Report from Dagstuhl Seminar 23281
Theoretical Advances and Emerging Applications in
Abstract Interpretation

Arie Gurfinkel*!, Isabella Mastroeni*?, Antoine Miné*3,
Peter Miiller*4, and Anna Becchif®

University of Waterloo, CA. arie.gurfinkel@uwaterloo.ca
University of Verona, IT. isabella.mastroeni@univr.it
Sorbonne University — Paris, FR. antoine.mine@lip6.fr
ETH Ziirich, CH. peter.mueller@inf.ethz.ch

Bruno Kessler Foundation — Trento, IT. abecchi@fbk.eu

CU i W N

—— Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23281 “Theoretical
Advances and Emerging Applications in Abstract Interpretation.”

Abstract Interpretation (AI) is a theory of the approximation of program semantics. Since its
introduction in the 70s, it lead to insights into theoretical research in semantics, a rich and robust

mathematical framework to discuss about semantic approximation and program analysis, and

the design of effective program analysis tools that are now routinely used in this industry. The

seminar brought together academic and industrial partners to assess the state of the art in Al as

well as discuss its future. It considered its foundational aspects, connections with other formal

methods, emergent applications, user needs in program verification, tool design and evaluation,

as well as educational aspects and community management. Its goal was to collect new ideas and

new perspectives on all these aspects of Al in order to pave the way for new applications.

Seminar July 9-14, 2023 — https://www.dagstuhl.de/23281

2012 ACM Subject Classification Software and its engineering — Automated static analysis;
Software and its engineering — Completeness; Software and its engineering — Correctness;
Software and its engineering — Formal methods; Software and its engineering; Software and
its engineering — Software functional properties; Software and its engineering — Software
safety; Software and its engineering — Software verification and validation

Keywords and phrases abstract domains, abstract interpretation, program semantics, program
verification, static program analysis

Digital Object Identifier 10.4230/DagRep.13.7.66

1 Executive Summary

Antoine Miné (Sorbonne University — Paris, FR)
Arie Gurfinkel (University of Waterloo, CA)
Isabella Mastroeni (University of Verona, IT)
Peter Miller (ETH Zirich, CH)

License @ Creative Commons BY 4.0 International license
© Antoine Miné, Arie Gurfinkel, Isabella Mastroeni, and Peter Miiller

Abstract Interpretation (Al) is a theory of the approximation of possible program behaviors.
Since its introduction in the late 70s, it has evolved into a very general theory to describe and
compare formal semantics of programs and systems. As a more practical aspect, it provides a

* Editor / Organizer
t Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
BY under a Creative Commons BY 4.0 International license
Theoretical Advances and Emerging Applications in Abstract Interpretation, Dagstuhl Reports, Vol. 13, Issue 7, pp.
66-95
Editors: Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

\\v pacsTupL Dagstuhl Reports
ReporRTs Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:arie.gurfinkel@uwaterloo.ca
mailto:isabella.mastroeni@univr.it
mailto:antoine.mine@lip6.fr
mailto:peter.mueller@inf.ethz.ch
mailto:abecchi@fbk.eu
https://www.dagstuhl.de/23281
https://doi.org/10.4230/DagRep.13.7.66
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

formal framework to design effective static analyzers that are automatic, sound, and efficient.
The last two decades have seen the emergence of practical tools now used routinely in the
industry, starting with the embedded critical software industry and now being also applied
to more mainstream software.

Despite its strength, designing new static analyses with Al remains a challenging task,
involving both theoretical research and engineering efforts. The limited diffusion of Al
knowledge in Universities, in Engineering Schools, and in the industry may hinder the
development and more widespread use of Al-based tools. Moreover, the early focus on the
verification of run-time errors in embedded software, while it provided a simpler and more
controlled context than the general problem of verifying consumer software, and resulted
in industrial successes, also could give the false impression that Al is only suitable for this
task, while its theory is in fact much more general. Finally, the Al community has little
interactions with that of other formal methods.

Based on these early observations, we set out to organize a Dagstuhl seminar on “The-
oretical Advances and Emerging Applications in Abstract Interpretation” to discuss the
state of the art in Al, identify its key challenges, and plan for its future. The seminar
brought together 37 international experts in static analysis, from 10 countries, and from
both academic and industrial background, covering a wide spectrum from pure Abstract
Interpretation (AI) theory, to tool providers, to industrial users.

To provide a structure to the discussion, the seminar was organized as a series of
topical days focusing on identified aspects (but not excluding other topics) of the state
of the art and perceived challenges in Al: static safety verification, tools and applications,
verification beyond safety analysis, and education. We proposed three invited talks and an
invited tutorial of extended length (1h) and from key people in the community to bootstrap
discussions on a variety of topics, ranging from theoretical Al to industrial tools, and
providing historical perspectives. These were complemented with 23 shorter talks proposed
spontaneously throughout the seminar. These talks, from 10min to 30min long, discussed
a large variety of topics, including new research results, theoretical advances, experience
reports, technical realizations, and reports on teaching activities. A significant number of
presentations discussed connections of Al with other formal methods, including SMT solving,
types, program logic.

During the seminar, we also organized several breakout sessions, where smaller working
groups discussed a selection of topics: soundness requirements for static analysis tools,
expressive domains, community infrastructure, education, connections with other formal
methods, connections with machine learning, and tackling the verification of hyper-properties.
As a conclusion of these working groups and the overall seminar, several tasks were started
and a number of action items were proposed to advance further:

The group on soundness requirements proposed a first list of requirements that an

analyzer should fulfill. It identified the need to discuss these findings with members of

the soundiness manifesto, which raised awareness on the lack of proper requirements.

The group on community infrastructure proposed a series of practical actions to build

the community on Al. It suggested the creation of a Special Interest Group in Al to

coordinate the efforts.

The group on teaching started an on-going list (to be completed) of educational materials

on Al It presented the need to develop materials targeting undergraduate students and

practitioners, to make efforts to better share available teaching resources, and to provide
introductory courses on Al on MOOC platforms.

The group on the interaction between AI and other formal methods presented relevant

connections with deductive verification, dynamic techniques, and model checking. In

particular, it suggested the organization of a seminar on Al and deductive verification.

67

23281

68 23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

In general, this seminar expressed the interest to continue the discussion on the future of
ATl in further seminars focusing on specific challenges and opportunities as uncovered during
the seminar, and adapting the list of participants in consequence.

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

2 Table of Contents

Executive Summary

Antoine Miné, Arie Gurfinkel, Isabella Mastroeni, and Peter Mdller 66

Overview of Talks

Code Reuse Vulnerabilities in Modern Web Applications

Musard Balliv e e e e e e e e e 71

Cooperative Verification

Dirk Beyer e 71

Interactive Abstract Interpretation

Bor-Yuh Evan Chang o i e 72

Formal Verification of Avionics Software

David Delmas e e e e e 73

Calculating Equational Laws over ADTs

Gidon Ernst e e e e e e e 73

Teaching Abstract Interpretation with LiSA

Pietro Ferrara e e e e e e e e 74

Alpha from Below over Quantified First-order Formulas

Eden Frenkel e e e e e 74

Fast Approximations of Quantifier Elimination
Isabel Garcia-Contreras, Arie Gurfinkel, Hari Govind V K, and Sharon Shoham

Buchbinder e e e 75

Uniform Interpolation for Efficient Domain Reduction

Isabel Garcia-Contreras, Arie Gurfinkel, and Jorge Navas 75

An incomplete journey in Completeness

Roberto Giacobazzi e e 76

Abstract interpretation based under approximations and Sufficient Incorrectness
Logic

Roberta Gori e 76

On the fly verification with (incremental) interactive abstract interpretation

Manuel Hermenegildo« o 0 o e 77

Automated Reasoning for Privacy

Temesghen Kahsai e 78

Abstract Interpretation in Industry — Practical Experience with Astrée

Daniel Kastner e e e e e e e e 79

SSA Translation Is an Abstract Interpretation, and its Application to Machine
Code Analysis

Matthieu Lemerre o e e e e e e e 79

A Multilanguage Static Analysis of Python/C Programs with Mopsa

Raphaél Monat and Antoine Miné oo 80

Crab: A library for building abstract-interpretation-based analyses

Jorge Navaso e e e 80

69

23281

70 23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

Calculational Design of Program Logics by Abstract Interpretation
Patrick Cousot e 81

Mentorship for Formal Methods
Ruzica Piskac 81

Abstract Interpretation-based Program (Analysis) Logics
Francesco Ranzato 82

VeriCode: Correct Translation of Abstract Specifications to C-Code

Gerhard Schellhorn e e e 82
Data Race Repair using Static Analysis Summaries

Ilya Sergey e 83
Property-Directed Reachability as Abstract Interpretation in the Monotone Theory
Sharon Shoham Buchbinder 83
Exploiting Pointer Analysis in Memory Models for Deductive Verification

Mihaela Sighireanu e 84
(Un-)Realizability of Condition Synthesis as CHC-SAT

Yakir Vizel o e 84

Dataflow Refinement Type Inference
Thomas Wies o o i e e e e e e e e e 85

Timing Analysis by Abstract Interpretation
Reinhard Wilhelm o 0 o e 85

Working groups

Soundness requirements, transparency of assumptions
Bor-Yuh Evan Chang and Raphaél Monat 86

Expressive Domains
Gidon Ernst oL e e 87

Education: Teaching Abstract Interpretation to the Masses
Pietro Ferrara e 88

Community Infrastructure — Interest Group in Static Analysis
Pietro Ferrara e e e 89

Abstract Interpretation and Other Formal Methods

Arie Gurfinkel e 90
Tools and Applications for Abstract Interpretation

Falk Howar e e e e e e e 91
Hyperproperties verification

Isabella Mastroeni e 92
AT for Al

Antoine Miné L 93

Participants 95

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

3 Overview of Talks

3.1 Code Reuse Vulnerabilities in Modern Web Applications
Musard Balliv (KTH Royal Institute of Technology — Stockholm, SE)

License @ Creative Commons BY 4.0 International license
© Musard Balliu
Joint work of Mikhail Shcherbakov, Musard Balliu, Cristian-Alexandru Staicu

Main reference Mikhail Shcherbakov, Musard Balliu, Cristian-Alexandru Staicu: “Silent Spring: Prototype Pollution
Leads to Remote Code Execution in Node.js”; in Proc. of the 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, pp. 5521-5538, USENIX
Association, 2023.

URL https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov

We study code reuse vulnerabilities in modern web application. Prototype pollution is a
dangerous vulnerability affecting prototype-based languages like JavaScript and the Node.js
platform. It refers to the ability of an attacker to inject properties into an object’s root
prototype at runtime and subsequently trigger the execution of legitimate code gadgets that
access these properties on the object’s prototype, leading to attacks such as Denial of Service
(DoS), privilege escalation, and Remote Code Execution (RCE).

In this work, we set out to study the problem in a holistic way, from the detection of
prototype pollution to detection of gadgets, with the goal of finding end-to-end exploits
beyond DoS, in full-fledged Node.js applications. We build a multi-staged framework that
uses multi-label static taint analysis to identify prototype pollution in Node.js libraries
and applications, as well as a hybrid approach to detect universal gadgets, notably, by
analyzing the Node.js source code. We implement our framework on top of GitHub’s static
analysis framework CodeQL to find 11 universal gadgets in core Node.js APIs, leading to code
execution. Furthermore, we use our methodology in a study of 15 popular Node.js applications
to identify prototype pollutions and gadgets. We manually exploit eight RCE vulnerabilities
in three high-profile applications such as NPM CLI, Parse Server, and Rocket.Chat.

3.2 Cooperative Verification
Dirk Beyer (LMU Miinchen, DE)

License @@ Creative Commons BY 4.0 International license
© Dirk Beyer
Joint work of Dirk Beyer, Heike Wehrheim
Main reference Dirk Beyer, Heike Wehrheim: “Verification Artifacts in Cooperative Verification: Survey and
Unifying Component Framework”, in Proc. of the Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles — 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part I, Lecture Notes in Computer Science, Vol. 12476, pp. 143-167, Springer, 2020.
URL https://doi.org//10.1007/978-3-030-61362-4_ 8

Cooperative verification is an approach in which several verifiers help each other solving
the verification problem by sharing artifacts about the verification process. There are many
verification tools available, and they have different strengths. While the tools continuously
increase their individual capabilities, the potential of cooperation is largely unused. The
problem is that in order to use verifiers 'off-the-shelf’, we need clear interfaces to invoke the
tools and to pass information. Part of the interfacing problem is to define standard artifacts
to be exchanged between verifiers. We explain a few recent approaches for cooperative
combinations that are based on verification witnesses as exchange format, including witness

71

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov
https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov
https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov
https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov
https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-61362-4_8
https://doi.org//10.1007/978-3-030-61362-4_8
https://doi.org//10.1007/978-3-030-61362-4_8
https://doi.org//10.1007/978-3-030-61362-4_8
https://doi.org//10.1007/978-3-030-61362-4_8
https://doi.org//10.1007/978-3-030-61362-4_8

72

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

validation, component-based CEGAR, and exchanging invariants between automatic and
interactive verifiers. We also give a brief overview of CoVeriTeam, a tool for composing
verification systems from existing off-the-shelf components.

References

1 Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification. J.
Autom. Reasoning 60(3), 299-335 (2018). https://doi.org/10.1007/s10817-017-9432-6

2 Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing Software Verification
into Off-the-Shelf Components: An Application to CEGAR. In: Proc. ICSE. pp. 536-548.
ACM (2022). https://doi.org/10.1145/3510003.3510064

3 Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative verification
systems. In: Proc. TACAS. pp. 561-579. LNCS 13243, Springer (2022). https://doi.org/
10.1007/978-3-030-99524-9_31

4 Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verification.
In: Proc. CAV. pp. 184-190. LNCS 6806, Springer (2011). https://doi.org/10.1007/
978-3-642-22110-1_16

5 Beyer, D., Spiessl, M., Umbricht, S.: Cooperation between automatic and interactive
software verifiers. In: Proc. SEFM. p. 111-128. LNCS 13550, Springer (2022). https:
//doi.org/10.1007/978-3-031-17108-6_7

6 Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey and
unifying component framework. In: Proc. ISoLA (1). pp. 143-167. LNCS 12476, Springer
(2020). https://doi.org/10.1007/978-3-030-61362-4_8

3.3 Interactive Abstract Interpretation
Bor-Yuh Evan Chang (University of Colorado — Boulder, US)

License @ Creative Commons BY 4.0 International license
© Bor-Yuh Evan Chang
Joint work of Benno Stein, Bor-Yuh Evan Chang, Manu Sridharan, David Flores
Main reference Benno Stein, Bor-Yuh Evan Chang, Manu Sridharan: “Demanded abstract interpretation”, in Proc.
of the PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 2021, pp. 282-295, ACM, 2021.
URL https://doi.org//10.1145/3453483.3454044

We consider the problem of making expressive static analyzers interactive. Formal static
analysis is seeing increasingly widespread adoption as a tool for verification and bug-finding,
but even with powerful cloud infrastructure it can take minutes or hours to get batch
analysis results after a code change. While existing techniques offer some demand-driven or
incremental aspects for certain classes of analysis, the fundamental challenge we tackle is doing
both for arbitrary abstract interpreters. Our technique, demanded abstract interpretation,
lifts program syntax and analysis state to a dynamically evolving graph structure, in which
program edits, client-issued queries, and evaluation of abstract semantics are all treated
uniformly.

https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-030-61362-4_8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3453483.3454044
https://doi.org//10.1145/3453483.3454044
https://doi.org//10.1145/3453483.3454044
https://doi.org//10.1145/3453483.3454044

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

3.4 Formal Verification of Avionics Software

David Delmas (Airbus S.A.S. — Toulouse, FR)

License @ Creative Commons BY 4.0 International license
© David Delmas
Joint work of David Delmas, Antoine Miné, Abdelraouf Ouadjaout, Famantanantsoa Randimbivololona,
Abderrahmane Brahmi
Main reference David Delmas, Abdelraouf Ouadjaout, Antoine Miné: “Static Analysis of Endian Portability by
Abstract Interpretation”, in Proc. of the Static Analysis — 28th International Symposium, SAS 2021,
Chicago, IL, USA, October 17-19, 2021, Proceedings, Lecture Notes in Computer Science, Vol. 12913,
pp. 102-123, Springer, 2021.
URL https://doi.org//10.1007/978-3-030-88806-0__5
Main reference Abdellatif Atki, Abderrahmane Brahmi, David Delmas, Mohamed Habib Essoussi, Famantanantsoa
Randimbivololona, Thomas Marie: “Formalise to automate: deployment of a safe and cost-efficient
process for avionics software”.In ERTSS: Proc. of the 9th European Congress on Embedded Real
Time Software and Systems, Jan 2018, Toulouse, France.
URL https://www.di.ens.fr/ delmas/erts18/
Main reference David Delmas: “Static analysis of program portability by abstract interpretation”, 2022.
URL https://theses.hal.science/tel-04028096

The size and complexity of avionics software have grown exponentially from one aircraft
generation to the next in the past 4 decades. Traditional software development processes
leveraging informal verification techniques fail to scale within reasonable costs. In particular,
verification is liable for a steadily growing share of the overall development costs. The 2015
current status was about 70.

To address this issue, Airbus have been transforming internal development processes since
2016. Internal domain-specific languages have been developed to enable the formalization of
design artifacts, and automate part of verification activities. Automation is enabled by the
interoperation of tools relying on sound formal techniques. For instance, Frama-C/WP and
SMT-solvers are used to automate unit verification with deductive methods. Most so-called
Unit Proofs are automatic, assuming high-level memory and numerical models, as well as
some preconditions. Such assumptions are verified by other tools, such as the Astrée static
analyzer, which leverages Abstract Interpretation to prove the absence of run-time errors and
check assumed non-aliasing properties. We rely on the CompCert formally verified compiler
to enable that most formal verification activities may be conducted on source code.

Beyond safety properties and currently established processes, we also develop internally
static analyses by Abstract Interpretation to automate regression verification and portability
verification. In particular, our portability analysis is able to prove without false alarms the
portability of low-level C avionics software up to 1 million lines of C across platforms with
opposite byte-orders (endianness).

3.5 Calculating Equational Laws over ADTs
Gidon Ernst (LMU Miinchen, DE)

License @ Creative Commons BY 4.0 International license
© Gidon Ernst
Joint work of Gidon Ernst, Grigory Fedyukovich, Robin Sogtrop

We motivate the use of program transformation, traditionally used for the optimization of
functional programs, as basic building blocks for lemma synthesis for recursive functions
over algebraic data types. The key idea is to calculate at the function level instead of at the
formula level, which allows one to work with intermediate syntactic functions. An important
step therefore is to complement existing techniques (fixpoint fusion, deaccumulation) with

73

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-88806-0_5
https://doi.org//10.1007/978-3-030-88806-0_5
https://doi.org//10.1007/978-3-030-88806-0_5
https://doi.org//10.1007/978-3-030-88806-0_5
https://doi.org//10.1007/978-3-030-88806-0_5
https://www.di.ens.fr/~delmas/erts18/
https://www.di.ens.fr/~delmas/erts18/
https://www.di.ens.fr/~delmas/erts18/
https://www.di.ens.fr/~delmas/erts18/
https://www.di.ens.fr/~delmas/erts18/
https://theses.hal.science/tel-04028096
https://theses.hal.science/tel-04028096
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

74

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

capabilities to recognize when two functions are identical resp. share commonalities wrt.
preconditions. The approach, work in progress, discovers typical distributive laws of list/tree
functions like length, append, remove, which are similar in shape to those lemmas often
required for data refinement proofs.

3.6 Teaching Abstract Interpretation with LiSA
Pietro Ferrara (University of Venice, IT)

License @ Creative Commons BY 4.0 International license
© Pietro Ferrara
Joint work of Pietro Ferrara, Luca Negrini, Vincenzo Arceri

LiSA (LIbrary for Static Analysis — https://github.com/lisa-analyzer/lisa) is a Java
library that implements the most common components of abstract interpretation-based static
analyses. In this talk, we report our experience when adopting LiSA during courses at the
master level focused on the theory of abstract interpretation. LiSA allowed students to
implement, execute, and practice the theoretical concepts formalized throughout the course.
However, it turned out that proper implementation of non-trivial abstract domains is beyond
the capabilities of standard CS master students.

3.7 Alpha from Below over Quantified First-order Formulas
Eden Frenkel (Tel Aviv University, IL)

License) Creative Commons BY 4.0 International license
© Eden Frenkel
Joint work of Eden Frenkel, Sharon Shoham Buchbinder, Oded Padon, Tej Chajed

Often, verification of infinite-state and other complex systems, such as the Paxos consensus
protocol, must work for unbounded domains. Quantified first-order logic allows us to reason
over these unbounded domains, describe the desired behavior of these systems, and specify
correctness properties. This is done by constructing formulas that describe the initial states
of the system and its possible transitions, as well as formalizing the notion of illegal or
unwanted states. A proof for the safety of a system then becomes an unreachability proof for
the bad states, which can be provided via another formula, a safety invariant, which holds
on the initial states, is invariant with respect to the transitions, and doesn’t hold on the bad
states.

In this work we tackle invariant inference though the framework of abstract interpretation.
We propose an algorithm that computes the strongest over-approximation of reachable states
by iteratively sampling counter-examples to induction, but which is highly infeasible due to
the magnitude of the abstract domain and SMT solver limitations. We proceed by presenting
techniques based on syntactic subsumption that manage to avoid redundant formulas and
explore an identically expressive search space exponentially more efficiently, and generalize
to the abstract domain of first-order formulas.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/lisa-analyzer/lisa
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

3.8 Fast Approximations of Quantifier Elimination

Isabel Garcia-Contreras (University of Waterloo, CA), Arie Gurfinkel (University of Waterloo,
CA), Hari Govind V K, and Sharon Shoham Buchbinder (Tel Aviv University, IL)
License @ Creative Commons BY 4.0 International license
© Isabel Garcia-Contreras, Arie Gurfinkel, Hari Govind V K, and Sharon Shoham Buchbinder
Main reference Isabel Garcia-Contreras, Hari Govind V. K., Sharon Shoham, Arie Gurfinkel: “Fast Approximations

of Quantifier Elimination”, CoRR, Vol. abs/2306.10009, 2023.
URL https://doi.org//10.48550/ARXIV.2306.10009

Quantifier elimination (qelim) is used in many automated reasoning tasks including program
synthesis, exist-forall solving, quantified SM'T, Model Checking, and solving Constrained Horn
Clauses (CHCs). Exact gelim is computationally expensive. Hence, it is often approximated.
For example, Z3 uses “light” pre-processing to reduce the number of quantified variables.
CHC-solver Spacer uses model-based projection (MBP) to under-approximate gelim relative
to a given model, and over-approximations of gelim can be used as abstractions. In this talk,
we present the QEL framework for fast approximations of gelim. QEL provides a uniform
interface for both quantifier reduction and model-based projection. QEL builds on the egraph
data structure — the core of the EUF decision procedure in SMT — by casting quantifier
reduction as a problem of choosing ground (i.e., variable-free) representatives for equivalence
classes. We have used QEL to implement MBP for the theories of Arrays and Algebraic
Data Types (ADTs). We integrated QEL and our new MBP in Z3 and evaluated it within
several tasks that rely on quantifier approximations, outperforming state-of-the-art.

3.9 Uniform Interpolation for Efficient Domain Reduction

Isabel Garcia-Contreras (University of Waterloo, CA), Arie Gurfinkel (University of Waterloo,
CA), and Jorge Navas (Certora — Seattle, US)

License @ Creative Commons BY 4.0 International license
© Isabel Garcia-Contreras, Arie Gurfinkel, and Jorge Navas

Handling precise abstract values over large sets of program variables is costly. A solution
is to split such “monolithic” values (over the whole set of program variables) into several
subvalues over smaller subsets of variables. Applying abstract transformers separately to
each subvalue is then more efficient than to the monolithic one, but typically incurs precision
loss. To address this, one can transfer information between subvalues, a process known as
reduction. Reduction is done iteratively by refining a subvalue using information from other
subvalues until no values are further refined. Information transfer can be stopped at any
time, guaranteeing soundness. Convergence is not ensured. In this talk, we study termination
and precision properties of reduction from the perspective of logic. We define the notion of
refutational equivalence between a monolithic and split value as a practical way to understand
when a split domain is “precise enough”. Our main result is that if the theories used in
the abstract domain admit and are closed uniform interpolation, reduction can be done in
one step — by computing the uniform interpolant of the formula — guaranteeing refutational
equivalence. For theories (or their combination) that do not admit uniform interpolation, or
are not closed under uniform interpolation, we show that if a uniform interpolant is found,
the reduction procedure can be immediately stopped, guaranteeing the best precision for the
partitioned domain.

75

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2306.10009
https://doi.org//10.48550/ARXIV.2306.10009
https://doi.org//10.48550/ARXIV.2306.10009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

76

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

3.10 An incomplete journey in Completeness
Roberto Giacobazzi (University of Verona, IT)

License @ Creative Commons BY 4.0 International license
© Roberto Giacobazzi

In this talk I will present some results concerning the bridge between the theory of computation
and abstract interpretation. The two theories differ profoundly in the way programs are
interpreted: In the standard theory of computation program equivalence is extensional, we
have compositionally and referential transparency. Abstract interpretation instead is deeply
intensional, non compositional (in the sense that by composition we may lose precision).
However, it is possible to view the theory of abstract interpretation from the perspective
of the theory of computation. In this case a different notion of program equivalence is
considered — the one defined by the equivalence of the abstract interpretations, and push the
theory of abstract interpretation to its limits by studying the properties of abstraction that
make an abstract interpretation closer to the standard notion of interpretation as originally
defined by A. Turing. Interestingly, a analogous of Rice Theorem can be stated for abstract
interpretation and a number of results can be obtained for classes of programs for which an
abstract interpreter is precise (complete).

3.11 Abstract interpretation based under approximations and Sufficient
Incorrectness Logic

Roberta Gori (University of Pisa, IT)

License) Creative Commons BY 4.0 International license
© Roberta Gori
Joint work of Flavio Ascari, Roberto Bruni, Roberta Gori, Francesco Logozzo
Main reference Flavio Ascari, Roberto Bruni, Roberta Gori: “Limits and difficulties in the design of
under-approximation abstract domains”, in Proc. of the Foundations of Software Science and
Computation Structures — 25th International Conference, FOSSACS 2022, Held as Part of the
Furopean Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Lecture Notes in Computer Science, Vol. 13242, pp. 21-39, Springer,
2022.
URL https://doi.org//10.1007/978-3-030-99253-8 2

To address bug finding rather than correctness, Incorrectness Logic has been recently
proposed by O’Hearn: it is based on under-approximations, thus it only reports true
alarms. In principle, Abstract Interpretation techniques can handle under-approximations
as well as over-approximations, but, in practice, few attempts were developed for the
former, notwithstanding the wide literature on the latter. We aim to answer the following
open question raised by O’Hearn: which role can Abstract Interpretation play in the
development of under-approximate tools for bug catching? Our findings clarify, for the first
time, why over- and under-approximation analysers exhibited such a different development
and outline the limits of under-approximation Abstract Interpretation based analyses. Our
key argument is the practical difficulty to design an effective under-approximation abstract
domain able to deal with common program statements. For this reasons we investigate
logics for underapproximations. We introduce Sufficient Incorrectness Logic (SIL), a new
under-approximating, triple-based program logic to reason about program errors. SIL is
designed to set apart the initial states leading to errors. We formally compare SIL to existing
triple-based program logics.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-99253-8_2
https://doi.org//10.1007/978-3-030-99253-8_2
https://doi.org//10.1007/978-3-030-99253-8_2
https://doi.org//10.1007/978-3-030-99253-8_2
https://doi.org//10.1007/978-3-030-99253-8_2
https://doi.org//10.1007/978-3-030-99253-8_2
https://doi.org//10.1007/978-3-030-99253-8_2

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi 7

3.12 On the fly verification with (incremental) interactive abstract
interpretation

Manuel Hermenegildo (IMDEA Software Institute — Pozuelo de Alarcon, ES & UPM — Madrid,
ES)
License @ Creative Commons BY 4.0 International license
© Manuel Hermenegildo
Joint work of Manuel Hermenegildo, Isabel Garcia-Contreras, José F. Morales, Pedro Lépez-Garcia, Louis

Rustenholz, Daniela Ferreiro, Daniel Jurjo

Main reference Miguel A. Sanchez-Ordaz, Isabel Garcia-Contreras, Victor Perez-Carrasco, José F. Morales, Pedro
Lépez-Garcia, Manuel V. Hermenegildo: “VeriFly: On-the-fly Assertion Checking via

Incrementality”, CoRR, Vol. abs/2106.07045, 2021.
URL https://arxiv.org/abs/2106.07045

We demonstrated how the integration of the Ciao abstract interpretation framework within
different IDEs takes advantage of our efficient and incremental fixpoint to achieve effective
verification on-the-fly, as the program is developed. We also demonstrated an embedding of
this framework within the browser, and how it can be used to build interactive tutorials for
teaching abstract interpretation.

Further reading

The work and demo presented builds on several specific components of the Ciao abstract

interpretation framework:
The “top-down” algorithm: (a.k.a. the PLAI algorithm) is the fundamental component
of our approach: see [4] and [5]. The latter is a step by step tutorial on how the algorithm
was derived, the reasons for the different optimizations, etc. and is probably the best single
reference for the original “top-down algorithm.” This first algorithm already achieves
precision and efficiency through the use of memo tables; inferring call-answer pairs (aka
summaries, precondition-postcondition pairs, etc.) which can be several per each procedure
/ block / program point (a.k.a. multivariance, path/context/call-site sensitivity, cloning,
etc.); abstraction of the paths and recursions/loops in the program as graphs / regular
trees; detection of SCCs; dependency tracking between memo table entries for accelerating
the fixpoint (keeping track of what has to be recomputed when something changes, which
is later instrumental for incremental analysis); handles procedures (projection, extension),
including (mutual) recursion; etc. It is also generic in the sense that it takes care on
one hand of abstracting the control: paths, dynamic CFG, procedure call and return
(projection, extension), including (mutual) recursion, etc. Then, multiple ’abstract
domains’ are available as plug-ins to abstract the data: recursive heap data structures,
pointer aliasing, numerical domains, etc.
Incremental Analysis: After developing the PLAI algorithm we developed and bench-
marked the incremental version. It was first described in [2], which was later published
in longer form as [3], and an improved incremental algorithm was later described in [6].
Finally, we recently extended the '96 algorithm to deal at the same time with modules
(coarse-grained incrementality) and fine-grained incrementality within each module [1].
Interactive verification: The final component is the integration of the analyer/verifier-
/optimizer CiaoPP in the IDE. The latest version of this integration (“Verifly” [8, 7]),
put in practice the idea of interactive verification with abstract interpretation.

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2106.07045
https://arxiv.org/abs/2106.07045
https://arxiv.org/abs/2106.07045
https://arxiv.org/abs/2106.07045

78

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

References

1 I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. Incremental and Modular
Context-sensitive Analysis. Theory and Practice of Logic Programming, 21(2):196-243,
January 2021. https://arxiv.org/abs/1804.01839

2 M. V. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Logic
Programs. In International Conference on Logic Programming, pages 797-811. MIT Press,
June 1995. https://cliplab.org/papers/incanal-iclp95_bitmap.pdf

3 M. V. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and Systems,
22(2):187-223, March 2000. https://cliplab.org/papers/incanal-toplas.pdf

4 K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Information
at Compile-Time Through Abstract Interpretation. In 1989 North American Conference
on Logic Programming, pages 166—189. MIT Press, October 1989. https://cliplab.org/
papers/abs-int-naclp89.pdf

5 K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algorithm for
Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90,
Microelectronics and Computer Technology Corporation (MCC), Austin, TX 78759, April
1990. http://cliplab.org/papers/mcctr-fixpt.pdf

6 G. Puebla and M. V. Hermenegildo. Optimized Algorithms for the Incremental Analysis
of Logic Programs. In International Static Analysis Symposium (SAS 1996), number 1145
in Lecture Notes in Computer Science, pages 270-284. Springer-Verlag, September 1996.
https://cliplab.org/papers/inc-fixp-sas_bitmap.pdf

7 M. A. Sanchez-Ordaz, 1. Garcia-Contreras, V. Perez-Carrasco, J. F. Morales, P. Lopez-
Garcia, and M.V. Hermenegildo. VeriFly: On-the-fly Assertion Checking with CiaoPP.
In 6th Workshop on Formal Integrated Development Environment (F-IDE 2021, part of
NASA NFM’21), Electronic Proceedings in Theoretical Computer Science (EPTCS), pages
1-5. Open Publishing Association (OPA), May 2021. Co-located with ETAPS 2021. https:
//cister-labs.pt/f-ide2021/images/preprints/F-IDE_2021_paper_7.pdf

8 M.A. Sanchez-Ordaz, 1. Garcia-Contreras, V. Perez-Carrasco, J. F. Morales, P. Lopez-
Garcia, and M. V. Hermenegildo. Verifly: On-the-fly Assertion Checking via Incrementality.
Theory and Practice of Logic Programming, 21(6):768-784, September 2021. Special Issue
on ICLP’21. http://arxiv.org/abs/2106.07045

3.13 Automated Reasoning for Privacy
Temesghen Kahsai (Amazon Lab 126, US)

License) Creative Commons BY 4.0 International license
© Temesghen Kahsai

Automated reasoning techniques offer an exceptional avenue to attain the utmost assurance
in safeguarding data privacy. In this presentation, we will explore our adaptations of these
techniques in addressing vital inquiries concerning code and cloud infrastructure, aimed
at identifying potentially harmful misconfigurations. We will delve into the deployment
of highly scalable static analysis for sensitive data tracking, the utilization of a provably
correct differential privacy library to guarantee the safety of shared aggregated data, and the
implementation of diverse pseudo-anonymization methods to safeguard sensitive information.

https://arxiv.org/abs/1804.01839
https://cliplab.org/papers/incanal-iclp95_bitmap.pdf
https://cliplab.org/papers/incanal-toplas.pdf
https://cliplab.org/papers/abs-int-naclp89.pdf
https://cliplab.org/papers/abs-int-naclp89.pdf
http://cliplab.org/papers/mcctr-fixpt.pdf
https://cliplab.org/papers/inc-fixp-sas_bitmap.pdf
https://cister-labs.pt/f-ide2021/images/preprints/F-IDE_2021_paper_7.pdf
https://cister-labs.pt/f-ide2021/images/preprints/F-IDE_2021_paper_7.pdf
http://arxiv.org/abs/2106.07045
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi 79

3.14 Abstract Interpretation in Industry — Practical Experience with
Astrée

Daniel Kistner (AbsInt — Saarbriicken, DE)

License @@ Creative Commons BY 4.0 International license
© Daniel Kéastner

The presentation gives a brief overview of the verification goals addressed by the Astrée
analyzer, and then focuses on the development history from the ready-for-market academic
version from 2009 till today’s state. Enhancements are grouped into different categories,
usability, compliance to formal requirements, new capabilities, domain-specific extensions,
precision improvement and optimizations for scalability. The current state is briefly summar-
ized by experimental results on automotive integration analysis projects, taken from our 2023
SAE conference paper. We then briefly summarize “selling points” of verification tools to
industry users with an emphasis on the role of safety norms: they define the minimum state
of the art for system development and play a fundamental role in the adoption of tools in
industrial development processes. We give examples how abstract interpretation is addressed
in DO-178C and ISO 26262, observe that it is entirely missing in others, and conclude that
it is under-representated in today’s safety norms. The presentation ends with listing some
verification challenges we see upcoming due to current market trends.

References

1 D. Késtner, C. Mallon, L. Mauborgne, S. Schank, S. Wilhelm, C. Ferdinand. Automatic
Sound Static Analysis for Integration Verification of AUTOSAR Software. SAE Technical
Paper 2023-01-0591, SAE World Congress 2023, Detroit, April 2023. DOI: https://doi.
org/10.4271/2023-01-0591

3.15 SSA Translation Is an Abstract Interpretation, and its Application
to Machine Code Analysis

Matthieuw Lemerre (CEA LIST — Gif-sur-Yvette, FR)

License) Creative Commons BY 4.0 International license
© Matthieu Lemerre
Joint work of Matthieu Lemerre, Olivier Nicole, Xavier Rival, Sébastien Bardin
Main reference Matthieu Lemerre: “SSA Translation Is an Abstract Interpretation”, Proc. ACM Program. Lang.,
Vol. 7(POPL), pp. 1895-1924, 2023.
URL https://doi.org//10.1145/3571258

Conversion to Static Single Assignment (SSA) form is usually viewed as a syntactic trans-
formation algorithm that gives unique names to program variables, and reconciles these
names using “phi” functions based on a notion of domination. We instead propose a semantic
approach, where SSA translation is performed using a simple dataflow analysis. Based on a
new technique to use cyclic terms in abstract domains, we propose a Symbolic Expression
abstract domain that performs a Global Value Numbering analysis, upon which we build our
SSA translation. This implies a shift in perspective, as global value numbering becomes a
prerequisite of SSA translation, instead of depending on SSA.

One application to performing SSA Translation by Abstract Interpretation is that SSA
optimizations passes can be implemented as a combination of abstract domains, allowing to
perform several optimizations simultaneously to solve the usual phase ordering problem and
avoiding tedious maintenance of SSA invariants.

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4271/2023-01-0591
https://doi.org/10.4271/2023-01-0591
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3571258
https://doi.org//10.1145/3571258
https://doi.org//10.1145/3571258

80

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

Our main motivation for this research is an analyser for machine code which uses SSA as
its main intermediate representation. Machine code is too low-level to allow SSA translation
without a prior semantic analysis, while SSA is an intermediate representation that makes
static analysis easier than direct analysis of machine code. Viewing SSA translation as a
semantic analysis solves this chicken-and-egg problem, allowing to simultaneously decompile
machine code to SSA and use the SSA representation to perform the other semantic analyses
(value analysis, memory analysis, and control-flow analysis). We illustrate the use of such
an analysis on an embedded OS kernel where we prove security properties directly from its
executable.

References

1 Matthieu Lemerre: SSA Translation Is an Abstract Interpretation. In Principle of Program-
ming Languages (POPL), 2023.

2 O. Nicole, M. Lemerre, S. Bardin, X. Rival: No Crash, No Exploit : Automated Verification
of Embedded Kernels . In Real-time systems and applications (RTAS), 2021

3.16 A Multilanguage Static Analysis of Python/C Programs with
Mopsa

Raphaél Monat (INRIA Lille, FR) and Antoine Miné (Sorbonne University — Paris, FR)

License) Creative Commons BY 4.0 International license
© Raphaél Monat and Antoine Miné
Joint work of Ouadjaout, Abdelraouf; Miné, Antoine
Main reference Raphaél Monat, Abdelraouf Ouadjaout, Antoine Miné: A Multilanguage Static Analysis of Python
Programs with Native C Extensions. SAS 2021: 323-345
URL https://link.springer.com/chapter/10.1007/978-3-030-88806-0__16

Mopsa is a conservative static analysis platform, independent of language and abstraction
choices. Developers are free to add arbitrary abstractions (numeric, pointer, memory, etc.)
and syntax iterators for new languages. Mopsa encourages the development of independent
abstractions which can cooperate or be combined to improve precision. In this talk, we will
show how Mopsa analyses Python programs calling C libraries. It analyses directly and fully
automatically both the Python and the C source codes. It reports runtime errors that may
happen in Python, in C, and at the interface. We implemented our analysis in a modular
fashion: it reuses off-the-shelf C and Python analyses written in the same analyzer. Our
analyzer can tackle tests of real-world libraries a few thousand lines of C and Python long.
This talk is based on our SAS’21 paper.

3.17 Crab: A library for building abstract-interpretation-based analyses
Jorge Navas (Certora — Seattle, US)

License) Creative Commons BY 4.0 International license
© Jorge Navas

Crab is an open-source library that helps to develop static analyses based on the theory of
Abstract Interpretation. It provides a variety of software components such as inter-procedural
forward and backward analyses, fixpoint solvers and a rich set of abstract domains, including
interfaces with numerical abstract domain libraries such as Apron, Elina or PPLite.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://link.springer.com/chapter/10.1007/978-3-030-88806-0_16
https://link.springer.com/chapter/10.1007/978-3-030-88806-0_16
https://link.springer.com/chapter/10.1007/978-3-030-88806-0_16
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

This tutorial focuses on demonstrating how to use Crab from the perspective of two
different kinds of users: (1) the ones who want to quick prototype new abstractions by
combining existing abstract domains, and (2) those who want to develop new static analyses
using Crab as a black-box. We show several interactive demos on how to derive new
abstractions based on the combination of an array domain with relational numerical domains
to prove memory safety of eBPF programs and how to implement a new LLVM-based static
analyzer to infer upper-bounds for dynamic memory allocation in less than 100 lines of C++
code.

3.18 Calculational Design of Program Logics by Abstract Interpretation
Patrick Cousot

License @ Creative Commons BY 4.0 International license
© Patrick Cousot
Main reference Submitted

We study transformational program logics for correctness and incorrectness that we extend to
explicitly handle both termination and nontermination. We show that the logics are abstract
interpretations of the right image transformer for a natural relational semantics covering both
finite and infinite executions. This understanding of logics as abstractions of a semantics
facilitates their comparisons through their respective abstractions of the semantics (rather
that the much more difficult comparison through their formal deductive systems). More
importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal deductive system by abstraction of the semantics. As an
example, we extend Hoare logic to cover all possible behaviors of nondeterministic programs
and design a new precondition (in)correctness logics. This logic can be used to prove that
false alarms in static analysis are due to the over approximation of nonterminating behaviors
by terminating over approximation in the analysis which cannot be done by incorrectness or
outcome logic is unreachable in the concrete (although it is reachable in the abstract).

3.19 Mentorship for Formal Methods
Ruzica Piskac (Yale University — New Haven, US)

License) Creative Commons BY 4.0 International license
© Ruzica Piskac
Joint work of Mark Santolucito, Ruzica Piskac
Main reference Mark Santolucito, Ruzica Piskac: “Formal Methods and Computing Identity-based Mentorship for
Early Stage Researchers”, in Proc. of the 51st ACM Technical Symposium on Computer Science
Education, SIGCSE 2020, Portland, OR, USA, March 11-14, 2020, pp. 135-141, ACM, 2020.
URL https://doi.org//10.1145/3328778.3366957

The field of formal methods relies on a large body of background knowledge that can dissuade
researchers from engaging with younger students, such as undergraduates or high school
students. However, we have found that formal methods can be an excellent entry point to
computer science research — especially in the framing of Computing Identity-based Mentorship.
In this talk, we report on our experience in using a cascading mentorship model to involve
early stage researchers in formal methods, covering the process with these students from
recruitment to publication. We present case studies and how we were able to integrate formal
methods research with the students’ own interests. We outline some key strategies that have
led to success and reflect on strategies that have been, in our experience, inefficient.

81

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3328778.3366957
https://doi.org//10.1145/3328778.3366957
https://doi.org//10.1145/3328778.3366957
https://doi.org//10.1145/3328778.3366957

82

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

3.20 Abstract Interpretation-based Program (Analysis) Logics
Francesco Ranzato (University of Padova, IT)

License @ Creative Commons BY 4.0 International license
© Francesco Ranzato
Joint work of Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato
Main reference Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato: “A Correctness and
Incorrectness Program Logic”, J. ACM, Vol. 70(2), pp. 15:1-15:45, 2023.
URL https://doi.org//10.1145/3582267

We introduce a program logic, called Local Completeness Logic for an abstract domain
A (LCL,4), for proving both the correctness and incorrectness of program specifications.
This proof system, which is parametrized by the abstraction A, combines over- and under-
approximating reasoning: in a provable triple k4 [p]c[g] for the program ¢, ¢ is an under-
approximation of the strongest post-condition of ¢ on input pre-condition p, such that their
abstractions in A coincide. If A is the straightforward abstraction making all program
properties equivalent, then the logic LCL 4 coincides with O’Hearn’s incorrectness logic. We
discuss the pitfalls of this logic LCL 4 and why it is hard to make proofs within it. We,
therefore, advocate designing a weakening of LCL 4 which should be able to prove properties
of program analyses rather than program behaviors, in particular for proving that a program
analysis is the best possible one in the underlying domain A.

3.21 VeriCode: Correct Translation of Abstract Specifications to
C-Code

Gerhard Schellhorn (Universitat Augsburg, DE)

License) Creative Commons BY 4.0 International license
© Gerhard Schellhorn

The talk presented the new VeriCode project (funded by German Research Foundation
DFG) we just started. The projects aims at the generation of efficient code from abstract
specification. Such specifications are typical when using higher-order logic and abstract
programs to specify functions. They typically use abstract datatypes which are easily
translated to functional code. However the resulting code is typically not very efficient and
requires garbage collection. The project was motivated by an earlier DFG project called
Flashix that produced a verified file system for flash memory. A simple code generator
is already implemented that produces C- and Scala-Code, based on the principle that in
contrast to a functional implementation data structure should not share. The approach
enables destructive updates and allows to avoid garbage collection. The approach still causes
too much copying and the talk showed some first optimizations. Compared to a native
implementation of a flash filesystem (UBIFS) in C that we used as a blueprint, our code is
still some factors slower and the project aims to close the gap. The talk also showed the
overall approach of the project, which is not just to implement an efficient code generator,
but to verify that it is correct again using specifications of the relevant functionality and
semantics. Ultimately this should allow to bootstrap the code generator by again generating
code from the specification of its functionality.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3582267
https://doi.org//10.1145/3582267
https://doi.org//10.1145/3582267
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

3.22 Data Race Repair using Static Analysis Summaries
Ilya Sergey (National University of Singapore, SG)

License @ Creative Commons BY 4.0 International license
© Ilya Sergey
Joint work of Andreea Costea, Abhishek Tiwari, Sigmund Chianasta, Kishore R, Abhik Roychoudhury, Ilya Sergey
Main reference Andreea Costea, Abhishek Tiwari, Sigmund Chianasta, Kishore R, Abhik Roychoudhury, Ilya Sergey:
“Hippodrome: Data Race Repair Using Static Analysis Summaries”, ACM Trans. Softw. Eng.
Methodol., Vol. 32(2), pp. 41:1-41:33, 2023.
URL https://doi.org//10.1145/3546942

Implementing bug-free concurrent programs is a challenging task in modern software devel-
opment. State-of-the-art static analyses find hundreds of concurrency bugs in production
code, scaling to large codebases. Yet, fixing these bugs in constantly changing codebases
represents a daunting effort for programmers, particularly because a fix in the concurrent
code can introduce other bugs in a subtle way.

In this talk, I will show how to harness compositional static analysis for concurrency
bug detection, to enable a new Automated Program Repair (APR) technique for data
races in large concurrent Java codebases. The key innovation of our work is an algorithm
that translates procedure summaries inferred by the analysis tool for the purpose of bug
reporting into small local patches that fix concurrency bugs (without introducing new ones).
This synergy makes it possible to extend the virtues of compositional static concurrency
analysis to APR, making our approach effective (it can detect and fix many more bugs than
existing tools for data race repair), scalable (it takes seconds to analyse and suggest fixes for
sizeable codebases), and usable (generally, it does not require annotations from the users and
can perform continuous automated repair). Our study conducted on popular open-source
projects has confirmed that our tool automatically produces concurrency fixes similar to
those proposed by the developers in the past.

3.23 Property-Directed Reachability as Abstract Interpretation in the
Monotone Theory

Sharon Shoham Buchbinder (Tel Aviv University, IL)

License @@ Creative Commons BY 4.0 International license
© Sharon Shoham Buchbinder
Joint work of Yotam M. Y. Feldman, Mooly Sagiv, Sharon Shoham Buchbinder, Mooly Sagiv
Main reference Yotam M. Y. Feldman, Mooly Sagiv, Sharon Shoham, James R. Wilcox: “Property-directed
reachability as abstract interpretation in the monotone theory”, Proc. ACM Program. Lang.,
Vol. 6(POPL), pp. 1-31, 2022.
URL https://doi.org//10.1145/3498676
Main reference Yotam M. Y. Feldman, Sharon Shoham: “Invariant Inference with Provable Complexity from the
Monotone Theory”, in Proc. of the Static Analysis — 29th International Symposium, SAS 2022,
Auckland, New Zealand, December 5-7, 2022, Proceedings, Lecture Notes in Computer Science,
Vol. 13790, pp. 201-226, Springer, 2022.
URL https://doi.org//10.1007/978-3-031-22308-2__10

Inferring inductive invariants is one of the main challenges of formal verification. One of
the latest breakthroughs in invariant inference is property-directed reachability (IC3/PDR).
In this talk, we utilize the rich theory of abstract interpretation to shed light on the
overapproximation of the reachable states performed by PDR’s frames. Namely, we define an
eager version of PDR, called Lambda-PDR, in which all generalizations of counterexamples
are used to strengthen a frame, and show that its frames can be formulated as an abstract
interpretation algorithm in a logical domain based on Bshouty’s monotone theory. Since the

83

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3546942
https://doi.org//10.1145/3546942
https://doi.org//10.1145/3546942
https://doi.org//10.1145/3546942
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3498676
https://doi.org//10.1145/3498676
https://doi.org//10.1145/3498676
https://doi.org//10.1145/3498676
https://doi.org//10.1007/978-3-031-22308-2_10
https://doi.org//10.1007/978-3-031-22308-2_10
https://doi.org//10.1007/978-3-031-22308-2_10
https://doi.org//10.1007/978-3-031-22308-2_10
https://doi.org//10.1007/978-3-031-22308-2_10

84

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

frames of Lambda-PDR are tighter than the frames of PDR, the same overapproximation,
and more, is present in PDR’s frames. We demonstrate that this overapproximation can
result in an exponential gap compared to exact forward reachability.

3.24 Exploiting Pointer Analysis in Memory Models for Deductive
Verification

Mihaela Sighireanu (ENS Paris-Saclay — Gif-sur-Yvette, FR)

License @ Creative Commons BY 4.0 International license
© Mihaela Sighireanu
Joint work of Quentin Bouillaguet, Francois Bobot, Mihaela Sighireanu, Boris Yakobowski
Main reference Quentin Bouillaguet, Frangois Bobot, Mihaela Sighireanu, Boris Yakobowski: “Exploiting Pointer
Analysis in Memory Models for Deductive Verification”, in Proc. of the Verification, Model Checking,
and Abstract Interpretation — 20th International Conference, VMCAI 2019, Cascais, Portugal,
January 13-15, 2019, Proceedings, Lecture Notes in Computer Science, Vol. 11388, pp. 160-182,
Springer, 2019.
URL https://doi.org//10.1007/978-3-030-11245-5_ 8

Cooperation between verification methods is crucial to tackle the challenging problem of
software verification. The paper focuses on the verification of C programs using pointers and
it formalizes a cooperation between static analyzers doing pointer analysis and a deductive
verification tool based on first order logic. We propose a framework based on memory models
that captures the partitioning of memory inferred by pointer analyses, and complies with
the memory models used to generate verification conditions. The framework guided us to
propose a pointer analysis that accommodates to various low-level operations on pointers
while providing precise information about memory partitioning to the deductive verification.
We implemented this cooperation inside the Frama-C platform and we show its effectiveness
in reducing the task of deductive verification on a complex case study.

3.25 (Un-)Realizability of Condition Synthesis as CHC-SAT
Yakir Vizel (Technion — Haifa, IL)

License) Creative Commons BY 4.0 International license
© Yakir Vizel
Joint work of Yakir Vizel, Bat-Chen Rothenberg, Orna Grumberg

Condition synthesis takes a program in which some of the conditions in conditional branches
are missing, and a specification, and automatically infers conditions to fill-in the holes such
that the program meets the specification.

In this talk, we present COSYN [1], an algorithm for determining the realizability of a
condition synthesis problem, with an emphasis on proving unrealizability efficiently. COSYN
is baed on a reduction of the condition synthesis problem to satisfiability of Constrained
Horn Clauses (CHCs). In order to allow this reduction to CHCs, we use the novel concept
of a doomed initial state, which is an initial state that can reach an error state along every
run of the program. For a doomed initial state o, there is no way to make the program safe
by forcing o (via conditions) to follow one computation or another. COSYN encodes the
existence of a doomed initial state as CHCs.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-11245-5_8
https://doi.org//10.1007/978-3-030-11245-5_8
https://doi.org//10.1007/978-3-030-11245-5_8
https://doi.org//10.1007/978-3-030-11245-5_8
https://doi.org//10.1007/978-3-030-11245-5_8
https://doi.org//10.1007/978-3-030-11245-5_8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

COSYN is implemented in SEAHORN using SPACER as the CHC solver and evaluated it
on multiple examples. The evaluation shows that COSYN outperforms the state-of-the-art
syntax-guided tool CvC5 in proving both realizability and unrealizability. Evaluation also
shows that joining forces of COSYN and Cvcb outperforms Cveh alone, allowing to solve
more instances, faster.

References
1 B. Rothenberg et.al., Condition Synthesis Realizability via Constrained Horn Clauses. NASA
Formal Methods — 15th International Symposium, Houston, TX, USA, May 16-18, 2023.

3.26 Dataflow Refinement Type Inference
Thomas Wies (New York University, US)

License @ Creative Commons BY 4.0 International license
© Thomas Wies
Joint work of Zvonimir Pavlinovic, Yusen Su, Thomas Wies
Main reference Zvonimir Pavlinovic, Yusen Su, Thomas Wies: “Data flow refinement type inference”, Proc. ACM
Program. Lang., Vol. 5(POPL), pp. 1-31, 2021.
URL https://doi.org//10.1145/3434300

Refinement types enable lightweight verification of functional programs. Algorithms for
statically inferring refinement types typically work by reduction to solving systems of
constrained Horn clauses extracted from typing derivations. An example is Liquid type
inference, which solves the extracted constraints using predicate abstraction. However,
the reduction to constraint solving in itself already signifies an abstraction of the program
semantics that affects the precision of the overall static analysis. To better understand
this issue, we study the type inference problem in its entirety through the lens of abstract
interpretation. We propose a new refinement type system that is parametric with the choice
of the abstract domain of type refinements as well as the degree to which it tracks context-
sensitive control flow information. We then derive an accompanying parametric inference
algorithm as an abstract interpretation of a novel data flow semantics of functional programs.
We further show that the type system is sound and complete with respect to the constructed
abstract semantics. Our theoretical development reveals the key abstraction steps inherent in
refinement type inference algorithms. The trade-off between precision and efficiency of these
abstraction steps is controlled by the parameters of the type system. Existing refinement
type systems and their respective inference algorithms, such as Liquid types, are captured by
concrete parameter instantiations.

3.27 Timing Analysis by Abstract Interpretation
Reinhard Wilhelm (Universitit des Saarlandes — Saarbriicken, DE)

License @ Creative Commons BY 4.0 International license
© Reinhard Wilhelm
Main reference Reinhard Wilhelm: “Real time spent on real time”, Commun. ACM, Vol. 63(10), pp. 54-60, 2020.
URL https://doi.org//10.1145/3375545

Hard real-time systems need a proof that they keep their deadlines. This proof is produced
by a code-level WCET analysis and a schedulability analysis for a set of tasks to be executed
on the same platform. A code-level WCET analysis computes a safe upper bound for all

85

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3434300
https://doi.org//10.1145/3434300
https://doi.org//10.1145/3434300
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3375545
https://doi.org//10.1145/3375545

86

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

execution times of a task. The only sound WCET analysis used widely in industry, developed
by my group in Saarbriicken, uses several abstract interpretations to safely and efficiently
derive such upper bounds for tasks to be executed on single-core platforms. Central for the
practicality of our approach are adequate abstractions of the architecture of the execution
platform. Thus, the architecture is an integral part of the semantics from which abstract
interpretations of real-time programs are derived. This entails a number of peculiarities
compared to more conventional abstract interpretations. They are more concerned with the
occupancy of platform resources than with the values contained in those resources. The
occupancy of resources, e.g. the cache contents or the usage of bus bandwidth influence
the timing behavior. Iteration over loops, as part of the fixed-point iteration, needs to
consider machine parameters to achieve accuracy. The first iteration of a loop typically loads
the cache, and later iterations profit from this cache loading. Therefore, first and non-first
iterations may have vastly different execution times. In order to obtain accurate execution
times for loops, the iteration of the analysis first needs to stabilize the execution time of the
loop body. In my talk I gave some such examples of peculiarities [2]. The main part was
concerned with the development history of our WCET-analysis technology [1].

References

1 Reinhard Wilhelm. Real time spent on real time. Commun. ACM 63(10): 54-60 (2020)

2 Jan Reineke and Reinhard Wilhelm. Static Timing Analysis — What is Special?. Semantics,
Logics, and Calculi 2016: 74-87

4 Working groups

4.1 Soundness requirements, transparency of assumptions

Bor-Yuh Evan Chang (University of Colorado — Boulder, US) and Raphaél Monat (INRIA
Lille, FR)

License @ Creative Commons BY 4.0 International license
© Bor-Yuh Evan Chang and Raphaél Monat

We held a discussion session around soundness requirements, and the transparency of
assumptions made to ensure an analysis or a tool is sound.

The starting point of this discussion was the Soundiness manifesto [1]. The goal of
this manifesto is to raise awareness and highlight that there likely are — at least small and
sometimes intentional — discrepancies between the formalized concrete semantics and the
actual implementation. This might be due to the concrete semantics being formalized in
a research paper not matching the whole semantics of the targetted language — either to
simplify the presentation, make a trade-off in the analysis, or because modern programming
languages are large and complex. However, the soundiness paper is sometimes misunderstood
and used as an excuse to give up on establishing soundness results. Thus, we argue (and
believe it to be in line with the original intent of the soundiness manifesto) for transparency
in soundness claims: researchers should state and make explicit the limitations of their
soundness claims, and in particular the assumptions that are being made. The reasonableness
of those assumptions should be empirically evaluated whenever possible.

In order to ensure this transparency at the tool level, we suggest tools should report the
assumptions they made alongside the properties they have been able — or unable — to prove.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

For example, let us consider a C program where an extern function is called. For early
works, it might be sufficient to abort the analyses when encountering such cases. Then, a
reasonable approach to analyze this program is to assume the function does not have side-
effects and that it returned a value abiding by its return type signature. Instead of silently
performing this assumption and continuing the analysis, we argue that for transparency, this
assumption must be stored and displayed during the analyzer’s report.

As another example, consider in Java, a program can modify the fields of an object using
reflection. Because perhaps such uses of reflection are rare in the code of interest or that
it is considered bad practice, a concrete semantics that models arbitrary field updates at
any point using reflection would lead to unrealistically imprecise and pessimistic analyses.
Thus, a reasonable approach is to make the assumption there is no reflective field update
and exclude it from the concrete semantics. Transparency means checking for the potential
reflective field update on the runs of the analysis are reporting it if it is encountered. And
transparency means empiricially evaluating the prevalence of reflective field update on a
representative corpus.

This approach is being prototyped within the Mopsa static analyzer for its C, Python
and multilanguage analyses. We believe it may also help developers better understand the
outputs of static analyzers.

Thanks to this approach, the assumptions made by a static analyzer are now clearly
defined in the implementation. In turn, this simplifies establishing theoretical soundness
claims on paper: it is easier to list the current limitations, and soundness assumptions of a
given analysis in practice.

Of course, developers of commercial static analyzers that are used to certify safety-critical
systems with respect to regulations such as DO-178C are deeply aware of this transparency-
based approach. They internally have documents describing the trusted computing base,
and the exact soundness theorem, with all potential assumptions. While this is too time-
consuming and stringent for proof-of-concepts and early academic software, we believe both
that it is an ideal and a must for usable tools.

Our next step is to discuss with the authors of the original soundiness manifesto. It was
suggested in our plenary recap and discussion to push for an evaluation of the transparency
of static analysis tools in selected conferences performing artifact evaluation.

References

1 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoték, José Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Mgller, Dimitrios
Vardoulakis: In defense of soundiness: a manifesto. Commun. ACM 58(2): 44-46 (2015)

4.2 Expressive Domains
Gidon Ernst (LMU Miinchen, DE)

License @@ Creative Commons BY 4.0 International license
© Gidon Ernst

We discussed abstract domains for data structures and domains that can capture complex
properties. We observed that a large variety of techniques have been described in the
literature, e.g., for the data structures sequences/strings, sets, multisets, arrays, pointer-
structures, and trees/general ADTs, and which e.g., can express properties like sortedness or
initialization. However, while for numerical domains, we have nice open-source libraries that

87

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

88

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

can easily be embedded into larger use-cases, it was noted that this is hardly the case for such
expressive domains despite the fact that there are many implementations. We then discussed
the challenges in the design of both the domains itself as well as a uniform interface that
could capture their features and commonalities: The first challenge is to define a common
interface in the first place. Since domains are usually designed to tackle specific properties,
the operations they offer are tuned to their respective use cases and therefore not uniform.
As an example, it seemed unclear whether it is possible to represent the features offered
by domains as part of a CHC solver. As possible future work, a first step towards usable
off-the-shelf libraries was to investigate the design of a suitable API. A second challenge is the
combined use of abstract domains, for example when nesting domains for element types inside
container types. There is no canonical choice to do so many, and which is appropriate strongly
depends on the application. This kind of integration often relies on the tight integration of
the data structures representing the abstract domains at the implementation level. This
kind of compositionality, however, is hard to achieve general because domains — even for
the same purpose — may rely on rather different techniques. A related problem is how to
provide on-line transfer from and to symbolic representations. We idientified as a question
for the efficient combination of domains, whether some of the higher-level domains benefit
from some specialized operators of the underlying abstract domains. The third challenge
is that it is hard to design abstract domains that are robust. A lot of knowledge goes into
selecting the right abstraction for a given (sub-)problem and choosing the an inappropriate
one incurs high computational cost. Unfortunately, this is hard to determine automatically,
and moreover may rely on user-provided partial specifications as guidance.

4.3 Education: Teaching Abstract Interpretation to the Masses
Pietro Ferrara (University of Venice, IT)

License) Creative Commons BY 4.0 International license
© Pietro Ferrara

During this working group, the discussion was divided into two main themes: teaching to
graduate students, and to undergraduates or, generally speaking, practitioners. In the first
case, a lot of good material is available. A non-comprehensive list (that should be further
integrated) to the best of the participants’ knowledge is the following one: books [1, 2]; slides
[3, 4, 5, 6, 7, 8]; tools [9, 10].

For undergrads and/or practitioners there is less material available. After an open
discussion with all the seminar participants, we were able to assemble the following list:
[11, 12, 13].

Generally speaking, the first idea would be to augment undergraduate courses on the
implementation of interpreters with the idea of abstraction (e.g., [7]). Another proposal
was to design a generic interface to interact (ranging from the application to the extension)
with static analyzers through a unique library, avoiding having analyzers that require being
bound to specific programming languages. This is a rather standard approach adopted by our
communities that over the years achieved better visibility and popularity (e.g., the machine
learning community with libraries such as Scikit-learn and Pytorch, or the theorem-proving
community with libraries such as SMT-lib).

Overall, the participants agreed that the community is missing a place where educational
material about static analysis can be shared, as well as introduction courses in popular
MOOC platforms.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi

References

1 Patrick Cousot: Principles of Abstract Interpretation, https://mitpress.mit.edu/
9780262044905/principles-of-abstract-interpretation/

2 Rival and Yi: Introduction to Static Analysis, https://mitpress.mit.edu/
9780262043410/introduction-to-static-analysis/

3 Patrick Cousot’s course at MIT: http://web.mit.edu/afs/athena.mit.edu/course/16/
16.399/www/

4 Feret, Giet, Rival course at ENS Paris: https://www.di.ens.fr/~rival/semverif-2023/

5 Miné, Urban, Feret, Rival in Paris (MPRI): https://www-apr.lip6.fr/~mine/
enseignement/mpri/current/

6 Ferrara (old — 2012) course at ETH: https://ethz.ch/content/dam/ethz/
special-interest/infk/chair-program-method/pm/documents/Education/Courses/
S$S2012/SPA/Lectures.zip

7 Evan course at the University of Colorado Boulder: https://csci3155.cs.colorado.edu/
£22/ and https://github.com/csci3155/

8 Jan Midtgaard: Abstract Interpretation (2015 Winter School) https://janmidtgaard.dk/
aiws15/

9 LiSA (Ca’ Foscari University of Venice): https://github.com/lisa-analyzer/lisa

10 MOPSA (Sorbonne Université): https://gitlab.com/mopsa/mopsa-analyzer

11 Anders Mpgller and Michael I. Schwartzbach: Static Program Analysis https://cs.au.dk/
~amoeller/spa/

12 Manuel’s older intro to Al, and Al for (C)LP (a tutorial from the early 90’s. but we still
use it sometimes) https://cliplab.org/logalg/slides/B_ai.pdf

13 Manuel: Some tutorials on PLAI/CiaoPP using our analyzers embedded in web pages (work
in progress) https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/

4.4 Community Infrastructure — Interest Group in Static Analysis

Pietro Ferrara (University of Venice, IT)

License @ Creative Commons BY 4.0 International license
© Pietro Ferrara

The main outcome of this working group was a proposal to build up a community infra-
structure to facilitate the promotion of events in our community, stimulate interactions, and
provide better visibility of the main outcomes in our field. In particular, currently, we have
various groups on social networks (such as Facebook and Linkedin) that are mostly silent.
However, every year we have a series of regular events that help the networking activities of
our community, such as conferences like SAS and VMCAI, workshops like SOAP, and events
organized by various institutions such as the “Dependable and Secure Software Systems’
workshop at ETH or the Challenges of Software Verification Symposium at Ca’ Foscari
University of Venice (just to name a few the participants were aware of, but such a list should
be quite expanded).

The final proposal of the working group was to: (i) build up a website that contains

)

information about events and materials about static analysis (taking inspiration from https:
//microservices.community), (ii) open a mailing list about announcements regarding
scientific activities and opportunities in static analysis, and (iii) establish an Interest Group in
Static Analysis (IGSA) with an advisory board that supervise the overall process. Potentially
this might become an ACM Special Interest Group, an IFIP Working Group, or something
else, based on the success of the initiative.

89

23281

https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
https://www.di.ens.fr/~rival/semverif-2023/
https://www-apr.lip6.fr/~mine/enseignement/mpri/current/
https://www-apr.lip6.fr/~mine/enseignement/mpri/current/
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2012/SPA/Lectures.zip
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2012/SPA/Lectures.zip
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2012/SPA/Lectures.zip
https://csci3155.cs.colorado.edu/f22/
https://csci3155.cs.colorado.edu/f22/
https://github.com/csci3155/
https://janmidtgaard.dk/aiws15/
https://janmidtgaard.dk/aiws15/
https://github.com/lisa-analyzer/lisa
https://gitlab.com/mopsa/mopsa-analyzer
https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://cliplab.org/logalg/slides/B_ai.pdf
https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://microservices.community
https://microservices.community

90

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

4.5 Abstract Interpretation and Other Formal Methods
Arie Gurfinkel (University of Waterloo, CA)

License @ Creative Commons BY 4.0 International license
© Arie Gurfinkel

This working group discussed potential new connections between Abstract Interpretation
and other Formal Methods. Based on the interests and expertise of the participants, the
other formal methods that the group focused on were: Deductive Verification, Dynamic
Techniques, Deduction, Model Checking, and Practical and Industrial applications.

For deductive verification, there is a desire for Abstract Interpretation to infer complex
specifications, especially in the context of memory analysis. Currently, most developed Ab-
stract Interpretation techniques are geared towards numeric domains that are not sufficiently
structurally complex (i.e., no quantifiers, no memory separation, etc.). Deductive verification
also requires very reliable tools that reliably provide an answer since such tools involve a
direct and active interaction with a user.

For dynamic techniques, there is a desire for better abstract domains for strings. Perhaps
based on the deep connection between automata and regular languages. There is also a
potential in using dynamic analysis to infer context for Abstract Interpretation-based static
analysis. This, for example, is already used in debloading projects such OCCAM at SRI. The
group felt that this combination might also create new challenges to maintaining soundness
of the analysis and/or articulating the soundness conditions clearly.

For deduction, it was discussed that the main challenge is to identify an insight for why a
proof works or fails. In this context, a complex but hard-to-understand specification, such as
an automatically generated inductive invariant, is not very helpful. Perhaps the results of
Abstract Interpretation can be presented in a more readable form by using some pre-defined
set of predicates.

For model checking, there is an interest in building Abstract Interpretation models that
explain core model checking algorithms such as IC3 and PDR. There is recent work on
this subject, but the group agrees that better understanding is required to capture the
many nuances of these algorithms. There is also a potential application in using Abstract
Interpretation to infer temporal specifications.

Group members from industry, were interested in Abstract Interpretation for probabil-
istic programs, with application to differential privacy. There is also interest in Abstract
Interpretation in aid of property-based testing.

Overall, the working group concluded that there is a lot of interest in both applications
of Abstract Interpretation in different domains, and in research on challenges that are posed
by these domains. The group members from Deductive Verification have been most vocal,
and, perhaps the combination of Abstract Interpretation and Deductive Verification is most
suited for a follow up seminar.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi 91

4.6 Tools and Applications for Abstract Interpretation
Falk Howar (TU Dortmund, DE)

License @ Creative Commons BY 4.0 International license
© Falk Howar

We had a discussion on challenges that developers of research tools must address to enable
industrial collaborations and on possible working directions for the research community to
foster the development of robust and scalable research tools. Among the attendees were
researchers, academic tools developers, as well as developers of commercial tools and industrial
researchers from companies that use formal methods tools in their product development,
presenting both, academic perspectives, and insights from industry.

The initial focus of the discussion was on the potential and challenges of using research
tools effectively in real-world scenarios and started with the observation that it is often
difficult to use research tools in industrial collaborations.

Lessons learned by academic developers included the following points:

Usefulness: It is important to have findings and to make these findings accessible to
project partners, who typically are not experts in a particular formal method or a particular
research tool.

Robustness: It is important that tools can be used in industrial settings. This often
requires operation in an automated analysis pipeline, e.g., a build system. In such a setting,
an analysis will not be run manually executed one target but is executed as part of a build
process.

Participants from companies complemented these observations with the following points:

Helpful features: To support robustness, certain features help applicability that are
(usually) not important in an academic context: since industrial codebases in many cases
cannot be extended with annotations for a tool, it is important to support declarative
configurations and external annotations. Usefulness can be increased by support for problem
extraction (i.e., interpretation / mapping of results to code) and by providing information
on relationships between alarms (i.e., root causes).

Project formats: Analyzing an industrial codebase is not an easy task, especially when
done by someone who is not a contributor to that codebase. Typically, success hinges
on support from developers, access to architecture documentation, and on communication
between maintainers and researchers. Project formats should accommodate these success
factors.

Licenses: Copyleft licenses are a big obstacle in industry if code is under such a license
and the industrial partner must look at the code (e.g., to understand how a tool work).

Eventual Payoff: It is important for industrial partners to understand if and what the
eventual payoff can be when using a technique or tool. As a concrete successful example, the
technique of unit proving was mentioned. In the experience of one participant, maintainability
and conformance to low level specs seems to be much easier with unit proving than with
testing once it is established in the development process.

After the initial collection of lessons learned, discussion evolved around dealing with
theoretical limitations of techniques and (potential) usability requirements.

Dealing with Limitations: Commercial tool developers (AbsInt and Astree tools) reported
that in their experience mostly scalability and precision are bottlenecks and that proofs
tend to work on slices, but do not work on whole programs. It was discussed if and to
what extend a target can be modified in order to scale or work around limitations (e.g.,
loop unrolling, transformations at the IR level). Consensus was that, while it is usually not

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

92

23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

possible to change a customer’s code, transformations typically happen during analysis (with
some limitations in safety-critical domains). It was deemed important that the result/verdict
of an analysis can be explained to the user and in terms of the original code.

Usability: There was no consensus on or shared understanding of usability requirements.
Most participants agreed that a user interface is not a strong requirement for a research tool,
but that usability is still important in the sense that users need to be able to understand the
findings of a tool (e.g., based on CFGs).

The discussion concluded with plans for actions the research community could take to
recognize and facilitate the development of robust research tools. Case studies were identified
as a relevant format: It shows potential users how a tool can be used on a realistic example
and forces developers to invest in robustness and applicability. Examples of existing case
studies and publicly available systems included the effort to verify the Linux kernel, medical
systems (e.g., infusion pumps, a pacemaker), and a wheel-break system. Participants agreed
that it will be important to promote case study papers in academic conferences. Published
case studies should include a public repository with the problem, corresponding artifacts
(e.g., documentation), and an experience report.

4.7 Hyperproperties verification
Isabella Mastroeni (University of Verona, IT)

License) Creative Commons BY 4.0 International license
© Isabella Mastroeni

Hyperproperties are intended as sets of sets of traces, for a more general point of view, we
can see them as sets of properties. A standard example of hyperproperty is non-interference,
a 2-safety property that requires to compare pairs of executions. The question for stimulating
the discussion was about the right implication formalization for hyperproperties. In the
literature we mainly find two different approaches: (1) The first one allows to add new
elements in the hyper set, but all the elements in the stronger property must be in the weaker
one, more formally, let A, B,C, D, E sets, then {A, B,C} implies {4, B,C, D, E}; (2) the
second one consists in allowing to approximate the inner elements without adding any new
element, formally let A, B,C, A’, B’,C' be sets such that A C A’, B C B’ and C C C’, then
{A, B,C%} implies {A’, B’,C"} but {A, B,C} does not imply {A’, B’,C’, D'} where D" does
not contain any of A, B, C'. Hence, which of these orders properly capture the approximation
order between hyperproperties.

There are several approaches to noninterference that can help in understanding the issue,
in particular those based on hyper analysis of programs. But also there are other relevant
formal approaches to hyper properties verification, such as the hyper Hoare logic, useful for
understanding the issue.

By reasoning on both these formal approaches, the discussion ended up understanding
that probably there is no a right or better order, in particular (2) is necessary for computing
fixpoints programs/properties in an hyper levels both in the analysis and in the logic, while
(1) is used for deciding whether a property imply another one, again both in the analysis
and in the logic (consequence rule). Hence, the conclusion was that (1) is the approximation
order while (2) is the computational order, which maybe must co-exists when dealing with
hyper property verification. We believe that this final observation, even if it may appear
quite “simple”, may represent anyway an important first step for really understanding the

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi 93

connection between standard approaches to static analysis and the emerging hyper property
verification issue. All participants agree that surely further understanding of the problem is
necessary.

4.8 Al for Al
Antoine Miné (Sorbonne University — Paris, FR)

License @ Creative Commons BY 4.0 International license
© Antoine Miné

A small working group entitled “Al for AI” discussed existing and possible future interactions
between Abstract Interpretation (AI) and Machine Learning (ML). Both directions, AI to
help ML and ML to help Al, were considered.

We started with the observation that, with the progress and increasing use of ML systems,
ensuring their correctness also became an increasing concern. Since 2015, the field of formal
verification techniques applied to ML systems has been growing steadily. A large amount of
work targets the verification of trained neural networks, but other models are considered
as well (e.g., support vector machines, ensemble trees). Moreover, many kinds of formal
methods have been adapted to work on ML systems, including: SMT solving, constraint
solving, optimisation, model-checking, Abstract Interpretation. Notable works on Abstract
Interpretation for ML models include the developments of dedicated numeric abstract domains
able to prove local robustness properties and fairness properties. A more detailed review of
recent work can be found in Urban et al. 2021 [1]. However, given the pace of the research
in this area, such reviews become outdated very quickly.

We then discussed what we perceived as some of the current limitations of AT methods
for ML and possible area of improvements.

The verification of robustness has been successful for models of moderate size, and for

local robustness against perturbation and adversarial attacks. Future challenge concern

more global robustness properties. Numeric abstractions and partitioning techniques
from AI could be key to achieve scalability.

ML research has recently focused on interpretability and explainability of ML models.

This constitutes an interesting opportunity to apply formal verification and obtain sound

and automatic guarantees on these properties. We postulate that Al-specific techniques,

such as relational abstractions, might help in evaluating out inputs influence the outcome
of a ML model.

In general, however, a key difficulty for formal verification (including Abstract Interpreta-

tion) is the lack of formal specification of the properties to prove. This is an area that

must be improved in order to unlock further progress.

Most works in ML ignore the effect of floating-point rounding errors. Al techniques exist

to soundly verify floating-point programs and to evaluate the effect of rounding errors

formally. Applying such techniques to ML models could prove useful.

The working group also considered how ML could help AI. An important aspect is to
keep the formal guarantees of the combined Al and ML method by maintaining soundness,
even in the absence of soundness guarantees for the ML part.

One possible use of ML in Al is the automatic parameterization of static analyzers to

optimize the efficiency and precision of the analysis within the parameter space (e.g.,

choice of abstract domains, level of relationality and sensitivity, etc.).

23281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

94 23281 — Theoretical Advances and Emerging Applications in Abstract Interpretation

A specific aspect of Al is the use of widening operators to automatically infer complex
invariants. The heuristic nature of widenings makes them an interesting target for ML
techniques: the heuristics “guessing” candidate invariants do not need strong soundness
guarantees, given that candidate invariants can be checked with a classic, sound stability
tests. This idea could be extended to the inference of contract pre/post-conditions to
unlock efficient modular analyses.

As concluding remark, we observed that early research in formal verification of ML was
mainly conducted by formal method researchers, adapting on ML models the techniques
they were familiar with for the verification of software. Given the substantial differences
between ML models and programs, and the need to extract and formalize the properties we
are interested to verify on ML models, we believe that progress in this field requires a tighter
collaboration of experts in ML and experts in Al

References

1 C. Urban and A. Miné. A review of formal methods applied to machine Learning. Technical
report, Computing Research Repository (arXiv) (CoRR), Apr. 2021. http://www-apr.
1lip6.fr/~mine/publi/article-urban-mine-mlfm2021.pdf.

http://www-apr.lip6.fr/~mine/publi/article-urban-mine-mlfm2021.pdf
http://www-apr.lip6.fr/~mine/publi/article-urban-mine-mlfm2021.pdf

Arie Gurfinkel, Isabella Mastroeni, Antoine Miné, Peter Miiller, and Anna Becchi 95

Participants

= Vincenzo Arceri
University of Parma, IT

= Musard Balliu
KTH Royal Institute of
Technology — Stockholm, SE

= Anna Becchi
Bruno Kessler Foundation —
Trento, IT

= Dirk Beyer
LMU Miinchen, DE

= Bor-Yuh Evan Chang
University of Colorado —
Boulder, US

= Patrick Cousot

New York University, US
= David Delmas

Airbus S.A.S. — Toulouse, FR
= Gidon Ernst

LMU Miinchen, DE

= Pietro Ferrara
University of Venice, IT
= Eden Frenkel

Tel Aviv University, IL

= Isabel Garcia-Contreras
University of Waterloo, CA

= Roberto Giacobazzi
University of Verona, IT

= Roberta Gori
University of Pisa, IT

= Arie Gurfinkel
University of Waterloo, CA

= Reiner Héahnle
TU Darmstadt, DE

= Ben Hermann
TU Dortmund, DE

= Manuel Hermenegildo

IMDEA Software Institute —
Pozuelo de Alarcéon, ES & UPM —
Madrid, ES

= Falk Howar

TU Dortmund, DE

- Daniel Kastner

AbsInt — Saarbriicken, DE

= Temesghen Kahsai
Amazon Lab 126, US

= Matthieu Lemerre

CEA LIST — Gif-sur-Yvette, FR
= Isabella Mastroeni

University of Verona, IT

= Antoine Miné

Sorbonne University — Paris, FR
= Raphaél Monat

INRIA Lille, FR

= Peter Miiller
ETH Ziirich, CH

= Jorge Navas
Certora — Seattle, US

= Marie Pelleau
Université Cote d’Azur —
Sophia Antipolis, FR

= Ruzica Piskac

Yale University — New Haven, US
= Francesco Ranzato
University of Padova, IT
= Gerhard Schellhorn
Universitdt Augsburg, DE
= Ilya Sergey

National University of
Singapore, SG

= Sharon Shoham Buchbinder
Tel Aviv University, IL

= Mihaela Sighireanu
ENS Paris-Saclay —
Gif-sur-Yvette, FR

= Yakir Vizel

Technion — Haifa, 1L

= Thomas Wies

New York University, US

= Reinhard Wilhelm
Universitat des Saarlandes —
Saarbriicken, DE

= Enea Zaffanella
University of Parma, IT

23281

	Executive Summary (Antoine Miné, Arie Gurfinkel, Isabella Mastroeni, and Peter Müller)
	Table of Contents
	Overview of Talks
	Code Reuse Vulnerabilities in Modern Web Applications (Musard Balliu)
	Cooperative Verification (Dirk Beyer)
	Interactive Abstract Interpretation (Bor-Yuh Evan Chang)
	Formal Verification of Avionics Software (David Delmas)
	Calculating Equational Laws over ADTs (Gidon Ernst)
	Teaching Abstract Interpretation with LiSA (Pietro Ferrara)
	Alpha from Below over Quantified First-order Formulas (Eden Frenkel)
	Fast Approximations of Quantifier Elimination (Isabel Garcia-Contreras, Arie Gurfinkel, Hari Govind V K, and Sharon Shoham Buchbinder)
	Uniform Interpolation for Efficient Domain Reduction (Isabel Garcia-Contreras, Arie Gurfinkel, and Jorge Navas)
	An incomplete journey in Completeness (Roberto Giacobazzi)
	Abstract interpretation based under approximations and Sufficient Incorrectness Logic (Roberta Gori)
	On the fly verification with (incremental) interactive abstract interpretation (Manuel Hermenegildo)
	Automated Reasoning for Privacy (Temesghen Kahsai)
	Abstract Interpretation in Industry – Practical Experience with Astrée (Daniel Kästner)
	SSA Translation Is an Abstract Interpretation, and its Application to Machine Code Analysis (Matthieu Lemerre)
	A Multilanguage Static Analysis of Python/C Programs with Mopsa (Raphaël Monat and Antoine Miné)
	Crab: A library for building abstract-interpretation-based analyses (Jorge Navas)
	Calculational Design of Program Logics by Abstract Interpretation (Patrick Cousot)
	Mentorship for Formal Methods (Ruzica Piskac)
	Abstract Interpretation-based Program (Analysis) Logics (Francesco Ranzato)
	VeriCode: Correct Translation of Abstract Specifications to C-Code (Gerhard Schellhorn)
	Data Race Repair using Static Analysis Summaries (Ilya Sergey)
	Property-Directed Reachability as Abstract Interpretation in the Monotone Theory (Sharon Shoham Buchbinder)
	Exploiting Pointer Analysis in Memory Models for Deductive Verification (Mihaela Sighireanu)
	(Un-)Realizability of Condition Synthesis as CHC-SAT (Yakir Vizel)
	Dataflow Refinement Type Inference (Thomas Wies)
	Timing Analysis by Abstract Interpretation (Reinhard Wilhelm)

	Working groups
	Soundness requirements, transparency of assumptions (Bor-Yuh Evan Chang and Raphaël Monat)
	Expressive Domains (Gidon Ernst)
	Education: Teaching Abstract Interpretation to the Masses (Pietro Ferrara)
	Community Infrastructure – Interest Group in Static Analysis (Pietro Ferrara)
	Abstract Interpretation and Other Formal Methods (Arie Gurfinkel)
	Tools and Applications for Abstract Interpretation (Falk Howar)
	Hyperproperties verification (Isabella Mastroeni)
	AI for AI (Antoine Miné)

	Participants

