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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23241 “Scalable
Analysis of Probabilistic Models and Programs”. The seminar brought together researchers
from probabilistic graphical models, verification of probabilistic programming languages, and
probabilistic planning. The communities bring vastly different perspectives on the methods and
goals of inference under uncertainty. In this seminar, we worked towards a common understanding
of how the different angles yield subtle differences in the problem statements and how the different
methods provide different strengths and weaknesses. The report describes the different areas, the
activities during the seminar including hot topics that were vividly discussed, and an overview of
the technical talks.
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In this Dagstuhl Seminar, we brought together researchers from three different communities
that all bring their own perspective on the role of probabilities in programs and models. To
facilitate future collaborations, we saw a need to define common terminology. Therefore, we
split this seminar into two parts: On the first two days, we surveyed the research areas (see
Chapter 3) and on the second half, we had in-depth sessions. In the first half, we particularly
discussed the following exemplary questions:
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What are probabilistic circuits and why do they allow tractable inference?
What is probabilistic model checking and what are temporal specifications?
What are probabilistic programs and how are their semantics defined?
How does one reason over probabilistic programs on the source-code level?

We also spent time to identify common interests in problems, which led to some hot topics
mentioned below. The second half of the seminar featured 30-minute technical talks (see
Section 4) that provided in-depth discussions on recent research and informal discussions
based on the technical talks and the hot topics.

Hot discussion topics. Our discussions led to a list of seven hot topics, summarized below,
that were the basis for informal discussions later in the week.

Unbounded executions in probabilistic programs, their use-cases, analysis techniques, and
the downsides.
Algebraic decision diagrams versus probabilistic circuits and their benefits for reasoning
about reachability in graphs.
The expressiveness and tractability borders between different model types.
Adequate planning horizons in different scenarios and their influence on the effectiveness
of various approaches.
Inferring symbolic plans and policies via reinforcement learning and with logical con-
straints, in particular in the context of providing verifiable and explainable controllers.
The limits of Boolean synthesis in the context of model counting.
Learning models from data across communities, including perspectives on inference and
active automata learning.
Probabilistic models as distribution transformers and the verification of distributional
properties.

In-depth technical sessions. We wanted to highlight the many in-depth discussions that
happened mostly 24/7. These discussions were both on the hot topics listed above, as well
as very technical, in-depth discussions. We believe that part of the success of this seminar
were the various connections that were established on very technical levels. It became clear
that the prevalent approaches for very similar problems are vastly different and that there
was a common interest to learn about these methodologies.

Challenges. While we are proud of what we achieved, the different backgrounds required
a significant effort in order to understand the problems that the different subcommunities
find most pressing. As organizers, we would have loved to see time and room to also discuss
application areas, but it was hard to find cross-community overlapping interests in those.
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Models and model-based reasoning allow reasoning about symbolic knowledge about a system.
It is often convenient to represent such systems with probabilistic behavior. Such probabilistic
behavior is a natural way to treat uncertainty or to abstract from behavior that appears
probabilistic but is a consequence of complex interactions. Reasoning about these systems
requires treating the probabilistic aspects as first-class citizens. Famously, humans are bad
at reasoning under probabilistic uncertainty and thus the availability of scalable engines that
support humans in understanding probabilistic systems and making decisions is essential.
Naturally, many disciplines in and outside computer science investigate methods that lead to
such engines.

A key challenge in the creation of such reasoning engines is a concise and clear modelling
language. Historically many of the tools we had for reasoning and inference about the world
were built on top of deterministic programming languages that pose a challenge for the
representation of stochastic systems. Probabilistic programming – the notion that programs
execute stochastically – and the analysis of such programs have caused a major shift and
inference for probabilistic programming languages has already enabled various applications:
They steer autonomous robots, are at the heart of the NET-VISA system adopted by the
UN to detect seismological activities [2], are used in cognitive science [36], planning in AI,
describe security mechanisms and naturally code up randomised algorithms. Probabilistic
programming is a rapidly emerging field [18]. For almost all programming languages, there is
a probabilistic variant by now, and main industrial players (e.g., Meta and Microsoft) have
spent serious research efforts.

A recent trend goes towards thinking about any stochastic model as given by a probabilistic
program (PP), which can be thought of as a computational specification of a probability
distribution. Probabilistic programs can be used to describe complex distributions and the
standard inference task is to understand this distribution. PPs can explicitly represent
conditioning as part of a model by syntactic constructs that enable conditioning. PPs with
such observation statements involve solving the inverse problem of inferring (the likelihood
of) inputs matching a given evidence (aka: observation).

However, the analysis of PPs is and remains hard. Elementary questions such as “does
a program terminate almost surely on a given input?” are undecidable. Lifting existing
inference techniques to the level of programs is difficult, and reasoning about loops is
harder than for classical programs. Techniques to analyse PPs in a symbolic and fully
automated manner are currently a vibrant research topic and receive lots of attention in
the various research fields, most notably: probabilistic graphical models, probabilistic model
checking/program analysis, as well as planning in AI. This Dagstuhl Seminar brought together
members of these communities to taxonomize existing research domains and progress in
terms of a probabilistic programming lingua franca, identify areas for cross-pollination of
ideas across fields, and understand major representational, inferential, and domain-specific
challenges that the community (and groups of researchers from this seminar) may collectively
tackle beyond the seminar.
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The Research Areas
Probabilistic Graphical Models. These models cover Bayesian networks, undirected Markov
networks, and extensions thereof dealing with e.g., relational data. They have numerous
applications in machine learning, computer vision, natural language processing, and compu-
tational biology. Graphical models bring together graph theory and probability theory, and
provide a flexible framework for modeling large collections of random variables with complex
interactions. Although exact inference is PP-complete in general, efficient algorithms exist
for specific structures (e.g., join tree) and dedicated symbolic data structures have been
developed to make inference efficient. Parameter and structure learning techniques enable
synthesising values in conditional probability tables and full graph topologies. Recent work
in exact discrete inference with probabilistic graphical models focuses on tractable models,
where marginal probabilities, or the mode of the distribution, can all be computed efficiently
in the size of the model. In particular, probabilistic circuits in the form of sum-product
networks, arithmetic circuits, and other data structures, have received considerable attention
in recent years [13]. Such new probabilistic models provide an opportunity to re-imagine the
types of analysis that are possible, for example towards information-theoretic queries [44].
Another important frontier is to discover larger classes of distributions where the probabilistic
inference analysis can be performed efficiently [46]. Probabilistic graphical models, either clas-
sical ones, or more modern tractable models, are often the target representation of compilers
that start with a higher-level language – for example a probabilistic program [17, 24, 35], or
even a quantum program [25].

Verification of Probabilistic Models: Model Checking and Beyond. Probabilistic model
checking [4, 3, 27] is a verification technique that takes a probabilistic model and a (temporal)
specification and asks whether the model satisfies the specification. The (underlying) models
are typically Markov chains, Markov decision processes, or stochastic games, state-based
models describing how the system evolves over time. These models are pivotal in various
disciplines that involve process analysis such as performance evaluation, and sequential
decision making, e.g., in reinforcement learning and robotics. To overcome the state-space
explosion problem that limits the scalability of PMC algorithms, additional structure must
be exploited. This structure can be found in the symbolic descriptions of models and are
often defined using programs. The scalability of PMC is then boosted using symbolic data
structures, but also clever model reduction techniques [32, 19, 43], and iterative abstraction
techniques [22, 28, 6]. Specifications range from the more classical reachability queries and
temporal logics to cost-bounded [20, 7], conditional [5] and multi-objective queries [11, 12].
Mature tools such as PRISM [31] and Storm [21] are applicable to finite-state probabilistic
programs and are not limited to just the verification question. They can compute how
much a specification is satisfied, extract strategies that satisfy the specification, and handle
unknown probabilities. Model checkers are used often as back-ends to find plans: in the
context of robotics, e.g., in [33] or to synthesise probabilistic programs [14, 1]. Beyond model
checking, automated verification techniques for infinite-state Markov models such as bounded
model checking, termination analysis (e.g., using deep neural networks), loop analysis, and
k-induction have recently been made.

Probabilistic Planning in AI. (Classical) planning aims to find a policy or strategy to solve
a decision making process in problems that can range from navigational path planning [34]
to supply chain logistics [37] to the management of epidemic outbreaks [45]. Just as in model
checking (MC), one is interested in plans that achieve a goal (in MC, to find a bug) or more
generally to minimize a cumulative cost function or bound thereon. Contrary to MC, one is
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less interested in proving the absence of a solution (or bug). Despite these minor differences,
there has been successful cross-fertilization partially initiated at earlier Dagstuhl Seminars.
The need for planning under uncertainty has led to probabilistic planning methods that
explicitly take this uncertainty into account. These plans (or policies) are typically computed
within the Markov Decision Process (MDP) framework, and probabilistic planners are able to
successfully find strategies in large MDPs using techniques such as lifting [41, 16] on Monte
Carlo Tree Search with dead-end detection [29] as witnessed by International Probabilistic
Planning Competitions (IPCs) [15, 42]. The probabilistic planning and probabilistic model
checking communities have diverged in their symbolic representations with RDDL [40]
being the quasi-standard in probabilistic planning for the object-oriented specification of
concurrently evolving stochastic systems (which was in turn inspired by a lifted perspective
of dynamic Bayesian networks). Furthermore, the planning community has long embraced
partially observable settings as evidenced by partially observed MDP tracks of the IPC [15],
whereas such extensions have only recently gained traction in the model checking community.
Finally, it is important to note that probabilistic planning typically focuses on a class of
algorithms particularly tailored for reachability analysis, namely highly scalable heuristic
search techniques and with specialized domain analysis to support them [29].

The Seminar Topics
In Scalable Analysis of Probabilistic Models and Programs, the aim is the development of
methods, algorithms, and tools that reason in and about probabilistic uncertainty. Such
reasoning is interesting in a variety of scientific areas both inside and outside of computer
science. But how can we fundamentally boost the reasoning engines and make them more
applicable beyond our own communities?

Joint Context. In the planning, and verification communities, program-like descriptions
of models have a rich tradition (RDDL [40], Prism [31], Modest [8], JANI [10]). Compared
to more general programming languages, these models typically have a variety of tailored
but intricate constructs. In recent years, probabilistic programs have been heavily studied
as a natural extension of probabilistic graphical models. These probabilistic programs are
easier to learn, but a naive user may not obtain the necessary performance out of their
inference engines. The holy grail are engines that are efficient in reasoning about easy-to-use
probabilistic programs. While goals and perspectives differ across the research communities,
there are plenty of similarities in automated analysis techniques in the aforementioned three
research fields. For instance, symbolic techniques such as binary decision diagrams (BDDs)
and satisfiability solver (SAT/SMT) techniques are commonly used and model counting has
made substantial progress in recent years.

Challenges. While (general-purpose) probabilistic programming languages that extend
(classical) programming languages are already a success for a significant class of applications,
their analysis remains challenging: In particular, we highlight the presence of discrete
variables, conditional program flow, non-deterministic behavior, and unbounded loops. Within
the AI, planning, programming languages and verification community, various efforts aim to
improve the analysis of probabilistic programs, all from their own perspective.

Despite this strong link between analysis in probabilistic planning and reachability analysis
in PMC, the research in general, and the development of new algorithms, has happened largely
independently in each community. However, first cross-fertilizations between verification
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and inference [38] and vice versa [23], and probabilistic planning and PMC [9, 30] have been
established and show the potential of overcoming research community boundaries. Beyond
standard inference, methods still seem orthogonal but may be unified: e.g., probabilistic
program sketching approaches [1] seem orthogonal to structure learning techniques [26] for
Bayesian networks and parameter synthesis in Markov models have potential for parameter
synthesis in graphical models [39].
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4 Overview of Talks

Below, we provide abstracts of the technical talks presented at the seminar, ordered lexico-
graphically by the presenter.

4.1 Markov Decision Processes as Distribution Transformers:
Decidability and Strategy Synthesis for Safety Objectives

S. Akshay (Indian Institute of Technology Bombay – Mumbai, IN)

License Creative Commons BY 4.0 International license
© S. Akshay

Joint work of S. Akshay, Krishnendu Chatterjee, Tobias Meggendorfer, Djordje Zikelic

Markov decision processes can be viewed as transformers of probability distributions. This
view is useful to reason about trajectories of distributions, but even basic reachability and
safety problems turn out to be computationally intractable (Skolem-hard!). The issue is
further complicated by the question of how much memory is allowed: even for simple
examples, strategies for safety objectives over distributions can require infinite memory and
randomization.

In light of this, we ask what one can do to tackle these problems in theory and in practice.
After taking a look at some theoretical insights, we adopt an over-approximation route to
approach these questions. Inspired by the success of invariant synthesis in program verification,
we develop a framework for template-based synthesis of certificates as affine distributional
and inductive invariants for safety objectives in MDPs. We show the effectiveness of our
approach as well as explore limitations and future perspectives.

4.2 A Framework for Transforming Specifications in Reinforcement
Learning

Suguman Bansal (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 4.0 International license
© Suguman Bansal

Joint work of Suguman Bansal, Rajeev Alur, Kishor Jothimurugan, Osbert Bastani
Main reference Rajeev Alur, Suguman Bansal, Osbert Bastani, Kishor Jothimurugan: “A Framework for

Transforming Specifications in Reinforcement Learning”, in Proc. of the Principles of Systems Design
– Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, Vol. 13660, pp. 604–624, Springer, 2022.

URL https://doi.org//10.1007/978-3-031-22337-2_29

Reinforcement Learning (RL) algorithms are designed to learn an optimal policy when the
transition probabilities of the MDP are unknown but require the user to associate local rewards
with transitions. The appeal of high-level temporal logic specifications has motivated research
to develop RL algorithms for the synthesis of policies from specifications. To understand the
techniques, and nuanced variations in their theoretical guarantees, in the growing body of
resulting literature, we develop a formal framework for defining transformations among RL
tasks with different forms of objectives. We define the notion of sampling-based reduction to
transform a given MDP into another one that can be simulated even when the transition
probabilities of the original MDP are unknown. We formalize the notions of preservation of
optimal policies, convergence, and robustness of such reductions. We then use our framework
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to restate known results, establish new results to fill in some gaps, and identify open problems.
In particular, we show that certain kinds of reductions from LTL specifications to reward-
based ones do not exist, and prove the non-existence of RL algorithms with PAC-MDP
guarantees for safety specifications.

4.3 Approximate Weighted Model Counting using Universal Hashing
Supratik Chakraborty (Indian Institute of Technology Bombay – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Supratik Chakraborty

Joint work of Supratik Chakraborty, Daniel Fremont, Kuldeep Meel, Sanjit Seshia, Moshe Vardi
Main reference Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, Moshe Y. Vardi:

“Distribution-Aware Sampling and Weighted Model Counting for SAT”, in Proc. of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada, pp. 1722–1730, AAAI Press, 2014.

URL https://doi.org//10.1609/aaai.v28i1.8990

Given a system of propositional constraints, (unweighted) model counting concerns counting
the number of satisfying assignments of the constraints. If every assignment is associated with
a non-negative weight, the problem of finding the total weight of all satisfying assignments is
called weighted model counting. This is a fundamental problem in computer science, with
diverse applications in probabilistic inference, quantitative information flow, and partition
function estimation among others. Unfortunately, model counting (even the unweighted
variant) is computationally intractable – Valiant showed that this is #P-complete. Hence, it
is unlikely that efficient algorithms exist for solving this problem. This has spurred a lot of
interest in approximate weighted model counting. While there has been a lot of theoretical
work in this domain that has yielded algorithms with strong guarantees of approximation, and
also a lot of work that uses heuristics to scale to large problem instances without providing
strong approximation guarantees, marrying scalability in practice with strong approximation
guarantees is significantly hard. In this talk, we present a technique based on universal
hash functions for solving the weighted model counting with PAC-style guarantees, yielding
an approximate counter that scales well to large problem instances. The core idea of our
technique is to partition the set of all assignments into cells of “small enough” and “almost
equal” weights using universal hash functions, and then to count the total weight of solutions
in a randomly chosen cell. The resulting weight is then multiplied by the total number of
cells in the partition to obtain an estimate of the overall weighted model count.

We define a parameter called the “tilt” of weights of assignments, and show how the above
idea leads to an algorithm that makes polynomially (in tilt, number of variables, and PAC
approximation parameters) many calls to an NP oracle to yield an estimate of the weighted
model count with PAC guarantees. Experiments show that this algorithm scales very well in
practice when the tilt is bounded by a small constant. We then discuss an extension of our
algorithm to deal with problem instances where the tilt may be large, and where assignment
weights are the product of literal weights. The extended algorithm requires solving linear (in
the number of variables) pseudo-boolean constraints. In practice, pseudo-boolean satisfiability
solvers (including those that reduce to propositional satisfiability) are not as efficient in
practice as propositional satisfiability solvers on large problem instances. Therefore, weighted
model counting using universal hashing doesn’t scale as well in practice when the tilt of
weights is large, compared to the case of small tilt. Future advances in pseudo-boolean
satisfiability solving are likely to directly impact the ability of weighted model counters to
solve problem instances with large tilt.
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4.4 Tractable Inference with Probabilistic Circuits
YooJung Choi (Arizona State University – Tempe, US)

License Creative Commons BY 4.0 International license
© YooJung Choi

Probabilistic circuits (PCs) are a family of models that guarantee exact inference of various
probabilistic queries in polynomial (often linear) time. In this talk, we introduce the syntax
and semantics of probabilistic circuits and study the structural properties that enable linear-
time inference of marginal and MAP queries. We then discuss how we can perform inference
on other probabilistic models such as Bayesian networks and probabilistic programs by
compiling to circuits, in particular by reducing probabilistic inference to the task of weighted
model counting/integration which can be performed tractably on certain circuits. Lastly, we
showcase some recent works in complex reasoning using PCs. For instance, by representing
queries as pipelines of atomic circuit operations, we show how we can systematically derive
tractability conditions and inference algorithms for various information-theoretic entropies
and divergences. This talk is based on the joint tutorial with Antonio Vergari, Robert Peharz,
and Guy Van den Broeck.

4.5 Bit Blasting Probabilistic Programs
Poorva Garg (UCLA, US), Steven Holtzen (Northeastern University – Boston, US), and Guy
Van den Broeck (UCLA, US)

License Creative Commons BY 4.0 International license
© Poorva Garg, Steven Holtzen, and Guy Van den Broeck

Joint work of Poorva Garg, Steven Holtzen, Todd Millstein, Guy Van den Broeck

Probabilistic programming languages (PPLs) have emerged as a prominent area of research
due to their ability to democratize probabilistic modeling. One of the key tasks in building a
PPL is to design a generalizable probabilistic inference algorithm. Weighted model counting
(WMC) is a popular exact inference algorithm for discrete probabilistic programs with much
success. Can we extend the advantages of WMC to a wider class of probabilistic programs with
both discrete and continuous distributions? Discretization of continuous distribution seems
to be an obvious choice. However, it either leads to exhaustive enumeration or compromises
on accuracy. LexBit (Language for Exact Bit blasting) is a non-trivial core language, with
discrete and continuous constructs, that does not suffer from the limitations of discretization.
It bit blasts exactly and scalably. We bit blast the continuous distributions outside this
language using linear piece-wise distributions. Once all the continuous distributions in
the probabilistic program are bit blasted, we harness the power of existing discrete PPLs
to perform exact inference on the new discrete probabilistic program. Case studies and
experiments on existing benchmarks show that this approach of bit blasting is competitive
with existing probabilistic inference algorithms.
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4.6 Compositional Probabilistic Model Checking with String Diagrams
of MDPs

Ichiro Hasuo (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 4.0 International license
© Ichiro Hasuo

Joint work of Kazuki Watanabe, Clovis Eberhart, Kazuyuki Asada, Ichiro Hasuo
Main reference Kazuki Watanabe, Clovis Eberhart, Kazuyuki Asada, Ichiro Hasuo: “Compositional Probabilistic

Model Checking with String Diagrams of MDPs”, in Proc. of the Computer Aided Verification –
35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part III,
Lecture Notes in Computer Science, Vol. 13966, pp. 40–61, Springer, 2023.

URL https://doi.org//10.1007/978-3-031-37709-9_3

We present a compositional model checking algorithm for Markov decision processes, in which
they are composed in the categorical graphical language of string diagrams. The algorithm
computes optimal expected rewards. Our theoretical development of the algorithm is suppor-
ted by category theory, while what we call decomposition equalities for expected rewards act
as a key enabler. Experimental evaluation demonstrates its performance advantages.

4.7 Introduction to Probabilistic Programming Inference
Steven Holtzen (Northeastern University – Boston, US)

License Creative Commons BY 4.0 International license
© Steven Holtzen

URL https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

How do we effectively run probabilistic programs in order to reason automatically about
their behavior? In particular, how do we efficiently execute them in order to compute the
probability that the program will have a particular behavior as efficiently as possible? In
this talk, we go over the foundations of probabilistic program semantics and inference. We
built a simple probabilistic programming language from scratch and described how to run it
in order to evaluate queries. This talk was based on the introduction to a course taught on
probabilistic programming at Northeastern University; the link is in the description.

4.8 Intelligent and Dependable Decision-Making Under Uncertainty
Nils Jansen (Radboud University Nijmegen, NL)

License Creative Commons BY 4.0 International license
© Nils Jansen

Main reference Nils Jansen: “Intelligent and Dependable Decision-Making Under Uncertainty”, in Proc. of the
Formal Methods – 25th International Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023,
Proceedings, Lecture Notes in Computer Science, Vol. 14000, pp. 26–36, Springer, 2023.

URL https://doi.org//10.1007/978-3-031-27481-7_3

This talk highlights our vision of foundational and application-driven research toward safety
and dependability in artificial intelligence (AI). We take a broad stance on AI that combines
formal methods, machine learning, and control theory. As part of this research line, we study
problems inspired by autonomous systems, planning in robotics, and industrial applications.

We consider reinforcement learning (RL) as a specific machine learning technique for
decision-making under uncertainty. RL generally learns to behave optimally via trial and
error. Consequently, and despite its massive success in the past years, RL lacks mechanisms
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to ensure safe and correct behavior. Formal methods, in particular formal verification, is a
research area that provides formal guarantees of a system’s correctness and safety based on
rigorous methods and precise specifications. Yet, fundamental challenges have obstructed
the effective application of verification to reinforcement learning. Our main objective is to
devise novel, data-driven verification methods that tightly integrate with RL. In particular,
we develop techniques that address real-world challenges to the safety of AI systems in
general: Scalability, expressiveness, and robustness against the uncertainty that occurs when
operating in the real world. The overall goal is to advance the real-world deployment of
reinforcement learning.

The talk is mainly based on the following references: [1, 2, 3, 4, 5].

References
1 Nils Jansen. Intelligent and dependable decision-making under uncertainty. In FM, volume

14000 of Lecture Notes in Computer Science, pages 26–36. Springer, 2023.
2 Thom S. Badings, Thiago D. Simão, Marnix Suilen, and Nils Jansen. Decision-making under

uncertainty: beyond probabilities. Int. J. Softw. Tools Technol. Transf., 25(3):375–391,
2023.

3 Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe reinforcement learning
via shielding under partial observability. In AAAI, pages 14748–14756. AAAI Press, 2023.

4 Thom S. Badings, Licio Romao, Alessandro Abate, David Parker, Hasan A. Poonawala,
Mariëlle Stoelinga, and Nils Jansen. Robust control for dynamical systems with non-gaussian
noise via formal abstractions. J. Artif. Intell. Res., 76:341–391, 2023.

5 Steven Carr, Nils Jansen, and Ufuk Topcu. Task-aware verifiable rnn-based policies for
partially observable markov decision processes. J. Artif. Intell. Res., 72:819–847, 2021.

4.9 Deductive Verification of Probabilistic Programs: Loops and
Recursion

Joost-Pieter Katoen (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Joost-Pieter Katoen

Probabilistic programs describe recipes on how to infer conclusions about big data from a
mixture of uncertain data and real-world observations. Bayesian networks, a key model in
decision-making, are simple instances of such programs. Probabilistic programs are used
to steer autonomous robots and self-driving cars, are key to describe security mechanisms,
and naturally encode randomised algorithms. Due to their learning ability, they are rapidly
encroaching on AI and probabilistic machine learning.

This talk focuses on syntax-based verification of discrete probabilistic programs. We
will show how weakest pre-condition style reasoning can be used to determine quantitative
program properties such as the probability of divergence, bounds on the expected outcomes
of program expressions, or the program’s expected run-time. Complementary to Holtzen’s
talk on straight-line code, we focus primarily on how to treat possibly unbounded loops and
recursion.

We will present automated methods such as k-induction and how to find loop invariants
in a CEGIS-like fashion. An outlook will be given of some alternative automated techniques
for program equivalence and how to exploit model checking for obtaining lower bounds on
loops in probabilistic programs.
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4.10 Scalable Learning of Probabilistic Circuits
Anji Liu (UCLA, US)

License Creative Commons BY 4.0 International license
© Anji Liu

Joint work of Anji Liu, Guy Van den Broeck, Honghua Zhang, Antonio Vergari, YooJung Choi, Stephan Mandt
Main reference Anji Liu, Honghua Zhang, Guy Van den Broeck: “Scaling Up Probabilistic Circuits by Latent

Variable Distillation”, in Proc. of the The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, OpenReview.net, 2023.

URL https://openreview.net/pdf?id=067CGykiZTS

Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that
support efficient computation of various probabilistic queries (e.g., marginal probabilities).
One key challenge is to scale PCs to model large and high-dimensional real-world datasets:
we observe that as the number of parameters in PCs increases, their performance immediately
plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full
expressive power of large PCs. We propose to overcome such bottleneck by latent variable
distillation: we leverage the less tractable but more expressive deep generative models
to provide extra supervision over the latent variables of PCs. Specifically, we extract
information from Transformer-based generative models to assign values to latent variables
of PCs, providing guidance to PC optimizers. Experiments on both image and language
modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation
substantially boosts the performance of large PCs compared to their counterparts without
latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve
competitive performance against some of the widely-used deep generative models, including
variational autoencoders and flow-based models, opening up new avenues for tractable
generative modeling.

4.11 How to Make Logics Neurosymbolic
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Luc De Raedt

Joint work of Luc De Raedt, Giuseppe Marra, Robin Manhaeve, Thomas Winters, Vincent Derkinderen, Sebastijan
Dumancic

Main reference Giuseppe Marra, Sebastijan Dumancic, Robin Manhaeve, Luc De Raedt: “From Statistical
Relational to Neural Symbolic Artificial Intelligence: a Survey”, CoRR, Vol. abs/2108.11451, 2021.

URL https://arxiv.org/abs/2108.11451

Neurosymbolic AI (NeSy) is regarded as the third wave in AI. It aims at combining knowledge
representation and reasoning with neural networks. Numerous approaches to NeSy are being
developed and there exists an “alphabet soup” of different systems, whose relationships are
often unclear. I will discuss the state-of-the-art in NeSy and argue that there are many
similarities with statistical relational AI (StarAI).
Taking inspiration from StarAI, and exploiting these similarities, I will argue that Neurosym-
bolic AI = Logic + Probability + Neural Networks. I will also provide a recipe for developing
NeSy approaches: start from a logic, add a probabilistic interpretation, and then turn neural
networks into “neural predicates”. Probability is interpreted broadly here and is necessary to
provide a quantitative and differentiable component to the logic. At the semantic and the
computation level, one can then combine logical circuits (ako proof structures) labeled with
probability, and neural networks in computation graphs.
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I will illustrate the recipe with NeSy systems such as DeepProbLog, a deep probabilistic
extension of Prolog, and DeepStochLog, a neural network extension of stochastic definite
clause grammars (or stochastic logic programs).

The key references of the talk are as follows: [1, 2, 3].

References
1 Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De

Raedt. Deepproblog: Neural probabilistic logic programming. In NeurIPS, pages 3753–3763,
2018.

2 Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog:
Neural stochastic logic programming. In AAAI, pages 10090–10100. AAAI Press, 2022.

3 Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statistical
relational to neural symbolic artificial intelligence: a survey. arXiv preprint arXiv:2108.11451,
2021.

4.12 Tutorial: Probabilistic Model Checking
David Parker (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© David Parker

Probabilistic model checking is an automated technique for the formal verification of stochastic
systems. This tutorial will provide an introduction to some of the key ingredients of this
technique, giving a particular focus on the similarities and differences with some of the other
fields represented at the seminar, such as probabilistic programming, probabilistic circuits
and, probabilistic planning.
I will cover: (i) the types of probabilistic models typically used; (ii) the use of temporal
logic to formalise quantitative behavioural specifications, in particular for models such as
Markov chains and Markov decision processes; (iii) the solution techniques usually used
by probabilistic model checking tools, and the approaches taken to improve scalability and
efficiency; and (iv) modelling languages for probabilistic verification. In the final part of the
talk, I will discuss how this framework has been extended to support multi-agent systems
modelled as stochastic games.

4.13 Mixing formal methods and learning to tackle (too) large MDPs
Jean-Francois Raskin (UL – Brussels, BE)

License Creative Commons BY 4.0 International license
© Jean-Francois Raskin

In a recent series of works, we investigate optimizing strategies in Markov decision processes
(MDPs) using Monte Carlo Tree Search (MCTS). We introduce symbolic advice to enhance
MCTS, biasing its selection and simulation strategies while maintaining its theoretical
guarantees. Efficient implementation of symbolic advice is achieved using QBF and SAT
solvers. Additionally, we integrate formal methods and deep learning to produce superior
receding horizon policies in large MDPs. Model-checking techniques guide MCTS for high-
quality decision sampling, which subsequently trains a neural network to imitate the sampled
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policy. This network can guide low-latency MCTS online searches or serve as an independent
policy when quick responses are vital. Statistical model checking identifies areas needing extra
samples and highlights discrepancies between the neural network and the offline policy. Our
methodologies are validated using the Pac-Man and Frozen Lake environments, benchmarks
in evaluating reinforcement-learning algorithms. The results outperform standard MCTS
and human players.
The main related papers to the talk are as follows: [1, 2, 3].

References
1 Debraj Chakraborty, Damien Busatto-Gaston, Jean-François Raskin, and Guillermo A.

Pérez. Formally-sharp dagger for MCTS: lower-latency monte carlo tree search using data
aggregation with formal methods. In Noa Agmon, Bo An, Alessandro Ricci, and William
Yeoh, editors, Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 – 2 June 2023,
pages 1354–1362. ACM, 2023.

2 Damien Busatto-Gaston, Debraj Chakraborty, and Jean-François Raskin. Monte carlo tree
search guided by symbolic advice for mdps. In Igor Konnov and Laura Kovács, editors,
31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4,
2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 40:1–40:24. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

3 Gilles Geeraerts, Shibashis Guha, and Jean-François Raskin. Safe and optimal scheduling
for hard and soft tasks. In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs,
pages 36:1–36:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

4.14 Automatically Finding the Right Probabilities in Bayesian Networks
Bahare Salmani (RWTH Aachen, DE) and Joost-Pieter Katoen (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Bahare Salmani and Joost-Pieter Katoen

Main reference Bahare Salmani, Joost-Pieter Katoen: “Automatically Finding the Right Probabilities in Bayesian
Networks”, J. Artif. Intell. Res., Vol. 77, pp. 1637–1696, 2023.

URL https://doi.org//10.1613/jair.1.14044

Parametric Bayesian networks (pBNs) are extensions of Bayesian networks that allow con-
ditional probability tables (CPTs) to include unknown parameters rather than concrete
probabilities. We present in this talk alternative techniques to find the correct values for
the parameters with respect to a given constraint. The key is to translate (a) pBNs to
parametric Markov chains (pMCs) and (b) pBN constraints to reachability constraints. This
allows exploiting the state-of-the-art parameter synthesis techniques for pMCs to target pBN
problems including sensitivity analysis, (minimal-change) parameter tuning, and parameter
space partitioning. We address pBNs with an arbitrary number of parameterized CPTs
and with arbitrary dependencies between the parameters. This lifts the limitations of the
existing pBN techniques. Our experimental results indicate that our techniques scale up to
800 unknown parameters for large Bayesian networks with ∼ 100 random variables.
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4.15 Tutorial on Planning with Probabilistic Programming Languages
Scott Sanner (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Scott Sanner

Planning aims to find sequences of actions that achieve a goal or optimize a cost-based
objective given an initial starting state. Modern planning methods seek to leverage the
structure in symbolic domain specification languages to improve the efficiency of the search
process. The Relational Dynamic Influence Diagram Language (RDDL) is a probabilistic
programming language that has been developed to compactly model real-world stochastic
planning problems, i.e., Markov Decision Processes (MDPs), and specifically factored MDPs
with highly structured transition and reward functions. In this tutorial, we will cover
the basics of RDDL and present recent language extensions and capabilities through the
incremental development and extension of running examples based on real-world domains.
We will also introduce a range of planning methodologies that leverage RDDL structure
covering Monte Carlo Tree Search (MCTS), mathematical programming, gradient-based
optimization, and symbolic methods.

4.16 Deterministic stream-sampling for probabilistic programming:
semantics and verification

Alexandra Silva (Cornell University – Ithaca, US)

License Creative Commons BY 4.0 International license
© Alexandra Silva

Joint work of Fredrik Dahlqvist, Alexandra Silva, William Smith
Main reference Fredrik Dahlqvist, Alexandra Silva, William Smith: “Deterministic stream-sampling for probabilistic

programming: semantics and verification”, in Proc. of the LICS, pp. 1–13, 2023.
URL https://doi.org//10.1109/LICS56636.2023.10175773

Probabilistic programming languages rely fundamentally on some notion of sampling, and
this is doubly true for probabilistic programming languages which perform Bayesian inference
using Monte Carlo techniques. Verifying samplers – proving that they generate samples
from the correct distribution – is crucial to the use of probabilistic programming languages
for statistical modelling and inference. However, the typical denotational semantics of
probabilistic programs is incompatible with deterministic notions of sampling. This is
problematic, considering that most statistical inference is performed using pseudorandom
number generators. We present a higher-order probabilistic programming language centred
on the notion of samplers and sampler operations. We give this language an operational
and denotational semantics in terms of continuous maps between topological spaces. Our
language also supports discontinuous operations, such as comparisons between reals, by
using the type system to track discontinuities. This feature might be of independent interest,
for example in the context of differentiable programming. Using this language, we develop
tools for the formal verification of sampler correctness. We present an equational calculus to
reason about equivalence of samplers, and a sound calculus to prove semantic correctness of
samplers, i.e. that a sampler correctly targets a given measure by construction.
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One of the most well-studied and highly performing planning approaches used in Model-Based
Reinforcement Learning (MBRL) is Monte-Carlo Tree Search (MCTS). Key challenges of
MCTS-based MBRL methods remain dedicated deep exploration and reliability in the face of
the unknown, and both challenges can be alleviated through principled epistemic uncertainty
estimation in the predictions of MCTS. We present two main contributions: First, we develop
methodology to propagate epistemic uncertainty in MCTS, enabling agents to estimate the
epistemic uncertainty in their predictions. Second, we utilize the propagated uncertainty
for a novel deep exploration algorithm by explicitly planning to explore. We incorporate
our approach into variations of MCTS-based MBRL approaches with learned and provided
models, and empirically show deep exploration through successful epistemic uncertainty
estimation achieved by our approach. We compare to a non-planning-based deep-exploration
baseline, and demonstrate that planning with epistemic MCTS significantly outperforms
non-planning based exploration in the investigated setting.
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