
Report from Dagstuhl Seminar 23331

Recent Trends in Graph Decomposition
George Karypis∗1, Christian Schulz∗2, Darren Strash∗3,
Deepak Ajwani4, Rob H. Bisseling5, Katrin Casel6,
Ümit V. Çatalyürek7, Cédric Chevalier8, Florian Chudigiewitsch9,
Marcelo Fonseca Faraj10, Michael Fellows11, Lars Gottesbüren12,
Tobias Heuer13, Kamer Kaya14, Jakub Lacki15, Johannes Langguth16,
Xiaoye Sherry Li17, Ruben Mayer18, Johannes Meintrup19,
Yosuke Mizutani20, François Pellegrini21, Fabrizio Petrini22,
Frances Rosamond23, Ilya Safro24, Sebastian Schlag25,
Roohani Sharma26, Blair D. Sullivan27, Bora Uçar28, and
Albert-Jan Yzelman29

1 University of Minnesota – Minneapolis, US. karypis@umn.edu
2 Universität Heidelberg, DE. christian.schulz@informatik.uni-heidelberg.de
3 Hamilton College – Clinton, US. dstrash@hamilton.edu
4 University College Dublin, IE.
5 Utrecht University, NL.
6 Humboldt University Berlin, DE.
7 Georgia Institute of Technology – Atlanta, US & Amazon Web Services, US.
8 CEA, DAM, DIF – Arpajon, FR.
9 Universität zu Lübeck, DE.
10 Universität Heidelberg, DE.
11 University of Bergen, NO.
12 Karlsruher Institut für Technologie, DE.
13 Karlsruher Institut für Technologie, DE.
14 Sabanci University – Istanbul, TR.
15 Google – New York, US.
16 Simula Research Laboratory – Oslo, NO & University of Bergen, NO.
17 Lawrence Berkeley National Laboratory, US.
18 Universität Bayreuth, DE.
19 Technische Hochschule Mittelhessen – Gießen, DE.
20 University of Utah – Salt Lake City, US.
21 University of Bordeaux, FR.
22 Intel Labs – Menlo Park, US.
23 University of Bergen, NO.
24 University of Delaware – Newark, US.
25 Sunnyvale, US.
26 MPI für Informatik – Saarbrücken, DE.
27 University of Utah – Salt Lake City, US.
28 CNRS and LIP ENS de Lyon, FR.
29 Huawei Technologies – Zürich, CH.

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Recent Trends in Graph Decomposition, Dagstuhl Reports, Vol. 13, Issue 8, pp. 1–45
Editors: George Karypis, Christian Schulz, and Darren Strash

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karypis@umn.edu
mailto:christian.schulz@informatik.uni-heidelberg.de
mailto:dstrash@hamilton.edu
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

2 23331 – Recent Trends in Graph Decomposition

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23331 “Recent Trends
in Graph Decomposition”, which took place from 13. August to 18. August, 2023. The seminar
brought together 33 experts from academia and industry to discuss graph decomposition, a
pivotal technique for handling massive graphs in applications such as social networks and scientific
simulations. The seminar addressed the challenges posed by contemporary hardware designs, the
potential of deep neural networks and reinforcement learning in developing heuristics, the unique
optimization requirements of large sparse data, and the need for scalable algorithms suitable for
emerging architectures. Through presentations, discussions, and collaborative sessions, the event
fostered an exchange of innovative ideas, leading to the creation of community notes highlighting
key open problems in the field.
Seminar August 13–18, 2023 – https://www.dagstuhl.de/23331
2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms
Keywords and phrases combinatorial optimization, experimental algorithmics, parallel algorithms
Digital Object Identifier 10.4230/DagRep.13.8.1
Funding We acknowledge support by DFG grant SCHU 2567/5-1.

Deepak Ajwani: Supported in part by a grant from Science Foundation Ireland under Grant
number 18/CRT/6183.
Johannes Meintrup: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 379157101.

Acknowledgements We acknowledge Dagstuhl Seminar 23331 on “Recent Advances in Graph
Decomposition”.

1 Executive Summary

George Karypis (University of Minnesota – Minneapolis, US)
Christian Schulz (Universität Heidelberg, DE)
Darren Strash (Hamilton College – Clinton, US)

License Creative Commons BY 4.0 International license
© George Karypis, Christian Schulz, and Darren Strash

Large networks are useful in a wide range of applications. Sometimes problem instances
are composed of billions of entities. Decomposing and analyzing these structures helps us
gain new insights about our surroundings. Even if the final application concerns a different
problem (such as traversal, finding paths, trees, and flows), decomposing large graphs is
often an important subproblem for complexity reduction or parallelization. With even larger
instances in applications such as scientific simulation, social networks, or road networks,
graph decomposition becomes even more important, multifaceted, and challenging. The
seminar was an international forum to discuss recent trends as well as to set new goals
and new directions in this research area. The goal of this Dagstuhl Seminar was to bring
algorithmic researchers from different communities together who implement, optimize, and/or
experiment with algorithms running on large data sets or use techniques from the area
frequently, thereby stimulating an exchange of ideas and techniques. The seminar focus was
on graph decomposition. We chose the main topics of our seminar to bring experts together
from a wide range of areas to tackle some of the most pressing open problems in the area of
graph decomposition:

https://www.dagstuhl.de/23331
https://doi.org/10.4230/DagRep.13.8.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

George Karypis, Christian Schulz, and Darren Strash et al. 3

Hardware Design for Dealing with Graphs. Modern processors are optimized for compu-
tations that are floating point intensive and have regular memory accesses. Computations
performed by sparse graph algorithms do not benefit from such optimizations. To address
this mismatch, new processor and system architectures are being developed.

Beyond Smart Heuristics. In heuristic approaches, improvements in solution quality are
often the result of a significant research effort. In recent years, to reduce this effort, develop
better heuristics, and ultimately find better solutions, researchers have started developing
approaches that use deep neural networks and reinforcement learning in order to learn those
heuristics in an end-to-end fashion.

Formulations. Applications that process large sparse data generally have a unique set of
optimization requirements for achieving the best performance. Parallelizing such applications
on different architectures and/or using different frameworks introduces new performance
issues that pertain to these architectures and frameworks. While graphs offer a rich ground
for modeling such problems with different requirements, traditional graph decomposition
tools may fall short to target those specific issues.

Scalable Parallel Algorithms for Future Emerging Architectures. Scalable high quality
graph partitioning (with quality comparable to sequential partitioners) remains an open
problem. With the advent of exascale machines with millions of processors and possibly
billions of threads, the situation is further aggravated. Moreover, traditional “flat” partitions
of graphs for processing on such machines implies a huge number of blocks. Efficient
implementation is also a big issue since complex memory hierarchies and heterogeneity (e.g.,
GPUs or FPGAs) make the implementation complicated.

Summary of Seminar
The seminar convened 33 distinguished participants from both academic and industrial
sectors worldwide. The majority of attendees arrived on Sunday evening. In total, the
seminar showcased 19 presentations. The proceedings began with a welcome and ice-breaker
session, facilitating introductions among participants. There were two dedicated sessions to
address open problems. Ample time was set aside for collaboration. Additionally, a social
event in the form of a hike was organized for attendees. The majority of the presentations
were concise, spanning approximately 30 minutes, while a select few were of longer duration.
Active discussions were a hallmark of this seminar, both during and after presentations, with
highlights captured below. Spontaneous working groups emerged during the event, and their
details are documented in the subsequent sections. During the week, we collaborated on a
joint document that captures a large variety of open problems in the field. These so-called
community notes which will be released/published in a separate document. Throughout
and following the sessions, participants engaged in lively conversations. These discussions
enriched the entire event and set it apart from typical conference formats. Beyond the
research-focused activities, numerous social events like board games, poker, music evenings,
hiking, and ping pong added a fun dimension. This made the seminar an excellent networking
venue, especially for the many attendees experiencing Schloss Dagstuhl for the first time.

23331

4 23331 – Recent Trends in Graph Decomposition

2 Table of Contents

Executive Summary
George Karypis, Christian Schulz, and Darren Strash 2

Overview of Talks

Scalable Graph Clustering at Google
Jakub Lacki . 6

Local Objectives for Graph Clustering
Katrin Casel . 6

Parallel Incremental Clustering Algorithms for Massive Dynamic Graphs
Johannes Langguth . 7

Parameterized Approximation Schemes for Clustering with General Norm Objectives
Roohani Sharma . 7

Leveraging Learning-to-prune and reinforcement learning for solving combinatorial
optimisation problems
Deepak Ajwani . 8

Using Steiner Trees in Hypergraph Partitioning
Tobias Heuer . 9

Directed Acyclic Partitioning from Graphs to Hypergraphs
Ümit V. Çatalyürek . 9

Approximate Modular Decomposition
Yosuke Mizutani . 10

Exact k-way sparse matrix partitioning
Rob H. Bisseling . 10

What Scotch cannot do yet
François Pellegrini . 11

Recent Advances in Streaming (Hyper)Graph Decomposition
Marcelo Fonseca Faraj . 11

Graph partitioning and distributed graph processing – An end-to-end optimization
perspective
Ruben Mayer . 12

Parameterized complexity and algorithmics – some horizons – and the universal
applied paradigm of diverse solutions
Mike Fellows . 12

Combinatorial problems in sparse matrix computations
Xiaoye S. Li . 13

Algebraic Programming for Graph Computing: GraphBLAS and beyond
Albert-Jan Yzelman . 13

Distributed Landmark Labelling Using Vertex Separators
Kamer Kaya . 14

Recent Advances in Ka (Hyper)Graph Partitioning
Daniel Seemaier and Lars Gottesbüren . 14

George Karypis, Christian Schulz, and Darren Strash et al. 5

Graph Neural Network Research at AWS AI
George Karypis . 15

An MPI-based Algorithm for Mapping Complex Networks onto Hierarchical Archi-
tectures
Henning Meyerhenke . 15

Working Groups

Balanced Edge Partitioning for Distributed Graph Processing
Ruben Mayer . 16

Edge-Colored Clustering
Blair D. Sullivan . 17

Exact k-way sparse matrix partitioning
Rob H. Bisseling . 17

Open Problems

Preliminaries . 18

Balanced (Hyper)graph Decomposition and Variations 18

(Hyper)graph Clustering . 30

Data Reductions and Learning . 32

Embeddings . 34

Parameterized Complexity . 35

Participants . 45

23331

6 23331 – Recent Trends in Graph Decomposition

3 Overview of Talks

3.1 Scalable Graph Clustering at Google
Jakub Lacki (Google – New York, US)

License Creative Commons BY 4.0 International license
© Jakub Lacki

Graph clustering has numerous applications in classification, near-duplicate detection, data
partitioning, community detection and privacy. In this talk we present a graph clustering
library which supports all of these use cases and powers over a hundred applications at
Google. One of the main design goals of the library is high scalability. In the offline setting,
the library can handle up to trillion-edge graphs by leveraging distributed processing, or up
to 100 billion edges using single-machine parallelism. Moreover, the library contains online
algorithms that can update clustering with sub-second latency upon vertex insertions.

Discussions. There was a long discussion about applying ideas of TeraHAC to solving
maximum weighted matching. In particular, both algorithms in the exact version find edges
xy which are the highest weight incident edges for both x and y. In the approximate version
of TeraHAC we relax this and allow almost-highest weight incident edges. We discussed
whether this can be used to speed up greedy maximum weight matching and it looks like
the idea may apply. However, showing asymptotic improvement in the running time bound
seems to be somewhat harder. Another question that came up was how do we evaluate a
near-dup clustering? We often use human raters that produce verdicts of the form: items x
and y should/should not be in the same cluster. Lastly, when deciding about the similarity of
two clusters x and y do we only look at edges between them, or do we also look at edges that
go from x to outside of y (and vice versa)? Only edges between the clusters are considered.

3.2 Local Objectives for Graph Clustering
Katrin Casel (HU Berlin, DE)

License Creative Commons BY 4.0 International license
© Katrin Casel

In many situations clustering tasks do not involve (just) a global optimization goal, but
(additionally) request local properties for clusters. Such local objectives are often particularly
challenging. This talk gives some examples of such objectives for graph clustering with a brief
overview of what is known and what is (surprisingly) open. In particular, these examples are
connectivity and fairness as local objectives that are added to a global objective, density as
difficult-to-check local objective, and chromatic edges where locally only the most prominent
color counts.

Discussions. The talk gave rise to some new open questions: What happens when the
dense partition objective is combined with a lower bound on the cluster size? Is connected
partition in planar graphs easier than in general graphs? Discussions afterwards revealed:
MaxMin/MinMax Balanced Partition inherits several hardness results from the Equitable
Partition problem. Further, MaxMin/MinMax Balanced Partition is closely related to the
Neighborhood Partitioning problem. The implications of this relationship remain to be
investigated. Future studies should investigate, in particular from a computational point
of view, which notion of fairness is most reasonable for Correlation Clustering (vertex vs
edge fairness).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

George Karypis, Christian Schulz, and Darren Strash et al. 7

3.3 Parallel Incremental Clustering Algorithms for Massive Dynamic
Graphs

Johannes Langguth (Simula Research Laboratory – Oslo, NO)

License Creative Commons BY 4.0 International license
© Johannes Langguth

We consider the problem of incremental graph clustering where the graph to be clustered is
given as a sequence of disjoint subsets of the edge set. The problem appears when dealing
with graphs that are created over time, such as online social networks where new users appear
continuously, or protein interaction networks when new proteins are discovered. For very
large graphs, it is computationally too expensive to repeatedly apply standard clustering
algorithms. Instead, algorithms whose time complexity only depends on the size of the
incoming subset of edges in every step are needed. At the same time, such algorithms should
find clusterings whose quality is close to that produced by offline algorithms. We discuss
the computational model and present an incremental clustering algorithm, along with its
parallel implementation. The scalability results suggest that our method is well suited for
clustering massive graphs with acceptable running times while retaining a large fraction of
the clustering quality.

Discussions. The performance of the incremental clustering algorithm depends heavily
on the structure of the parts. So far, test instances have only been created by assigning
edges to parts uniformly at random. Michael Fellows pointed out that different probability
distributions would likely match actual growth of online social networks. Tobias Heuer
pointed out that NCLiC does not actually compute modularity gains and that modularity
retention could probably be improved by modifying the algorithm, although this might come
at the cost of increased runtime. Jakub Lacki suggested to extend the incremental clustering
algorithm from modularity maximization to correlation clustering which is certainly possible
since the link-counting approach should work with many different clustering objectives.
Ruben Mayer investigated the possibility of using NCLiC for streaming edge partitioning.
Further discussion also suggested a way to replace the current way of randomly skipping
expensive updates with an exact method by finding a suitable data structure.

3.4 Parameterized Approximation Schemes for Clustering with General
Norm Objectives

Roohani Sharma (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Roohani Sharma

We consider the well-studied algorithmic regime of designing a (1+ϵ)-approximation algorithm
for a k-clustering problem that runs in time f(k, ϵ)poly(n). Our main contribution is a clean
and simple EPAS that settles more than ten clustering problems (across multiple well-studied
objectives as well as metric spaces) and unifies well-known EPASes. Our algorithm gives
EPASes for a large variety of clustering objectives (for example, k-means, k-center, k-median,
priority k-center, ℓ-centrum, ordered k-median, socially fair k-median aka robust k-median, or
more generally monotone norm k-clustering) and metric spaces (for example, continuous high-
dimensional Euclidean spaces, metrics of bounded doubling dimension, bounded treewidth

23331

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

8 23331 – Recent Trends in Graph Decomposition

metrics, and planar metrics). Key to our approach is a new concept that we call bounded
ϵ-scatter dimension–an intrinsic complexity measure of a metric space that is a relaxation of
the standard notion of bounded doubling dimension.

Discussions. After the talk, with Darren and Katrin we briefly discussed about the imple-
mentability of the presented algorithm. We summarized that though the power of the result
in theory is that it gives a generalized framework for dealing with various clustering objective
functions simultaneously, in order to implement it faster we need to do the proposed steps
(for example finding a new center of the partial cluster) with a metric-sensitive algorithm.

3.5 Leveraging Learning-to-prune and reinforcement learning for solving
combinatorial optimisation problems

Deepak Ajwani (University College Dublin, IE)

License Creative Commons BY 4.0 International license
© Deepak Ajwani

In recent years, machine learning (ML) techniques are being increasingly used for solving com-
binatorial optimisation problems. This often requires a deep integration between techniques
from optimisation literature, algorithm engineering and machine learning. For instance,
while the optimisation and algorithmic literature guides the feature engineering in learning
models, the learning models can guide crucial design steps in exact MILP solvers as well as
heuristics. Specifically, I would like to talk about the research done in my group on a range of
combinatorial optimisation problems in graphs such as variants of vehicle routing problems,
Max Cut, Max Clique, Steiner tree etc. We have used a combination of supervised techniques
such as learning-to-prune, reinforcement learning techniques such as CombOptZero and some
recent unsupervised learning techniques to compute high quality solutions to optimisation
problems in an efficient and scalable manner. In addition, we have also explored if learning
techniques can speed up local search heuristics.

Discussions. There seemed to be a general agreement about my main argument that in
order for a learning technique to (i) have a simple, interpretable architecture, (ii) generalise
to larger sizes and (iii) work effectively with limited training data, it will likely have to be
integrated with techniques from optimisation and algorithm engineering communities. The
questions were mostly geared towards better understanding of the learning models and the
associated details, such as how to label the data in case of multiple optimal solutions and
what to do with integer linear programs that are non-binary etc. There were some discussions
on how to apply these techniques to reduce the problem size and improve the refinement
part (some of this is also noted in the open problem section). There were also discussions on
how effectively reduction rules and kernelization techniques can be leveraged in the learning
frameworks that I presented. Also, I was pointed to interesting references in this area such
as Frederic Manne’s work on using GNN for learning vertex cover 1, the linked paper on
heuristics for hitting set2 and on “Graph Partitioning and Sparse Matrix Ordering using
Reinforcement Learning and Graph Neural Networks”3.

1 https://drops.dagstuhl.de/opus/volltexte/2022/16546/
2 https://epubs.siam.org/doi/pdf/10.1137/1.9781611977042.17
3 https://arxiv.org/abs/2104.03546

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://drops.dagstuhl.de/opus/volltexte/2022/16546/
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977042.17
https://arxiv.org/abs/2104.03546

George Karypis, Christian Schulz, and Darren Strash et al. 9

3.6 Using Steiner Trees in Hypergraph Partitioning
Tobias Heuer (Karlsruhe Institute of Technology, DE)

License Creative Commons BY 4.0 International license
© Tobias Heuer

Minimizing wire-lengths is one of the most important objectives in the realization of modern
circuits. The design process involves initially placing the logical units (cells) of a circuit
onto a physical layout, and subsequently routing the wires to connect the cells. Hypergraph
partitioning (HGP) has been long used as a placement strategy in this process. However,
it has been replaced by other methods due to limitations of existing objective functions
for HGP, which only minimizes wire-lengths implicitly. In this talk, we present a novel
HGP formulation that maps a hypergraph H, representing a logical circuit, onto a routing
layout represented by a weighted graph G. The objective is to minimize the total length
of all wires induced by the hyperedges of H on G. To capture wire-lengths, we compute
minimal Steiner trees – a metric commonly used in routing algorithms. For this formulation,
we present a direct k-way multilevel algorithm that we integrate into the shared-memory
hypergraph partitioner Mt-KaHyPar. Mt-KaHyPar is a highly scalable partitioning algorithm
that achieves the same solution quality as the best sequential algorithms, while being an
order of magnitude faster with only ten threads. Our experiments demonstrate that our
new algorithm achieves an improvement in the Steiner tree metric by 7% (median) on VLSI
instances when compared to the best performing partitioning algorithm that optimizes the
mapping in a postprocessing step. Although computing Steiner trees is an NP-hard problem,
we achieve this improvement with only a 2–3 times slowdown in partitioning time compared
to optimizing the connectivity metric.

Discussions. In the talk, Tobias used wire-length minimization as the main objective for
VLSI design and motivation for my novel hypergraph partitioning formulation. However,
attendees rightly noted that this is just one of several important metrics, such as, e.g., the
perimeter of bounding boxes around nets. Additionally, some mentioned that placement
challenges have been addressed using reinforcement learning recently.

3.7 Directed Acyclic Partitioning from Graphs to Hypergraphs
Ümit V. Çatalyürek (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 4.0 International license
© Ümit V. Çatalyürek

Data transfer continues to be the biggest obstacle to efficient computation. The de facto
abstraction for modeling computations has been directed acyclic graphs (DAGs). When
scheduling computational tasks, an effective load balance and data locality trade-off is required.
The ordering and mapping of the DAG’s vertices (i.e., tasks) to computational resources
are significantly benefited by acyclicity. As a result, it is preferable to maintain acyclicity
at various levels of computation. In this talk, we demonstrate how acyclic partitioning
of DAGs – partitioning where the inter-part edges of vertices from different parts should
preserve an acyclic dependency among the parts – can be investigated to reduce redundant
data movement on two-level memory settings. We also present the challenges of developing
acyclic partitioning methods for directed hypergraphs, where they provide more elegant and
accurate abstractions than graph counterparts.

23331

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

10 23331 – Recent Trends in Graph Decomposition

Discussions. George Karypis was suggesting a potential alternative model for DAG parti-
tioning for quantum simulation, with one fixed partition, to model the problem as edge-cut
partitioning. In offline discussions, it turned out that the model doesn’t fit the problem that
is solved here.

3.8 Approximate Modular Decomposition
Yosuke Mizutani (University of Utah, US)

License Creative Commons BY 4.0 International license
© Yosuke Mizutani

One fruitful avenue for designing efficient graph algorithms has been to parameterize using
a variety of structural parameters (e.g. treewidth, clique-width) in addition to the natural
parameter (i.e. solution size). Modular-width is a structural parameter introduced by
Gajarsky et al. (2013) in an effort to generalize simpler notions on dense graphs while avoiding
the intractability that often came with the existing clique-width parameter. Modular-width
has several additional advantages – it can be computed in linear-time, and the associated
modular decomposition (MD) tree has applications in visualization and parallel processing.
Unfortunately, real-world graphs tend to have large modular-width. This leads us to the
following natural questions: given a graph G, is there a useful notion of approximate MD
trees that preserves fast computation, exhibits much lower widths, and enables solution of
the downstream problems with quality guarantees? There are several possible avenues of
attack. For example, we could define a graph editing problem: can we make a small number
of changes to G to produce a G′ with low modular-width? Another formulation would be to
relax the definition of modules, which is likely closely interwoven with the idea of twin-width.
Finally, we consider the option of taking a data-driven approach. What kind of graphs admit
a nice approximation of modular decomposition?

3.9 Exact k-way sparse matrix partitioning
Rob H. Bisseling (Utrecht University, NL)

Joint work of Engelina Jenneskens
License Creative Commons BY 4.0 International license

© Rob H. Bisseling

To minimize the communication in parallel sparse matrix-vector multiplication while main-
taining load balance, we need to partition the sparse matrix optimally into k disjoint parts,
which is an NP-complete problem. We present an exact algorithm and an implementation
called General Matrix Partitioner (GMP) based on the branch and bound (BB) method which
partitions a matrix for any k, and we explore exact sparse matrix partitioning beyond bipar-
titioning. We also present an integer linear programming (ILP) model for the same problem,
based on a hypergraph formulation. We used both methods to determine optimal 2,3,4-way
partitionings for a subset of small matrices from the SuiteSparse Matrix Collection. To answer
the question “How good is recursive bipartioning (RB)?”, we used the exact results found for
k = 4 to analyse the performance of RB with exact bipartitioning. Finally, we will discuss how
exact methods inspire heuristic methods such as medium-grain partitioning and we will briefly
touch on heuristic solvers such as Mondriaan and its hybrid distributed/shared-memory
parallel version PMondriaan, which is currently under development.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

George Karypis, Christian Schulz, and Darren Strash et al. 11

Discussions. George Karypis asked whether there are worst-case results about the quality
of recursive bipartitioning. There are papers like by Shang-Hua Teng and Horst Simon about
possibly bad partitionings by RB, but the results of the talk show that they do not occur in
practice for the small problems tested. Sherry Li asked about the realism of communication
volume as a metric reflecting communication time. It is true that you want to minimise
total communication volume as wel as per processor volume, and also the latency. Since
data words communicated to the same processors can be combined into one message, the
latency can be significantly reduced, and will only be a problem for a very large numbers of
processors and a relatively small problem size. Tobias Heuer asked what splitting hyperedges
exacly means. This feature is incorporated in the version of PMondriaan to be released, and
it can be exemplified by converting hyperedges of size 3 into 3 edges of size 2, and then
combining them with other edges and correcting where needed for the cost.

3.10 What Scotch cannot do yet
François Pellegrini (University of Bordeaux, FR)

License Creative Commons BY 4.0 International license
© François Pellegrini

In 30 years, the Scotch software has seen many increases in its capabilities. However, like
its (friendly) competitors, its functional envelope is limited. In this talk, we will discuss
problems that Scotch is not yet able to solve, and how to address them in the (near) future.

Discussions. By the end of the presentation, two open problems were presented. The first
one relates to approximating distances in a family of recursively coarsened graphs, with
respect to the distance computed in an initial fine graph. The aim of this method would
be to avoid handling O(p2) distance matrices for all target graph vertices (where p is the
number of such vertices). During the discussion, it was mentioned that software for car
traffic routing also use multilevel descriptions of the distances between locations [Sebastian],
and that partial matrices are built, or local distance computations, are performed for each
level. The case for tree-shaped architectures was also discussed [Henning], but answers are
straightforward with this architecture. The second open problem relates to the computation
of distance-2 coloring of a graph, which is a prerequisite to run a subsequent deterministic,
lock-free matching algorithm. The discussion [Bora, Fredrik] converged to the fact that if
the final goal of obtaining a deterministic matching was sought, directly using a locking
algorithm could do faster for a small number of threads.

3.11 Recent Advances in Streaming (Hyper)Graph Decomposition
Marcelo Fonseca Faraj (Universität Heidelberg, DE)

License Creative Commons BY 4.0 International license
© Marcelo Fonseca Faraj

There is a gap in (hyper)graph decomposition algorithms. Streaming algorithms, which are
adaptable to small machines, partition huge (hyper)graphs quickly, but yield low-quality res-
ults. Conversely, in-memory algorithms produce high-quality solutions but require significant
memory. Our talk explores recent advances in streaming (hyper)graph decomposition. We

23331

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

12 23331 – Recent Trends in Graph Decomposition

begin with streaming graph partitioning, covering from hash-based to buffered approaches.
Next, we discuss the state of the art in streaming process mapping. Finally, we present recent
advances in streaming hypergraph partitioning. With their recent introduction and potential
for further improvement, these families of streaming algorithms present unexplored avenues
for improvement, while their recent strong results can provide new insights into solving the
respective in-memory versions of these problems.

Discussions. There were some discussions if the degree of a vertex is currently considered in
the local opbjective function that is optimized by the streaming graph partitioning algorithm.
Currently this is not the case, but this may be interesting to consider in the future. Moreover,
Tobias Heuer mentioned that the buffered streaming model for streaming graph partitioning
could also be extended to hypergraph partitioning yielding potentially higher solution quality
for hypergraph streaming partitioners.

3.12 Graph partitioning and distributed graph processing – An
end-to-end optimization perspective

Ruben Mayer (Universität Bayreuth, DE)

License Creative Commons BY 4.0 International license
© Ruben Mayer

Graph partitioning is often considered as a necessary preprocessing step for distributed
graph processing. In doing so, the partitioning quality in terms of cut size and balancing is
crucial to the performance of distributed graph processing jobs. However, yielding high graph
partitioning quality is a challenging and compute-intensive problem. Many different graph
partitioning algorithms have been proposed, which differ both in their achieved partitioning
quality as well as their computational costs. How many resources and how much time to
invest into partitioning depends on various factors such as the graph size, the resource
budget of the user, and the complexity and run-time of subsequent graph processing on the
partitioned graph. In my talk, I will elaborate on the problem of optimizing the end-to-end
graph processing pipeline.

Discussions. There were several questions during the talk. For example, what can we learn
from the trained ML models in EASE about the workloads under which certain partitioners
perform best and how much of the graph in HEP is high-degree vs. low-degree, especially
whether there are significant high-degree parts.

3.13 Parameterized complexity and algorithmics – some horizons – and
the universal applied paradigm of diverse solutions

Mike Fellows (University of Bergen, NO)

License Creative Commons BY 4.0 International license
© Mike Fellows

The talk will describe in a very accessible way the foundational motivations and brief
formal setup of parameterized complexity, a name which has too many syllables, but it is
pretty straightforward and can be compared to “coordinatized geometry”. It has always

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

George Karypis, Christian Schulz, and Darren Strash et al. 13

been nurtured as a theory, with the aspiration to be useful in practice. It goes beyond
the one-dimensional P versus NP framework in a quite simple way, much as coordinatized
geometry went beyond the Geometry of the Greeks. One natural way to usefully deploy
parameterization is to address the working reality of many computing applications domains:
that a single mathematically optimal solution is not what is really wanted! In many practical
computing applications areas, what is really wanted is a moderate-sized collection of quality-
wise pretty good solutions to choose from, often on the basis of side information not included
in the strict optimal mathematical model. The talk is based on a recent IJCAI paper
with multiple authors that began this direction of research, that fits very neatly with the
mathematical algorithm design tools of parameterized complexity.

3.14 Combinatorial problems in sparse matrix computations
Xiaoye S. Li (Lawrence Berkeley National Laboratory, US)

License Creative Commons BY 4.0 International license
© Xiaoye S. Li

We will describe the combinatorial algorithms needed in sparse matrix computations for
solving algebraic equations. We will focus on the open problems in the graph preprocessing
stages, such as ordering, symbolic factorization, and communication schedule, and particularly
the speculations on the multi-GPU design.

Discussions. George Karypis mentioned that there isn’t any refinement used specifically
for the vertex separator. There was some discussion that involved multiple iterations of
Luby’s algorithm to increase the size of the computed independent set (and hence decrease
the size of the computed vertex cover). Sherry clarified that, at present, they only use a
single iteration, although he acknowledged that there’s potential to enhance its quality. The
two delved deeper into the concept of multilevel refinement. In this context, there were
dicussions if and how combinations of mindegree and nested dissections, which have proven
to be effective in practice, had been considered.

3.15 Algebraic Programming for Graph Computing: GraphBLAS and
beyond

Albert-Jan Yzelman (Huawei Technologies – Zürich, CH)

License Creative Commons BY 4.0 International license
© Albert-Jan Yzelman

Evolving from GraphBLAS, Algebraic Programming, or ALP for short, requires programmers
to annotate their programs with explicit algebraic information. This information is then used
in auto-parallelisation and other automatically applied optimisations, ranging from low-level
concerns such as vectorisation to more complex algorithmic transformations. Recent work
revolves around achieving faster parallel performance chiefly via non-blocking execution,
providing more humble programming interfaces beyond GraphBLAS’ generalised sparse linear
algebra, and introducing a system for structured data representation. This talk will briefly
introduce the status of ALP as-is, the guiding ideas behind its design, and a summary of recent
advances. It then focuses on challenges towards increasing the usability and applicability

23331

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

14 23331 – Recent Trends in Graph Decomposition

of ALP, as well as on challenges in bridging the state of the art in combinatorial scientific
computing algorithms –such as partitioners or schedulers– for improving the performance of
ALP-based programs.

Discussions. There was a discussion regarding the scope of algebraic programming, in
particular if it is exclusively tied to GraphBLAS, Albert-Jan Yzelman clarified that algebraic
programming is not restricted to just GraphBLAS. In fact, the domain encompasses a wide
variety of applications and tools.

3.16 Distributed Landmark Labelling Using Vertex Separators
Kamer Kaya (Sabanci University – Istanbul, TR)

License Creative Commons BY 4.0 International license
© Kamer Kaya

Distance queries are a fundamental part of many network analysis applications. Distances
can be used to infer the closeness of two users in social networks, the relation between
two websites in a web graph, or the importance of the interaction between two proteins or
molecules. As a result, being able to answer these queries rapidly has many benefits to the
area of network analysis as a whole. Pruned landmark labeling (Pll) is a technique used to
generate an index for a given graph that allows the shortest path queries to be completed in a
fraction of the time when compared to a standard breadth-first or a depth-first search-based
algorithm. Parallel Shortest-distance Labeling Psl reorganizes the steps of Pll for the
multithreaded setting and works particularly well on social networks. Unfortunately, even
for a medium-size, 50 million vertex graph, the index size can be as large as 300GB. On
the same graph, a single CPU core takes more than 12 days to generate the index. This
presentation is on a distributed algorithm by partitioning the input graph. The proposed
method improves both the execution time and the memory consumption by distributing
both the data and the work across multiple nodes of a cluster.

Discussions. There was some discussion on how the graph can be better partitioned and
how the algorithm can be modified for vertex/edge additions/deletions. The size of the
index for larger graphs was questioned and the best possible performance we can was
also discussed briefly.

3.17 Recent Advances in Ka (Hyper)Graph Partitioning
Daniel Seemaier and Lars Gottesbüren (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 4.0 International license
© Daniel Seemaier and Lars Gottesbüren

In the first part of our talk, we will present a brief overview of our two main solvers Mt-
KaHyPar and KaMinPar for balanced (hyper)graph partitioning. Until recently, there was
a severe gap in terms of solution quality between sequential and parallel solvers. We have
since parallelized all of the techniques in sequential solvers that lead to high solution quality,
which are now available in Mt-KaHyPar. Moreover, we tackled new problem domains such as
efficiently partitioning into a very large number of clusters with the deep multilevel scheme,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

George Karypis, Christian Schulz, and Darren Strash et al. 15

which is available in KaMinPar. Additionally, KaMinPar was recently extended with a high-
performance MPI mode, adapting the deep multilevel scheme to the distributed scenario. In
the second part of our talk, we will then present some currently ongoing work. Traditionally,
local search algorithms perform only balance-preserving moves. Perhaps unsurprisingly, we
can achieve huge quality improvements by permitting large balance violations; performing
unconstrained moves with some caution and rebalancing the solution later on. The same
quality gap that used to exist between sequential and shared-memory parallel, now exists
between shared-memory parallel and distributed-memory partitioners. Therefore, we are
working on a distributed FM version in KaMinPar, as well as a distributed version of the
recently proposed JET algorithm, both of which show promising results in preliminary
experiments.

Discussions. The discussions revolved around the topics of scalability and problem formula-
tions. Specifically, how many cores are needed for Mt-KaHyPar to be faster than PaToH (2
cores), why does the deterministic version scale better than the non-deterministic versions
(because non-determinism may incur additional rounds needed to converge) and matters of
parallel programming.

3.18 Graph Neural Network Research at AWS AI
George Karypis (University of Minnesota – Minneapolis, US)

License Creative Commons BY 4.0 International license
© George Karypis

During just a few years, Graph Neural Networks (GNNs) have emerged as the prominent
supervised learning approach that brings the power of deep representation learning to graph
and relational data. An ever-growing body of research has shown that GNNs achieve state-
of-the-art performance for problems such as link prediction, fraud detection, target-ligand
binding activity prediction, knowledge-graph completion, and product recommendations.
As a result, GNNs are quickly moving from the realm of academic research involving small
graphs to powering commercial applications and very large graphs. This talk will provide an
overview of some of the research that AWS AI has been doing to facilitate this transition,
which includes developing the Deep Graph Library (DGL)–an open source framework for
writing and training GNN-based models, improving the computational efficiency and scaling
of GNN model training for extremely large graphs, developing novel GNN-based solutions
for different applications, and making it easy for developers to train and use GNN models by
integrating graph-based ML techniques in graph databases.

3.19 An MPI-based Algorithm for Mapping Complex Networks onto
Hierarchical Architectures

Henning Meyerhenke (HU Berlin, DE)

License Creative Commons BY 4.0 International license
© Henning Meyerhenke

Processing massive application graphs on distributed memory systems requires to map
the graphs onto the system’s processing elements (PEs). This task becomes all the more
important when PEs have non-uniform communication costs or the input is highly irregular.

23331

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

16 23331 – Recent Trends in Graph Decomposition

Typically, mapping is addressed using partitioning, in a two-step approach or an integrated
one. Parallel partitioning tools do exist; yet, corresponding mapping algorithms or their
public implementations all have major sequential parts or other severe scaling limitations. In
this paper, we propose a parallel algorithm that maps graphs onto the PEs of a hierarchical
system. Our solution integrates partitioning and mapping; it models the system hierarchy in
a concise way as an implicit labeled tree. The vertices of the application graph are labeled
as well, and these vertex labels induce the mapping. The mapping optimization follows
the basic idea of parallel label propagation, but we tailor the gain computations of label
changes to quickly account for the induced communication costs. Our MPI-based code is the
first public implementation of a parallel graph mapping algorithm; to this end, we extend
the partitioning library ParHIP. To evaluate our algorithm’s implementation, we perform
comparative experiments with complex networks in the million- and billion-scale range. In
general our mapping tool shows good scalability on up to a few thousand PEs. Compared to
other MPI-based competitors, our algorithm achieves the best speed to quality trade-off and
our quality results are even better than non-parallel mapping tools.

Discussions. The discussion after the talk revolved around various aspects: (i) the advant-
ages and disadvantages of modeling the system architecture by a tree, (ii) implementation
aspects regarding high-degree vertices, and (iii) the straightforward extension to reordering
with the proposed approach. Furthermore, some pointers to additional related work were
provided.

4 Working Groups

4.1 Balanced Edge Partitioning for Distributed Graph Processing
Ruben Mayer (Universität Bayreuth, DE)

License Creative Commons BY 4.0 International license
© Ruben Mayer

The generally accepted formulation of the edge partitioning problem imposes a load balancing
constraint on the number of edges per partition: ∀pi ∈ P : |pi| ≤ α ∗ |E|

k for a given
α ≥ 1, α ∈ R, where |pi| denotes the number of edges in partition pi. However, balancing
only the number of edges does not always lead to good load balancing in distributed graph
processing. In some cases, it is better to balance the number of vertex replicas. The open
problem is to achieve an edge partitioning that is balanced both in the number of edges
and vertices while minimizing the vertex replication factor. First thoughts in that direction
may lead to the formulation of a multi-constraint partitioning problem. The working group
discussed various models that could be used to achieve that, i.e. modelling the problem as a
multi-constraint hypergraph or matrix partitioning problem.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

George Karypis, Christian Schulz, and Darren Strash et al. 17

4.2 Edge-Colored Clustering
Blair D. Sullivan (University of Utah – Salt Lake City, US)

License Creative Commons BY 4.0 International license
© Blair D. Sullivan

This working group discussed the Edge-Colored Clustering problems presented in Thursday
morning’s Open Problem session, which relate to issues in clustering hypergraphs with
categorical edge labels. The group began by trying to relate the non-overlapping variant of
the problem to hypergraph partitioning without balance constraints. They also considered
whether the locally budgeted overlap problem is equivalent to a generalization of vertex cover
(in particular, b-coloring was discussed), eventually resulting in a family of graphs for which
the two problems diverge arbitrarily. In addition to trying to relate ECC to previously-studied
problems, the group also discussed (in)approximability, data reduction/kernelization, the
possibility of using ILP solvers, and practical use-cases.

4.3 Exact k-way sparse matrix partitioning
Rob H. Bisseling (Utrecht University, NL)

License Creative Commons BY 4.0 International license
© Rob H. Bisseling

Robust ILP methods have consistently demonstrated superior performance over Brand and
Bound when it comes to matrix partitioning. Delving deeper into the intricacies of these
solvers reveals a myriad of complex processes at work. The question arises: what unique
advantages do ILPs offer in the realm of sparse matrix and graph partitioning? What insights
can we glean from their application and functionality? This was discussed in part in the
working group. Interestingly, when ILP is applied during the initial partitioning phase,
it often paves the way for potential improvements. However, it’s worth noting that these
enhancements, while promising, can come at a significant cost. And surprisingly, in the context
of initial partitioning, they might not always translate into better overall results. Could
there be something valuable to extract from the pre-solve and branch-and-bound techniques
employed in these solvers? Such insights could be revolutionary, especially given the current
limitations of solvers when dealing with dense networks. Furthermore, there was an emerging
discourse surrounding parallel solvers. It’s essential to emphasize this area as it holds
significant promise and potential for future developments in matrix partitioning techniques.

5 Open Problems

In the last four decades, there has been a tremendous amount of research in the area of
the seminar. See for example the book by Bichot and Siarry [7], the survey by Schloegel
et al. [67] or Kim et al. [32] as well as last generic surveys on the topic by Buluç et al. [10]
and more recently Çatalyürek et al. [14]. However, a wide range of challenges remain in
the area. Thus we now report currently open problems and future directions in the area of
(hyper)graph decomposition that have been presented during Dagstuhl Seminar 23331 on
“Recent Trends in Graph Decomposition”.

23331

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

18 23331 – Recent Trends in Graph Decomposition

5.1 Preliminaries
A weighted undirected hypergraph H = (V, E, c, ω) is defined as a set of n vertices V and a
set of m hyperedges/nets E with vertex weights c : V → R>0 and net weights ω : E → R>0,
where each net e is a subset of the vertex set V (i.e., e ⊆ V). The vertices of a net are
called pins. We extend c and ω to sets in the natural way, i.e., c(U) :=

∑
v∈U c(v) and

ω(F) :=
∑

e∈F ω(e). A vertex v is incident to a net e if v ∈ e. I(v) denotes the set of
all incident nets of v. The set Γ(v) := {u | ∃e ∈ E : {v, u} ⊆ e} denotes the neighbors
of v. The degree of a vertex v is d(v) := |I(v)|. We assume hyperedges to be sets rather
than multisets, i.e., a vertex can only be contained in a hyperedge once. Nets of size one
are called single-vertex nets. Given a subset V ′ ⊂ V , the subhypergraph HV ′ is defined as
HV ′ := (V ′, {e ∩ V ′ | e ∈ E : e ∩ V ′ ̸= ∅}).

A weighted undirected graph G = (V, E, c, ω) is defined as a set of n vertices V and a
set of m and edges E with vertex weights c : V → R>0 and edge weights ω : E → R>0. In
contrast to hypergraphs, the size of the edges is restricted to two. Let G = (V, E, c, ω) be a
weighted (directed) graph. We use hyperedges/nets when referring to hypergraphs and edges
when referring to graphs. However, we use the same notation to refer to vertex weights c,
edge weights ω, vertex degrees d(v), and the set of neighbors Γ. In an undirected graph, an
edge (u, v) ∈ E implies an edge (v, u) ∈ E and ω(u, v) = ω(v, u).

5.2 Balanced (Hyper)graph Decomposition and Variations
Balanced Hypergraph Partitioning

Multilevel Scheme. Although traditional coarsening algorithms work particularly well for
mesh graphs, their extension to hypergraphs has revealed a lack of understanding and can
easily destroy the structure of the hypergraph. It is important to invest in better coarsening
techniques tailored specifically to hypergraphs to preserve their structural properties. An
interesting avenue in that direction could be incorporating embeddings during coarsening.
By leveraging embeddings, coarsening algorithms could potentially achieve better representa-
tions of hypergraph structures, leading to improved partitioning outcomes. While spectral
techniques were popular in the pre-multilevel era, pure spectral partitioning was not deemed
competitive afterwards – mainly due to high running times. With the increased performance
of today’s machines and GPUs, it might be worthwhile to revisit these approaches as multi-
level refinement techniques. Recently, unconstrained refinement (ignoring balance constraint
while performing node moves) with subsequent rebalancing has shown promising results.
However, the design space of these types of algorithms is far from being explored.

Methodology. Currently, we are lacking evaluations of real-world applications and workflows
that use partitioning for load balancing and communication volume minimization. Therefore,
the impact of quality gains in partitioning in terms of running time improvements for the
applications are somewhat unclear. Moreover, in both graph and hypergraph partitioning,
we still don’t have a uniformly accepted balance constraint definition that works well in the
case of vertex weighted (hyper)graphs. There exist definitions that enforce a lower bound on
the block weights, add the weight of the heaviest vertex to the balance definition, or simply
require that each block must be non-empty. Given that finding a balanced partition is an
NP-hard problem even without optimizing an objective function, we should investigate in a
balance definition that guarantees the existence of a feasible solution without providing too
much leeway in the maximum allowed block weights.

George Karypis, Christian Schulz, and Darren Strash et al. 19

High-Quality Distributed-Memory Partitioning. In recent years, several publications
demonstrated that shared-memory partitioning algorithms can achieve the same solution
quality as their sequential counterparts. However, the same quality gap still exists between
sequential and distributed-memory solvers.

Bottleneck Objective Functions. For parallel computations, we assign the nodes of a
(hyper)graph evenly to processors in a computing cluster. This should balance the computa-
tional load across the cluster. However, this does not bound the communication between
processors, which can also become a sequential bottleneck if some PEs have to communicate
significantly more than others. Therefore, we should investigate in techniques for optimizing
bottleneck objective functions.

The One Partitioning Tool Idea. The graph- and hypergraph partitioning problems come
in many different flavors: weighted vs. unweighted (hyper)graphs, directed vs. undirected
hypergraphs, different objective functions, single vs. multi-objective, single vs. multi-
constraint, partitioning with fixed vertices, partitioning with variable block weights, etc.
Can we join forces and build (upon) a single open-source multilevel framework that is easily
extensible to foster the research and development of new partitioning heuristics such that we
can have a single tool that actually is able to solve all of these problems?

(Hyper)DAG Scheduling

Let a HyperDAG (or, alternatively, a DAH – directed acyclic hypergraph) represent a
computation and be given by a set of vertices and directed hyperedges, i.e., H = (V, N).
Here, V = S ∪ T ∪ O while every directed hyperedge n ∈ N consists of a source and an
arbitrary number of destination vertices; i.e., n ∈ V × P(V), where P(V) is the power set
of V. The vertices S are the input (source) data of the computation, the outputs are in O,
while intermediate computations are captured by computing tasks in T .

Scheduling the computation on a parallel system with p processing units requires assigning
each vertex v ∈ V a time step tv and a location sv ∈ {0, 1, . . . , p − 1} that define when and
where to execute the intermediate computation in the case of v ∈ T , or when and where an
input (or output) should be available in the case of v ∈ S (or v ∈ O).

Let us initially consider a machine model that costs communication and computation,
though does not consider weights for simplicity of presentation – i.e., each data element
v ∈ S ∪ O uniformly costs some unit storage; v ∈ T generates intermediate data that costs
the same unit storage; and v ∈ T costs some unit time to compute.

Approaching the scheduling problem from a hypergraph partitioning point of view
generates a mutually disjoint V0, . . . , Vp−1 partition of V under some allowed load imbalance ϵ,
and minimizes the traditional λ−1-metric

∑
ni∈N (λi − 1); i.e., minimizes the communication

volume of data units between parts of the partition4. However, even a perfectly balanced
and optimal partitioning may lead to a division of the HyperDAG across the p compute
units that exposes no parallelism whatsoever. One solution is to divide the HyperDAG into
s layers L0, . . . , Ls−1, where vertices v ∈ L≤i are predecessors of those in L>i, and then
to partition each layer separately. Recent results show, amongst other results, that the
resulting HyperDAG partitioning problem is NP-hard, and also that no polynomial-time
approximation algorithm exists [52]. An additional problem is determining an appropriate s,
which is a hard problem on its own.

4 Here, λi is defined as the connectivity of the ith hyperedge, i.e., the number of parts of the partition the
vertices in that hyperedge span.

23331

20 23331 – Recent Trends in Graph Decomposition

Optimal Scheduling. Similar in motivation to the sparse matrix partitioning problem in
Section 5.2 in this paper, one challenge is to find optimal schedules for real-world HyperDAGs.
A collection of problems may be found in open HyperDAG_DB repository5, which welcomes
additional problem submissions. Determining optimal schedules enables efficient execution
of oft-repeated computations, such as those in training neural networks; enables gauging the
effectiveness of current heuristics for online scheduling, such as those used within run-time
systems like OpenMP or Cilk; and enables inspiring better on-line heuristics by looking
at optimal examples. This direction implies finding better ILP formulations and improved
pruning strategies for use with optimal scheduling algorithms. Pruning strategies may
furthermore rely on data-driven methods, see e.g., Juho et al. [39], trained using entries of
the HyperDAG database that have been solved to optimality.

Models and Hardness. The hardness results previously presented depend on assumptions
on the underlying machine and cost models. Indeed, other choices may reveal differing
hardness results– for example, the same recent work shows that removing the layer-wise
constraint in favor of a makespan constraint on the HyperDAG partitioning results in an
optimization problem where evaluating whether said constraint has been violated is an
NP-hard problem in itself [52]. A fundamental challenge thus is to identify what machine
and cost model choices
1. result in significantly harder optimization problems,
2. affect the search space underlying the optimization problem and how, and
3. have optimal schedules that relate to one another and how.

Example modeling choices include whether time step assignment takes place at the unit
vertex granularity or in bulk (e.g., assigning multiple tasks to a single layer); whether data
between vertices are moved individually or in bulk; whether communication in a time step
charges constant latency, a cost proportional to a size, or both; whether communication size
corresponds to volume or h-relations6; whether communication may overlap with computation;
or whether communication throughput and latency (when costed) are uniform across the p

processing units, or instead hierarchical or even topology-dependent. More detailed initial
considerations on such modeling options appear in a pre-print [51].

To make each of the three above challenges more concrete, we briefly follow with known
examples: 1+2) electing a machine model where vertex-to-time-step assignment happens in
bulk and layer-wise, leads to fewer variables in an ILP formulation and thus to a reduced
search space; yet, paradoxically, also has stronger known hardness results compared to
non-layered hypergraph partitioning [52]; 3) there is at most a factor two difference between
optimal BSP solutions7 with overlapping communications versus those without.

(Hyper)graph Algorithms and ALP

Algebraic programming, or ALP for short, enables writing programs with explicit algebraic
information passed into the programming framework. Examples of such algebraic information
are binary operators and their properties such as associativity, commutativity, etc., as well
as richer algebraic structures such as monoids and semirings. A semiring embodies the

5 https://github.com/Algebraic-Programming/HyperDAG_DB/
6 the maximum of incoming and outgoing messages to or from any partition at a given time step.
7 with BSP, compute tasks and communication are considered in bulk, communication charges both latency

and size, communication size is given by h-relations, and latency as well as throughput parameters are
uniform [78].

https://github.com/Algebraic-Programming/HyperDAG_DB/

George Karypis, Christian Schulz, and Darren Strash et al. 21

rules under which linear algebra takes place, but allows its generalization to any pair of
additive and multiplicative operations under which those rules hold; for example, while the
plus-times semiring enables standard numerical linear algebra, the min-plus semiring enables
shortest-paths computations. The following two observations are core to GraphBLAS: a)
most graph algorithms can be expressed in (generalized) linear algebra; and b) our deep
understanding of optimizing sparse linear algebra (thus) applies to graph computations.

The recent nonblocking mode of ALP/GraphBLAS performs fusion of linear algebraic
primitives under any algebraic structure, at run-time. It achieves up to 16.1× and 12.2×
speedup over the similar state-of-the-art frameworks of SuiteSparse:GraphBLAS and Eigen on
ten matrices for the PageRank algorithm, with similar results for a Conjugate Gradient (CG)
solver and sparse deep neural network inference [46, 45]. Other recent work introduces support
for dense linear algebra, matrix structures (e.g., triangular), and views (e.g., permutations
or outer products) [71]. It furthermore enables automatic distributed-memory execution of
sequential ALP code [86, 68].

ALP Accelerating Graph Algorithms. With the new extensions, both the applicability and
performance of the ALP framework has increased, and should enable the acceleration of graph
algorithms that previously only had sequential or otherwise un-optimized representations.
To aid porting efforts, ALP not only supports the auto-parallelization of linear algebraic
formulations of graph problems, but also that of vertex-centric ones [82].

One challenge is to find graph algorithms that, despite recent advances, remain hard to
express using generalized linear algebra, or graph algorithms that are expressible yet do not
achieve high performance. Examples include k-core decomposition and p-spectral clustering,
the former done successfully [41] and the latter still partially relying on non-ALP code [53].

Graph Algorithms Accelerating ALP. Techniques exist to accelerate sparse matrix com-
putations using hypergraph partitioning, either on distributed-memory [13, 80, 57], shared-
memory [83, 84], or both simultaneously [87, 85]. However, based on the computation, either
the hypergraph representation of a sparse matrix must be adapted, the minimization objective
modified, or both; see, e.g., Ballard et al. [5] who consider sparse matrix–matrix (SpMSpM)
multiplication rather than sparse matrix–vector (SpMV) multiplication, as most preceding
cited works. Thus for ALP as a programming model, the challenge lies in how these models
and optimization techniques may be combined – preferably transparently to the programmer
– to optimize the arbitrary sequences of computations and inputs that ALP encounters.

For example, while we may readily reuse known techniques to optimize any program
consisting of SpMV multiplications with the same input matrix and some vector operations,
the framework must be smart to select a different model and optimization objective when
it concerns SpMSpM multiplication instead. Furthermore, relying on such existing work
requires ALP to translate between different partitionings whenever differing operations or
differing input matrices are encountered.

Ideally, however, the framework co-optimizes across multiple primitives and inputs that
it encounters. The following avenues seem possible:
1. dynamically building fine-grained (hyper)DAG representations, followed by partitioning,

(Hyper)DAG partitioning [50, 59], or scheduling (see also the related problem 5.2);
2. employing a coarse-grained parameterized representation of the computation and employ-

ing analytic choices, or
3. some mixture of the preceding avenues.

Difficulties with the first solution likely relate to the scale of the resulting optimization
problem. For the second, while work in nonblocking ALP/GraphBLAS execution shows
that such approaches may be effective [45], it is unclear how they may extend to arbitrary

23331

22 23331 – Recent Trends in Graph Decomposition

primitives and inputs. A successful solution thus may well lie with the third option, and
require mixed fine- and coarse-grained representations combined with both combinatorial
and analytic techniques.

Sparse Matrix Partitioning

Given an m × n matrix A with N nonzeros, the sparse matrix partitioning problem seeks a
partition of A into p disjoint parts A = ∪p−1

i=0 Ai such that the number of nonzeros in part Ai

satisfies |Ai| ≤ (1 + ε)
⌈

N
p

⌉
for 0 ≤ i < p, where ε ≥ 0 is a given load-imbalance parameter.

Important questions for the area of sparse matrix partitioning as well as graph and hypergraph
partitioning are: How good is heuristic bipartitioning compared to exact bipartitioning? How
good is recursive bipartitioning into k parts compared to direct k-way partitioning?

To answer these questions, we can solve a set of small- and medium-size problem instances
to optimality using an exact algorithm either based on the branch-and-bound (BB) approach,
or on an integer linear programming (ILP) approach. To answer the first question, a set of 839
matrices has been bipartitioned by the programs MondriaanOpt [58] and MatrixPartioner [34].
To answer the second question, an exact bipartitioner has been employed within a recursive
bipartitioning program for k = 4 and it has been compared with an exact direct 4-way
partitioner using the program General Matrix Partitioner (GMP) [31] and the commercial
ILP solver CPLEX.

We would like to scale up these initial results, to reach larger problems and be able to
answer the main questions with more confidence. Since for k = 2 the bipartitioner MP
works best, we ask whether its algorithm and implementation can be further improved.
Parallelization should also help to enlarge our database of solved problems. One might
interpret this database as a training set for learning (by either machines or humans) about
properties of optimal solutions.

For k > 2, we surprisingly found that a basic formulation as an ILP solved by a commercial
ILP solver was far superior to the BB solver GMP, and this poses the question what we
can learn from the ILP solvers. Furthermore, can we use them for certain types of sparse
matrix/graph partitioning? Finally, can we improve the basic formulation of the ILP to solve
even larger problems?

Scalable Distributed Memory Partitioning

Scalability of high quality parallel (hyper)graph partitioning remains an active area of research.
In particular, achieving good scalability and quality on large distributed memory machines
is still a challenge, but even on shared-memory machines, scalability to a large number of
threads seems difficult. Even more difficult is aligning the inherent complexity and irregularity
of state-of-the-art algorithms with the restrictions of GPUs or SIMD instructions. Another
conundrum is that, for good memory access locality during partitioning, (hyper)graphs need
to already be partitioned reasonably well. Hierarchies of supercomputers have to be taken
into account during partitioning. This can be done by using multi-recursive approaches
taking the system hierarchy into account or by adapting the deep multilevel partitioning
approach sketched above to the distributed memory case. When arriving at a compute-
node level, additional techniques are necessary to employ the full capabilities of a parallel
supercomputer. For example, many of those machines have GPUs on a node level. Recently,
researchers started to develop partitioning algorithms that run on GPUs and, while of
independent interest, partitioning algorithms developed for this type of hardware can help
in that regard. Hence, future parallel algorithms have to compute partitions on and for

George Karypis, Christian Schulz, and Darren Strash et al. 23

heterogeneous machines. On the other hand, algorithms should be energy-efficient and
performance per watt has to be considered. Lastly, future hardware platforms have to be
taken into consideration when developing such algorithms. One way to achieve this will be
to use performance portable programming ecosystems like the Kokkos library [76].

Balanced Edge Partitioning for Distributed Graph Processing

The generally accepted formulation of the edge partitioning problem imposes a load balancing
constraint on the number of edges per partition (cf., e.g., [47], [48]): ∀pi ∈ P : |pi| ≤ α ∗ |E|

k

for a given α ≥ 1, α ∈ R, where |pi| denotes the number of edges in partition pi. However,
balancing only the number of edges does not always lead to good load balancing in distributed
graph processing, as shown in [49]. In some cases, it is better to balance the number of vertex
replicas – vertex copies produced whenever incident edges are placed in different partitions.
The open problem is to achieve an edge partitioning that is balanced both in the number
of edges and vertices while minimizing the vertex replication factor. First thoughts in that
direction may lead to the formulation of a multi-constraint partitioning problem.

Provably Effective Graph/Hypergraph Coarsening

Today almost all of the state-of-the-art graph and hypergraph partitioning tools utilize
multi-level approaches that are comprised of three phases: coarsening, initial partitioning and
uncoarsening/refinement. Even though numerous different coarsening techniques have been
proposed and many are shown to be effective in multi-level partitioning, we still do not have
a provably effective and efficient coarsening technique for graph or hypergraph partitioning
problems. The situation is more dire for directed graph and hypergraph partitioning for
acyclic partitioning. Keeping acyclicity during coarsening is a desirable property, yet, it is com-
putationally expensive to ensure and maintain acyclicity, with flexible coarsening techniques.

Today we also do not have a well-defined objective for coarsening. In other words, we
do not have well-agreed upon desirable properties of the coarsened graph. Overall we want
to solve a partitioning problem, but in multi-level partitioning the overall success of the
algorithm is a complex function of the three phases of the multi-level approach. We have
many counterexample results showing that the best initial partitioning solution does not
always yield the best result. Hence, it is even more difficult to define a goal for coarsening.

In undirected graph and hypergraph partitioning, many successful tools use randomized
heavy edge matching/clustering techniques, where vertices are visited in random order,
and they are matched with their unmatched neighbor with the heaviest connection. This
randomization helps to “maintain” the graph’s structure. Hence, one potential direction for
successful coarsening techniques is randomized algorithms (see Section 5.2).

Randomized Algorithms for Graph Sparsification and/or Coarsening

Randomized algorithms on networks often involve sampling nodes, edges, or subnetworks [24,
25, 35, 72]. These sampling techniques are used as subroutines (1) for the solution of
fundamental problems on networks, such as connected components, the assignment problem,
breadth-first search on long-diameter graphs, or global minimum cut, and (2) for graph
learning problems trained with variants of mini-batch stochastic gradient. These problems
are widely encountered in the US DOE applications, e.g., the use of the assignment problem
in optimal transport (transforming probability distributions) for cosmology, the use of
connected components in genomics problems. Sketching and sparsification, which are other
randomization techniques used for networks, can be used to find approximate solutions

23331

24 23331 – Recent Trends in Graph Decomposition

1

0 5 10 15 20 25

nz = 105

0

5

10

15

20

25

Figure 1 The 2D mesh resulting from the discretization of a square domain with the five-point
stencil, using 5 points in each dimension, and the corresponding matrix after a row-by-row ordering
of the mesh points. . Left: A 2D mesh. Right: The matrix of the mesh.

for higher-level problems where the network problem is a subroutine. The computational
science applications include domain-decomposition solvers, iterative solvers, preconditioning
for sparse systems using approximate factorization. Sampling and sketching can also be used
as a coarsening technique in multilevel graph partitioning. Unfortunately, the impressive
advances in the theory of randomized algorithms for networks has not been translated into
practical demonstrations. There are ample research opportunities to bridge this gap between
theory and practice, and hence, to produce high-quality software running on modern HPC
hardware with demonstrations on application codes.

Balanced Streaming Partitioning

In streaming edge partitioning, edges are presented one at a time in a stream and must be
assigned to a partition irrevocably at the moment they are encountered. Degree-based hashing
has been proven effective for streaming edge partitioning, however, its potential benefits in
the context of streaming vertex partitioning remain to be explored. An open problem is to
investigate the benefits and challenges associated with using degree-based hashing techniques
specifically for streaming vertex partitioning. Another notable limitation in the current
literature on streaming partitioning algorithms is the predominant focus on common ordering
strategies for the input (hyper)graph, such as random ordering, breadth-first search, and
depth-first search orders. While these ordering strategies provide valuable insights into the
performance of partitioning algorithms, they may not fully capture the challenges posed by
real-world scenarios. Hence, it is an open problem to test streaming partitioning algorithms
under adversarial node and edge orderings, particularly in the context of buffered streaming
algorithms, where locality has a large impact on the quality of the result.

An open problem in the field of streaming process mapping is to address the problem
when the underlying topology cannot be faithfully represented as a hierarchy, but only as a
graph or hypergraph. Existing streaming algorithms either ignore the topology, i.e., solve the
graph partitioning problem, or optimize directly for hierarchical topologies. However, many
real-world scenarios involve complex interconnections that form graph-based topologies.

Exact Solvers for Large k (Hyper)graph Decomposition

Solving the graph bipartitioning problem to optimality using branch-and-bound algorithms
has recently been shown to be highly effective if the optimum solution value is very small.
For example, Delling et al. [20] can solve instances with millions of vertices to optimality in

George Karypis, Christian Schulz, and Darren Strash et al. 25

0 2 4 6 8 10 12 14 16

vol = 58 maxSend = 17 maxRecv = 17
imbal = [0.0%, 0.0%]

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

vol = 61 maxSend = 17 maxRecv = 18
imbal = [0.0%, 0.0%]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

vol = 126 maxSend = 32 maxRecv = 32
imbal = [0.0%, 0.0%]

0

2

4

6

8

10

12

14

16

Figure 2 Partitioning the 16×16 mesh with different routines; the basic diamonds cannot partition
this mesh, but can partition a larger one. Left: The K = 4-way partition of the 16 × 16 obtained by
the special routines [26]. Connectivity−1 is 58. Middle: The K = 4-way partition of the 16 × 16
mesh obtained by PaToH, suboptimal (connectivity−1 is 61). Right: The K = 4-way partition of
the 16 × 32 mesh by the basic diamonds [8, Section 4.8], which is believed to be asymptotically
optimal. Here though the connectivity−1 is 126 and PaToH obtains 93.

a reasonable amount of time. It is still open whether such solvers also exist for balanced
(hyper)graph partitioning problems where k is significantly larger than 2. The difficulty here
comes from the fact that larger values of k introduce a large amount of symmetry in the
problem, i.e., if you have some partition of the graph, then any permutation of the block ids
is also a partition of the graph that has the same balance and objective. Another problem of
current solvers is how to handle dense instances or, more precisely, instances in which the
objective function is large.

Partitioning Stencils and Analyzing The Performance of Partitioning Tools

We investigate the scalability of the graph- and hypergraph-based sparse matrix partitioning
methods in terms of being able to obtain high quality solutions in large problem instances. The
quality measure that we are interested is the connectivity−1 metric, which usually measures
the total volume of communication when vertices represent data items/computations and
the hyperedges represent the dependencies. Ideally, theoretical investigations help explain
the scalability or success of the methods. However, the current algorithms in use are too
sophisticated to lend themselves to such an approach. We are thus looking for sound
experimental methodology.

One approach is to take a subclass of problems, develop special partitioners, and compare
the hypergraph partitioners with those. We take five-point stencil computations in two-
dimensions (2D) for which we have a special linear-time partitioner [26, 77] and see how
good the current partitioning methods are on these cases. We compare the performance of
hypergraph partitioners on these. A rectangular 2D domain is discretized with the five point
stencil and a mesh of size X ×Y is obtained whose points are placed at integer locations. Two
points (x1, y1) and (x2, y2) of the resulting mesh are neighbors iff |x1 − x2| + |y1 − y2| = 1.
A sample mesh resulting from the discretization of a square domain with five points in each
dimension is shown in Figure 1. The figure also shows the connections of a point. After an
ordering of the mesh points, one can obtain an X2 × Y 2 matrix. The matrix obtained from
the shown mesh after a row-major ordering is shown in Figure 1.

A partitioning of the points of the mesh M corresponds to a row-wise or a column-wise
partitioning of the associated matrix AM. Without loss of generality let us focus on the
row-wise partitionings of AM. The standard column-net hypergraph HCN model [11] can

23331

26 23331 – Recent Trends in Graph Decomposition

Table 1 The partitioning of the X × X mesh of five-point stencils with perfect balance using
the method of Grandjean and Uçar [26] obtains the numbers given in row “Vol” as connectivity−1
metric of the cut. PaToH’s results are in the row “PaToH” – they do not have perfect balance.
Apart from 58 in the last line, the other numbers are claimed to be optimal.

X 16 64 256 1024 2048
PaToH 61 249 985 4034 7999

Vol 58 222 878 3500 6996

be used for this purpose. Partitioning the vertices of the hypergraph HCN among K parts
will therefore correspond to partitioning the stencil computations among K processors; the
connectivity−1 metric of the cut will measure the total communication volume; and the
balance of part weights in terms of vertices will correspond to balance of the loads of the
processors. We assume unit vertex weights here, the effect of having less operations on the
border points of the mesh will be ignored for simplicity (and is negligible).

With the special partitioning methods by Grandjean and Uçar, we obtain the total
communication volume listed in Table 1. While the communication volume listed in the
table is obtained with the routine itself, we note that it is given by the formula

2 ×
(⌊

n√
2

⌋
+ n

)
+ 4 , (1)

which is claimed to be optimal for X > 16 in the table (for X = 16, the optimal communication
volume is claimed to be 57).

This formula requires some conditions on X, which we do not give here. Are the
connectivity−1 values given in Table 1 optimal for a perfectly balanced 4-way partitioning of
the two mesh of X × X points discretizing a square domain with a five point stencil? For
the 16 × 16 mesh, Gurobi solver [28] also finds a cut of value 57 in a few minutes under
an additional constraint to assign the four corners to four different parts). The solution
obtained by the Gurobi solver is at the close neighborhood of what is shown in Figure 2; by
the method of Grandjean and Uçar is easily updated to mimic Gurobi’s result.

Another point that arise from the given 4-way partitioning is that these partitions cannot
be obtained in a recursive bisubsection scheme where each step greedily optimizes the cut
hyperedges with perfect balance. This is so, as the first cut vertically cuts the mesh into two
equally sized parts with perfect balance and optimal cut. Simon and Teng [70] delve more
into this point in the context of graph partitioning.

We note that more results of the sort are given elsewhere [26]. The same reference
also surveys some results from the literature, including references on discrete isoperimetric
problems [81], which can be used to guide algorithms. Two things are of particular note: in
the corners, the optimal parts are triangle-like, as in two corners in Figure 2 (left), and in
the interior the optimal parts are diamond-like as in Figure 2 (right).

Bisseling and McColl [9] propose digital diamonds to partition similar meshes with wrap-
around connections. Digital diamonds are ℓ1-spheres defined with a center (cx, cy) and a
radius ρ. Such a diamond contains all mesh points (px, py) where with |px −cy|+ |py −cy| ≤ ρ.
Grandjean and Uçar give formulas for the total communication volume when one uses digital
diamonds. They also specify conditions on mesh and part sizes under which a partition by
digital diamonds are possible. Basic diamonds proposed by Bisseling [8, Section 4.8] trim
off two borders from the digital diamonds to address partitioning of another set of mesh
and part sizes – these conditions as well as the total volume of communication are also
specified by Grandjean and Uçar. Digital diamonds and basic diamonds are believed to be

George Karypis, Christian Schulz, and Darren Strash et al. 27

asymptotically optimal in terms of the total communication volume, but obtain disconnected
partitions on the borders of the mesh when there are no round-around connections – which
is not desirable in certain applications.

Another approach is to take general sparse matrices boost the data in a way, reason about
it and evaluate the performance of hypergraph partitioners on these. For example, suppose
we partition a matrix A row-wise into k parts, and obtain a total communication volume
of TV units in SpMxV. Then, if we partition the matrix B = [A, A] row-wise again into k

parts, then the first partition should be good for B with 2 × TV communication volume. If
our partitioning tool is good, such a performance is expected; if the answers were not TV

vs 2 × TV , we could either improve the partition of A or B. Similarly, a k-way row-wise
partition of C = [A; A] – this time two copies of A are stacked to have twice as many rows –
should have a communication volume of TV units. Some experimental investigation with
PaToH [12] using these matrix repetition schemes [77] reveals a good behavior. What else
can we say about the behavior of partitioning tools on more general problems?

Highly Spread Out Weights in Mesh Partitioning

Many distributed numerical simulations rely on mesh partitioning to improve the balance of
their computations on every computing unit, thus increasing their efficiency and scalability.
A mesh is modeled by its dual graph or hypergraph as input to a partitioner: each vertex
corresponds to a cell of the mesh, and the vertex weight is the computing cost of this cell.
Good quality hexahedral meshes have a reasonably regular topology, mostly looking like
a 2D or 3D grid. However, the vertex weight distribution can be highly spread out for
various applications like Monte-Carlo particle transport simulations. For this kind of instance,
classic multi-level approaches of the existing graph partitioner can have some quality issues,
symmetric to the ones observed in Section 5.2. Multi-level graph partitioners focus on
topological properties, and here, taking more into account vertex weight distribution should
lead to better and faster obtained partitions.

Cartesian Mesh Partitioning

Directly addressing data in memory is crucial in achieving high performance when running
on modern architectures, especially on GPU. Grids allow direct access to neighbor cells for
mesh computations, making stencil computations like the one presented in Section 5.2 very
efficient. However, standard partitioning approaches lead to non-rectangular parts, making
distributed applications less efficient. Thus, a new problem is partitioning a grid into parts
that are all a subgrid or a set of subgrids. Such a partitioning model will also work to
partition block structured meshes that often arise for hexahedral meshes.

Problems in Multilevel Graph Partitioning With Star Graphs

The partitioning community has long focused on instances with a regular structure, e.g.,
mesh graphs or instances from circuit design. However, it becomes more and more important
to find high-quality solutions for instances with an irregular structure, such as those derived
from social networks. Surprisingly, we found a subclass of these instances where current
state-of-the-art partitioning algorithms compute solutions that are far from optimal. The
identified instances – referred to as star instances – are characterized by a core of a few
highly-connected nodes (core nodes) with only sparse connections to the remaining nodes
(peripheral nodes). One example of such an instance is the Twitter graph. Here, we
found that partitioning the nodes into low- and high-degree vertices (≤ median degree)

23331

28 23331 – Recent Trends in Graph Decomposition

induces a bipartition that cuts half the edges as any of the existing multilevel partitioning
tools. We identified several other social networks where we observed the same behavior.
Thus, it becomes increasingly important to develop efficient partitioning techniques that can
handle such instances. From a theoretical perspective, we were already able to present an
(R + 1)-approximation for star instances, where R is the ratio of an approximation algorithm
for the min-knapsack problem. This is a remarkable result since there exists no constant
factor approximation for the general graph partitioning problem.

Graph Partitioning with Ranked Vertices

For some graph algorithms, there is an implicit rank over the vertices. For instance, 2-hop
indexing generates a label cover that can be used for answering pairwise shortest-distance
queries. Classical algorithms, e.g., Pruned Landmark Labeling (Pll) [1] and its variants,
leverage a ranking that has a drastic impact on the number of entries stored at local vertex
indexes. In the distributed setting, the amount of entries in the cut, i.e., the ones replicated
and/or communicated among the nodes, depends on this ranking. Especially when the
number of nodes is high, this communication can create a bottleneck. For distributed
execution, ranking the vertices also changes the loads on each part. In that sense, another
problem at hand is given the rank, the amount of data stored at each vertex needs to be
estimated well enough so that the part weights incur an acceptable level of imbalance. Hence,
the problem is given a graph G = (V, E), what is the best vertex ranking and partitioning
pair that yields the best performance in terms of execution time and maximum memory used
at each node?

Designing Multilevel Algorithms

In a variety of fields, computational optimization challenges often arise when modeling
large and complex systems, presenting significant hurdles for solving algorithms, even when
high-performance computing resources are deployed. These obstacles are frequently due
to a multitude of factors such as an extensive number of variables and the complexity in
describing each variable or interaction. Problems involving combinatorial and mixed-integer
optimization add extra layers of complexity. Specifically, the presence of integer variables
frequently results in NP-hard problems, particularly in contexts where nonlinearity and
nonconvexity are factors.

A widely adopted strategy for tackling these challenges involves the use of iterative
algorithms. While these algorithms may be grounded in divergent algorithmic paradigms,
they often exhibit a similar pattern: rapid improvement during initial iterations followed by a
phase of slower progress. In the realm of iterative algorithms, utilizing first-order optimization
techniques like gradient descent or methods that rely on limited observable data, such as
local search, often leads to a local optimum that is usually suboptimal when compared to
the true global optimum. Additionally, the algorithms employed within each iterative cycle
are not always exact, further complicating the optimization process. To speed up these
algorithms at each iterative step, various strategies including heuristics, parallelization, and
different ad hoc techniques are commonly employed, albeit often at the expense of solution
quality. Being trapped in local optimum of unacceptable quality is one of the most important
issues of such algorithms.

Multilevel methodologies have been introduced to address the challenges of large-scale
optimization, offering a strategy that reduces the chances of being trapped in low-quality local
optimum. These techniques are complementary to stochastic and multistart approaches, which

George Karypis, Christian Schulz, and Darren Strash et al. 29

also help the algorithm escape local optima. While there’s no one-size-fits-all prescription for
designing multilevel algorithms, their core philosophy revolves around global considerations
while executing local actions based on a hierarchy of increasingly simplified representations
of the original complex problem.

In practice, a multilevel algorithm initiates the optimization process by generating a
hierarchy of progressively simplified (or coarser) problem representations. Each subsequent
coarser level aims to approximate the problem at the current level but with fewer degrees of
freedom, facilitating a more efficient solution process. After solving the coarsest problem,
its solution is extrapolated back to the more detailed level for further refinement – a phase
termed as “uncoarsening.” Employing this multilevel approach frequently results in substantial
improvements in both computational efficiency and the quality of solutions. There are many
broad impact open questions in designing multilevel algorithms for (hyper)graphs some of
which we mention here.

Distance between vertices. In order to coarsen the problem, a critical issue is to design a
distance (or similarity) function between nodes. The question is simple: how to introduce a
similarity function that will effectively find subsets of nodes that share the same solution
(e.g., in the context of graph partitioning it is about predicting that nodes will be assigned
the same part)? Incorrectly chosen subsets of nodes will mislead coarsening and will make
the uncoarsening to work much harder which will result in increased complexity and poor
results. In the same time, sophisticated distance functions are not supposed to destroy the
overall complexity of the multilevel algorithm. Examples of such advanced solutions are
spectral-based [16, 61, 69] and low-dimensional representations [73]. They work very well on
the partitioning, ordering [66] and clustering multilevel schemes. However, there is also a lot
of evidence that these algorithms are not perfect and do not fit all scenarios.

Density of coarse levels. This remains one of the most crucial issues in multilevel algorithms.
In many problems and coarsening schemes the more we coarsen the problem, the more dense
graphs are obtained unless we deliberately take actions to sparsify them. On the one hand,
such dense representations often may approximate the original problem better. On the other
hand, the complexity of refinement at the corresponding levels of uncoarsening becomes
prohibitive. For example, in the algebraic multigrid inspired multilevel approach for graph
linear ordering this issue was simply patched by reducing the interpolation order [64] which
is a pretty blind solution. It was slightly improved in graph partitioning [65] by using a
better node distance function in combination with the small interpolation order but more
sophisticated and theory-grounded approaches are required. In a similar 2-dimensional layout
problem, the authors switched to more regular coarsening with the geometric multigrid [60].
In general, dense graphs are problematic for most existing multilevel algorithms that mostly
designed for sparse instances and require special treatment such as other coarsening schemes
or special hardware [43].

Maximization problems. A particularly interesting class of problems for which multilevel
algorithms have not reached their advanced stage is maximization problems such as max
cut, maximum independent set, and maximum dominating set. A traditional coarsening
approach quickly generates dense coarse levels and becomes impractical. Recent work on
sophisticated node distance functions and sparsification improve the situation [3] but after
a certain number of levels the quality of coarse levels becomes either poor (if sparsified)
or intractable (otherwise). Rethinking of the coarsening ideas is required for this class of
problems as such approaches as inverting graphs quickly become impractical.

23331

30 23331 – Recent Trends in Graph Decomposition

When to stop the refinement? Perhaps there is no multilevel algorithm whose developers
have not asked this question. Overall, there is no theory-grounded work related to op-
timization on (hyper)graphs that answers this question. Apart from the complexity issue,
on the first glance it may look trivial that in the ideal refinement, the employed local
optimization solvers should be optimal. However, there is a lot of practical evidence that
terminating refinement before reaching the best possible local solution is beneficial to the
final global suboptimal solution.

Advanced types of multilevel cycles. In multilevel schemes, the V-cycle coarsening-
uncoarsening is the most basic and widely used cycle for this purpose, but several other
advanced cycles aim to improve the efficiency and effectiveness of multilevel methods. Most
widely used of them are: (1) the W-cycle is a more advanced version of the V-cycle that
provides a more aggressive approach to solving the coarser problems. In a W-cycle, a
refinement and full deeper W-cycle is performed at each coarser level before moving back to
the finer level. This allows for more thorough refinement at lower levels, often leading to
better convergence properties compared to the V-cycle. (2) The F-cycle method creates the
hierarchy of coarse representations and starts at the coarsest level and works its way up to
the finest grid, solving the problem at each level by applying another full V- or W-cycle. It
combines with V-cycles or W-cycles at each level for better optimization of coarse levels. Both
F- and W-cycles are particularly effective for problems where an initial coarse approximation
is not easy to obtain. Both cycles usually exhibit better then in V-cycle quality which comes
at additional cost of complexity. The W-cycles are usually more expensive but do exhibit a
good quality [62, 63]. Finding robust criteria on when to recursively apply one or another
type of advanced cycle (if at all) is very important in multilevel algorithms as their running
time is increased with the advanced cycles.

5.3 (Hyper)graph Clustering
Correlation Clustering

In the correlation clustering problem the input is a graph with edges labeled with + and −
(or simply with +1 and −1). + indicates that the endpoints of the edge should be in the same
cluster, and − means that the endpoints of the edge should be in different clusters. The goal
of correlation clustering is to find a clustering that respects as many of these requirements
as possible. Of course respecting all of them is in general not possible, and so a commonly
studied objective is to minimize the number of disagreements.

There is a big discrepancy between the theory work on correlation clustering and what
is done in practical solutions. For example, while the famous PIVOT algorithm provides
3-approximation for complete graphs, if the algorithm is run on a sparse graph (i.e., one
where + edges induce a sparse graph) the algorithm often gives a solution that is worse than
leaving each node in a cluster of size 1. Better approximation algorithms are known, but
they are not as scalable, as they rely on solving an LP or SDP. In the case of weighted or
not-complete graphs the best known approximation ratio is O(log n).

Despite all of these theoretical advances, the solutions that are implemented in practice
are based on local swaps and a multilevel approach. In particular, the basic operation that
these algorithms make is moving a node to a neighboring cluster, only if this increases the
overall objective. This way, the algorithm essentially treats the objective function as a
blackbox and does not leverage all the structural properties of the problem, which are used
to give approximation algorithms.

George Karypis, Christian Schulz, and Darren Strash et al. 31

While the practical implementations are quite scalable, there is probably room for
improvement, as the number of logical rounds needed to obtain a good solution goes in
hundreds. This in particular makes these algorithms not easy to use in distributed settings.

An interesting open problem is to bridge the gap between theory and practice for
correlation clustering with the goal of obtaining better practical implementations. Specifically,
it would be interesting to develop algorithms requiring fewer rounds, which will make them
amenable to an efficient distributed implementation.

Overlapping Edge-Colored Clustering

Edge-Colored Clustering is a categorical clustering framework [2] whose input is an
edge-colored hypergraph and output is an assignment of colors to nodes which minimizes
the number of edges where any vertex has a color different from its own (mistakes). We are
interested in variants of this problem which allow budgeted overlap. Specifically, the following
three notions were defined in [17]. LocalECC allows up to b of color assignments at each node.
GlobalECC allows one “free” color assignment for each node, plus b additional assignments
across all nodes. RobustECC allows each node to either receive exactly 1 color, except that
at most b nodes are assigned every color. Equivalently, at most b nodes are deleted.

Each of these problems generalizes ECC, with equivalence for the first coming at b = 1
and for the latter two at b = 0. Consequently, they are each NP-hard (Angel et al. [2]). We
(Crane et al. [17]) showed that greedy algorithms give an r-approximation on the number
of edge mistakes, where r is the maximum hyperedge size. Further, for LocalECC, a
(b + 1)-approximation can be achieved with LP-rounding. More generally, we ask about
bicriteria (α, β)-approximations, where α is the approximation factor on edge mistakes and
β is the approximation factor on the budget b, and show that all three variants have such
approximation algorithms, though the factors are no longer constants for GlobalECC.

Open Problems. Are these ideas relevant for any practical applications? Where? What can
we assume about the inputs in those settings? Are there constant-factor single-criteria approx-
imations for the Global and Robust versions? Does GlobalECC have a constant-constant
bicriteria approximation? More generally, bicriteria inapproximability is an interesting and
relatively unexplored direction. We saw that empirically these approximations performed
much better in practice than the guarantees. Is there some sort of structure in real-world
instances that we can model to improve our analysis?

Dense Graph Partition

Dense Graph Partition, introduced by Darley et al. [19], models finding a community
structure in a social network. Formally, given an undirected graph G = (V, E), the task
is finding a partition P = {P1, . . . , Pk} of V , for some k ≥ 1, of maximum density. With
E(Pi) denoting the number of edges among vertices in Pi, the density of P given by
d(P) =

∑k
i=1

|E(Pi)|
|Pi| . Note that there is no restriction on the number of communities which

yields some difference to the problem of partitioning into cliques. While there exists a partition
into exactly k sets of density (n − k)/2 if and only if the input graph can be partitioned
into k cliques [6], there can be a partition into less than k sets with a density higher than
(n−k)/2 even if the input cannot be partitioned into k cliques. Alternatively, Dense Graph
Partition can be modeled from a game theoretic perspective. Aziz et al. [4] study the Max
Utilitarian Welfare problem where the vertices in a graph G = (V, E) are agents, and
each agent x ∈ V validates its coalition P ⊆ V with x ∈ P by 1

|P | |{u ∈ P | {u, v} ∈ E}|.
Maximizing social welfare for this model is equivalent to Dense Graph Partition.

23331

32 23331 – Recent Trends in Graph Decomposition

It is known that maximum matching is a 2-approximation [4], and there are a few improve-
ments on specific graph classes: polynomial-time solvability on trees [19], 4

3 -approximation on
maximum degree 3 graphs, and EPTAS for everywhere dense graphs [6]. This in particular
gives rise to the questions: Can the 2-approximation be improved, at least on some more
non-trivial graph classes? Does there exist a polynomial-time approximation scheme on
general instances? Is it true that there is always an optimum solution where all parts induce
a graph of diameter at most 2, a so-called 2-club clustering? What is the complexity on
graphs of bounded treewidth?

Streaming Graph Clustering

Streaming Graph Clustering is commonly defined as follows: given a graph G = (V, E),
find a clustering C : V → N that maximizes a quality score such as modularity, using at
most O(|V |) memory. In the one-pass version, E is an ordered list of edges and each edge
can be read only once. A popular heuristic for this problem is SCoDA [29].

This matches well with real-world applications where graphs are discovered over time,
e.g. in online social networks, as well as for graphs which are too large to cluster using
standard O(|E|) memory algorithms. However, the one-pass version is quite limiting and
often results in low clustering quality [38].

The Incremental Graph Clustering model [38] is a buffered variant of the one-pass
model where the ordered edge list is subdivided into batches. Unlike in buffered streaming
graph partitioning [21], the batches are assumed to be given and not selected by the algorithm.
Edges in a batch are read and processed in memory together. The algorithm can use O(|E|)
memory, but we require that running time for processing each batch does not depend on |E|,
only on the size of the batch.

The Neighborhood-to-community link counting (NCLiC) [38] is a heuristic for this variant.
For modularity clustering, it provides strong modularity retention compared to offline
algorithms. It applies the Leiden Algorithm to each new batch and then merges it with the
already processed graph.

Open Problems. The NCLiC algorithm keeps track of the approximate number of neighbors
in each cluster. If a vertex changes community it will update its neighbors with a probability
that depends on its degree. Skipping some updates allows maintaining the required running
time, but introduces a reduction in clustering quality. Is there a data structure that allows
keeping exact counts of the neighboring clusters without violating the running time constraint?

Another open question is: is it possible to modify NCLiC to use at most O(|V |) memory
while retaining most of the modularity retention qualities?

5.4 Data Reductions and Learning
Data Reductions for (Hyper)Graph Decomposition

Most balanced (hyper)graph partitioning formulations are NP-hard: it is believed that no
polynomial-time algorithm exists that always finds an optimal solution. However, many
NP-hard problems have been shown to be fixed-parameter tractable (FPT): large inputs can
be solved efficiently and provably optimally, as long as some problem parameter is small.
Over the last two decades, significant advances have been made in the design and analysis
of fixed-parameter algorithms for a wide variety of graph-theoretic problems. Moreover, in
recent years a range of methods from the area have been shown to improve implementations

George Karypis, Christian Schulz, and Darren Strash et al. 33

drastically. For example for the maximum (weight) independent set problem [27]. Here, data
reductions rules transform the input into a smaller one that still contains enough information
to be able to recover the optimum solution. For the maximum independent set problem,
this enabled highly scalable exact solvers that can solve instances with millions of vertices
to optimality. For balanced partitioning this has currently not been carefully investigated.
However, here are some very simple data reduction rules. For example, removing a vertex of
degree one, then solving the smaller subproblem with same balance constraint and afterwards
assigning the vertex to a block with leftover capacity, is a valid data reductions rule. This
yields the natural open questions: are there more and highly effective data reduction rules for
balanced (hyper)graph partitioning problems? These rules could be helpful in two ways: they
could speedup current heuristic solvers, e.g. multilevel (hyper)graph partitioning algorithms,
and they could help to build more scalable exact partitioning algorithms (see Section 5.2).

After all reduction rules for kernel computations have been applied, the final smaller
instance can still be too large to be solved to optimality within a reasonable time bound.
This is a serious problem as the overall goal of the algorithms is to solve the given problem
instance. The idea of lossy kernelization is as follows: when no more reductions can be
applied, i.e. a problem core has been computed, one may shrink the input further while
guaranteeing that the optimal solution value changes only slightly. Then a good approximate
solution of the reduced input can be lifted to a good approximate solution of the original
input. This has recently been done for the vertex cover problem [40]. The natural question
that arises is can these techniques be applied to balanced (hyper)graph partitioning as well?

As the (lossy) kernel/core still contains the optimum solution (or some approximation
thereof) in some sense, this has a large potential to speed up the (multilevel) heuristic while
not sacrificing solution quality. Additionally, running a fast algorithm on the large kernel can
help to identify parts of the instances that are likely to be in a good solution. Those parts can
then be put into a partial solution and the remaining instance can be reduced recursively.

It could also be possible to use machine learning to learn lossy reductions for a wide-range
of problems in this area. For example, one could use learning to predict if two vertices should
be clustered together or to decide if an edge is a cut edge or not. The basic idea is then to
use a classification model to learn which parts of the input can be pruned, i.e. are unlikely or
highly likely in an optimum solution. In the first case, a solution omits this part of the input,
in the latter case this part of the input will be included in the solution. For example, [39]
propose to use machine learning frameworks to automatically learn lossy reductions for the
maximum clique enumeration problem and [74] shows that this learning-to-prune framework
is effective on a range of other combinatorial optimization problems. The classification model
can be a deep neural network in an end-to-end framework or a classifier with significantly
fewer parameters such as SVM or random forest if a deeper integration of machine learning
and algorithmic techniques is done. The latter will require carefully engineered features
based on existing heuristics.

Learning for Local Search in Multi-level (Hyper)graph Partitioners

Machine learning techniques can also be used to learn more efficient refinement steps. Existing
refinement steps in multi-level graph partitioning techniques rely on solving a flow problem
or iterative moves of Kernighan–Lin or Fiduccia–Mattheyses heuristic. However, solving flow
problems can be quite slow (given the number of times it is called). Similarly, the number
of possible moves that need to be explored for finding a good step using Kernighan–Lin or
Fiduccia–Mattheyses can be quite high. It is worthwhile exploring if learning techniques can
be used to predict good regions where the flow algorithm can focus. This can improve the

23331

34 23331 – Recent Trends in Graph Decomposition

trade-off between the time to solve the flow problem and the gain from it for the refinement
part. For the case of the Kernighan–Lin or Fiduccia–Mattheyses heuristic, the interesting
question is whether learning techniques such as reinforcement learning can be used to learn a
good sequence of moves for these local search heuristics. This has the potential to reduce the
search space that needs to be explored to find good local moves. For training the learning
techniques, the R-MAT graph generator from the Graph500 benchmark can be used.

5.5 Embeddings
Distance Estimation for Process Mapping

Process mapping is a super-problem of graph partitioning, in which vertices of some source
graph S have to be assigned (i.e., mapped) to vertices of some target graph T , by way
of a mapping function τS,T : V (S) −→ V (T), so that an objective function is minimized.
In the field of parallel computing, source graphs commonly represent computations to be
performed, usually multiple times in sequence, while target graphs represent processing
elements and interconnection networks of multi-processor and/or multi-computer hardware
architectures. The objective function to minimize is the amount of data to be exchanged across
the interconnection network, so as to reduce its congestion, provided that every processing
element in V (T) receives roughly the same number of vertices of S (or, more generally,
equivalent vertex weights with respect to its compute power), to minimize computation
imbalance. In this context, partitioning some graph S into k parts amounts to mapping S

onto K(k), the complete graph of order k, since in this case all processing elements are at
the same distance from all the others.

In the Dual Recursive Bipartitioning (DRB) algorithm [54] used by the Scotch software,
computing the mapping of S onto T requires to be able to estimate the shortest-path
distance in T between any two vertex subsets of V (T) called the subdomains of V (T). These
subdomains are not arbitrary, since they result from recursively bipartitioning the graph T

into pieces of roughly the same size in a way that minimizes the cut of the interconnection
network. Being able to compute the distance between any two subdomains allows the DRB
algorithm to estimate the penalty of assigning some vertex v of S to either one of two sibling
subdomains of T , by estimating the distance between these subdomains and those to which
all the neighbor vertices v of u have already been mapped. When the recursive bipartitioning
of T is perfectly balanced, the number of subdomains of T is 2|V (t)| − 1.

A way to quickly obtain the distance between any two subdomains of some target graph
T is to pre-compute a distance matrix between all of them, of a size in O(|V (T)|2). While
this solution works for small target graphs, it is no longer applicable when mapping onto big
parts of very big target architectures. To solve this problem, one has to find a more compact
(in terms of data storage) and quick (in terms of retrieval time) method to produce these
distance estimates. An important condition on these approximations is that distances should
become more accurate as subdomains are smaller and closer to each other in T .

In [55, 56], it has been shown that, for target architectures for which the recursive
bipartitioning of subdomains, and the distances between subdomains, can be computed
algorithmically, by way of explicit functions (e.g. , for regular vendor architectures such as
meshes, butterfly graphs, etc.), a bipartition tree, created by way of recursive matching and
coarsening of the whole target graph, allows one to represent any subset, even disconnected,
of the processing elements of these target architectures. The DRB algorithm can therefore
be applied to them.

George Karypis, Christian Schulz, and Darren Strash et al. 35

However, for irregular architectures (e.g. , those represented by irregular graphs), the
question remains open. It can be expressed in the following form: “How can one get cheaply
(both in terms of memory and computation time) approximate distances between any pair of
the subgraphs yielded by the recursive bipartition of some irregular graph?”

Space-Efficient Planar Graph Embedding

When one opens up a publication regarding planar graph bisubsections, one often reads a
sentence akin to: Without loss of generality, assume that the input graph is embedded in
the plane and maximal planar. Famous works that makes use of this specific property is the
balanced separator theorem due to Lipton et al. [42], which states that every planar graph
has a balanced vertex separator of size O(

√
n). Standard recursive bisubsection algorithms

for planar graphs are based on this theorem, which are able to construct the entire recursive
bisubsection in linear time [33]. Often it is easy to assume such an embedding, as it can be
computed in linear time using O(n log n) bits of space, i.e., a linear number of words. In
sub-linear space settings one can compute an embedding in polynomial time (albeit with
an extremely large polynomial degree). Now, the question remains: what can one achieve
when aiming for a linear time algorithm, while using o(n log n) bits, or ideally, O(n) bits?
The standard linear time algorithms are quite involved, but on the most basic level many of
them use a simple depth-first tree and compute a constant number of, but seemingly critical,
variables per vertex. Even when aiming for a much lower goal: check if the input graph is
planar within O(n log n) time while using o(n log n) bits, there is no obvious way to tackle
this problem. As graphs grow larger and larger, such questions of space-efficiency become of
higher interest. Especially with the direct application of graph partitioning algorithms that
rely on such embeddings.

Finding Moore-Bound-Efficient Diameter-3 Graphs

In graph theory, given a graph with degree d and diameter k, the largest number of vertices
in that graph can be determined using the Moore bound. Recent technological advances in
photonics technology have greatly increased the number of links – or degree d – of the network
routers, improving the scalability of large supercomputers. While Moore-bound-optimal
diameter-2 graphs have recently been engineered to span a few thousand nodes [36], emerging
AI and graph applications are demanding larger configurations. Unfortunately, diameter-3
graphs are still elusive, with Moore’s bound efficiencies of only 15%. The construction of
more efficient diameter-3 graphs would directly impact the design of emerging photonics
systems for large scale graphs [36, 37], data analysis, and AI applications.

5.6 Parameterized Complexity
Parameterized Complexity of Layered Giant Graph Decomposition

Direction 1. An important theme – or challenge – for theoretical computer science, that has
been recognized for decades, is the observation that has been made prominently by Richard
Karp and others that we don’t really understand very well natural input distributions. It is
remarkable how well sometimes very simple heuristics work in practice for problems that are
known to be NP-hard. There must be some sort of structure, but what is it? And if we knew,
could we exploit that in designing algorithms?

23331

36 23331 – Recent Trends in Graph Decomposition

A striking example of this was described by Karsten Weihe in an old paper entitled, “On
the Differences Between Practical and Applied” which was about Weihe’s experience doing
quite practical computing for a simple Hitting Set application in real-world computing
where his project was tasked with computing a minimum number of stations that could
service all of the trains of Germany.

The model is a straightforward bipartite graph, with trains on one side, and stations on the
other, and an edge if a train t stops at a station s. There are two simple pre-processing vertex
deletion rules: (1) If N(s) is a subset of N(s′), then delete s. (2) If N(t) is a subset of N(t′)
then delete t′. Weihe found that these two simple reduction rules cascade back-and–forth
on the gigantic real-world train graphs, and one ends up with (using PC terminology) a
kernelized instance that consists of disjoint connected components that have size at most
around 50, so the problem can be solved optimally by analyzing the connected components
separately.

From the standpoint of parameterized complexity theory, we could simply declare the
structural parameter of interest to be: k =“the maximum connected component size of
the network G′ that results when opportunities to apply the two reduction rules have been
exhausted”. This would be perfectly legal in the mathematical framework of PC – we could
call the parameter the Weihe-width of the Hitting Set instance and have a pretty good
FPT algorithm for computing what we could call a Weihe-width decomposition. This is legal,
but from a traditional parameterized algorithms and complexity perspective, not entirely
satisfying.

At the expense of quadratic blowup one can combinatorially reduce the very important
medical- and bio-informatics problem of Feature Selection to Hitting Set in the
following natural way. We now have enormous amounts of information concerning the genes
that are being expressed into RNA, and so each patient in our hypothetical hospital has a
gene activation profile. And each patient either does, or does not, have cancer.

We want to know a small subset of the genes to pay attention to so that we can accurately
predict the outcome. On the one side, we have a vertex for each pair of patients that have
differing outcomes, and on the other side, we have one vertex for each gene. It is surprising
that Weihe’s two reduction rules work quite practicably, in this very different real-world
large data context. What is going on, and how can we generalize?

Open Problem. Can a Weihe-width k decomposition of a graph of size n be computed in
truly linear FPT time?

A second open problem begins by reconsidering the most central example of an FPT
graph problem, Vertex Cover, that has inspired in various ways a surprising amount of
theoretical work in the parameterized complexity research community. For example, the
recent work reported at IJCAI 2020 on the parameterized complexity paradigm of solution
diversity began with an initial FPT result about the naturally parameterized Diverse
Vertex Cover problem.

A (parameterized) vertex cover of a graph is a set of k vertices V ′ of G = (V, E) such
that the largest connected component of G′ = G − V ′ is size one! In other words, deleting
the vertices of V ′ kills off all the edges of G, yielding, if we want to call it that, a very nice
decomposition of G′ into clusters of extremely high data-integrity and coherence, as each
connected component consists of a single vertex.

It might seem that the Vertex Cover problem is so simple that it might be irrelevant for
giant graphs. But by setting thresholds for declaring edges, it has been used very effectively
in stages in very large dataset bioinformatics, e.g., Dehne’s CLUSTAL W package for multiple
sequence alignment [15].

George Karypis, Christian Schulz, and Darren Strash et al. 37

A key point is that the successful CLUSTAL W algorithm begins by decomposing a sparse
graph constructed by making edges between vertices (data objects) that are emphatically
NOT similar. The impulse would be to seek cliques of compatible vertices, but here is
exploited that the naturally parameterized Clique and Vertex Cover problems are
parametrically dual, and from that point the CLUSTAL W algorithm proceeds in stages
with an initial decomposition based on a vertex cover cutset on a sparse graph based on
thresholding the NOT similarity that makes an edge in the initial graph.

The following problem explores a generalization where the resulting connected components
(“clusters”) satisfy other simple integrity requirements. It is called Vertex Decomposition into
Small Dominator Clusters: given a graph G = (V, E). and parameter (k, d), the question is
can we delete k vertices from G, obtaining G′ such that every connected component of G′ has
domination number at most d? It is interesting to start by asking if this might be FPT for
the vector parameter (k, d). But, if we fix k = 0, then the problem is W[2] - complete. We
can still hope for a parameterized tractability result, where d is allowed to play an XP-role
in the exponent of the polynomial and for fixed d, with parameter k we get FPT.

Open Problem. Is this FPT? And if so, can the corresponding decomposition be computed
in truly linear FPT time for d = 1?

Note that we could define endlessly many interesting and largely unexplored parameterized
problems in a similar manner where the decomposition is modeled by connected components
formed by essentially a cutset. And there is also the possibility of interestingly layered
decompositions of this kind. For example in the Layered Vertex Cover problem: given a
graph G = (V, E). and parameter (k, k′, k′′) the question is can we delete k vertices from
G, obtaining G′ such that every connected component C of G′ has the property that: k′

vertices can be deleted from C resulting in a graph C ′′ such that each connected component
of C ′′ has a vertex cover of size at most k′′?

Or perhaps our particular application intention might be naturally served by deleting
k vertices so that the resulting connected components have nice properties governed by a
parameter t, and these components can be further decomposed into connected components
with a different nice property governed by t′ and so on.

Direction 2. The theme of fairly simple and elemental decompositions based on vertex-
and edge-cutsets is important.

Direction 3. Since the size n of the networks (graphs) targeted in this application area is
huge, the attention should be focused on truly linear-time FPT, that is, processing that is
simply of O(n) cost, regardless of any parameterization k that we might want to consider.
Polynomial time O(nc) with no exponential costs associated to the parameter k, is the best
kind of FPT. For very large graphs, we need c = 1. Slightly more generally, we might consider
reasonable FPT processing time-costs of the form O(nc + f(k)), where again the exponent of
the polynomial part is c = 1, which we will call truly linear time FPT. This is an area of PC
structural complexity theory little explored. There is a small amount of relevant recent work
by Jianer Chen and coauthors.

FPT Approximation of Vertex Bisubsection

Edge (resp. Vertex) Bisubsection is one the fundamental graph partitioning problems, where
given a graph G and an integer k, the goal is to find a set of at most k edges (resp. vertices),
say S, such that the vertex set of G \ S can be partitioned into two almost equal parts
V1 and V2, that is ||V1| − |V2|| ≤ 1, and there are no edges between a vertex of V1 and

23331

38 23331 – Recent Trends in Graph Decomposition

V2, that is E(V1, V2) = ∅. In the regime of parameterized complexity, Edge Bisubsection
admits a fixed-parameter tractable (FPT) algorithm parameterized by the solution size k.
In particular, it admits an algorithm running in time 2O(k log k)nO(1) [18], where n is the
number of vertices in the input graph.

Open Problem 1. One can solve Edge Bisubsection, for fixed k, in linear time? Preferably,
is there an algorithm solving Edge Bisubsection in 2O(k log k)n-time?

Open Problem 2. Does Edge Bisubsection admit an algorithm with running time 2O(k)nO(1)?
Or can one show that there is no algorithm for this problem that runs in time 2o(k log k)nO(1)

under reasonable complexity assumptions?

In contrast to Edge Bisubsection, Vertex Bisubsection is known to be W[1]-hard [44], that
is it is unlikely that it admits an FPT algorithm parameterized by k. On the kernelization
front, Edge Bisubsection cannot admit a polynomial kernel under reasonable complexity
assumptions [79]. This leads of interesting questions regarding the fixed-parameter tractability
and/or kernelization with approximations for these problems. In particular, the following
questions remain intriguing.

Open Problem 3. Does Edge Bisubsection admit a polynomial α-lossy kernel, for some
α > 1? Are there lossy reduction rules that help in solving the problem practically?

Open Problem 4. Does Vertex Bisubsection admit an FPT-approximation algorithm? That
is, in time f(k, ϵ)nO(1), can one find a set of at most (1 + ϵ)k vertices, say S, such that
V (G \ S) = V1 ⊎ V2, ||V1| − |V2|| ≤ 1 and E(V1, V2) = ∅, or report that there is no such set S

of size at most k?

Open Problem 5. In scenarios where Vertex Bisubsection pops up in practical usage, can
we identify some structure on the instances? For example, can we say that the graphs in
interesting instances belong to some nice graph class, or “is close to” being in a graph class
(this could, for example, be formalized using distance to triviality measures), or have some
bounded parameter. If such an identification is possible, studying these scenarios theoretically
may lead to interesting insights about the problem.

FPT in Decomposition

The first open question here is if Densest k-Subgraph FPT parameterized by modular-
width? Given a graph G and an integer k, the Densest k-Subgraph problem asks for a
subgraph of G with at most k vertices maximizing the number of edges. It is known that
this problem is FPT by stronger parameters such as neighborhood diversity and twin cover,
yet it is W[1]-hard by weaker clique-width. Modular-width is defined using the standard
concept of modular decomposition [23]. Any graph can be produced via a sequence of the
following operations:
1. Introduce: Create an isolated vertex.
2. Union G1 ⊕ G2: Create the disjoint union of two graphs G1 and G2.
3. Join: Given two graphs G1 and G2, create the complete join G3 of G1 and G2. That is, a

graph G3 with vertices V (G1) ∪ V (G2) and edges E(G1) ∪ E(G2) ∪ {(v, w) : v ∈ G1, w ∈
G2}.

4. Substitute: Given a graph G with vertices v1, . . . , vn and given graphs G1, . . . , Gn, create
the substitution of G1, . . . , Gn in G. The substitution is a graph G with vertex set⋃

1≤i≤n V (Gi) and edge set
⋃

1≤i≤n E(Gi) ∪ {(v, w) : v ∈ Gi, w ∈ Gj , (vi, vj) ∈ E(G)}.
Each graph Gi is substituted for a vertex vi, and all edges between graphs corresponding
to adjacent vertices in G are added.

George Karypis, Christian Schulz, and Darren Strash et al. 39

These operations, taken together in order to construct a graph, form a parse-tree of the
graph. The width of a graph is the maximum size of the vertex set of G used in operation
(O4) to construct the graph. The modular-width is the minimum width such that G can be
obtained from some sequence of operations (1)-(4). Finding a parse-tree of a given graph,
called a modular decomposition, can be done in linear-time [75].
The second open question is whether we can develop a framework of approximate modular
decomposition applicable to real-world datasets? Unfortunately, most real-world graphs tend
to have larger modular-width. It would be beneficial if we can efficiently build non-exact parse
trees with much lower width but without losing much information. Possible avenues of explora-
tion include graph editing, a relaxed definition of the parse-tree, and a data-driven approach.

Advancing the Parameterized View on Graph Modification

One of the most explored topics in parameterized complexity are so called distance to triviality
problems (see, for example, [22, 30]). The intuitive question behind these problems is always
“can we make a small change to our input so that it takes on some property?”. In terms
of graph problems, one can state a meta-problem as follows, where P is a graph property
Vertex-Deletion-To-P: given a graph G, an integer k as well as a parameter k, the question
is can we delete at most k vertices from G, such that the resulting graph has property P?

For many graph properties for which one can consider this meta-problem, either tractable
algorithms or complexity lower bounds are known. On the other hand, in some application
areas it could be useful to delete as many vertices as possible, while ensuring that the
resulting graph has a certain property. This leads to the Max-Vertex-Deletion-To-P problem:
given a graph G, an integer k as well as a parameter k, the question is can we delete at least
k vertices from G, such that the resulting graph has property P?

While the change to the problem statement is deceptively simple, we have to this date no
complexity-theoretic insight into this class of problems. Note that this problem also differs
from the widely used kernelization techniques, as in kernelization, we ask for the resulting
input size to be bounded by, for example, f(k). As parameterized complexity can be seen as
providing a mathematically rigorous framework of preprocessing through the rich methods
of kernelization techniques and algorithmics for distance to triviality problems, extending
this framework to further variants of preprocessing seems very natural and could provide
further complexity-theoretic and algorithmic insights. These techniques could potentially be
useful in the area of (hyper)graph decomposition.

References
1 T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries on large

networks by pruned landmark labeling. In Proc. 2013 ACM SIGMOD Int. Conf. on
Management of Data, page 349–360, New York, NY, USA, 2013.

2 E. Angel, E. Bampis, A. Kononov, D. Paparas, E. Pountourakis, and V. Zissimopoulos.
Clustering on k-edge-colored graphs. Discrete Applied Mathematics, 211:15–22, 2016.

3 A. Angone, X. Liu, R. Shaydulin, and I. Safro. Hybrid quantum-classical multilevel approach
for maximum cuts on graphs. IEEE High-Performance and Extreme Computing, 2023.

4 H. Aziz, S. Gaspers, J. Gudmundsson, J. Mestre, and H. Täubig. Welfare maximization
in fractional hedonic games. In Q. Yang and M. J. Wooldridge, editors, Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 461–467. AAAI Press, 2015.

5 G. Ballard, A. Druinsky, N. Knight, and O. Schwartz. Hypergraph partitioning for sparse
matrix-matrix multiplication. ACM Transactions on Parallel Computing (TOPC), 3(3):1–34,
2016.

23331

40 23331 – Recent Trends in Graph Decomposition

6 C. Bazgan, K. Casel, and P. Cazals. Dense graph partitioning on sparse and dense graphs. In
A. Czumaj and Q. Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm
Theory, SWAT, volume 227 of LIPIcs, pages 13:1–13:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

7 C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
8 R. H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and

MPI. Oxford University Press, Oxford, UK, Mar. 2004.
9 R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous parallel

architectures. In B. Pehrson and I. Simon, editors, Technology and Foundations: Information
Processing ’94, Vol. I, volume 51 of IFIP Transactions A, pages 509–514. Elsevier Science
Publishers, Amsterdam, 1994.

10 A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph
Partitioning, pages 117–158. Springer International Publishing, Cham, 2016.

11 Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems,
10(7):673–693, Jul 1999.

12 Ü. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partitioning Tool,
Version 3.0. Bilkent University, Department of Computer Engineering, Ankara, 06533
Turkey. PaToH is available at http://bmi.osu.edu/~umit/software.htm, 1999.

13 Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2D decomposition of
sparse matrices. In IPDPS, pages 118–123. IEEE, 2001.

14 Ü. V. Çatalyürek, K. D. Devine, M. F. Faraj, L. Gottesbüren, T. Heuer, H. Meyerhenke,
P. Sanders, S. Schlag, C. Schulz, D. Seemaier, and D. Wagner. More recent advances in
(hyper)graph partitioning. ACM Comput. Surv., 55(12):253:1–253:38, 2023.

15 J. Cheetham, F. K. H. A. Dehne, S. Pitre, A. Rau-Chaplin, and P. J. Taillon. Parallel
CLUSTAL W for PC clusters. In ICCSA (2), volume 2668 of Lecture Notes in Computer
Science, pages 300–309. Springer, 2003.

16 J. Chen and I. Safro. Algebraic distance on graphs. SIAM Journal on Scientific Computing,
33(6):3468–3490, 2011.

17 A. Crane, B. Lavallee, B. D. Sullivan, and N. Veldt. Overlapping and robust edge-colored
clustering in hypergraphs. arXiv preprint arXiv:2305.17598, 2023.

18 M. Cygan, P. Komosa, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, and
M. Wahlström. Randomized contractions meet lean decompositions. ACM Trans. Algorithms,
17(1):6:1–6:30, 2021.

19 J. Darlay, N. Brauner, and J. Moncel. Dense and sparse graph partition. Discret. Appl.
Math., 160(16-17):2389–2396, 2012.

20 D. Delling, D. Fleischman, A. V. Goldberg, I. P. Razenshteyn, and R. F. Werneck. An exact
combinatorial algorithm for minimum graph bisection. Math. Program., 153(2):417–458,
2015.

21 M. F. Faraj and C. Schulz. Buffered streaming graph partitioning. ACM Journal of
Experimental Algorithmics, 27:1–26, 2022.

22 F. V. Fomin, P. A. Golovach, and D. M. Thilikos. On the parameterized complexity of
graph modification to first-order logic properties. Theory Comput. Syst., 64(2):251–271,
2020.

23 J. Gajarský, M. Lampis, and S. Ordyniak. Parameterized algorithms for modular-width. In
G. Gutin and S. Szeider, editors, Parameterized and Exact Computation, pages 163–176.
Springer International Publishing, 2013.

24 S. Ganguly, T. McKenzie, S. Mohanty, and N. Srivastava. Many nodal domains in random
regular graphs. arXiv preprint arXiv:2109.11532, 2021.

http://bmi.os u.edu/~umit/software.htm

George Karypis, Christian Schulz, and Darren Strash et al. 41

25 S. Ganguly and N. Srivastava. On non-localization of eigenvectors of high girth graphs.
International Mathematics Research Notices, 2021(8):5766–5790, 2021.

26 A. Grandjean and B. Uçar. On partitioning two dimensional finite difference meshes for
distributed memory parallel computers. In M. Aldinucci, D. D’Agostino, and P. Kilpatrick,
editors, Proceedings of the 22th Euromicro Conference on Parallel, Distributed, and Network-
based Processing, pages 9–16, Turin, Italy, February 2014. IEEE Computer Society, Confer-
ence Publishing Services.

27 E. Großmann, S. Lamm, C. Schulz, and D. Strash. Finding near-optimal weight independent
sets at scale. In GECCO, pages 293–302. ACM, 2023.

28 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
29 A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge. A linear streaming algorithm for

community detection in very large networks. arXiv preprint arXiv:1703.02955, 2017.
30 B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk. Vertex deletion parameterized

by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, page 1757–1769, New York, NY, USA,
2021. Association for Computing Machinery.

31 E. L. Jenneskens and R. H. Bisseling. Exact k-way sparse matrix partitioning. In Proceedings
12th IEEE Workshop Parallel/Distributed Combinatorics and Optimization (PDCO 2022),
pages 754–763. IEEE Press, 2022.

32 J. Kim, I. Hwang, Y. H. Kim, and B. R. Moon. Genetic Approaches for Graph Partitioning:
A Survey. In Proc. of the 13th Annual Genetic and Evolutionary Computation Conference
(GECCO’11), pages 473–480. ACM, 2011.

33 P. N. Klein, S. Mozes, and C. Sommer. Structured recursive separator decompositions for
planar graphs in linear time. Association for Computing Machinery, 2013.

34 T. E. Knigge and R. H. Bisseling. An improved exact algorithm and an NP-completeness
proof for sparse matrix bipartitioning. Parallel Computing, 96:102640, 2020.

35 I. Koutis, A. Levin, and R. Peng. Faster spectral sparsification and numerical algorithms
for SDD matrices. ACM Trans. Algorithms, 12(2), 2015.

36 K. Lakhotia, M. Besta, L. Monroe, K. Isham, P. Iff, T. Hoefler, and F. Petrini. PolarFly:
A cost-effective and flexible low-diameter topology. In F. Wolf, S. Shende, C. Culhane,
S. R. Alam, and H. Jagode, editors, SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, Dallas, TX, USA, November 13-18, 2022,
pages 12:1–12:15. IEEE, 2022.

37 K. Lakhotia, L. Monroe, K. Isham, M. Besta, N. Blach, T. Hoefler, and F. Petrini. PolarStar:
Expanding the scalability horizon of diameter-3 networks. CoRR, abs/2302.07217, 2023.

38 J. Langguth, A. Tumanis, and A. Azad. Incremental clustering algorithms for massive
dynamic graphs. In 2021 International Conference on Data Mining Workshops (ICDMW),
pages 360–369. IEEE, 2021.

39 J. Lauri, S. Dutta, M. Grassia, and D. Ajwani. Learning fine-grained search space pruning
and heuristics for combinatorial optimization. J. Heuristics, 29(2):313–347, 2023.

40 B. Lavallee, H. Russell, B. D. Sullivan, and A. van der Poel. Approximating vertex cover
using structural rounding. In ALENEX, pages 70–80. SIAM, 2020.

41 L. Li, H. Chen, P. Li, J. Han, G. Wang, and G. Zhang. The k-core decomposition algorithm
under the framework of GraphBLAS. In 2021 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2021.

42 R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal
on Computing, 9(3):615–627, 1980.

43 X. Liu, H. Ushijima-Mwesigwa, I. Ghosh, and I. Safro. Partitioning dense graphs with
hardware accelerators. In International Conference on Computational Science, pages 476–483.
Springer, 2022.

23331

42 23331 – Recent Trends in Graph Decomposition

44 D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006.

45 A. Mastoras, S. Anagnostidis, and A. N. Yzelman. Design and implementation for non-
blocking execution in GraphBLAS: Tradeoffs and performance. ACM Trans. Archit. Code
Optim., 20(1), Nov 2022.

46 A. Mastoras, S. Anagnostidis, and A. N. Yzelman. Nonblocking execution in GraphBLAS.
In 2022 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 230–233, 2022.

47 R. Mayer and H.-A. Jacobsen. Hybrid edge partitioner: Partitioning large power-law
graphs under memory constraints. In Proceedings of the 2021 International Conference on
Management of Data, SIGMOD ’21, page 1289–1302, New York, NY, USA, 2021. Association
for Computing Machinery.

48 R. Mayer, K. Orujzade, and H.-A. Jacobsen. Out-of-core edge partitioning at linear run-time.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 2629–2642,
2022.

49 N. Merkel, R. Mayer, T. A. Fakir, and H.-A. Jacobsen. Partitioner selection with ease to
optimize distributed graph processing. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE), pages 2400–2414, 2023.

50 M. Y. Özkaya, A. Benoit, and Ü. V. Çatalyürek. Improving locality-aware scheduling with
acyclic directed graph partitioning. In R. Wyrzykowski, E. Deelman, J. Dongarra, and
K. Karczewski, editors, Parallel Processing and Applied Mathematics, pages 211–223, Cham,
2020. Springer International Publishing.

51 P. A. Papp, G. Anegg, and A. N. Yzelman. DAG scheduling in the BSP model. arXiv
preprint arXiv:2303.05989, 2023.

52 P. A. Papp, G. Anegg, and A. N. Yzelman. Partitioning hypergraphs is hard: Models,
inapproximability, and applications. In Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’23, pages 415–425, New York, NY,
USA, 2023. Association for Computing Machinery.

53 D. Pasadakis, O. Schenk, V. Vlačić, and A. N. Yzelman. Nonlinear spectral clustering with
C++ GraphBLAS, 2023. Pre-print.

54 F. Pellegrini. Static mapping by dual recursive bipartitioning of process and architecture
graphs. In Proceedings of IEEE Scalable High Performance Computing Conference, pages
486–493, 1994.

55 F. Pellegrini and C. Lachat. Process Mapping onto Complex Architectures and Partitions
Thereof. In SIAM Conference on Computational Science & Engineering, Salt Lake City,
United States, Mar. 2015. SIAM.

56 F. Pellegrini and C. Lachat. Process Mapping onto Complex Architectures and Partitions
Thereof. Research Report RR-9135, Inria Bordeaux Sud-Ouest, Dec. 2017.

57 D. M. Pelt and R. H. Bisseling. A medium-grain method for fast 2D bipartitioning of sparse
matrices. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pages 529–539. IEEE, 2014.

58 D. M. Pelt and R. H. Bisseling. An exact algorithm for sparse matrix bipartitioning. Journal
of Parallel and Distributed Computing, 85:79–90, 2015.

59 M. Popp, S. Schlag, C. Schulz, and D. Seemaier. Multilevel Acyclic Hypergraph Partitioning,
pages 1–15. SIAM, 2021.

60 D. Ron, I. Safro, and A. Brandt. A fast multigrid algorithm for energy minimization under
planar density constraints. Multiscale Modeling & Simulation, 8(5):1599–1620, 2010.

61 D. Ron, I. Safro, and A. Brandt. Relaxation-based coarsening and multiscale graph
organization. Multiscale Modeling & Simulation, 9(1):407–423, 2011.

George Karypis, Christian Schulz, and Darren Strash et al. 43

62 I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by multilevel weighted
edge contractions. Journal of Algorithms, 60(1):24–41, 2006.

63 I. Safro, D. Ron, and A. Brandt. A multilevel algorithm for the minimum 2-sum problem.
J. Graph Algorithms Appl., 10(2):237–258, 2006.

64 I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear ordering problems. Journal
of Experimental Algorithmics (JEA), 13:1–4, 2009.

65 I. Safro, P. Sanders, and C. Schulz. Advanced coarsening schemes for graph partitioning.
Journal of Experimental Algorithmics (JEA), 19:1–24, 2015.

66 I. Safro and B. Temkin. Multiscale approach for the network compression-friendly ordering.
Journal of Discrete Algorithms, 9(2):190–202, 2011.

67 K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High-Performance Scientific
Simulations. In Sourcebook of parallel computing, pages 491–541. Morgan Kaufmann
Publishers, 2003.

68 A. Scolari and A. N. Yzelman. Effective implementation of the High Performance Conjugate
Gradient benchmark on GraphBLAS, 2023. Accepted for publication.

69 R. Shaydulin, J. Chen, and I. Safro. Relaxation-based coarsening for multilevel hypergraph
partitioning. Multiscale Modeling & Simulation, 17(1):482–506, 2019.

70 H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM Journal on Scientific
Computing, 18(5):1436–1445, 1997.

71 D. G. Spampinato, D. Jelovina, J. Zhuang, and A. N. Yzelman. Towards structured
algebraic programming. In Proceedings of the 9th ACM SIGPLAN International Workshop
on Libraries, Languages and Compilers for Array Programming, ARRAY 2023, pages 50–61,
New York, NY, USA, 2023. Association for Computing Machinery.

72 D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

73 J. Sybrandt, R. Shaydulin, and I. Safro. Hypergraph partitioning with embeddings. IEEE
Transactions on Knowledge and Data Engineering, 34(6):2771–2782, 2020.

74 D. Tayebi, S. Ray, and D. Ajwani. Learning to prune instances of k-median and related
problems. In C. A. Phillips and B. Speckmann, editors, Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2022, Alexandria, VA, USA, January
9-10, 2022, pages 184–194. SIAM, 2022.

75 M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular decomposition
via recursive factorizing permutations. In Automata, Languages and Programming, pages
634–645, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

76 C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gayatri,
E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell,
S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke. Kokkos 3:
Programming model extensions for the exascale era. IEEE Transactions on Parallel and
Distributed Systems, 33(4):805–817, 2022.

77 B. Uçar and Ü. V. Çatalyürek. On the scalability of hypergraph models for sparse matrix
partitioning. In M. Danelutto, J. Bourgeois, and T. Gross, editors, Proceedings of the
18th Euromicro Conference on Parallel, Distributed, and Network-based Processing, pages
593–600. IEEE Computer Society, Conference Publishing Services, 2010.

78 L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

79 R. van Bevern, A. E. Feldmann, M. Sorge, and O. Suchý. On the parameterized complexity
of computing balanced partitions in graphs. Theory Comput. Syst., 57(1):1–35, 2015.

80 B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Review, 47(1):67–95, 2005.

23331

44 23331 – Recent Trends in Graph Decomposition

81 D.-L. Wang and P. Wang. Discrete isoperimetric problems. SIAM Journal on Applied
Mathematics, 32(4):860–870, 1977.

82 A. N. Yzelman. Humble heroes, 2022. Pre-print.
83 A. N. Yzelman and R. H. Bisseling. Cache-oblivious sparse matrix–vector multiplication

by using sparse matrix partitioning methods. SIAM Journal on Scientific Computing,
31(4):3128–3154, 2009.

84 A. N. Yzelman and R. H. Bisseling. Two-dimensional cache-oblivious sparse matrix–vector
multiplication. Parallel Computing, 37(12):806 – 819, 2011.

85 A. N. Yzelman, R. H. Bisseling, D. Roose, and K. Meerbergen. MulticoreBSP for C: a
high-performance library for shared-memory parallel programming. International Journal
on Parallel Programming, 42:619–642, 2014.

86 A. N. Yzelman, D. Di Nardo, J. M. Nash, and W. J. Suijlen. A C++ GraphBLAS:
specification, implementation, parallelisation, and evaluation. Preprint, 2020.

87 A. N. Yzelman and D. Roose. High-level strategies for parallel shared-memory sparse
matrix–vector multiplication. IEEE Transactions on Parallel and Distributed Systems,
25(1):116–125, 2014.

George Karypis, Christian Schulz, and Darren Strash et al. 45

Participants

Deepak Ajwani
University College Dublin, IE

Cevdet Aykanat
Bilkent University – Ankara, TR

Rob Bisseling
Utrecht University, NL

Katrin Casel
HU Berlin, DE

Ümit V. Çatalyürek
Georgia Institute of Technology –
Atlanta, US & Amazon Web
Services, US

Cedric Chevalier
CEA – Bruyères-le-Châtel, FR

Florian Chudigiewitsch
Universität zu Lübeck, DE

Michael R. Fellows
University of Bergen, NO

Marcelo Fonseca Faraj
Universität Heidelberg, DE

Lars Gottesbüren
KIT – Karlsruher Institut für
Technologie, DE

Tobias Heuer
KIT – Karlsruher Institut für
Technologie, DE

George Karypis
University of Minnesota –
Minneapolis, US

Kamer Kaya
Sabanci University –
Istanbul, TR

Jakub Lacki
Google – New York, US

Johannes Langguth
Simula Research Laboratory –
Oslo, NO

Xiaoye Sherry Li
Lawrence Berkeley National
Laboratory, US

Fredrik Manne
University of Bergen, NO

Ruben Mayer
Universität Bayreuth, DE

Johannes Meintrup
THM – Gießen, DE

Henning Meyerhenke
HU Berlin, DE

Yosuke Mizutani
University of Utah –
Salt Lake City, US

Francois Pellegrini
University of Bordeaux, FR

Fabrizio Petrini
Intel Labs – Menlo Park, US

Frances A. Rosamond
University of Bergen, NO

Ilya Safro
University of Delaware –
Newark, US

Sebastian Schlag
Apple – Cupertino, US

Christian Schulz
Universität Heidelberg, DE

Daniel Seemaier
KIT – Karlsruher Institut für
Technologie, DE

Roohani Sharma
MPI für Informatik –
Saarbrücken, DE

Darren Strash
Hamilton College – Clinton, US

Blair D. Sullivan
University of Utah –
Salt Lake City, US

Bora Uçar
ENS – Lyon, FR

Albert-Jan Yzelman
Huawei Technologies –
Zürich, CH

23331

	Executive Summary (George Karypis, Christian Schulz, and Darren Strash)
	Table of Contents
	Overview of Talks
	Scalable Graph Clustering at Google (Jakub Lacki)
	Local Objectives for Graph Clustering (Katrin Casel)
	Parallel Incremental Clustering Algorithms for Massive Dynamic Graphs (Johannes Langguth)
	Parameterized Approximation Schemes for Clustering with General Norm Objectives (Roohani Sharma)
	Leveraging Learning-to-prune and reinforcement learning for solving combinatorial optimisation problems (Deepak Ajwani)
	Using Steiner Trees in Hypergraph Partitioning (Tobias Heuer)
	Directed Acyclic Partitioning from Graphs to Hypergraphs (Ümit V. Çatalyürek)
	Approximate Modular Decomposition (Yosuke Mizutani)
	Exact k-way sparse matrix partitioning (Rob H. Bisseling)
	What Scotch cannot do yet (François Pellegrini)
	Recent Advances in Streaming (Hyper)Graph Decomposition (Marcelo Fonseca Faraj)
	Graph partitioning and distributed graph processing – An end-to-end optimization perspective (Ruben Mayer)
	Parameterized complexity and algorithmics – some horizons – and the universal applied paradigm of diverse solutions (Mike Fellows)
	Combinatorial problems in sparse matrix computations (Xiaoye S. Li)
	Algebraic Programming for Graph Computing: GraphBLAS and beyond (Albert-Jan Yzelman)
	Distributed Landmark Labelling Using Vertex Separators (Kamer Kaya)
	Recent Advances in Ka (Hyper)Graph Partitioning (Daniel Seemaier and Lars Gottesbüren)
	Graph Neural Network Research at AWS AI (George Karypis)
	An MPI-based Algorithm for Mapping Complex Networks onto Hierarchical Architectures (Henning Meyerhenke)

	Working Groups
	Balanced Edge Partitioning for Distributed Graph Processing (Ruben Mayer)
	Edge-Colored Clustering (Blair D. Sullivan)
	Exact k-way sparse matrix partitioning (Rob H. Bisseling)

	Open Problems
	Preliminaries
	Balanced (Hyper)graph Decomposition and Variations
	(Hyper)graph Clustering
	Data Reductions and Learning
	Embeddings
	Parameterized Complexity

	Participants

