
Report from Dagstuhl Seminar 23302

Software Architecture and Machine Learning
Grace A. Lewis∗1, Henry Muccini∗2, Ipek Ozkaya3,
Karthik Vaidhyanathan†4, Roland Weiss∗5, and Liming Zhu∗6

1 Carnegie Mellon Software Engineering Institute – Pittsburgh, US.
glewis@sei.cmu.edu

2 University of L’Aquila, IT. henry.muccini@univaq.it
3 Carnegie Mellon Software Engineering Institute – Pittsburgh, US.

ozkaya@sei.cmu.edu
4 IIIT Hyderabad, IN. karthik.vaidhyanathan@iiit.ac.in
5 ABB – Mannheim, DE. roland.weiss@gmail.com
6 Data61, CSIRO – Sydney, AU. liming.zhu@data61.csiro.au

Abstract
This report documents the program and outcomes of Dagstuhl Seminar 23302, “Software Ar-
chitecture and Machine Learning”. We summarize the goals and format of the seminar, results
from the breakout groups, key definitions relevant to machine learning-enabled systems that were
discussed, and the research roadmap that emerged from the discussions during the seminar. The
report also includes the abstracts of the talks presented at the seminar and summaries of open
discussions.
Seminar July 23–28, 2023 – https://www.dagstuhl.de/23302
2012 ACM Subject Classification Software and its engineering → Software architectures; Com-

puting methodologies → Machine learning; Software and its engineering → Extra-functional
properties; Computing methodologies → Artificial intelligence; Software and its engineering

Keywords and phrases Architecting ML-enabled Systems, ML for Software Architecture, Software
Architecture for ML, Machine Learning, Software Architecture, Software Engineering

Digital Object Identifier 10.4230/DagRep.13.7.166

1 Executive Summary

Grace A. Lewis (Carnegie Mellon Software Engineering Institute – Pittsburgh, US)
Henry Muccini (University of L’Aquila, IT)
Ipek Ozkaya (Carnegie Mellon Software Engineering Institute – Pittsburgh, US)
Karthik Vaidhyanathan (IIIT – Hyderabad, IN)
Roland Weiss (ABB – Mannheim, DE)
Liming Zhu (Data61, CSIRO – Sydney, AU)

License Creative Commons BY 4.0 International license
© Grace A. Lewis, Henry Muccini, Ipek Ozkaya, Karthik Vaidhyanathan, Roland Weiss, and Liming
Zhu

The pervasive and distributed nature of many of today’s software systems requires making
complex design decisions to guarantee important system qualities such as performance,
reliability, safety and security. The practices within the field of software architecture guide
the design and development of software systems from its high-level blueprint down to their
implementation and operations. While the fundamentals of software architecture practices

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Software Architecture and Machine Learning, Dagstuhl Reports, Vol. 13, Issue 7, pp. 166–188
Editors: Grace A. Lewis, Henry Muccini, Ipek Ozkaya, Karthik Vaidhyanathan, Roland Weiss, and Liming Zhu

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:glewis@sei.cmu.edu
mailto:henry.muccini@univaq.it
mailto:ozkaya@sei.cmu.edu
mailto:karthik.vaidhyanathan@iiit.ac.in
mailto:roland.weiss@gmail.com
mailto:liming.zhu@data61.csiro.au
https://www.dagstuhl.de/23302
https://doi.org/10.4230/DagRep.13.7.166
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 167

do not change, their execution evolves to address architecting with, and for, new system
paradigms and emerging technologies. Incorporating machine learning (ML) elements into
systems is advancing rapidly with the availability of more compute power, specialized
infrastructure, and better and more efficient algorithms to process increasing amounts of data.
This evolution has led many domains to leverage ML for automation, data analytics, decision
support, and advanced user interfaces, among others. Experience published and shared by
both software engineering research and practitioner communities shows that organizations
struggle to move ML models and pilot projects into production. Reported software engineering
challenges fall mostly outside data science expertise, which is focused on the development
of ML models and not necessarily their production-readiness, and include areas such as
testing, requirements management, software architecture, and configuration management.
Among these, software architecture has a special role as it serves as an abstraction between
requirements and implementation and drives the structure and behavior of systems.

Some of the reported challenges in developing ML-enabled systems, such as interface
stability, data storage and access, and data transformation, are already addressed by existing
software architecture techniques and practices. However, traditional software development
and deployment practices are faced with and pose significant challenges when developing
ML-enabled systems, which are systems that integrate ML components. These ML com-
ponents include model training and updating components; model serving and inference
components; infrastructure components to support data collection, processing, and servicing;
and operations infrastructure, such as MLOps pipelines to support automated build and
deployment. As these new ML-related components are introduced into systems, different
architectural concerns and architecting challenges take higher priority, which include working
with non-determinism, understanding and designing for new classes of dependencies, and
co-architecting the system as well as the ML model development pipelines, among others. In
addition, integration of ML components into software systems places greater emphasis on
qualities that are not as common in non-ML systems, such as monitorability as a first-class
citizen, designing for extensibility, and data-centricity.

This Dagstuhl Seminar culminated as a response to recognizing that software architecture
research and practitioner communities have an opportunity, if not an obligation, to fill
key software architecture principles and practices gaps that are particularly critical when
incorporating ML components into software systems. The seminar focused on two key themes:
1. software architecture principles and practices for ML-enabled systems (SA4ML) and
2. application of ML techniques for improved architecting of software systems (ML4SA).

A key goal of the seminar was to enable technical exchange among otherwise scattered
research and practitioner communities, such as software engineering, software architecture,
self-adaptive systems, and machine learning around software architecture and ML (SA&ML).
This Dagstuhl Seminar presented an opportunity to get these communities together to
develop a common vocabulary and a coherent research agenda with a better understanding
of problems faced in the industry. The goals of this seminar were to establish a common
understanding of key concepts that are central to architecting ML-enabled systems, elicit
challenges of meeting key quality attributes of ML-enabled systems, and build a research
roadmap for future work to address these challenges. As such, this seminar marks an
important milestone in accelerating research in SA4ML and ML4SA work by fostering better
communication around key concepts and between diverse stakeholders. Hereafter, we will
use the term SA&ML to include both SA4ML and ML4SA research directions.

23302

168 23302 – Software Architecture and Machine Learning

Seminar Format
The seminar on software architecture and machine learning was structured to foster an
interactive and productive idea exchange environment for all participants. Participants
were initially asked to prepare a single-slide introduction about themselves and their work
in software architecture and machine learning, which helped to establish a foundational
understanding among attendees. Prior to the workshop, organizers developed an initial
version of a key concepts map and a research challenges map using a grounded theory
approach, which was represented visually on miro boards. During the seminar, participants
delivered 10-minute lightning talks about their SA&ML work, which were instrumental in
refining the research and concept maps with keywords and challenges mentioned by the
speakers. At the end of the first day, organizers summarized the discussions and identified key
emerging topics and research areas, leading to an initial set of key quality attributes critical to
ML-enabled system development. The second day continued with discussions and a working
group formation session, where participants prioritized five critical quality attributes for
ML-enabled systems: Evolvability, Uncertainty and Observability, Trust and Trustworthiness,
and Data Centricity. Four working groups were formed around these quality attributes,
with appointed editors documenting the discussions. Each group was provided with a draft
template to guide their discussions for consistency, and organizers rotated among groups to
offer diverse insights. Plenary meetings on the second and third days allowed groups to share
progress and discuss challenges, complemented by end-of-day meetings among organizers to
consolidate learning and monitor progress. The seminar concluded on the fourth day with
presentations from each group, open for feedback from other participants. This collaborative
review process led to the integration of feedback into the final discussions, resulting in
a well-defined set of challenges and research directions, marking the seminar’s successful
completion. In addition, this format ensured a thorough exploration of the seminar’s themes
and fostered active participation and collaborative learning among attendees.

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 169

2 Table of Contents

Executive Summary
Grace A. Lewis, Henry Muccini, Ipek Ozkaya, Karthik Vaidhyanathan, Roland Weiss,
and Liming Zhu . 166

Overview of Talks
Fifty Shades of Uncertainty
Nelly Bencomo . 171

Software Architecture Modeling of Machine Learning Systems: Unsolved Challenge
or Old Wine in New Bottles?
Justus Bogner . 172

AI: From Offline & Centralized to Online & Federated
Jan Bosch and Helena Holmström Olsson . 172

Predicting Software Performance with Divide-and-Learn
Tao Chen . 173

Analyzing Greenability of Software Architectures for AI Systems: The GAISSA
project
Xavier Franch . 173

Why Organizations Fail to Implement AI
Benjamin Klöpper . 174

SPIRA Challenges and Lessons Learned on Architecting an Intelligent System for
Respiratory Insufficiency Detection – Notes on Hands-on Education on SA4AI
Fabio Kon . 175

Software Architecture for Machine Learning Systems: Challenges, Practices, and
Opportunities
Grace A. Lewis . 175

BeT (Behavior-enabled IoT)
Henry Muccini . 176

Software Architecting in the Era of AI and AI-Augmented Development Tools
Ipek Ozkaya . 176

Architecting Systems to Integrate Machine Learning
Lena Pons . 177

Machine Learning and Self-adaptation
Bradley Schmerl . 177

A Vision and Challenges about Intelligent and Trustworthy IoT Systems
Romina Spalazzese . 177

SA, ML and Patterns
Anastas Stoyanovsky . 178

Software Architecture Meets Machine Learning: A Tale of Convergence
Karthik Vaidhyanathan . 178

23302

170 23302 – Software Architecture and Machine Learning

Generative AI at Fraunhofer and Research Roadmaps from the Software Architecture
Community
Ingo Weber . 179

Building, Engineering & Operating Systems for Critical Infrastructure
Roland Weiss . 179

Challenges of Integrating ML Models in Safety-Relevant Architectures
Marc Zeller . 180

Software Architecture for Foundation Model-Based Systems
Liming Zhu . 180

Working groups
WG1: Architecting for Data Centricity
Jan Bosch, Benjamin Klöpper, Ipek Ozkaya, Lena Pons, and Christoph Schröer . . 181

WG2: Evolvability
Justus Bogner, Jan Bosch, Helena Holmström Olsson, Henry Muccini, Raghu Reddy,
Anastas Stoyanovsky, Ingo Weber, and Liming Zhu 182

WG3: Observability and Uncertainty
Nelly Bencomo, Xavier Franch, Fabio Kon, Ipek Ozkaya, Marie Platenius-Mohr,
Bradley Schmerl, Roland Weiss, and Karthik Vaidhyanathan 182

WG4: Architecting for Trust and Trustworthiness
Tao Chen, Thomas Kropf, Grace A. Lewis, Henry Muccini, Alex Serban, Romina
Spalazzese, and Marc Zeller . 183

Open problems
Data Centricity . 184

Uncertainty and Observability . 185

Evolvability (and Adaptability) . 185

Trust and Trustworthiness . 186

High Priority Research Areas to Advance SA&ML 186

Follow-up Work . 187

Participants . 188

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 171

3 Overview of Talks

The talks presented during the seminar included two industry keynotes. Alex Serban from
Siemens Healthineers talked about Software Engineering for Machine Learning: Past, Present
and Future Conjectures. The keynote explored the intricacies of machine learning, with a
focus on the critical need for emphasizing robustness and trustworthiness in ML systems.
It highlighted the challenges associated with integrating machine learning components into
broader software architectures and underscored the importance of addressing uncertainty
within these systems. The presentation delved into the development of engineering practices
tailored to machine learning, emphasizing the need for adopting these practices to enhance
agility, software quality, and team effectiveness. The keynote concluded by reflecting on
the current and future trends in machine learning, particularly the role of language as a
universal interface and the growing complexity of models, stressing the responsibility of
software architects in crafting trustworthy and robust systems amidst emerging regulatory
challenges.

Thomas Kropf from Robert Bosch in his keynote titled Industrial AI – Real-World
Applications, Challenges and Solution Approaches, focused on the application and challenges
of Industrial AI at Bosch, highlighting the journey from the establishment of the Bosch
Center for AI to integrating AI across various products. It emphasized the distinct nature
of Industrial AI, where quality, scaling, and algorithmic robustness are crucial, particularly
in safety-critical applications, illustrated by examples such as Manufacturing Analytics and
Automated Optical Inspection (AOI) systems. The keynote also covered significant challenges
such as enterprise-level scalability, quality assurance amidst model drift, rapid AI evolution,
computational constraints in embedded systems, and the necessity for extensive tool support
for data management. The potential disruptive impact of Foundational Models on AI practices
was also acknowledged. The keynote further described how these challenges influence software
architectural choices, differentiating between cloud and low-power embedded AI solutions,
and provided insights into Bosch’s concrete strategies and architectures to address these
issues, demonstrating the critical role of AI in industrial innovation and software architecture.

The examples of the state of the practice presented through these keynotes helped frame
the remaining talks and discussions. What follows are the abstracts from the attendee talks.

3.1 Fifty Shades of Uncertainty
Nelly Bencomo (Durham University, GB)

License Creative Commons BY 4.0 International license
© Nelly Bencomo

There is growing uncertainty about the environment of software systems. Therefore, how
the system should behave under different contexts cannot be fully predicted at design time.
It is considerations such as these that have led to the development of self-adaptive systems
(SAS), which can dynamically and autonomously reconfigure their behavior to respond to
changing external conditions.

The scope of the talk is in the area of Requirements Engineering (RE) and the development
of techniques to quantify uncertainty to improve decision-making. The explicit treatment of
uncertainty by the running system improves its judgment to make decisions supported by

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

172 23302 – Software Architecture and Machine Learning

evaluating evidence found during runtime, possibly including the human-in-the-loop. I will
also discuss how quantification of uncertainty can be used to improve requirements elicitation
(using simulations, for example).

The talk will cover different approaches to quantifying uncertainty and its role in Human-
Machine Teaming.

3.2 Software Architecture Modeling of Machine Learning Systems:
Unsolved Challenge or Old Wine in New Bottles?

Justus Bogner (Universität Stuttgart, DE)

License Creative Commons BY 4.0 International license
© Justus Bogner

More and more software systems incorporate techniques from machine learning (ML) to
support decision-making or automate information processing. Such ML systems still incor-
porate many traditional components but nonetheless require specialized practices in certain
areas. From a software architecture perspective, one question is if existing practices and
frameworks are suitable for the effective modeling and documentation of ML systems. While
there are many methods for architecture documentation based on concepts like viewpoints,
views, and modeling notations, it is still unclear how ML professionals can best apply these
practices to model the architecture of ML systems. The data dependency and uncertainty of
ML components, ML stakeholder diversity, plus new quality concerns like explainability or
model observability might require new types of views and diagrams. While a few specialized
approaches have been proposed, other software architecture publications use vastly different
notations and diagrams to model ML systems.

In this short talk, I want to lay the foundation for a discussion about this topic. I will
briefly talk about challenges in this space and present a few existing approaches. My goal is to
discuss if these challenges are different from architecture modeling for traditional systems and
if new approaches are needed. Ideally, the discussion might lead to research collaborations in
this space to a) better understand challenges and b) create or adapt methods to overcome
them.

3.3 AI: From Offline & Centralized to Online & Federated
Jan Bosch (Chalmers University of Technology – Göteborg, SE) and Helena Holmström
Olsson (Malmö University, SE)

License Creative Commons BY 4.0 International license
© Jan Bosch and Helena Holmström Olsson

Digitalization is concerned with software, data, and AI as enabling technologies. It changes
the company and business ecosystem in which it operates from transactional to continuous,
i.e., XOps. This requires fundamental changes in how we work with technology from
offline and centralized to online and federated. The talk includes examples from Software
Center (www.software-center.se) companies, including automated experimentation, federated
learning, reinforcement learning, semi-supervised learning, and related topics.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 173

3.4 Predicting Software Performance with Divide-and-Learn
Tao Chen (University of Birmingham, GB)

License Creative Commons BY 4.0 International license
© Tao Chen

Joint work of Tao Chen, Jingzhi Gong
Main reference Jingzhi Gong, Tao Chen: “Predicting Software Performance with Divide-and-Learn”, in Proc. of the

31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, pp. 858–870,
ACM, 2023.

URL https://doi.org//10.1145/3611643.3616334

Predicting the performance of highly configurable software systems is the foundation for
performance testing and quality assurance. To that end, recent work has been relying on
machine/deep learning to model software performance. However, a crucial yet unaddressed
challenge is how to cater for the sparsity inherited from the configuration landscape: the
influence of configuration options (features) and the distribution of data samples are highly
sparse. This talk is based on the paper in which we propose an approach based on the
concept of “divide-and-learn”, dubbed DaL. The basic idea is that to handle sample sparsity,
we divide the samples from the configuration landscape into distant divisions, for each of
which we build a regularized Deep Neural Network as the local model to deal with the feature
sparsity. A newly given configuration would then be assigned to the right model of division
for the final prediction.

Experiment results show that using strong domain knowledge to specialize AI performs
significantly better in configuration performance learning.

3.5 Analyzing Greenability of Software Architectures for AI Systems:
The GAISSA project

Xavier Franch (UPC Barcelona Tech, ES)

License Creative Commons BY 4.0 International license
© Xavier Franch

This presentation introduces the Spanish GAISSA project ("Towards Green AI-based Software
Systems: An Architecture-centric Approach") run by the GESSI research group at UPC. The
main hypothesis of GAISSA is that the impact of architectural decisions on environmental
sustainability shall be understood, defined, reported, and managed in order to model,
develop, and deploy green(er) AI-based systems. After presenting the objectives and vision,
the presentation details the work done so far, which is basically a series of empirical studies
on the effect of model and system architectures on environmental sustainability, exploring
trade-offs with other attributes such as accuracy. Emerging challenges are the consolidation of
the results of such studies, and how to boost the attention on sustainability in the community.
In this respect, a result of the project is the so-called Energy Label, which categorizes the
efficiency level (from A to E) of a trained model, defined in terms of several attributes. The
concept has been proven using the HuggingFace repository. As future work, the talk mentions
the link between requirements and architectures.

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3611643.3616334
https://doi.org//10.1145/3611643.3616334
https://doi.org//10.1145/3611643.3616334
https://doi.org//10.1145/3611643.3616334
https://doi.org//10.1145/3611643.3616334
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

174 23302 – Software Architecture and Machine Learning

3.6 Why Organizations Fail to Implement AI
Benjamin Klöpper (Capgemini – Stuttgart, DE)

License Creative Commons BY 4.0 International license
© Benjamin Klöpper

Many organizations, especially enterprises, use a data-lake-based infrastructure to prepare
their data for machine learning modeling. Data-lake-based systems ingest raw data from
a wide variety of data sources such as databases, legacy information systems, automation
systems, and more. The processed data is intended to serve the needs of different users and
use cases. A data-lake-based system consists of a complex technology stack that implements
distributed data processing and data storage. Typical transformation steps include ingestion,
cleansing, enrichment, transformation, and finally, serving.

Typically, a centralized team of data experts runs the infrastructure and implements the
data processing. The thinking is centered around different data pipelines.

The monolithic architecture of the data lake and the centralized organization result in
a siloed way of working that puts the data team in a difficult position, often leading to
unsatisfactory machine learning results and limiting the data culture of the data team. The
data team suffers from

Operational data that is not fit for analytics, and the team lacks a deep understanding of
the data
Frequent and unexpected downstream changes that require the team to patch data
pipelines in response
Time spent searching for and identifying the right data for use cases
Lack of understanding of business requirements

The resulting monolithic architecture and centralized team setup ignore common software
engineering best practices, such as reasonably sized teams of 5-8 people with clear ownership,
lack of mechanisms to offload cognitive load, minimizing hand-offs through loose coupling,
and clear interfaces between components and teams.

One architectural approach that tries to facilitate the software engineering best practices
are data products introduced by Dehgani. They ingest data only from a few source systems
or other data products, encapsulate the data transformation and data storage, provide an
easy-to-use business-oriented API, and contain a human-readable description and code for
observability. Data products group elements of data transformation so that they can be
owned by a software team and consumed as a service by other teams.

Essential to the adoption of a data product is a data platform that makes it easy for data
product developers to follow the governance policies of the surrounding organization. A key
goal of the data platform is developer experience (DevEx). There are several points to learn
from a data-product-centric architecture:

Design software and organizational architecture for ML-enabled systems together.
Defined components or products should be independently deployable and a team of 5-8
developers should be sufficient to develop them.
There needs to be some kind of platform to reduce the cognitive load.
The platform should be built in an evolutionary fashion starting from the thinnest viable
platform (TVP).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 175

3.7 SPIRA Challenges and Lessons Learned on Architecting an
Intelligent System for Respiratory Insufficiency Detection – Notes
on Hands-on Education on SA4AI

Fabio Kon (University of Sao Paulo, BR)

License Creative Commons BY 4.0 International license
© Fabio Kon

Our group at the University of São Paulo has 23 years of experience teaching an advanced
software development course called “Agile Software Development Lab.” It is extremely popular
with students and has been very successful in teaching advanced software development
concepts with a ’learn by doing’, project-based approach with real external customers.
However, many recent projects have dealt with machine learning and AI-based systems,
which sometimes significantly increase the complexity of projects. We are then currently
remodeling the course to incorporate pedagogical aspects related to AI-based systems
development.

In this short talk, I provide an experience report about the development of a complex
system for respiratory insufficiency detection that has been developed at the University of
São Paulo in a collaboration between data scientists, physicians, linguists, and computer
science professors and students. We discuss the challenges and lessons learned in architecting
and building the system.

3.8 Software Architecture for Machine Learning Systems: Challenges,
Practices, and Opportunities

Grace A. Lewis (Carnegie Mellon Software Engineering Institute – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Grace A. Lewis

Developing software systems that contain machine learning (ML) components requires an
end-to-end perspective that considers the unique life cycle of these components – from
data acquisition to model training to model deployment and evolution. While there is an
understanding that ML components, in the end, are software components, there are some
characteristics of ML components that bring challenges to software architecture and design
activities, such as data-dependent behavior, the need to detect and respond to drift over time,
and timely capture of logs, metrics, user input and labeled data to inform retraining. In this
presentation, I talk about some of these challenges and propose a set of practices to address
these challenges, such as co-architecting, the recognition of monitorability as a driving quality
attribute, and system-level architecture patterns and tactics. The presentation concludes
with a list of opportunities to make progress in software architecture for ML systems, which
includes adapting and growing the software architecture body of knowledge for application
to ML systems, bringing the software architecture body of knowledge and discipline to model
development activities, and positioning software architecture as a unifying activity for system
stakeholders (model developers, software engineers, and operations).

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

176 23302 – Software Architecture and Machine Learning

3.9 BeT (Behavior-enabled IoT)
Henry Muccini (University of L’Aquila, IT)

License Creative Commons BY 4.0 International license
© Henry Muccini

Main reference Henry Muccini, Barbara Russo, Eugenio Zimeo: “The BET project: Behavior-enabled IoT”, CoRR,
Vol. abs/2307.13186, 2023.

URL https://doi.org//10.48550/ARXIV.2307.13186

BeT (Behavior-enabled IoT)[1] is a project that aims to provide a reference architecture,
conceptual framework, and related techniques to design behavior-enabled IoT systems and
applications. The presentation introduces the concept of the Internet of Behaviors (IoB)
and analyzes the human-system bi-causal quality connection effects. BeT analyzes the
emerging problem of understanding the mutual influence between QoS (Quality of Service)
and QoE (Quality of Experience) in IoB systems, where dynamic changes in the system and
surroundings can give rise to nontrivial unforeseen cause-effect mutual relations between
system and human behaviors.

3.10 Software Architecting in the Era of AI and AI-Augmented
Development Tools

Ipek Ozkaya (Carnegie Mellon Software Engineering Institute – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Ipek Ozkaya

The boundary between SA4ML and ML4SA is diffusing as more general-purpose AI models
are incorporated into systems. As more capable development tools enter the developer’s
ecosystem the role and responsibilities of the architect will shift [1]. As generative AI and
foundation models increase in capabilities, they will help reveal the criticality of architecture
knowledge and how it must guide development. As capabilities of large language models
(LLM) evolve, however, there is a potential increasing gap between what tools supported by
LLM can accomplish realizing narrowly scoped implementation tasks versus how they can do
so while being cognizant of software architectural concerns [2]. This talk will emphasize some
of the open questions and challenges that software architecture researchers need to address
as LLM-supported development tools evolve rapidly. These include, but are not limited to,
the following:

What are the specific design and architectural concerns that need to be addressed when
using generative AI?
Can generative AI tools be used to improve the design and architecture of systems?
Can these tools provide new features and capabilities that can be used to support the
architectural design process?
Could generative AI tools be used to generate design patterns and tactics, which could
then be used to guide the development process?
Can these tools accelerate the generation of alternative designs and their comparison?
Can they be used to provide feedback on designs, such as identifying potential risks and
issues?

References
1 Ipek Ozkaya: Application of Large Language Models to Software Engineering Tasks:

Opportunities, Risks, and Implications. IEEE Softw. 40(3): 4-8 (2023)
2 Ipek Ozkaya. Can Architecture Knowledge Guide Software Development With Generative

AI? IEEE Softw. 40(5): 4-8 (2023)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2307.13186
https://doi.org//10.48550/ARXIV.2307.13186
https://doi.org//10.48550/ARXIV.2307.13186
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 177

3.11 Architecting Systems to Integrate Machine Learning
Lena Pons (Carnegie Mellon Software Engineering Institute – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Lena Pons

ML-enabled systems introduce additional concerns to systems, which introduce new com-
plexity into the software architecture of such systems. Design considerations for integrating
an ML component into a larger software system may be unfamiliar to software architects.
Software engineers and data scientists need to communicate information that crosses domains,
which may result in some considerations not being exposed during architecture and design
conversations. We present a set of driving quality attributes for machine learning systems
and how they align with conventional software engineering practice versus attributes where
the integration of an ML component requires new patterns and tactics. We present some
questions to assist architects in eliciting better information about design concerns.

3.12 Machine Learning and Self-adaptation
Bradley Schmerl (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Bradley Schmerl

Architecture-based self-adaptation is a method for adding a control loop on top of systems
to make changes and repairs at run time, with the software architecture as the basis for
making decisions. But does this work for systems that have machine learning components
in the architecture? We report on work that we are doing to investigate how to apply
self-adaptation concepts to manage machine learning components. We report on the set of
challenges related to the timeliness of observations, the propagation of uncertainty, and the
lack of understood costs, benefits, and impacts of adaptation tactics, but also that the current
concepts seem to apply. One of the key concepts in ML is explainability. We report on two
aspects of explainability: 1) how we use planning models to support contrastive explanations,
and 2) how standard techniques in ML, like principal component analysis, clustering, and
decision tree learning, can be used to help explain choices that need to be made by architects,
designers, etc. by focusing them on critical qualities/concerns and interactions among them.

3.13 A Vision and Challenges about Intelligent and Trustworthy IoT
Systems

Romina Spalazzese (Malmö University, SE)

License Creative Commons BY 4.0 International license
© Romina Spalazzese

Today’s systems are more and more software/hardware intensive, very large, heterogeneous,
data-driven, dynamic, evolving, intelligent, and involve humans. These characteristics make
their engineering and architecture challenging tasks. Additionally, different applications have
different desired quality characteristics concerning, e.g., response time, power consumption,
interoperability, privacy, and trust, which influence their design. Examples of such modern
complex systems are ML-enabled Internet of Things (IoT) systems that have to deal with
many challenges at the same time, both from a human and technical perspective.

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

178 23302 – Software Architecture and Machine Learning

An overarching question in our ongoing research project is “How should Intelligent and
Trustworthy IoT systems be designed?” and some of the more specific questions are “How
and when should AI (in particular ML) be used to realize such systems?” as well as “How
could and when should edge computing (including hybrid edge-cloud processing) be used to
realize such systems?”. Towards identifying architectural approaches, patterns, and styles,
as well as analysis models, metrics, and techniques for ML-enabled systems, I will discuss
a vision and identify challenges related to an ML-enabled collaboration paradigm called
IoT-Together.

3.14 SA, ML and Patterns
Anastas Stoyanovsky (Amazon – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Anastas Stoyanovsky

The introduction of machine learning has not changed anything fundamental about architec-
tural thinking or methods. What is new is the confluence of particular quality attributes,
which effectively reduces the discussion to a matter of practical execution. Several high-level
patterns, both architectural and organizational, are discussed as foundations for further
inquiry. Industry experience points to challenges common to both industry and academia,
leading to a call to action around education.

3.15 Software Architecture Meets Machine Learning: A Tale of
Convergence

Karthik Vaidhyanathan (IIIT – Hyderabad, IN)

License Creative Commons BY 4.0 International license
© Karthik Vaidhyanathan

Main reference Henry Muccini, Karthik Vaidhyanathan: “Software Architecture for ML-based Systems: What Exists
and What Lies Ahead”, in Proc. of the 1st IEEE/ACM Workshop on AI Engineering – Software
Engineering for AI, WAIN@ICSE 2021, Madrid, Spain, May 30-31, 2021, pp. 121–128, IEEE, 2021.

URL https://doi.org//10.1109/WAIN52551.2021.00026

Over the years, software systems have become increasingly complex due to their ever-
increasing pervasive nature, resulting in various architecting challenges to ensure better
performance, reliability, etc. On the other hand, machine learning (ML) has advanced rapidly
with advancements in infrastructure, data availability, etc. However, the growing adoption of
ML has given rise to challenges associated with development practices, deployments, ensuring
data quality, etc., in addition to the challenges of a traditional software system. These
challenges have resulted in the convergence of SA and ML, resulting in two broad research
areas: i) ML4SA and ii) SA4ML.

This talk presents an overview of this convergence. The presentation then elaborates
on the two research lines and the challenges the community must address going forward.
The first part (ML4SA) focuses on using ML techniques to enable software systems to
autonomously adapt and improve their architecture at run time to guarantee a better quality
of service at run time and then using generative AI for architectural knowledge management
for design-time aid for architects. The second part (SA4ML) elaborates on the challenges
in architecting ML-enabled systems and further provides some insights on our recent work
related to an agile methodology for ML-enabled systems [1] and self-adaptive architecture
for ML-enabled systems [2].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1109/WAIN52551.2021.00026
https://doi.org//10.1109/WAIN52551.2021.00026
https://doi.org//10.1109/WAIN52551.2021.00026
https://doi.org//10.1109/WAIN52551.2021.00026

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 179

References
1 K. Vaidhyanathan, A. Chandran, H. Muccini and R. Roy, "Agile4MLS—Leveraging Agile

Practices for Developing Machine Learning-Enabled Systems: An Industrial Experience," in
IEEE Software, vol. 39, no. 6, pp. 43-50, Nov.-Dec. 2022, doi: 10.1109/MS.2022.3195432.

2 K.Vaidhyanathan “Data-Driven Self-Adaptive Architecting Using Machine Learn-
ing,” Ph.D. dissertation, Gran Sasso Science Institute, Italy, 2021, online at:
http://hdl.handle.net/20.500.12571/15976

3.16 Generative AI at Fraunhofer and Research Roadmaps from the
Software Architecture Community

Ingo Weber (TU München – Garching, DE)

License Creative Commons BY 4.0 International license
© Ingo Weber

Fraunhofer is the world’s largest organization focused on application-oriented research. Several
of its institutes are at the forefront of research in generative AI, but the recent advances make
it a topic relevant for all industry sectors and hence potentially all Fraunhofer customers
and institutes. Accordingly, Fraunhofer is broadening and deepening its AI endeavours.
One early step was the introduction of fhGPT, an AI chatbot based on Azure OpenAI
GPT models. Furthermore, from the ICSA-lite conference 2022, a book of high relevance
for this Dagstuhl seminar emerged, which is currently in print: Patrizio Pelliccione, Rick
Kazman, Ingo Weber, Anna Liu, editors. Software Architecture – Research Roadmaps from
the Community. Springer, 2023.

3.17 Building, Engineering & Operating Systems for Critical
Infrastructure

Roland Weiss (ABB – Mannheim, DE)

License Creative Commons BY 4.0 International license
© Roland Weiss

Control systems for process automation plants run business and mission critical infrastructure.
They span various verticals, from chemical to power plants, from hydrogen generation to
waste incineration. These applications require flawless execution 24 by 7, as malfunctions in
the system can endanger people, the environment, or business targets. On the other hand,
engineering such systems as well as operating them could benefit tremendously from the
introduction of machine learning and artificial intelligence in general. In my talk, I explore
the application of ML and AI in such systems.

In the engineering phase, generative AI has proven very promising in generating auto-
mation code (in IEC 61131 structured text). Based on a specification entered via a prompt
interface, the code inside function blocks could be generated. Likewise, process graphics
were translated into rules from older systems. Then, trained models validated the results
and highlighted areas that deviated from the expected outcome. When running a process
plant, operators have to monitor the system and, in the case of deviations or emergencies,
interact with the system to either bring it to a safe state or to the desired stable state.
Today, this requires very detailed domain know-how and extensive training. We are now

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

180 23302 – Software Architecture and Machine Learning

exploring supporting the operators with ML/AI-based assistance systems. For example, in
case of deteriorating product quality in a chemical facility, the operator can pull up similar
occurrences from the past and get recommendations from the assistance systems on how to
handle the situation.

The key challenges we are facing when introducing AI/ML components into control
systems are the following:

The behavior of the system must be explainable. In regulated and safety-critical en-
vironments, the system providers need to be able to provide detailed RCAs in case of
incidents.
Training data is hard to get for various reasons. The collection of the data can’t interfere
with the process itself. Also, the incidents are typically rare, and operators aim to avoid
them in the first place.
Last but not least, these systems have extremely long lifetimes, thus, introducing ML
means bringing them into legacy systems with traditional development processes.

We are looking forward to tackling these research challenges with Academia to contribute
to the collection of best practices for building systems for critical infrastructure in order to
make the world a safer and more sustainable place.

3.18 Challenges of Integrating ML Models in Safety-Relevant
Architectures

Marc Zeller (Siemens – München, DE)

License Creative Commons BY 4.0 International license
© Marc Zeller

Traditional automation technologies alone are not sufficient to enable the fully automated
operation of trains. However, Artificial Intelligence (AI) and Machine Learning (ML) offer
great potential to realize the mandatory novel functions to replace the tasks of a human
train driver, such as obstacle detection on the tracks. The problem, which still remains
unresolved, is to find a practical way to link AI/ML techniques with the requirements
and approval processes that are applied in the railway domain. The safe.trAIn project
aims to lay the foundation for the safe use of AI/ML to achieve the driverless operation
of rail vehicles and thus addresses this key technological challenge hindering the adoption
of unmanned rail transport. The project goals are to develop guidelines and methods for
the reliable engineering and safety assurance of ML in the railway domain. Therefore, the
project investigates methods to reliably design ML models and to prove the trustworthiness
of AI-based architectures, taking robustness, uncertainty, and transparency aspects of the
AI/ML model into account.

3.19 Software Architecture for Foundation Model-Based Systems
Liming Zhu (Data61, CSIRO – Sydney, AU)

License Creative Commons BY 4.0 International license
© Liming Zhu

With the successful implementation of Large Language Models (LLMs) in chatbots like
ChatGPT, there is growing attention on foundation models (FMs), which are anticipated
to serve as core components in the development of future AI systems. Yet, systematic

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 181

exploration into the design of foundation model-based systems, particularly concerning
risk management, trust, and trustworthiness, remains limited. In this talk, I propose the
challenges and initial approaches in both architecting FM-based systems and how FMs have
an impact on software engineering. I point to some initial directions, such as architecting as
a process of understanding (rather than designing/building), designing guardrails (rather
than quality attributes), and radical observability.

4 Working groups

The seminar provided an extensive and insightful exploration into the four key quality
attributes that were prioritized by the attendees as critically important while architecting
ML-enabled systems: Data Centricity, Evolvability, Observability and Uncertainty, Trust
and Trustworthiness. The four working group (WG) discussions focusing on each quality
attribute concern provided input for formulating the research agenda and key challenges to
address. In this section, we describe the scope of each working group, and in the Seminar
Overall Results section, we summarize the initial research roadmap and open challenges.

4.1 WG1: Architecting for Data Centricity
Jan Bosch (Chalmers University of Technology – Göteborg, SE), Benjamin Klöpper (Cap-
gemini – Stuttgart, DE), Ipek Ozkaya (Carnegie Mellon Software Engineering Institute –
Pittsburgh, US), Lena Pons (Carnegie Mellon Software Engineering Institute – Pittsburgh,
US), and Christoph Schröer (Universität Oldenburg, DE)

License Creative Commons BY 4.0 International license
© Jan Bosch, Benjamin Klöpper, Ipek Ozkaya, Lena Pons, and Christoph Schröer

The main purpose of the WG1 group on “Data Centricity” was to explore and address the
pivotal role of architectural elements that extract, transform, load, store, and share data
in the architectures of ML and analytics systems. The group focused on examining the
entire data life cycle – from acquisition to transformation to runtime consumption – and
understanding how data is integrated and managed by an ML-enabled system throughout
this data life cycle.

The discussions emphasized that effective data management throughout the data life cycle
is crucial for the success of ML-enabled systems. This includes recognizing the challenges
associated with the complexities of data architectures. The WG1 group also identified the need
for a distinct architectural view that focuses specifically on data, given its critical importance
in ML-enabled systems. They acknowledged that while current software architecture practices
and architectures of non-ML systems address data processing and storage, there is a need for
a more focused approach to identify strategies for addressing data-centricity to cater to the
unique requirements and challenges posed by ML systems.

In summary, the WG1 group’s discussions emphasize the centrality of data in ML systems
and the need for specialized and clearly communicated architectural approaches to manage
and utilize data in these systems effectively.

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

182 23302 – Software Architecture and Machine Learning

4.2 WG2: Evolvability
Justus Bogner (Universität Stuttgart, DE), Jan Bosch (Chalmers University of Technology –
Göteborg, SE), Helena Holmström Olsson (Malmö University, SE), Henry Muccini (University
of L’Aquila, IT), Raghu Reddy (IIIT – Hyderabad, IN), Anastas Stoyanovsky (Amazon –
Pittsburgh, US), Ingo Weber (TU München – Garching, DE), and Liming Zhu (Data61,
CSIRO – Sydney, AU)

License Creative Commons BY 4.0 International license
© Justus Bogner, Jan Bosch, Helena Holmström Olsson, Henry Muccini, Raghu Reddy, Anastas
Stoyanovsky, Ingo Weber, and Liming Zhu

The primary objective of the WG2 group on "Evolvability" was to address the unique
challenges in developing ML-enabled systems that can evolve efficiently in response to
changing requirements and environmental factors. The group’s primary focus was on
understanding the dynamics of ML components within these systems, particularly how they
interact with non-ML components and Machine Learning Operations (MLOps) infrastructures
and practices.

A key finding of WG2 was the critical role of MLOps in ensuring the evolvability of ML
components within ML-enabled systems. MLOps, supporting the entire life cycle of ML
components from development to deployment and maintenance, emerged as a pivotal factor
in managing and automating the continuous evolution of these systems. The group identified
that the integration of MLOps within existing DevOps practices is not only essential but
also challenging, given the unique characteristics of ML components.

Another significant aspect highlighted by WG2 was the concept of technical debt in ML
systems. ML-enabled systems bring forth new classes of design and architectural challenges
related to degradation in data or models as technical debt, which can impede the maintenance
and evolution of ML-enabled systems. Addressing these forms of technical debt is crucial for
sustaining the long-term viability and evolvability of these systems.

WG2 also emphasized the importance of the skill sets and roles of architects designing and
maintaining ML-enabled systems. Architects need to possess a comprehensive understanding
of aspects such as data engineering, model engineering, and ethical considerations to effectively
manage the evolution of these complex systems.

In essence, the WG2 group underscores the complexities involved in creating evolvable
ML-enabled systems and highlights the importance of MLOps, technical debt management,
and specialized architectural knowledge in addressing these challenges.

4.3 WG3: Observability and Uncertainty
Nelly Bencomo (Durham University, GB), Xavier Franch (UPC Barcelona Tech, ES), Fabio
Kon (University of Sao Paulo, BR), Ipek Ozkaya (Carnegie Mellon Software Engineering
Institute – Pittsburgh, US), Marie Platenius-Mohr (ABB – Ladenburg, DE), Bradley Schmerl
(Carnegie Mellon University – Pittsburgh, US), Roland Weiss (ABB – Mannheim, DE), and
Karthik Vaidhyanathan (IIIT – Hyderabad, IN)

License Creative Commons BY 4.0 International license
© Nelly Bencomo, Xavier Franch, Fabio Kon, Ipek Ozkaya, Marie Platenius-Mohr, Bradley Schmerl,
Roland Weiss, and Karthik Vaidhyanathan

The working group on “Observability and Uncertainty” primarily focused on how uncertainty
and observability were intertwined and how they impact the design, implementation, and
operation of ML-enabled systems.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 183

A key finding of the group was the often inherent non-deterministic and statistical
nature of ML techniques, which introduces a fundamental level of uncertainty in these
systems. This uncertainty is not just a challenge but a necessary aspect to consider in
the architecture of ML-enabled systems. The group discussed two main ways to handle
uncertainty: (1) reducing or eliminating uncertainty through strategies similar to using
redundancy in reliability engineering and (2) managing uncertainty, which includes strategies
for dealing with incomplete information and uncertain components.

The group’s discussions underscored the close relationship between uncertainty and
observability. Observability – the ability to infer the internal state of a system based on its
output – is crucial for understanding and managing uncertainty in ML systems. The degree
of uncertainty dictates the requirements for observability, impacting various other aspects of
software development, including trustworthiness and evolvability.

In summary, WG3’s outcomes emphasize the importance of treating uncertainty as a
primary concern in the design and implementation of ML-enabled systems. In addition, the
discussions highlight the need for effective observability mechanisms to identify and manage
the inherent uncertainties of ML-enabled systems to ensure their reliability and effectiveness.

4.4 WG4: Architecting for Trust and Trustworthiness
Tao Chen (University of Birmingham, GB), Thomas Kropf (Robert Bosch GmbH – Renningen,
DE), Grace A. Lewis (Carnegie Mellon Software Engineering Institute – Pittsburgh, US),
Henry Muccini (University of L’Aquila, IT), Alex Serban (Siemens Healthineers, Erlangen,
DE & University Transilvania of Brasov, RO), Romina Spalazzese (Malmö University, SE),
and Marc Zeller (Siemens – München, DE)

License Creative Commons BY 4.0 International license
© Tao Chen, Thomas Kropf, Grace A. Lewis, Henry Muccini, Alex Serban, Romina Spalazzese, and
Marc Zeller

The main purpose of WG4 was to explore the key aspects and challenges in designing
trustworthy ML systems, such as in safety-critical and autonomous contexts.

The outputs of the discussions in this group emphasize the distinction between trust
and trustworthiness and various aspects of these concepts in ML-enabled systems, including
state-of-the-art trustworthy AI, the role of trust as an element of overall responsible AI
practices and their relevance to ML-enabled system development, and the engineering of
trustworthy ML-enabled systems. It also examines the importance of providing evidence
of trustworthiness tailored to different stakeholders for calibrated trust, such as through
certification labels and empirical studies, and discusses enabling the design of trustworthy
ML-enabled systems through architectural models and toolkits.

A significant portion of the discussions were dedicated to addressing the challenges
in evaluating the trustworthiness of ML-enabled systems and the role of human-in-the-
loop in ensuring trustworthiness. The discussions in this group focused on the trust and
trustworthiness of ML-enabled systems and had a close relationship with considerations
that apply to AI systems in general, such as responsible AI practices. The discussions, in
particular, emphasized the need for explainable AI as a key component in building trust in
ML-enabled systems.

In summary, WG4’s observations emphasize the critical need for defining trust and
trustworthiness clearly in ML-enabled systems, exploring the complexities of achieving the
several qualities essential in building trust and trustworthiness and developing and extending
frameworks and strategies to guide the development of trustworthy applications with ML
components.

23302

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

184 23302 – Software Architecture and Machine Learning

5 Open problems

The SA&ML research roadmap, which is one of the key outcomes of this Dagstuhl Seminar,
is heavily influenced by the high-priority quality attributes that were discussed in depth in
the working groups and their relationships. Figure 1 provides an overview of the relationships
between the quality attributes and the interplay that exists between them, with Data Centri-
city being a cross-cutting quality attribute. It also shows Explainability and Adaptability as
two additional key quality attributes that contribute to these relationships. The following
subsections provide a summary of how each attribute was scoped by the working groups,
open problems in each area, and a list of high-priority research areas that need to be explored
in the near term to advance the practice of SA&ML.

Figure 1 Relationships between the different quality attributes.

5.1 Data Centricity
Data-centricity emphasizes the significance of data quality and management for ML-enabled
systems. High-quality, well-managed data is crucial for the development of reliable ML
models and for maintaining the trustworthiness of the system.

Data-centricity also impacts evolvability and adaptability, as systems that can adapt to
changes in data or requirements are more sustainable over time.

5.1.1 Challenges and Open Problems

The seminar looked beyond basic data integrity and security issues, delving into more
complex and ML-relevant issues such as ensuring data relevance over time, managing large
and diverse datasets, and maintaining compliance with evolving data privacy laws and
standards. The future directions suggested include developing data views that reflect
architecturally-significant concerns, understanding architectural implications of online vs
offline learning, and data decoupling strategies.

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 185

5.2 Uncertainty and Observability
Uncertainty is a fundamental aspect of ML-enabled systems due to the often non-deter-
ministic and statistical nature of ML models. Uncertainty can arise from the quality of
training data, the model design, interactions between ML and other components, and the
environment in which the system operates.

Observability involves the ability to monitor the internal states and outputs of the system
to enable understanding and make informed decisions about its functioning, especially in the
face of uncertainty. Observability helps system developers and operators understand and
manage uncertainty.

Observability can also contribute to enhancing explainability, as more observable systems
provide more information that can be used to explain inference results to users and for
engineers to diagnose systems. Observability also contributes to evolvability as runtime data
can be used to determine, for example, when a model needs to be retrained in response to
drift.

5.2.1 Challenges and Open Problems

The major challenge identified by the working group participants lies in quantifying and
managing uncertainty, which is inherent in ML-enabled systems due to their often non-
deterministic nature. Another challenge is developing methods for effective observability that
can aid in explaining the behavior of ML systems. Future research is required to enhance
methods for quantifying uncertainty, properly propagating uncertainty throughout the life
cycle and system, developing advanced observability techniques, and exploring the impact
of uncertainty on trustworthiness and evolvability. There is also an emphasis on creating
strategies for adaptive actions in response to observed properties, including uncertainties.

5.3 Evolvability (and Adaptability)
Evolvability was defined by the seminar participants as a system’s ability to adapt to
changes in expectations (i.e., requirements), while adaptability refers to the ability of the
system to handle (or be modified to deal with) changes in its environment.. Evolvability,
therefore, is mostly a design-time concern, whereas adaptability is both a design-time
and runtime concern. These attributes are essential for designing ML-enabled systems, as
these systems must continuously evolve and adapt to remain effective. Evolvability and
adaptability are influenced by observability and uncertainty, and together, they contribute
towards maintainability; by addressing these attributes proactively and intentionally, systems
can be designed to evolve and adapt more effectively. Evolvability and adaptability are also
closely linked to data centricity, as the system’s ability to evolve and adapt is dependent
on the quality and relevance of the data it uses and how its evolution and adaptation are
influenced by changes in data.

5.3.1 Challenges and Open Problems

Participants unanimously agreed that the main challenge in evolvability and adaptability lies
in integrating continuous development and deployment practices for ML components, such
as MLOps, with software development and deployment of non-ML components. Addressing

23302

186 23302 – Software Architecture and Machine Learning

the accruing technical debt and managing quality attributes of ML components are also high-
lighted as significant challenges. Further, participants suggest exploring effective integration
of MLOps practices, identifying new evolvability and adaptability-specific technical debt
items in ML-enabled systems, and conceptualizing and realizing architectural designs that
support continuous change. Developing guidelines for managing the interaction between ML
and non-ML components is also seen as a key future direction where more case studies and
research need to be developed.

5.4 Trust and Trustworthiness
Trust is the subjective confidence stakeholders place in a system’s quality. It is influenced
by the system’s trustworthiness.

Trustworthiness involves the system’s objective ability to consistently perform according to
quality expectations and ethical standards. It is bolstered by explainability, as stakeholders
are more likely to trust a system they can understand. Trust and trustworthiness are
impacted by data centricity, as the quality and management of data underpin the reliability
and robustness of ML-enabled systems. Related, if the system provides better explainability,
it fosters trust in the system. A system that is trustworthy (through evidence of achieving
quality attributes such as security, reliability, and fairness) merits the trust placed in it by
users.

5.4.1 Challenges and Open Problems

The participants elaborated on the challenges of balancing system transparency and explain-
ability while complying with ethical standards and legal regulations in different domains.
Proposed future research directions included the development of comprehensive frameworks
for building trustworthy AI systems, tailoring trustworthiness evidence to different stake-
holders for calibrated trust, exploring human-in-the-loop approaches to balance automation
and human oversight, and creating dynamic processes for evolving trust and trustworthiness
in line with technological and societal shifts.

5.5 High Priority Research Areas to Advance SA&ML
Several open research areas in SA&ML were identified as a result of the seminar discussions.
High-priority research areas requiring near-term focus for advancing the state of the practice
include the following:

Architectural Design for Data-Centricity: Identifying and developing architectural ap-
proaches that effectively address the central role of data in ML-enabled systems, including
data acquisition, processing, and management, as well as designing systems that can adapt
to changes in data characteristics, need attention from researchers as well as practitioners
in documenting their lessons learned. Existing architecture patterns, tactics, and quality
attributes related to data architecting need to also be shared more consistently, and gaps
need to be filled where applicable.
Evolvability and adaptability of MLOps Architectures: Creating architectural designs that
support the evolvability and adaptability of ML-enabled systems, particularly focusing
on leveraging MLOps infrastructure, is not common practice. Challenge areas include
addressing the lifecycle management of ML models and ensuring systems can evolve and
adapt to new and changing requirements and environments.

G. A. Lewis, H. Muccini, I. Ozkaya, K. Vaidhyanathan, R. Weiss, and L. Zhu 187

Uncertainty as a First-Class Concern: Integrating the management of uncertainty into the
architectural design process for ML-enabled systems first requires identifying sources of
uncertainty which can effectively be managed with architectural approaches. This involves
developing methods for quantifying and mitigating uncertainty that can be leveraged by
architecture practices and constructs.
Observability in ML-enabled Systems: Existing approaches in system observability need
to be enhanced to better observe and manage the behavior of ML components. This
includes developing metrics and tools for monitoring and understanding ML components
and ML-enabled system states.
Trust, Trustworthiness, and Ethical Considerations: Building trustworthiness into the
architecture of ML-enabled systems, including designing for ethical considerations, com-
pliance with regulations, and ensuring transparency and explainability of AI decisions, is
a growing need. Identifying what aspects of trustworthiness and ethical considerations
can be handled architecturally and clearly communicating the remaining gaps is critical
as research in this area progresses.
Human-in-the-Loop AI Decision Making: Architecting systems that effectively incorporate
human oversight and interaction, particularly in critical decision-making processes to
ensure balanced autonomy and control in AI systems, will be an area of research that
influences many quality attribute concerns, as well as how responsibilities are allocated
to architectural elements, potentially resulting in new architecture patterns and tactics.

5.6 Follow-up Work
At the seminar, participants recognized that there is a lack of understanding and common
definitions for many concepts related to ML-enabled systems and existing architecture
practices and fundamentals. Furthermore, in addition to the set of key quality attributes
discussed in detail and shared in this report, other quality attributes that require attention
from the software architecture community were identified. Hence, a more detailed description
of the concepts identified, extended discussions around the quality attributes discussed,
as well as a more comprehensive explanation of the research roadmap, are planned for
publication in appropriate venues.

23302

188 23302 – Software Architecture and Machine Learning

Participants

Nelly Bencomo
Durham University, GB

Justus Bogner
Universität Stuttgart, DE

Jan Bosch
Chalmers University of
Technology – Göteborg, SE

Tao Chen
University of Birmingham, GB

Xavier Franch
UPC Barcelona Tech, ES

Helena Holmström Olsson
Malmö University, SE

Benjamin Klöpper
Capgemini – Stuttgart, DE

Fabio Kon
University of Sao Paulo, BR

Thomas Kropf
Robert Bosch GmbH –
Renningen, DE

Grace A. Lewis
Carnegie Mellon University –
Pittsburgh, US

Henry Muccini
University of L’Aquila, IT

Ipek Ozkaya
Carnegie Mellon University –
Pittsburgh, US

Marie Platenius-Mohr
ABB – Ladenburg, DE

Lena Pons
Carnegie Mellon University –
Pittsburgh, US

Raghu Reddy
IIIT – Hyderabad, IN

Bradley Schmerl
Carnegie Mellon University –
Pittsburgh, US

Christoph Schröer
Universität Oldenburg, DE

Alex Serban
Siemens Healthineers, Erlangen,
DE & University Transilvania of
Brasov, RO

Romina Spalazzese
Malmö University, SE

Anastas Stoyanovsky
Amazon – Pittsburgh, US

Karthik Vaidhyanathan
IIIT – Hyderabad, IN

Ingo Weber
TU München – Garching, DE

Roland Weiss
ABB – Mannheim, DE

Marc Zeller
Siemens – München, DE

Liming Zhu
Data61, CSIRO – Sydney, AU

	Executive Summary (Grace A. Lewis, Henry Muccini, Ipek Ozkaya, Karthik Vaidhyanathan, Roland Weiss, and Liming Zhu)
	Table of Contents
	Overview of Talks
	Fifty Shades of Uncertainty (Nelly Bencomo)
	Software Architecture Modeling of Machine Learning Systems: Unsolved Challenge or Old Wine in New Bottles? (Justus Bogner)
	AI: From Offline & Centralized to Online & Federated (Jan Bosch and Helena Holmström Olsson)
	Predicting Software Performance with Divide-and-Learn (Tao Chen)
	Analyzing Greenability of Software Architectures for AI Systems: The GAISSA project (Xavier Franch)
	Why Organizations Fail to Implement AI (Benjamin Klöpper)
	SPIRA Challenges and Lessons Learned on Architecting an Intelligent System for Respiratory Insufficiency Detection – Notes on Hands-on Education on SA4AI (Fabio Kon)
	Software Architecture for Machine Learning Systems: Challenges, Practices, and Opportunities (Grace A. Lewis)
	BeT (Behavior-enabled IoT) (Henry Muccini)
	Software Architecting in the Era of AI and AI-Augmented Development Tools (Ipek Ozkaya)
	Architecting Systems to Integrate Machine Learning (Lena Pons)
	Machine Learning and Self-adaptation (Bradley Schmerl)
	A Vision and Challenges about Intelligent and Trustworthy IoT Systems (Romina Spalazzese)
	SA, ML and Patterns (Anastas Stoyanovsky)
	Software Architecture Meets Machine Learning: A Tale of Convergence (Karthik Vaidhyanathan)
	Generative AI at Fraunhofer and Research Roadmaps from the Software Architecture Community (Ingo Weber)
	Building, Engineering & Operating Systems for Critical Infrastructure (Roland Weiss)
	Challenges of Integrating ML Models in Safety-Relevant Architectures (Marc Zeller)
	Software Architecture for Foundation Model-Based Systems (Liming Zhu)

	Working groups
	WG1: Architecting for Data Centricity (Jan Bosch, Benjamin Klöpper, Ipek Ozkaya, Lena Pons, and Christoph Schröer)
	WG2: Evolvability (Justus Bogner, Jan Bosch, Helena Holmström Olsson, Henry Muccini, Raghu Reddy, Anastas Stoyanovsky, Ingo Weber, and Liming Zhu)
	WG3: Observability and Uncertainty (Nelly Bencomo, Xavier Franch, Fabio Kon, Ipek Ozkaya, Marie Platenius-Mohr, Bradley Schmerl, Roland Weiss, and Karthik Vaidhyanathan)
	WG4: Architecting for Trust and Trustworthiness (Tao Chen, Thomas Kropf, Grace A. Lewis, Henry Muccini, Alex Serban, Romina Spalazzese, and Marc Zeller)

	Open problems
	Data Centricity
	Uncertainty and Observability
	Evolvability (and Adaptability)
	Trust and Trustworthiness
	High Priority Research Areas to Advance SA&ML
	Follow-up Work

	Participants

