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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23332, which focused
on automated algorithm design (AAD) for optimization. AAD aims to propose good algorithms
and/or parameters thereof for optimization problems in an automated fashion, instead of forcing
this decision on the user. As such, AAD is applicable in a variety of domains. The seminar
brought together a diverse, international set of researchers from AAD and closely related fields.
Especially, we invited people from both the empirical and the theoretical domain. A main goal
of the seminar was to enable vivid discussions between these two groups in order to synergize
the knowledge from either domain, thus advancing the area of AAD as a whole, and to reduce
the gap between theory and practice. Over the course of the seminar, a good mix of breakout
sessions and talks took place, which were very well received and which we detail in this report.
Efforts to synergize theory and practice bore some fruit, and other important aspects of AAD
were highlighted and discussed. Overall, the seminar was a huge success.
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1 Executive Summary

Martin S. Krejca (LIX, Ecole Polytechnique, IP Paris, FR, martin.krejca@polytechnique.edu)
Marius Lindauer (Institute of AI, Leibniz University Hannover, DE,
m.lindauer@ai.uni-hannover.de)
Manuel López-Ibáñez (Alliance Manchester Business School, University of Manchester, UK,
manuel.lopez-ibanez@manchester.ac.uk)
Katherine M. Malan (Department of Decision Sciences, University of South Africa – Pretoria,
ZA, malankm@unisa.ac.za)
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Automated algorithm design (AAD) is a prevalent and highly important domain, as design-
dependent algorithms are used in a plethora of very different areas. Determining which
algorithms and/or their parameters to choose for each given problem is a task that is infeasible
to solve in this magnitude solely by humans. Computers can greatly assist in this process in
a multitude of ways. Consequently, many different branches of AAD exist. This Dagstuhl
Seminar brought together a diverse set of researchers from the AAD domain as well as closely
related domains, from all over the world. The aim of the seminar was to provide a common
platform to exchange ideas about all of the different established AAD techniques and theories,
how to advance the field of AAD, and how to join forces. Most prominently, the seminar
aimed at a strong exchange between researchers who work empirically and those who work
theoretically. We believe that this seminar was a great success, reaching all of the intended
goals.

Due to the diverse backgrounds of the participants, the seminar started with elaborate
introduction rounds followed by two overview talks – one detailing the theoretical perspective
of AAD, given by Carola Doerr, the other one the empirical perspective, given by Katherine M.
Malan. From then on, the seminar consisted of a mix of breakout sessions and short, inspiring
talks as participants felt the need to share their experiences or ideas based on the discussions.
Immediately from day one, interesting breakout sessions emerged, some of which had multiple
iterations, due to the interest of the participants and due to the scope of the subject. In the
morning of each day, we made sure to provide a summary of all breakout sessions of the
previous day in order to update everyone and to discuss what other topics could be further
explored.

Topics that came up on day one were discussions about the terminology and about
benchmarks, which had multiple sessions throughout the week. Both of these topics are
very important when aiming to unite the community and especially when trying to bridge
the gap between theory and practice. The sessions about terminology showed that different
communities use different terms for similar concepts and, perhaps more worrying, terminology
is not used consistently across communities, making communicating results between different
areas harder. Potential solutions include to provide a freely accessible overview of the
different terms and define them well, or to use whatever terminology feels appropriate for
each article but specify the terms very well in the article. The sessions about benchmarks
highlighted that more diverse sets of benchmark functions are desired and that it is not
straightforward to transfer the existing benchmarks into a setting that is well suited for
theoretical investigations. The latter point sparked other interesting discussions, summarized
in this report.
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An inspiring talk was given by Kevin Leyton-Brown, who proposed that optimization
should be guided based on users’ utilities rather than on expected runtime of the algorithms.
This led to an interesting breakout group in which various useful utility functions were
discussed which could be used for realistic AAD scenarios. Another very interesting breakout
group was inspired by Benjamin Doerr, who was looking for the easiest possible AAD
scenario to study theoretically. In a fruitful exchange, a scenario was constructed that seemed
interesting and approachable from a theoretical point and also useful from a practical point
of view. The discussion emerging from this group delved into an open question that was
discussed throughout the seminar, namely, what are the characteristics that make AAD
scenarios a special case of the more general field of black-box optimization.

Besides these success stories, further talks led to potential collaborations and new ideas.
One example was the talk by Johannes Lengler, in which he proposed how existing theoretical
results for randomized optimization heuristics could be potentially interpreted as results for
AAD. The ensuing discussion was about to what extent such generalizations make sense,
with no clear consensus being reached so far. Nonetheless, the talk and the following in-depth
discussion showed that there is significant work to be done on this topic.

The seminar also gave members who are not part of the core AAD community the
opportunity to present their work and to integrate into the community. This was met with
very positive feedback. Overall, we thank all of the participants for the great discussions,
valuable talks, and the support, all of which made this seminar a great success. In addition,
we thank the Dagstuhl staff, who supported us incredibly well and helped us run this seminar
as smoothly as it did.
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3 Overview of Talks

3.1 Reflections on Synergizing Theory and Practice of Automated
Algorithm Design for Optimization

Carola Doerr (Sorbonne Université, CNRS, LIP6 – Paris, FR, carola.doerr@lip6.fr)

License Creative Commons BY 4.0 International license
© Carola Doerr

This seminar is aimed at bringing together theoreticians in (black-box) optimization with
researchers developing and using automated algorithm design techniques. In order to create
a joint understanding for the topics of this seminar, I will briefly present some reflections on
what I consider useful to know to get to know each other. In particular, I will emphasize
that some participants may have a strong interest in optimizing automated algorithm design
techniques, while others may have a stronger interest in using automated algorithm design
techniques to identify efficient optimization algorithms.

I will also present some ideas for possible breakout sessions, including using benchmarks
with proven theoretical guarantees to understand behavior and performance limits of state-of-
the-art automated algorithm design techniques, the selection of instances to use during the
design (training) process, proxies (e.g., for performance measures) that can be used in the
training process to make it more efficient, and automated algorithm configuration techniques
that output an explicit instance feature – parameter map.

3.2 Runtime Analysis for the NSGA-II
Benjamin Doerr (Ecole Polytechnique, IP Paris, FR, lastname@lix.polytechnique.fr)

License Creative Commons BY 4.0 International license
© Benjamin Doerr

Joint work of Weijie Zheng, Yufei Liu, Benjamin Doerr
Main reference Weijie Zheng, Yufei Liu, Benjamin Doerr: “A First Mathematical Runtime Analysis of the

Non-dominated Sorting Genetic Algorithm II (NSGA-II)”, in Proc. of the Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 – March 1, 2022,
pp. 10408–10416, AAAI Press, 2022.

URL http://dx.doi.org/10.1609/AAAI.V36I9.21283

Recently, the mathematical runtime analysis of evolutionary algorithms made a huge step
forward by conducting several analyses of the Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II) [1], the most prominent multi-objective evolutionary algorithm intensively used
in practice (the work [1] is cited more than 50,000 times). In this talk, I touch upon three
results in this research direction.

The first such runtime analysis [2] proved that the NSGA-II easily computes the Pareto
front of the bi-objective OneMinMax and LOTZ benchmarks when the population size
is at least four time the size of the Pareto front. In contrast, when the population size
is only equal to the size of the Pareto front, regularly desirable solutions are lost and
consequently, it takes at least exponential time to reach a population that does not miss
a constant fraction of the Pareto front.
In sharp contrast to these and several other positive results for bi-objective problems [3,
4, 5, 6, 7, 8, 9, 10], in three or more objectives the NSGA-II cannot even optimize the
simple OneMinMax problem [11].
On the positive side, as the first runtime analysis for this algorithm shows, the NSGA-
III [12] can efficiently optimize the 3-objective OneMinMax problem [13].
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3.3 A graphical overview of applied research in automated algorithm
design

Katherine Malan (University of South Africa – Pretoria, ZA, malankm@unisa.ac.za)

License Creative Commons BY 4.0 International license
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With the aim of building a common understanding among the participants of seminar 23332,
I have attempted to unpack the components of automated algorithm design (AAD) to
visually illustrate the goals of different scenarios in AAD. After describing the different
components (problem space, algorithm space, problem feature space, algorithm feature
space, and performance space) and their specialized types, I describe some recent studies in
AAD visually overlayed onto the framework. Studies from the three scenarios of automated
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algorithm configuration, composition and selection are covered. The purpose of the talk is to
generate discussion with the hope that this leads to a common understanding of some of the
aspects of AAD.

3.4 Modular Optimization Algorithms: Testing AAD for Continuous
Optimization

Diederick Vermetten (Leiden University – NL, d.l.vermetten@liacs.leidenuniv.nl)

License Creative Commons BY 4.0 International license
© Diederick Vermetten

I present a use case of AAD in the domain of continuous optimization where we found
that modularizing popular algorithms and applying configuration techniques can yield
clear improvements in anytime performance. We do however have problems when testing
generalizability, as our test suites have not been designed for this purpose. We thus propose
a new function generator: MA-BBOB, which we hope can provide a playground for testing
the generalizability of AAD methods in optimization.

3.5 A OneMax for Automated Algorithm Design?
Johannes Lengler (ETH Zürich, CH, johannes.lengler@inf.ethz.ch)

License Creative Commons BY 4.0 International license
© Johannes Lengler

In this talk I present one candidate for a “OneMax” function in automated algorithm
composition, i.e., a simple benchmark that we would expect an automated algorithm composer
to solve.

The suggestion is that the potential algorithm consists of n components. For each of
them there are two components, type 0 and type 1. When the composer wants to compare
two or more algorithms, it draws a random permutation of size n, and gives credit 2i to the
i-th component of the algorithm if this is of type 1, and credit 0 if it is of type 0. The total
fitness performance of an algorithm is then the sum of the credits of all its components.

I discussed connections of this benchmark to the class of monotone functions (like HotTopic
functions) and of dynamic BinVal functions that have been used as benchmarks in the context
of randomized optimization heuristics.

3.6 Success Story: Power of Hyper-Heuristics and Transfer Learning in
AAD

Nelishia Pillay (University of Pretoria, ZA, nelishia.pillay@up.ac.za)

License Creative Commons BY 4.0 International license
© Nelishia Pillay

Automated design (AutoDes) encompasses automated configuration, automated composition,
automated generation and automated selection. We focus on automated configuration
(AutoCon), automated composition (AutoCom) and automated generation (AutoGen) for
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finding scalable solutions to complex problems in agriculture, health, education and industry.
We investigate hyper-heuristics and transfer learning in these three AutoDes areas. We
measure success in terms of the human competitiveness, i.e., do the solutions outperform
human solutions, as well as in terms of providing improvements over existing techniques used
for solving these problems. Hyper-heuristics work in an alternate space that maps to the
design space and as such allows for areas that could not be reached by searching the design
space directly to be explored. Transfer learning involves transferring knowledge between
design spaces. We have found that using hyper-heuristics and transfer learning in AutoCom,
AutoCon and AutoGen provide human competitive results with reduced computational cost.

3.7 Bimodal Parameter Landscapes in EDAs, Phase Transitions, and
Stability

Carsten Witt (Technical University of Denmark, Kgs. Lyngby, DK, cawi@dtu.dk)

License Creative Commons BY 4.0 International license
© Carsten Witt

We consider the simple estimation-of-distribution algorithm cGA on the OneMax benchmark
function. Previous research by Lengler, Sudholt and Witt (Algorithmica 2021) shows that
its expected runtime depends in a non-trivial way on its update parameter K, resulting in
a bimodal landscape and two widely different settings minimizing the expected runtime.
Moreover, we discuss phase transitions in algorithm behavior related to the choice of K, with
chaotic behavior of marginal probabilities and high genetic drift below the phase transition,
and very stable behavior above it.

3.8 A few open questions related to automated algorithm selection
Mario Andrés Muñoz (OPTIMA, The University of Melbourne, AU,
munoz.m@unimelb.edu.au)

License Creative Commons BY 4.0 International license
© Mario Andrés Muñoz

From over ten years of work on algorithm selection for continuous black-box optimization, I
have more open questions than answers. In this talk, I discussed some of my most recent
projects and, what they are to me, important challenges worth tackling. First, it is the
understanding of the relationships between real-world problems and benchmarks, by being
able to place them in a common instance space. Related, is the need to have more informative
descriptions of problems that are interpretable to humans and not only machine learning
algorithms. Second, we need to describe algorithm behaviors, and strategies to find suitable
algorithms for hard problems, where selection seems insufficient. All of this must be supported
by an infrastructure that facilitates sharing of results, data and software.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez, and Katherine M. Malan 55

3.9 Searching Problem Spaces: Automated Problem Design?
Marcus Gallagher (The University of Queensland – Brisbane, AU, marcusg@uq.edu.au)

License Creative Commons BY 4.0 International license
© Marcus Gallagher

Problem instances are a key component of automated algorithm design in optimization,
particularly when we are concerned with benchmarking and comparing the performance of
different techniques. Problem instances may be produced via manual design, randomized
generators, feature space or derived from real-world domains. Alternatively, we can produce
problem instances via some kind of search over some appropriate problem space. The key
challenges lie in how to search this space effectively. Some existing work in this space includes:

Using racing algorithms across problem instances.
Creating problem transformations (e.g. sphere to Rastrigin function), implicitly defining
a path through the problem space.
Search the (hyper)parameter space of a problem instance generator.
Search the (hyper)parameter space of a surrogate model.
Perturbation of a dataset (when the objective function is data driven).
Use of some type of generative model.

There seems to be much room for further research in this direction. Seminar attendees began
a collaborative document to collate references in this area.

3.10 Automated algorithm configuration/selection and constraint
programming

Nguyen Dang (University of St Andrews, UK, nttd@st-andrews.ac.uk)

License Creative Commons BY 4.0 International license
© Nguyen Dang

Constraint programming (CP) can offer an accessible means to non-expert users to solve their
combinatorial problems. More concretely, constraint modeling and solving pipelines such as
MiniZinc and Essence provide an expressive modeling language to describe a problem and
the relevant data (problem instance) and a toolchain to translate/reformulate the problem
(and instance) into the input understandable by a generic (CP/SAT/SMT/MIP) solver. In
this talk, I will talk about two applications we have done in our CP group in St Andrews
which link automated algorithm configuration/selection (AC/AS) and CP. The first one is
an application of AC/AS on automated generation and selection of streamliner constraints,
which was shown to significantly speed up the solving of constraint/SAT solvers. The second
one is about combining AC/AS and CP to create an automated instance generation system
for benchmarking purposes.
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3.11 A Comparative study of NCO and heuristics on TSP
Shengcai Liu (Agency for Science, Technology and Research, Singapore, SG,
liu_shengcai@cfar.a-star.edu.sg)

License Creative Commons BY 4.0 International license
© Shengcai Liu

Joint work of Shengcai Liu, Yu Zhang, Ke Tang, Xin Yao
Main reference Shengcai Liu, Yu Zhang, Ke Tang, Xin Yao: “How Good is Neural Combinatorial Optimization? A

Systematic Evaluation on the Traveling Salesman Problem”, IEEE Computational Intelligence
Magazine, Vol. 18(3), pp. 14–28, 2023.

URL http://dx.doi.org/10.1109/MCI.2023.3277768

Neural Combinatorial Optimization (NCO) is a recent research area in deep learning that
uses deep reinforcement learning to train DNNs (policies) to solve combinatorial optimization
problems (e.g., TSPs, VRPs). However, the experiments presented in existing works are
generally non-conclusive due to several reasons: 1) The state-of-the-art heuristic solvers are
usually missing, e.g., EAX for TSPs, HGS for VRPs; 2) For heuristic solvers, their default
parameter values are used which neglects the fact of parameter tuning; 3) Unfair comparison
of parallel NCO solvers vs. sequential heuristic solvers; 4) The benchmark instances are
quite limited in terms of both types and sizes.

In this talk, I introduce our recent comparative study of NCO solvers and heuristic
solvers on the TSPs. The study is the first that 1) considers five different problem types, 2)
involves problem instances with up to 10000 nodes, 3) includes tuned traditional solvers in
the comparison, and 4) investigates five different performance aspects including the energy
consumption of the solvers. Four main conclusions are drawn from the experiments: 1)
For all the TSP problem sizes and types considered in the experiments, heuristic solvers
still significantly outperform NCO solvers in nearly all the five performance aspects; 2)
A potential benefit of NCO solvers would be their superior time and energy efficiency for
small-size problem instances when sufficient training instances are available; 3) current NCO
approaches are not suitable for handling large-size problem instances, structural problem
instances, and mixed problem instances; 4) When the training instances have different
problem characteristics (problem types and sizes) from those of the testing instances, both
NCO solvers and tuned traditional solvers exhibit performance degradation, and NCO solvers
suffered from far more severe performance degradation

3.12 A Utilitarian Foundation for Algorithm Configuration
Kevin Leyton-Brown (University of British Columbia – Vancouver, CA, kevinlb@cs.ubc.ca)
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Main reference Devon R. Graham, Kevin Leyton-Brown, Tim Roughgarden: “Formalizing Preferences Over Runtime

Distributions”, in Proc. of the 40th International Conference on Machine Learning, Proceedings of
Machine Learning Research, Vol. 202, pp. 11659–11682, PMLR, 2023.
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When trying to solve a computational problem, we are often faced with a choice between
algorithms that are guaranteed to return the right answer but differ in their runtime
distributions (e.g., SAT solvers, sorting algorithms). This work aims to lay theoretical
foundations for such choices by formalizing preferences over runtime distributions. It might
seem that we should simply prefer the algorithm that minimizes expected runtime. However,
such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas
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in practice we are typically willing to cut off occasional, sufficiently long runs before they
finish. We propose a principled alternative, taking a utility-theoretic approach to characterize
the scoring functions that describe preferences over algorithms. These functions depend on
the way our value for solving our problem decreases with time and on the distribution from
which captimes are drawn. We describe examples of realistic utility functions and show how
to leverage a maximum-entropy approach for modeling underspecified captime distributions.
Finally, we show how to efficiently estimate an algorithm’s expected utility from runtime
samples.

3.13 From Synthetic to Real-World to Application Benchmarks
Marcel Wever (LMU Munich, DE, marcel.wever@ifi.lmu.de)
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Algorithm selectors and algorithm configurators are most commonly benchmarked on algo-
rithms for computationally hard problems, e.g., SAT, TSP, or MIP. While such benchmarks
facilitate unleashing the power of algorithm selection and configuration systems, results
underlie limited interpretability. More specifically, if an algorithm configurator fails to yield a
substantially better-performing configuration, it is unclear whether it is nonexistent or hard
to find. From the viewpoint of a practitioner, however, it is not clear to what extent algorithm
selection or configuration can be applied to a broader scope of software systems. In this
presentation, I invite the community to create theoretically inspired, synthetic benchmarks
that exhibit certain characteristics inherent to algorithm configuration problems on the one
hand, and more applied benchmarks on the other hand.

3.14 On the Probabilistic Model-Based Evolutionary Algorithm for
Mixed-Variables

Shinichi Shirakawa (Yokohama National University, JP, shirakawa-shinichi-bg@ynu.ac.jp)
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In automated machine learning and automatic algorithm design, mixed types of design
variables, including continuous, integer, and categorical variables, should be optimized. I
briefly introduce the extension of CMA-ES, called CMA-ES with margin, to handle integer
variables. CMA-ES with margin prevents stagnation of the search distribution to a certain
integer value in mixed-integer problems by introducing lower-bounded marginal probabilities
of integer variables. I also describe information geometric optimization (IGO) with categorical
distribution, which is a probabilistic model-based evolutionary algorithm for categorical
domains. CMA-ES with margin and IGO with categorical distribution update the parameters
of Gaussian and categorical distributions, respectively, to search for better solutions. Then,
I mention a possible extension of these algorithms for handling mixed-variable problems
consisting of continuous, integer, and categorical variables.

23332

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


58 23332 – Synergizing Theory and Practice of AAD for Optimization

3.15 Landscape Features in AAS/C
Niki van Stein (Leiden University, NL, n.v.stein@liacs.leidenuniv.nl)
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We propose DoE2Vec, a variational autoencoder (VAE)-based methodology to learn optimiza-
tion landscape characteristics for downstream meta-learning tasks, e.g., automated selection
of optimization algorithms. Principally, using large training data sets generated with a
random function generator, DoE2Vec self-learns an informative latent representation for
any design of experiments (DoE). Unlike the classical exploratory landscape analysis (ELA)
method, our approach does not require any feature engineering and is easily applicable for high
dimensional search spaces. For validation, we inspect the quality of latent reconstructions and
analyze the latent representations using different experiments. The latent representations not
only show promising potentials in identifying similar (cheap-to-evaluate) surrogate functions,
but also can significantly boost performances when being used complementary to the classical
ELA features in classification tasks.

3.16 Automated Algorithm Design from the Bottom Up
Lars Kothoff (University of Wyoming – Laramie, US, larsko@uwyo.edu)
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Recent advances in algorithm selection allow to automatically characterize algorithms based
on their source code. This offers new directions for automated algorithm design, enabling
researchers to quantify existing and generated code in novel ways and compare and contrast
different sources. Most existing approaches for automated algorithm design are top-down,
i.e. algorithms are designed or modified based on high-level descriptions. In this talk, I
will give an overview of the new methods for characterizing source code and sketch future
research directions that could leverage this, highlighting the results of a preliminary analysis
of existing solvers for hard AI problems.

3.17 UNSAT Solver Synthesis via Monte Carlo Forest Search
Chris Cameron (University of British Columbia – Vancouver, CA, cchris13@cs.ubc.ca )
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We introduce Monte Carlo Forest Search (MCFS), a class of reinforcement learning (RL)
algorithms for learning policies in tree MDPs, for which policy execution involves traversing
an exponential-sized tree. Examples of such problems include proving unsatisfiability of a
SAT formula; counting the number of solutions of a satisfiable SAT formula; and finding the
optimal solution to a mixed-integer program. MCFS algorithms can be seen as extensions
of Monte Carlo Tree Search (MCTS) to cases where, rather than finding a good path
(solution) within a tree, the problem is to find a small tree within a forest of candidate trees.
We instantiate and evaluate our ideas in an algorithm that we dub Knuth Synthesis, an
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MCFS algorithm that learns DPLL branching policies for solving the Boolean satisfiability
(SAT) problem, with the objective of achieving good average-case performance on a given
distribution of unsatisfiable problem instances. Knuth Synthesis leverages two key ideas to
avoid the prohibitive costs of policy evaluations in an exponentially-sized tree. First, we
estimate tree size by randomly sampling paths and measuring their lengths, drawing on
an unbiased approximation due to Knuth (1975). Second, we query a strong solver at a
user-defined depth rather than learning a policy across the whole tree, to focus our policy
search on early decisions that offer the greatest potential for reducing tree size.

4 Working Groups

4.1 Working Group 1: Terminologies of Automated Algorithm Design
Nelishia Pillay (University of Pretoria, ZA, nelishia.pillay@up.ac.za)
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This focus of this working group was to find a standardization of terminology for AAD. In
the literature there is no consistency in terms defining AAD concepts.

4.1.1 Discussed Problems

The first session of the working group highlighted the following challenges that need to be
addressed regarding the terminology used for AAD:

Standardize terminology for AAD – different researchers use different terms for the same
concepts, thus a standardization is needed.
Remove confusion regarding AAD terms in the literature – due to different terms being
used for the same concept this leads to confusion.
The need of an extensible framework/standardization as the field develops further – AAD
is a rapidly developing field and as such there is a need for an extensible standardization.
Principle components of design need to be identified – a starting point of the standard-
ization would be to identify the main/principle components of designs.

4.1.2 Possible Approaches

Criteria Considered for Categorization
Underlying design problem – what is the design problem being solved, e.g. determining
hyperparameters, creating a new operator.
Outcome – What is the design that is produced? Does it have to be reusable?
High-level methodology – What optimization technique is used to generate the design?

Proposed Categorization
Automated configuration – Involves determining the parameters and hyper-parameters,
e.g. learning rate, population size, operator probabilities. Related terms: HPO, parameter
tuning, parameter control.
Automated Selection – Involves selecting algorithms. Same underlying problem in
automated configuration.
Automated Composition – Involves combining existing processes/algorithms as black box
components.
Automated Generation – Involves creating new algorithms, e.g. new move operators, new
genetic operators.
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Figure 1 Proposed Mathematical Formulation.

Proposed Principle Components:
Problem input – What is the input to the design program, e.g. values for parameters,
potential components of an operator?
Search space – What space is being explored to solve the problem, e.g. parameter space,
program space, heuristic space.
Methods – The optimization approaches used for search.
Objective – What is the purpose of solving the problem, e.g. reduced workload, better
design leading to better results.
Outcome – The design produced.

Areas for further discussion:
Is automated selection and automated configuration the same problem?
Is the search space a principle component?

4.1.3 Conclusions

The discussions held provided a starting point to develop a standardization for AAD. There
are some areas for further discussion where consensus was not reached. The aim is for this
standardization proposal generated from the discussions to be taken further by interested
members of the community for further discussion and possible formalization.

4.2 Working Group 2: Automated Algorithm Design Benchmarks
Johannes Lengler (ETH Zurich, CH, johannes.lengler@inf.ethz.ch)
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This working group focused on how benchmark suites for Automated Algorithm Design
should look like.

4.2.1 Discussed Problems

What are landscape features? Do theoretical benchmarks capture them?
Useful benchmarks for algorithm configuration
Benchmarks on AAD

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez, and Katherine M. Malan 61

AAD across combinatorial problem domains
How to bridge theory and practice? What about theoretical empirics?
Benchmarking on real-world applications
Representativeness of benchmark data
Theory-inspired benchmarks for understanding AAD
Improving experimental methods for AAS etc.
How to select instances for the transfer from training to testing
Understanding problem spaces and problem properties better

4.2.2 Conclusions

Benchmark sets in optimization and in AAD often tend to be small.
Benchmarking is probably more instrumental in automated algorithm design than in
“manual” algorithm design however we could not point to in which way benchmarking
needs to be distinctively different.
It is not clear whether we want to increase the size and diversity of the benchmark suites.
In principle this is desirable (ML), but we do want our benchmark set to still reflect the
real world. Data augmentation was successful in ML.
Perhaps optimization heuristics even have a strength in being able to work with little
training data (flexibility, adaptability).
This touches on the question at which level the automation should take place. For one
problem class? For everything? That decides the scope of the benchmark set.
It is controversial how useful or arbitrary a feature space representation of benchmark
problems is.
Invariance properties may be a relevant and desirable aspect for features.

4.3 Working Group 3: New Methods for Automated Algorithm
Configuration

Marius Lindauer (Leibniz University Hannover, DE, m.lindauer@ai.uni-hannover.de)
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This working group focused on current and new methods for automated algorithm configura-
tion (AAC).

4.3.1 Open and Understudied Problems

As a first discussion point, we discussed what is missing or not well-studied in AAC. This
includes:
1. Multi-objective AAC guided by a surrogate (e.g., Bayesian optimization) s.t. users can

optimize for complementary objectives and obtain an approximated Pareto front at the
end [7];

2. AC methods with feature-dependent results (a.k.a per-instance algorithm configuration
or instance-specific algorithm configuration) where the results are (I) interpretable (e.g.,
by providing symbolic formulas) or (II) derived from a grammar to be more expressive
compared to common bounded configuration spaces;

3. Pre-trained surrogate models that are inspired the current trend of foundation models;
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4. Text-based interfaces for AAC based on large language models (LLMS) to provide an
easy user interface where domain experts can easily interact with [28];

5. Allowing more complicated constraints in the configuration space – currently this is
dominated by rejection sampling that cannot deal with highly constrained spaces;

6. Interactive methods where one can aggregate several preferences across multiple interac-
tions – the major difficulty lies in the aggregation;

7. Statistical guarantees s.t. users can trust that the results are close to optimal w.r.t. the
evaluated configurations (e.g., the configuration returned is not worse than any other
seen with 95% certainty);

8. How to deal with low signal-noise ratios where there is a lot (maybe even heteroscedastic)
noise on algorithm evaluations?

9. How can theoretically-driven racing schemes (e.g. [30]) and user-defined utility-
functions [13] be combined with Bayesian-optimization guided AAC?

10. How can we configure our AAC methods in view of how expensive it is to run AAC
methods? Simply applying AAC to AAC will be too expensive in most cases or diminishing
returns have to be taken into account [21];

11. Maybe surprisingly, the commonly used AAC packages (e.g., irace [22] and SMAC [18, 20])
do not implement all state-of-the-art ideas from other AI subfields (e.g., foundation models,
constraint solving, LLMs and theoretical sound approaches).

4.3.2 Promising Next Steps

At the end of the discussions, several promising directions were identified:
1. What are actually the most important components of an AAC method? A systematic

study across different AAC methods and application domains is still missing. This could
be done based on AClib [19]. This will also require updating AClib with new scenarios,
algorithms and instances.

2. How can we make results from AAC methods more interpretable to (I) increase the users’
trust into these methods and to (II) enable theory-driven results based on empirical
results? The common approaches include either using more interpretable models (e.g.,
linear models or symbolic models) or model-agnostic post-hoc explanations.

3. How can we increase the robustness of AAC methods where robustness can refer to noisy
algorithm evaluations, heterogeneous instance sets or stochasticity of the AAC method?

4.3.3 Dedicated Discussion on Dynamic Algorithm Configuration

In contrast to the traditional approach of wrapping AAC around existing algorithms, an
alternative is to tightly integrate AAC into the algorithms. This enables dynamic configuration
(DAC) [1] while the algorithm is running and can, e.g., dynamically adapt to new challenges
in the optimization landscape.
There are two major lines of work in this direction:
1. Configuring the parameters of the algorithm dynamically. This follows the idea of

the traditional AAC methods that takes the algorithm as it is and only controls its
parameters [27, 5]. With DACBench [10], there is a benchmark library that allows to
benchmark such approaches on various AI subfields efficiently. In addition, there is a
benchmark that is on the intersection of empirical experiments and theory [6].

2. Algorithm components can also be completely replaced by AI components and thus
increase efficiency [26, 17, 8]. This can come with reduced theoretical guarantees since
the learned components are typically based on neural networks.
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Open problems for dynamic configurations include:
1. How to scale DAC to large configuration spaces (i.e. many algorithm parameters)? Most

current approaches deal with less than five parameters and some even struggle to perform
well on more than two parameters.

2. How to decide on which instances one should learn in a dynamic AAC strategy? An
efficient learning strategy is required since dynamic configuration needs to perform well on
new instances. Approaches from curriculum and self-paced learning could be promising [9].

3. When should DAC be applied? How to efficiently determine whether dynamic configura-
tion is beneficial beyond static configuration?

4.3.4 Conclusions

Although there is active research on AAC methods for more than a decade and there is
substantial progress (e.g., tremendous speedups, efficient scaling to more algorithm parameters
(at least for static AAC) and dealing with different kinds of instances), there are still many
open challenges that are not yet addressed fully and open up many further research directions.

4.4 Working Group 4: Utility Functions
Kevin Leyton-Brown (University of British Columbia, Canada, kevinlb@cs.ubc.ca)
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This working group focused on how to apply a utilitarian perspective to the problem of
algorithm configuration. We discussed the benefits of different (random vs stratified) sampling
strategies to estimate utility value from samples. We considered the impact of a utilitarian
approach on algorithm configuration methods that offer theoretical guarantees. We also
discussed candidate utility functions that could be suggested to practitioners. In the end, we
recommend a simple approach:
1. Is there a minimum amount of time t0 below which all algorithm runs should be considered

equivalent?
2. Is there a maximum amount of time κ̄ above which the end user would never be willing

to wait?
3. In between t0 and κ̄, how does our preference for time change? We foresee three common

cases:
a. t0 = κ̄: we have a step function
b. linearly (e.g., we face a fixed cutoff and pay per hour of compute)
c. geometrically (utility falls by a constant fraction per unit time)

4.5 Working Group 5: New Estimation-of-Distribution Algorithms
Manuel López-Ibáñez (University of Manchester, UK, manuel.lopez-ibanez@manchester.ac.uk)
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This working group focused on estimation-of-distribution algorithms (EDAs) and how they
could be used for AAD.

23332

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


64 23332 – Synergizing Theory and Practice of AAD for Optimization

4.5.1 Discussed Problems

What are the challenges for EDAs in the AAD scenarios:
1. The search space is mixed (continuous, integer, categorical).
2. There exists a hierarchy between the parameters, in the form of known a priori

conditions.
3. There might be unknown stochastic dependencies between parameters.
4. The problem can be noisy, with non-Gaussian noise.
5. Since we often consider multiple instances, this is another area in which a different

kind of noise gets introduced.
How can the sampling be made more efficient? In sig-cGA, some variables are fixed when
you are sure they should have some particular value (good theoretical results but unclear
experimental results).
How to create good synthetic functions?
How to handle the conditional parameters? Can we just ignore the condition and sample
values which have no effect (which results in a random walk of the respective values)?

4.5.2 Possible Approaches

Can we use the Bayesian optimization algorithm (BOA) with Bayesian networks (or P3 or
GOMEA)? Can the dependency network be created, and could this handle mixed-integer
variables?

The algorithms in questions should be capable to represent the dependency network
well up to a degree.
EDAs are also capable to handle mixed-integer problems, but we came to no conclusion
how well this would work for our purpose.

Univariate EDAs require far less work to build a model. For certain contexts, e.g., where
it is very hard to figure out actual dependencies, this might already be sufficient. We
have some theoretical guarantees for how to choose the parameters of univariate EDAs,
preventing them from converging prematurely to bad values.
Density estimation trees or forests (e.g., the mlpack package): how to update the trees?

We did not come to a good conclusion.
Use CMA-ES with handling of mixed-integer spaces (except categorical). There is a
version of CMA-ES that can adapt the size of the covariance matrix.
We can use techniques from deep reinforcement learning to learn the update function of
CMA-ES. Is there a structural prior to use to speed up this training? Could we apply
algorithm design, define a grammar, and apply genetic programming to this context?

We were indecisive about the next steps.

4.5.3 Conclusions

This area is heavily underexplored so far. Some AAD approaches, like irace, exist that can
be thought of as EDAs. However, they do not make use of theoretical guarantees. Partially
because the theoretical results are too recent, partially because we have no guarantees for
multivariate EDAs. Hence, employing complex EDAs should follow proper empirical tests.
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4.6 Working Group 6: The OneMax Problem of AAD
Benjamin Doerr (Ecole Polytechnique, IP Paris, FR, lastname@lix.polytechnique.fr)
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The aim of this working group was to bring together researchers in AAD and in the theory of
evolutionary computation to discuss what could be an AAD problem that is simple enough
to allow analyses via mathematical means, but for which a deeper understanding promises
to lead to useful insights on AAD methods used in practice.

The hope is that such a first simple problem can trigger a success story similar to the
theoretical analysis of evolutionary algorithm, which has started with toy problems like how
the (1 + 1) evolutionary algorithm optimizes the OneMax problem [2, 12, 23], but which
now, for example, is able to analyze complex algorithms intensively used in practice like the
NSGA-II [4], the most prominent multi-objective evolutionary algorithm (50,000 citations).

Obviously, what is such a good first problem is highly non-obvious and the group discussed
various directions. It was noted that some first works already exist [14, 15, 16], however, no
participant of the breakout session had a deeper understanding of these works. This together
with short preliminary readings of these works were interpreted in the way that most likely
the problems regarded in these works do not yet perfectly satisfy the needs of the automated
algorithm design community.

Finally, the following problem set-up was proposed. We try to optimize a pseudo-Boolean
function f : {0, 1}n → R. This function is defined via two functions g0, g1 defined on n − 1
bits via f(x) = g0(x2, . . . , xn) if x1 = 0 and f(x) = g1(x2, . . . , xn) if x1 = 1. This models an
automated algorithm design problem in which we have the choice between two algorithms A0
and A1. This choice is described via the variable x1. We further have n − 1 binary algorithm
parameters. For i = 0, 1, if we run algorithm Ai with parameters values x2, . . . , xn on our
problem, the performance is f(i, x2, . . . , xn) = gi(x2, . . . , xn). In this model, we assume that
we have access to a precise and noise-free performance of the algorithms on our problem
instance. We do, a priori, not assume that g0 and g1 are in some sense related, though most
likely the more interesting results will be obtained if there is some correlation between the
influences of the parameters on the result. An example for such a setting could be that both
functions are linear functions with coefficients that mostly have the same sign. Also, it was
pointed out that this model captures the situation that the two algorithms have different
numbers of parameters, namely by letting one of the two functions only depend on some of
the variables.

A particular research question that could be studied in this model is the following. To
try to find out which algorithm with which parameters to use for our problem, is it better
to optimize the parameters of the two algorithms separately, that is, we optimize g0 and g1
separately and take the better of the two results, or is it preferable to just optimize f , that
is, let the algorithm design process switch between the algorithms.

It was later noted that a special case of the function f was regarded in [29].
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4.7 Working Group 7: Explainability of AAD Methods
Pascal Kerschke (Technical University of Dresden, DE, pascal.kerschke@tu-dresden.de)
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This working group focused on the explainability of AAD, starting from the question of
whether / why we would want to have explainable AAD.

4.7.1 Discussed Problems

Everyone interprets explainability in their own way, ranging from understanding comple-
mentarity of algorithms and explaining the autoML process itself to explaining experi-
mental data such as identification of flaws or biased data/setup of the process.
Overarching question: when / why care for explainability if we just want better-performing
algorithms?
There are different levels of explainability: designers vs. users. For example, users want
explainability to gain trust in the AAD frameworks / tools. Explanations are also always
contextualized in your own (domain) knowledge, so different users might need different
explanations.
Can explainability help identify what parts of a problem are relevant, or help to identify
useful guidelines from the vast amount of data collected by AAD approaches? Explanations
might help understand the complexity of a model, e.g. that some HPO problems have
low effective dimensionality [3].
What are the limits of explainability: can we sufficiently explain very complex models
with high fidelity? Do explanation techniques have sufficient explanatory power?
To what extent are features useful for explainability? If we use features, should we limit
ourselves only to those we fully understand and build simple models based on those?
We need to be careful of the Rashomon effect: many possible explanations might exist
based on spurious interactions, high correlation of features,. . .
Diagnostic tools for the existing interpretable/explainable ML methods and theoretical
proofs are still missing. Many of the IML methods are still very new, and not yet fully
trusted.

4.7.2 Possible Approaches

One potential way to help explainability is to use functional ANOVA or Generalized
Additive Models for decomposition of the model.
There exists a wide range of techniques which might be useful for the explainability of
AAD: fANOVA, Symbolic Formulas, (automatic) Ablations, Partial Dependency Plots,
Item Response Theory, Instance Footprint plots, Local Parameter Importance, landscape
features, feature selection, simple explainable models, regularized models in expensive
settings. . .

4.7.3 Conclusions

Explainability in general is gaining more attention in many communities, and there are ways
in which AAD might also benefit from more explainable techniques. It is however still unclear
when to focus on explainability over just improving the performance of the final algorithm.
The quick growth of explainability techniques gives rise to a lot of opportunities, but we
should not lose sight of the overall picture and reason about what we want to explain, why
and to whom.
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4.8 Working Group 8: Automated Machine Learning
Marius Lindauer (Leibniz University Hannover, DE, m.lindauer@ai.uni-hannover.de)
Bernd Bischl (LMU, DE, bernd.bischl@stat.uni-muenchen.de)
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This working group focused on current challenges and promising future directions for auto-
mated machine learning (AutoML).

4.8.1 Discussed Problems

1. Although the efficiency of AutoML has improved by orders of magnitude in recent years,
AutoML might still be too inefficient for very expensive models (e.g., LLMS).

2. AutoML is not always robust; e.g., a simple default pipeline sometimes (rarely) outperforms
a complex AutoML system. How can users trust AutoML systems that the invested
compute (and waiting) time is worth it?

3. AutoML still does not handle all kinds of pitfalls of ML. For example, (I) class imbalance
is not properly dealt with in all tools, (II) wrong or inefficient validation schemes were
used or (III) ensembling is not beneficial.

4. The user interfaces of many AutoML tools are not user-friendly. It is an open question
of how verbose the output of an AutoML tool should be and what kind of warnings are
required (e.g., class imbalance and fairness). Generally, designing good user interfaces
without specifying the target user group is hard, but AutoML aims to be an approach for
everyone.

5. AutoGluon [11] is very fast and delivers strong performance (in particular on tabular data
for supervised tasks). Is AutoML for this subtask already solved or can we outperform it
by using drastically different approaches?

6. Large language models (LLMS) pose a major challenge since they are expensive and com-
bine several learning paradigms. Current AutoML approaches are hardly applicable [28].

7. The hidden objectives of practitioners are not always explicitly expressed. For example,
some users care only about predictive performance and others want to have rather small
and interpretable models. Not all AutoML tools can address different user preferences;
e.g., AutoGluon returns neither small nor interpretable models.

8. How can AutoML help to understand the data in a better way (e.g., in data-centric
approaches)?

9. How can we design an interactive AutoML system that (I) allows users to learn from
the AutoML system about the AutoML process and the data, and (II) to specify their
preferences, (III) benefits from users’ input to improve the overall performance of the
system (given the users’ objectives)? This might be important s.t. practitioners do not
get the impression that these systems can get out of control, but they are still in charge
and thus can trust the system.

10. Surprisingly, there seems to be a large group of practitioners rather using optimizers for
AutoML problems but fewer the full-fledged AutoML systems. These optimizers offer
much more flexibility but require more expertise and effort to set them up. What is
missing in full AutoML systems s.t. more practitioners want to use them? Learning
search spaces on the fly could be one promising direction [25, 24].

11. Large language models (such as ChatGPT) could offer new ways to interact with AutoML
systems (or partially replace them) s.t. users will need even less knowledge about how to
code ML systems [31].
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4.8.2 Conclusions

Although AutoML is much more mature than it was a few years ago, there are still major
challenges in applying AutoML in practice without expertise in ML and AutoML. One of
the most crucial next steps will be to bridge the gap between the expectations, expertise,
and workflows of ML practitioners and AutoML tools.
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