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Abstract
Parameterization and approximation are two established approaches of coping with intractability
in combinatorial optimization. In this Dagstuhl Seminar, we studied parameterized approximation
as a relatively new algorithmic paradigm that combines these two popular research areas. In
particular, we analyzed the solution quality (approximation ratio) as well as the running time of
an algorithm in terms of a parameter that captures the “complexity” of a problem instance.

While the field has grown and yielded some promising results, our understanding of the area
is rather ad-hoc compared to our knowledge in approximation or parameterized algorithms alone.
In this seminar, we brought together researchers from both communities in order to bridge this
gap by accommodating the exchange and unification of scientific knowledge.
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Parameterization and approximation are two popular approaches of coping with intractability
in combinatorial optimization. They have gained substantial maturity over the last decades,
leading to tight bounds for many fundamental computational problems and beautiful al-
gorithmic techniques that show surprising interplay between algorithms and various areas
of mathematics. In this Dagstuhl Seminar, we studied parameterized approximation as a
relatively new algorithmic paradigm that combines these two popular research areas. In
particular, we analyzed the solution quality (approximation ratio) as well as the running
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time of an algorithm in terms of a parameter that captures the “complexity” of a problem
instance.

While the field has grown and yielded some promising results, our understanding of
the area is rather ad-hoc compared to our knowledge in approximation or parameterized
algorithms alone. In this seminar, we brought together researchers from both communities
in order to bridge this gap by accommodating the exchange and unification of scientific
knowledge.

Our first goal was to foster a transfer of techniques between the classic fields of approxim-
ation and parameterization. We discussed how recent developments in one research area can
be transferred to another. Towards this, we organized five invited one-hour tutorials (one on
each morning) that were delivered by leading experts from the fields and which we believe
helped exchange of state-of-the-art techniques. The tutorial topics covered parameterized or
polynomial time approximation algorithms for graph edit and network design problems, for
clustering problems, matroid constrained maximization problems, as well as the hardness of
parameterized approximation of problems arising in error correcting codes.

Our second goal was to systematically identify important research directions and concrete
open problems in research areas that are relevant to parameterized approximation. Towards
this, we organized a panel discussion on the first seminar day led by experts from para-
meterized algorithms, approximation algorithms, hardness of approximation, but also from
neighboring areas such as fine-grained complexity and coding theory. A vibrant discussion
ensued between the moderator, panelists, but also the other participants. Moreover, we
organized two open discussion sessions, which were open to any participant to bring up a topic
they would like to discuss with the other participants: This could be, for example, concrete
open problems, more general research directions, or highlights. Besides several concrete open
problems suggested by particpants, there were two contributions to the sessions that gave
overviews over a coherent collection of open questions on hardness of parameterized approx-
imation under Gap-ETH and beyond, as well as on the parameterized (in-)approximability
of clustering problems.

Our third goal was to bolster the creation of new collaborations between researchers
in the two communities by encouraging the participants to actively discuss the suggested
directions for open problems. It was therefore a particular priority for us to provide sufficient
time for collaboration. Towards this, we reserved time slots for six collaboration sessions and
one session for progress reports.

We thank Martin Herold for collecting the abstracts from the participants and for his
assistance with creating and editing this report.
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3 Overview of Talks

3.1 Hardness of Approximation in P via Short Cycle Removal: Cycle
Detection, Distance Oracles, and Beyond

Amir Aboud (Weizmann Institute – Rehovot, IL)

License Creative Commons BY 4.0 International license
© Amir Aboud

Joint work of Amir Aboud, Karl Bringmann, Seri Khoury, Or Zamir
Main reference Amir Aboud, Karl Bringmann, Seri Khoury and Or Zamir: Hardness of Approximation in P via

Short Cycle Removal: Cycle Detection, Distance Oracles, and Beyond. STOC 2022.
URL https://doi.org/10.1145/3519935.3520066

This talk will overview a new technique for gap amplification called “short cycle removal” and
it applications for hardness of approximation for polynomial time problems. In particular,
we will present lower bounds on the approximation factor of distance oracles that preprocess
a graph in almost-linear time and answer distance queries in almost-constant time. Based on
joint works with Karl Bringmann, Nick Fischer, Seri Khoury, and Or Zamir.

3.2 Baby PIH: Parameterized Inapproximability of Min CSP
Venkatesan Guruswami (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Venkatesan Guruswami

The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in
the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a
satisfiable 2CSP instance from one which is only (1 − ε)-satisfiable (where the parameter is
the number of variables) for some constant 0 < ε < 1.

We consider a minimization version of CSPs (Min-CSP), where one may assign r values to
each variable, and the goal is to ensure that every constraint is satisfied by some choice among
the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable).
We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1,
it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer
to this statement as “Baby PIH”, following the recently proved Baby PCP Theorem. Our
proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming
some significant obstacles that arise in the parameterized setting.

An extension of our result to an average-version of Baby PIH would prove the inapprox-
imability of parameterized k-ExactCover, a notorious open problem.
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3.3 A (3/2 + ϵ)-Approximation for Multiple TSP with a Variable
Number of Depots

Matthias Kaul (TU Hamburg, DE)

License Creative Commons BY 4.0 International license
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a Variable Number of Depots”, in Proc. of the 31st Annual European Symposium on Algorithms,
ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, LIPIcs, Vol. 274, pp. 39:1–39:15,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

URL https://doi.org//10.4230/LIPICS.ESA.2023.39

One of the most studied extensions of the famous Traveling Salesperson Problem (TSP)
is the Multiple TSP: a set of m ≥ 1 salespersons collectively traverses a set of n cities by
m non-trivial tours, to minimize the total length of their tours. This problem can also
be considered to be a variant of Uncapacitated Vehicle Routing, where the objective is to
minimize the sum of all tour lengths. When all m tours start from and end at a single
common depot v0, then the metric Multiple TSP can be approximated equally well as the
standard metric TSP, as shown by Frieze (1983)[1]. The metric Multiple TSP becomes
significantly harder to approximate when there is a set D of d ≥ 1 depots that form the
starting and end points of the m tours. For this case, only a (2 − 1/d)-approximation in
polynomial time is known, as well as a 3/2-approximation for constant d which requires a
prohibitive run time of nΘ(d) (Xu and Rodrigues, INFORMS J. Comput., 2015)[3]. A recent
work of Traub, Vygen and Zenklusen (STOC 2020)[2] gives another approximation algorithm
for metric Multiple TSP with run time nΘ(d), which reduces the problem to approximating
metric TSP. In this paper we overcome the nΘ(d) time barrier: we give the first efficient
approximation algorithm for Multiple TSP with a variable number d of depots that yields a
better-than-2 approximation. Our algorithm runs in time (1/ϵ)O(d log d) · nO(1), and produces
a (3/2 + ϵ)-approximation with constant probability. For the graphic case, we obtain a
deterministic 3/2-approximation in time 2d · nO(1).

References
1 Alan M. Frieze. An extension of christofides heuristic to the k-person travelling salesman

problem. Discret. Appl. Math., 6(1):79–83, 1983.
2 Vera Traub, Jens Vygen, and Rico Zenklusen. Reducing path TSP to TSP. In Konstantin

Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 14–27. ACM, 2020.

3 Zhou Xu and Brian Rodrigues. A 3/2-approximation algorithm for the multiple TSP with
a fixed number of depots. INFORMS J. Comput., 27(4):636–645, 2015.

3.4 Parameterized Approximability of F -Deletion Problems
Euiwoong Lee (University of Michigan – Ann Arbor, US)
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For a fixed class F of graphs, the F -Deletion problem, given a graph G, asks to remove the
minimum number of vertices so that the resulting graph belongs to the class F . The study
of various F -Deletion problems has led to interesting connections between approximation
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algorithms and parameterized algorithms, ultimately leading to parameterized approximation
algorithms. In this talk, we survey known results for subgraph, induced subgraph, and minor
deletion problems.

3.5 The Cut Covering Lemma
Jason Li (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Jason Li

Main reference Stefan Kratsch, Magnus Wahlström: “Compression via Matroids: A Randomized Polynomial Kernel
for Odd Cycle Transversal”, ACM Trans. Algorithms, Vol. 10(4), pp. 20:1–20:15, 2014.

URL https://doi.org//10.1145/2635810

We present the cut covering lemma, a classic result by Kratsch and Wahlstrom (2012)[1] in
FPT literature with many applications to kernelization. Loosely speaking, the lemma states
that on any graph with k terminal vertices, there is a smaller graph on O(k3) vertices that
preserves the complete cut structure of the graph. We discuss connections to the field of
fast graph algorithms, in particular the implications of an approximate version of the cut
covering lemma with O(k) vertices.

References
1 Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polynomial

kernel for odd cycle transversal. In Yuval Rabani, editor, Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 94–103. SIAM, 2012.

3.6 Parameterized Approximation Schemes for Clustering with General
Norm Objectives

Dániel Marx (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
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Joint work of Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka; Parinya Chalermsook; Ameet Gadekar; Kamyar
Khodamoradi; Roohani Sharma; Joachim Spoerhase

Main reference Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar
Khodamoradi, Dániel Marx, Roohani Sharma, Joachim Spoerhase: “Parameterized Approximation
Schemes for Clustering with General Norm Objectives”, CoRR, Vol. abs/2304.03146, 2023.

URL https://doi.org//10.48550/ARXIV.2304.03146

We consider the well-studied algorithmic regime of designing a (1+ϵ)-approximation algorithm
for a k-clustering problem that runs in time f(k, ϵ)poly(n). Our main contribution is a clean
and simple EPAS that settles more than ten clustering problems (across multiple well-studied
objectives as well as metric spaces) and unifies well-known EPASes. Our algorithm gives
EPASes for a large variety of clustering objectives (for example, k-means, k-center, k-median,
priority k-center, ℓ-centrum, ordered k-median, socially fair k-median aka robust k-median, or
more generally monotone norm k-clustering) and metric spaces (for example, continuous high-
dimensional Euclidean spaces, metrics of bounded doubling dimension, bounded treewidth
metrics, and planar metrics). Key to our approach is a new concept that we call bounded
ϵ-scatter dimension – an intrinsic complexity measure of a metric space that is a relaxation
of the standard notion of bounded doubling dimension.
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3.7 FPT Approximation Schemes for Matroid-constrained Problems
Hadas Shachnai (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
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Joint work of Ilan Doron Arad, Ariel Kulik, Hadas Shachnai
Main reference Ilan Doron Arad, Ariel Kulik, Hadas Shachnai: “Budgeted Matroid Maximization: a Parameterized

Viewpoint”, CoRR, Vol. abs/2307.04173, 2023.
URL https://doi.org//10.48550/ARXIV.2307.04173

We study budgeted variants of well known maximization problems with multiple matroid
constraints. Given an ℓ-matchoid M on a ground set E, a profit function p and a cost
function c on E, and a budget B, the goal is to find in the ℓ-matchoid a feasible set S

of maximum profit p(S) subject to the budget constraint, i.e., c(S) ≤ B. The budgeted
ℓ-matchoid (BM) problem includes as special cases budgeted ℓ-dimensional matching and
budgeted ℓ-matroid intersection. A strong motivation for studying BM from parameterized
viewpoint comes from the APX-hardness of unbudgeted ℓ-dimensional matching (i.e., B = ∞)
already for ℓ = 3. Nevertheless, while there are known FPT algorithms for the unbudgeted
variants of the above problems, the budgeted variants are studied here for the first time
through the lens of parameterized complexity.

We show that BM parametrized by solution size is W [1]-hard, already with a degenerate
single matroid constraint. Thus, an exact parameterized algorithm is unlikely to exist,
motivating the study of FPT-approximation schemes (FPAS). Our main result is an FPAS
for BM (implying an FPAS for ℓ-dimensional matching and budgeted ℓ-matroid intersection),
relying on the notion of representative set − a small cardinality subset of elements which
preserves the optimum up to a small factor. We also give a lower bound on the minimum
possible size of a representative set which can be computed in polynomial time.

3.8 Approximating Weighted Connectivity Augmentation below Factor 2
Vera Traub (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Vera Traub

Joint work of Vera Traub, Rico Zenklusen
Main reference Vera Traub, Rico Zenklusen: “A (1.5+ϵ)-Approximation Algorithm for Weighted Connectivity

Augmentation”, in Proc. of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, Orlando, FL, USA, June 20-23, 2023, pp. 1820–1833, ACM, 2023.

URL https://doi.org//10.1145/3564246.3585122

The Weighted Connectivity Augmentation Problem (WCAP) asks to increase the edge-
connectivity of a graph in the cheapest possible way by adding edges from a given set. It is
one of the most elementary network design problems for which no better-than-2 approximation
algorithm has been known, whereas 2-approximations can be easily obtained through a variety
of well-known techniques.

In this talk, I will discuss an approach showing that approximation factors below 2
are achievable for WCAP, ultimately leading to a (1.5 + ϵ)-approximation algorithm. Our
approach is based on a highly structured directed simplification of WCAP with planar optimal
solutions. We show how one can successively improve solutions of this directed simplification
by moving to mixed-solutions, consisting of both directed and undirected edges. These
insights can be leveraged in local search and relative greedy strategies, inspired by recent
advances on the Weighted Tree Augmentation Problem, to obtain a (1.5 + ϵ)-approximation
algorithm for WCAP.
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4 Panel discussions

4.1 Panel Discussion
Frances A. Rosamond (University of Bergen, NO), Amir Abboud (Weizmann Institute –
Rehovot, IL), Michael R. Fellows (University of Bergen, NO), Venkatesan Guruswami
(University of California – Berkeley, US), Bingkai Lin (Nanjing University, CN), and Saket
Saurabh (The Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY 4.0 International license
© Frances A. Rosamond, Amir Abboud, Michael R. Fellows, Venkatesan Guruswami, Bingkai Lin,
and Saket Saurabh

The aim of the panel was fostering exchange between the various research communities
(eg, parameterized and approximation algorithms as well as hardness of approximation) by
identifying (i) general key challenges (meta research questions in a conceptual or technical
sense) that are important to advance and promote the field, (ii) suitable taxonomy that
allows to classify the possible algorithmic results, (iii) advance systematic understanding (in
contrast to ad-hoc results), (iv) and concrete open research questions.

In particular the panelists discussed (under the moderation of Frances Rosamond) the
following questions.

In which direction would you like to see the field grow?
What is a distinctive technical challenge in parameterized approximation? By “distinctive
challenge” we mean an (exciting) technical challenge that (may) require an approach that
goes beyond combining techniques that were previously already used in parameterization
or approximation separately. We believe that it is crucial for the field to gain momentum
and attract researchers that there are such unique challenges.
What is your favorite result in the field?

After the panelists discussed the three questions, the floor was opened to all the parti-
cipants of the Dagstuhl Seminar to share their ideas.

5 Open problems

5.1 TSP with line-neighborhoods in R3

Antonios Antoniadis (University of Twente, NL)

License Creative Commons BY 4.0 International license
© Antonios Antoniadis

The traveling salesperson problem (TSP) with line neighborhoods given a set of n lines in R3

one seeks a shortest tour (closed curve) C that visits each line. A line L is visited by C if and
only if C ∩ L is non-empty. In [1] an O(log3 n)-approximation algorithm was presented that
is based on a reduction from TSP with line neighborhoods to Group Steiner Tree (at the loss
of a constant factor in the approximation ratio). The setting where the lines are parallel is
equivalent to solving a classical Euclidean instance in R2 and thus the problem is NP-hard. It
was also shown among other results in [2], that the problem is actually APX-hard and admits
an O(log2 n)-approximation algorithm, albeit with a running time of nO(log log n). Given the
large gap between the respective upper and lower bounds, the most important open question
with respect to the problem is whether or not it admits a constant-approximation algorithm.
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References
1 Adrian Dumitrescu and Csaba D. Tóth. The traveling salesman problem for lines, balls,

and planes. ACM Trans. Algorithms, 12(3):43:1–43:29, 2016.
2 Antonios Antoniadis, Sándor Kisfaludi-Bak, Bundit Laekhanukit, and Daniel Vaz. On

the approximability of the traveling salesman problem with line neighborhoods. In Artur
Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm
Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands, volume 227 of LIPIcs,
pages 10:1–10:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

5.2 Parameterized approximability of clustering problems
Vincent Cohen-Addad (Google Paris, FR)

License Creative Commons BY 4.0 International license
© Vincent Cohen-Addad

Given a set of points (clients) C and a set of facilities F in a metric space (C ∪ F, dist),
the classic k-Median problem asks to find a subset S ⊆ F of size k (the centers), such that
the total distance d(S) :=

∑
p∈C minc∈S dist(p, c) of points in C to the closest facility is

minimized.
1. Find a (1 + 2/e)-approximation that runs in time 2O(k)poly(n) (where (C ∪ F, dist) is an

arbitrary metric space).
2. Consider the continuous setting of k-median with L∞ metrics (i.e.: C is a subset of Rd

and F is Rd). Find a 2-Approximation that runs in 2O(k)poly(nd) time.

5.3 Parameterized Approximation for the Santa Claus Problem
Fabrizio Grandoni (SUPSI – Lugano, CH)
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In the Santa Claus problem we are given a collection of presents and a collection of children.
Each present i has a value vij ≥ 0 for child j. The happiness of a child j is the sum of
the values of the presents that (s)he receives. Our goal is to assign the presents so as to
maximize the minimum happiness of any child. Santa Claus turns out to be an extremely
challenging problem in terms of approximation algorithms. The best known lower bound on
the (polynomial-time) approximation ratio is 2, while the best known upper bound on the
same ratio is polynomial in the number n of items.

Given the difficulty of this problem, it makes sense to consider FPT approximation
algorithms. One natural parameter is the number k of children. I did ask if a constant
approximation (or better) is possible in FPT time. Andreas Wiese made me notice that a
parameterized approximation scheme (PAS) for this problem is implied by [1] (described in
the form of an EPTAS for constant k)

An interesting open question that remains is to define alternative parameters that make
sense in practice, and design FPT approximation algorithms with respect to them.
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5.4 FPT Inapproximability Results Beyond Gap-ETH
Pasin Manurangsi (Google Thailand – Bangkok, TH)
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While a number of parameterized problems are known to be hard to approximate under the
Gap Exponential Time Hypothesis (Gap-ETH), certain results are still out of reach of the
current techniques even under Gap-ETH. We discuss a few such questions, including:
1. Strong FPT Inapproximability of k-Set Cover. While it is known that approximating

k-Set Cover to within g(k)-factor is W[1]-hard for any function g[6]. The situation is less
clear when we allow dependency on n (the number of elements in the universe) in the
approximation factor; the greedy algorithm yields O(log n)-approximation while the best
known ETH-hardness result is only Ω̃(log1/k n)[4]. Open Question: Can we improve this
hardness to, say, Ω(log0.99 n) under Gap-ETH?

2. Total FPT Inapproximability of Exact k-Set Cover. Exact k-Set Cover is a special case
of the Set Cover problem where we are promised that there exists a set cover of size k

such that the subsets in the solution are all disjoint. (Note here that the output solution
only needs to cover the space but needs not be disjoint.) This version of Set Cover is often
useful in subsequent reductions, e.g. to Coding-theoretic and Lattice problems. While
the hardness of Exact Set Cover is achieved for free in the NP-hardness of approximation
reduction for Set Cover of Feige[3], the parameterized hardness reductions do not give
the hardness of such a version. This is due to the so-called “projection” property in
Label Cover, which does not hold in the parameterized version of Label Cover used in
the FPT hardness regime; in fact, it is not hard to see that requiring such projection
properties will lead to at most 2k gap. To the best of our knowledge, the best FPT
hardness of approximation of Exact Set Cover based on Gap-ETH is only k1/2−−o(1),
which follows from the result of Manurangsi and Dinur [2]. Open Question: Can we rule
out all g(k)-approximation FPT algorithm for Exact k-Set Cover?

3. Total FPT Inapproximability of Densest k-Subgraph (with perfect completeness). The
best known FPT hardness of approximation under Gap-ETH of Densest k-Subgraph
has inapproximability factor of ko(1) (where o(1) can be any function that converges to
zero as k → ∞)[1]. On the other hand, under a non-standard “Strongish Planted Clique
Hypothesis”, this factor can be improved to o(k)[5]. Open Question: Can we prove the
same hardness under Gap-ETH?
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5.5 (2 − ε)-approximation for the Capacitated Vehicle Routing Problem
Hang Zhou (Ecole Polytechnique – Palaiseau, FR)
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In the capacitated vehicle routing problem, we are given a metric space with a vertex called
depot and a set of vertices called terminals. The goal is to find a minimum length collection
of tours starting and ending at the depot such that each tour visits at most k terminals, and
each terminal is visited by some tour. We consider this problem in the Euclidean plane. The
best-to-date approximation ratio was 2 + ϵ using the iterated tour partitioning technique
introduced by Haimovich and Rinnooy Kan. It is an open question whether there is a
better-than-2 approximation.
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