com)
Willem Sonke (TU Eindhoven, NL, w.m.sonke@tue.nl)
Ryuhei Uehara (JAIST – Nomi, Ishikawa, JP, uehara@jaist.ac.jp)
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Partial Vertex Cover asks whether we can cover at least t edges by selecting k vertices. In
contrast to vertex cover, this problem is NP-hard in bipartite graphs [1]. How about planar
bipartite graphs?

It seems that the paper by Caskurlu et al. [1] asks this as an open problem, although
“bipartite” is missing in the problem statement.

This problem is inspired by the obstacle-deletion problem by Subhash Suri. If this
problem is NP-hard, we could use this fact in the following way for the obstacle-deletion
open problem. Since the graph is bipartite, we can find a path in the plane (not in the graph)
that crosses every edge exactly once. Now we interpret every vertex as obstacles, and for
every edge, we make the corresponding obstacles interlock where the path would like to pass.
Now partial vertex cover corresponds to allowing to delete k obstacles while trying to get rid
of as many interlockings as possible.

For the obstacle-deletion problem we can give weights to vertices, we can also give weights
to edges. Therefore, even weighted versions of partial vertex cover in planar bipartite graphs
would be of interest.

References
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4.3 Flipping Spanning Trees
Anna Lubiw (University of Waterloo, CA, alubiw@uwaterloo.ca)

License Creative Commons BY 4.0 International license
© Anna Lubiw

During the seminar, the following question from the talk given by Anna Lubiw was investigated.
Given a set P of n points in the plane and two non-crossing spanning trees Tr, Tb on P ,
what is their flip distance dist(Tr, Tb) in terms of n in the worst case?

The following bounds are known:
1. lower bound of 3/2 · n − 5 [3];
2. upper bound of 2n − 4 [1];
3. upper bound of 2n − Ω(

√
n) if P is in convex position [2].

Can these bounds be improved? Are there interesting special cases with tighter bounds?
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4.4 Shortest Path Retaining k Obstacles
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Suppose we are in polygonal domain in the plane with n vertices in total. The obstacles
(holes) do not have to be convex. Given two points s and t, what is the Euclidean length of
the shortest path between s and t that may ignore k obstacles? In other words, if we are
allowed to remove k obstacles, what is the length of the shortest obstacle-free path between
s and t? Formulated differently, let B be the set of m disjoint simple polygons that are the
obstacles. Define dB′(s, t) as the shortest path distance from s to t with only B′ ⊆ B present.
For given k and s and t, we wish to find

dk(s, t) = min
|B\B′|=k

dB′(s, t) .

It is known how to compute the solution in polynomial time for convex obstacles [2]. A
similar problem with overlapping obstacles is known to be intractable even for very simple
obstacle shapes [2]. The weighted problem, where each obstacle has a cost and we are given
a budget, is NP-hard even for vertical line segments as obstacles [1]. We would like to find
out if the problem presented here is hard.
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4.5 Why Are Polytime and NP-Hard Switched for Fréchet and
Hausdorff?

Carola Wenk (Tulane University – New Orleans, US, cwenk@tulane.edu)
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Consider a common definition of an uncertain trajectory as a sequence of uncertain points,
where each uncertain point is some compact connected region, most commonly a disk in R2

or an interval in R. A true location must be inside the region, but we do not know where.
In this setting, it is natural to generalise the polyline metrics to ask for the maximum and
minimum possible values. In particular, we say a polyline realises an uncertain trajectory if
it is formed by a sequence of precise points, taken in the correct order from the uncertainty
regions. Then we can ask for the lower bound and the upper bound distance, that is, given
two uncertain curves, we want to find the minimum and the maximum distance between
them over all realisations. Within this framework, we can use different uncertainty models.
We can also use different distance metrics, most commonly, the Hausdorff or the Fréchet
distance (or their variants).

Some of these combinations have previously been studied [1, 2, 3]; all either have a
relatively simple polynomial-time solution, or are NP-hard. We can ask the following
questions.
1. For the directed Fréchet distance, the lower bound problem is in P, and the upper bound

problem is NP-hard. For the directed Hausdorff distance, the situation is essentially
reversed. Similar dichotomies exist for the weak (discrete) Fréchet distance, where
different settings turn out to be NP-hard compared to the Fréchet distance. Is there
something in common among the NP-hard variants? Why are the lower and upper bound
problems reversed for NP-hardness?

2. Can we fill in the gaps by studying the remaining variations, both for the Hausdorff
and the Fréchet distance, and conclude for each whether it is NP-hard or solvable in
polynomial time?
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