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Abstract
The Dagstuhl Seminar 23351 was held at the Leibniz Center for Informatics, Schloss Dagstuhl,
from August 27 to September 1, 2023. This event was the 14th in a series of Dagstuhl Seminars,
starting in 1991. During the seminar, researchers presented overview talks, recent research results,
work in progress and open problems. The first section of this report describes the goal of the
seminar, the main seminar topics, and the general structure of the seminar. The third section
contains the abstracts of the talks given during the seminar and the forth section the problems
presented at the problem session.
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1 Executive Summary
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The goal of the Dagstuhl Seminar was to bring together researchers that work in various fields
united by a common theme of complexity of continuous problems. In this context, complexity
refers to the computational effort required to solve the problem approximately, up to a given
error. For these, often high- or even infinite-dimensional, problems it is desirable to have
theoretical bounds on the complexity as well as explicit constructions of (nearly) optimal
algorithms. Their applications range over natural sciences, economics, statistics, engineering,
computer science (including computer graphics, global optimization, and machine learning)
and other areas of interest. The focus of the seminar was on the following highly interrelated
topics:
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Tractability analysis of high-dimensional problems. Tractability analysis has its roots
in information-based complexity. It studies continuous problems, where the instances are
typically d-variate functions. The focus is on how the problem complexity depends on the
error tolerance and on d. Topics discussed during the seminar were the study of recent
notions of tractability and of new problem settings.

Computational stochastics. The focus was on strong approximation and quadrature of
stochastic differential equations (SDEs) with non-globally Lipschitz continuous coefficients.
Systematic investigations on the numerical approximation of such SDEs have started in the
last decade and are still in their infancy.

Infinite-variate problems: algorithms and complexity. Many applications rely on models
with countably many variables. The complexity analysis of the resulting continuous problems
may be viewed as the limit of tractability analysis for d-variate functions, where d tends
to infinity. For many problems sharp complexity bounds have been proved with the help
of generic types of algorithms, as multilevel algorithms and multivariate decomposition
methods, but mainly in the case where the spaces of input functions are weighted reproducing
kernel Hilbert spaces (RKHSs) based on product weights or RKHSs of increasing smoothness.
A major question was how to tackle important function spaces, which exhibit a different
underlying structure.

Well-distributed point configurations: discrepancy, quasi-Monte Carlo methods, dispersion.
Many problems in approximation theory and complexity rely on the existence and construction
of good (random or deterministic) point distributions with respect to discrepancy, integration
errors, strength of cubature formulas, dispersion, or discrete energy. Numerous questions in
this area are still open: in various regimes sharp bounds for discrepancy and dispersion still
remain unknown and explicit efficient constructions are still lacking. These problems were
intensely discussed during the seminar.

Linear and standard information in approximation theory. A classical problem of ap-
proximation theory, learning theory and data analysis is the approximation of an unknown
multivariate function from incomplete information. The information can be given by a
limited number of function evaluations (standard information) or by evaluating a finite
number of arbitrary linear functionals (linear information). Even in the simplest setting of
approximation in a norm of a Hilbert space, the relation between using standard information
and linear information was understood only recently and there is still a number of challenging
open questions in this area. In several seminar talks interesting ideas to tackle these questions
and new results were presented.

During the seminar we had five overview talks of 60 minutes (incl. discussion; one for
each of the main research topics) given by leading experts in the respective area to enable
reseachers from different fields to follow the regular talks. The speakers and the titles of
these lectures were (ordered according to the list of main research topics):

Peter Kritzer (RICAM Linz), Tractability analysis.
Thomas Müller-Gronbach (Unversität Passau), On the complexity of strong approximation
of SDEs with a non-Lipschitz drift coefficient.
Klaus Ritter (RPTU Kaiserslautern-Landau), Infinite-variate integration and L2-approxi-
mation.
Stefan Steinerberger (University of Washington – Seattle), Well-distributed point config-
urations.
Mario Ullrich (JKU Linz), On optimal approximation based on random samples.
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These talks were delivered at the first three days of the seminar. Additionally, we had 24
regular talks of 30 minutes (incl. discussion), many of them presented by young researchers.
Due to the time format, there was plenty of time for discussions and collaborations in smaller
groups.

Originally we planned an additional poster session for the participants who do not present
a talk. Since finally the number of time slots for talks was sufficient to ensure that everyone
who wanted to present a talk could actually do so, there was no need for a poster session
anymore.

On Wednesday morning we had a problem session to share interesting open problems
and conjectures and to initiate further discussions. Several researchers used the opportunity
to present interesting and challenging open problems. One problem was even solved in a
discussion of some participants directly after the problem session. The detailed problem
formulations can be found at the end of this report.
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3 Overview of Talks

3.1 Constructing Low-Discrepancy Point Sets: Subset Sampling and
Optimal Sets

François Clément (Sorbonne University – Paris, FR)

License Creative Commons BY 4.0 International license
© François Clément

Joint work of François Clément, Carola, Doerr, Kathrin Klamroth, Luís Paquete

Low-discrepancy sequences such as Sobol’ or Halton have been designed to have small
discrepancy values asymptotically. However, for practical applications, only a finite number
of points will be possible, often too small to reach the asymptotic regime. In this talk, I
present two different approaches to construct point sets with low discrepancy values.

The first is via the Star Discrepancy Subset Selection Problem, which consists in selecting
from a fixed point set P of size n the best subset of size k, best being the subset with the
smallest L∞ star discrepancy. We tackle this problem both via exact methods in dimensions
2 and 3 [1] and via heuristics in higher dimensions [2]. In particular, we observe that we are
able to obtain sets with 10-50% smaller discrepancy for all tested dimensions and number of
points.

The second is the construction of optimal point sets for the L∞ star discrepancy. This
has been a rather overlooked problem, with the main previous work by White in 1977 solving
for up to 6 points in dimension 2. We provide non-linear programming formulations to solve
the problem for n smaller than 20 in dimension 2 and smaller than 8 in dimension 3 [3]. In
particular, the structure of the local discrepancy values over [0, 1)2 for our optimal sets is
very different to that of previously known sets such as Fibonacci or Sobol’.

References
1 François Clément; Carola Doerr; Luís Paquete, Star discrepancy subset selection: Problem

formulation and efficient approaches for low dimensions, Journal of Complexity, 70:101645,
2022

2 François Clément; Carola Doerr; Luís Paquete, Heuristic approaches to obtain low-
discrepancy point sets via subset selection, 2023

3 François Clément; Carola Doerr; Kathrin Klamroth, Luís Paquete, Constructing Optimal
L∞ Star Discrepancy Sets, https://arxiv.org/abs/2311.17463, 2024

3.2 On the existence of optimal shallow networks
Steffen Dereich (Universität Münster, DE)

License Creative Commons BY 4.0 International license
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Joint work of Steffen Dereic, Arnulf Jentzen, Sebastian Kassing

In this talk, we discuss existence of global minima in optimisation problems over shallow
neural networks. More explicitly, the function class over which we minimise is the family
of all functions that can be expressed as artificial residual or feedforward neural networks
with one hidden layer featuring a specified number of neurons with ReLU (or Leaky ReLU)
activation. We give existence results. Moreover, we provide counterexamples that illustrate
the relevance of the assumptions imposed in the theorems.
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3.3 Data compression using lattices for machine learning
Kumar Harsha (Universität Osnabrück, DE)

License Creative Commons BY 4.0 International license
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Joint work of Kumar Harsha, Michael Gnewuch, Marcin Wnuk

The mean squared error is one of the standard loss functions in supervised machine learning.
However, calculating this loss for enormous data sets can be computationally demanding.
Modifying a earlier approach [1], we present algorithms to reduce extensive data sets to a
smaller size using rank-1 lattice rules. With this compression strategy in the precomputation
step, every lattice point gets a pair of weights depending on the original data and responses,
representing its relative importance. As a result, the compressed data makes iterative loss
calculations in optimization steps much faster. The proposed compression strategy is highly
beneficial for regression problems without an analytical solution. Our derivation of the
formulas for the weights assumes that input functions have a convergent Fourier series and
that the relevant Fourier coefficients form a hyperbolic cross. Accordingly, we have analyzed
our algorithms’ error for functions whose Fourier coefficients decay sufficiently fast such that
they lie in Wiener algebras.

References
1 Josef Dick; Michael Feischl, A quasi-Monte Carlo data compression algorithm for machine

learning, Journal of Complexity, 67:101587, 12 2021

3.4 Results and open questions around the adaption problem
Stefan Heinrich (RPTU – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
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In the framework of Information-Based Complexity we consider the adaption problem for
linear solution operators in the randomized setting. Along with surveying recent advances
we discuss a number of remaining/arising/related open questions.

The results presented are contained in the following papers:

References
1 Stefan Heinrich, Randomized complexity of parametric integration and the role of adaption

I. Finite dimensional case, arXiv:2306.13471
2 Stefan Heinrich, Randomized Complexity of Parametric Integration and the Role of Adaption

II. Sobolev spaces, arXiv:2306.13499
3 Stefan Heinrich, Randomized Complexity of Vector-Valued Approximation, to appear in:

A. Hinrichs, P. Kritzer, F. Pillichshammer (Eds.), Monte Carlo and Quasi-Monte Carlo
Methods 2022, Springer-Verlag, see also arxiv:2306.13697

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Dmitriy Bilyk, Michael Gnewuch, Jan Vybíral, and Larisa Yaroslavtseva 113

3.5 Instant Neural Graphics Primitives
Alexander Keller (NVIDIA – Berlin, DE)

License Creative Commons BY 4.0 International license
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Joint work of Alexander Keller, Thomas Müller, Alex Evans, Christoph Schied
Main reference Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller: “Instant neural graphics primitives

with a multiresolution hash encoding”, ACM Trans. Graph., Vol. 41(4), pp. 102:1–102:15, 2022.
URL https://doi.org//10.1145/3528223.3530127

Neural graphics primitives, parameterized by fully connected neural networks, can be costly
to train and evaluate. We reduce this cost with a versatile new input encoding that permits
the use of a smaller network without sacrificing quality, thus significantly reducing the
number of floating point and memory access operations: a small neural network is augmented
by a multiresolution hash table of trainable feature vectors whose values are optimized
through stochastic gradient descent. The multiresolution structure allows the network to
disambiguate hash collisions, making for a simple architecture that is trivial to parallelize on
modern GPUs.

3.6 Tractability in unweighted function classes
David Krieg (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 4.0 International license
© David Krieg

Main reference David Krieg: “Tractability of sampling recovery on unweighted function classes”, CoRR,
Vol. abs/2304.14169, 2023.

URL https://doi.org//10.48550/ARXIV.2304.14169

It is well-known that the integration problem as well as the problem of sampling recovery
in the L2-norm suffer from the curse of dimensionality on many classical function classes.
This includes unweighted Korobov spaces (Sobolev spaces with mixed smoothness) as well as
classical smoothness classes such as Hölder classes or the classes Ck([0, 1]d). We show that
those problems become (polynomially) tractable, even for Lp approximation with 1 ≤ p < ∞,
if we further impose the condition that the sum of Fourier coefficients is bounded.

The classes where we obtain tractability are unweighted (invariant under a reordering of
the variables) and bigger than the corresponding weighted Korobov spaces. Tractability is
achieved by the use of non-linear algorithms, while linear algorithms cannot do the job.

In fact, the tractability result is a relatively simple implication of powerful results
by Rauhut and Ward [Appl. Comput. Harmon. Anal. 40 (2016), pp. 321-351] on ℓ1-
minimization. The approach is not limited to the Fourier system, but it remains to be seen
whether any “interesting” classes of nonperiodic functions can be tackled.
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3.7 Tractability analysis
Peter Kritzer (Österreichische Akademie der Wissenschaften – Linz, AT)

License Creative Commons BY 4.0 International license
© Peter Kritzer

Joint work of Peter Kritzer, Josef Dick, Adrian Ebert, Onyekachi Emenike, Fred J. Hickernell, Christian Irrgeher,
Gunther Leobacher, Freidrich Pillichshammer, Henryk Wozniakowski

The information complexity of the problem of approximating an operator Sd : Fd → Gd

for normed spaces Fd and Gd is defined as the minimal number comp(ε, d) of information
evaluations needed to find an ε-approximation. A large literature specifies conditions under
which the information complexity for a sequence of numerical problems defined for dimensions
d ∈ {1, 2, . . .} grows at a moderate rate when the error threshold ε decreases and/or the
dimension increases, i.e., the sequence of problems is tractable.

In this talk, we give an overview of basic ideas in tractability analysis, highlight classical
results for linear problems defined on Hilbert spaces, and outline some more recent results
on this subject.

3.8 Optimal confidence intervals for randomized quadrature
Robert J. Kunsch (RWTH Aachen, DE & TU Chemnitz, DE)

License Creative Commons BY 4.0 International license
© Robert J. Kunsch

Main reference Robert J. Kunsch: “Linear Monte Carlo quadrature with optimal confidence intervals”, CoRR,
Vol. abs/2309.09059, 2023.

URL https://doi.org//10.48550/ARXIV.2309.09059

We study the numerical integration of functions from isotropic Sobolev spaces W s
p ([0, 1]d)

using finitely many function evaluations within randomized algorithms, aiming for the smallest
possible probabilistic error guarantee ε > 0 at confidence level 1 − δ ∈ (0, 1). This error
criterion is more challenging than the classical root-mean-squared error which is usually
taken for Monte Carlo algorithms within information-based complexity and where only n

and ε are put in relation. For spaces consisting of continuous functions, non-linear Monte
Carlo methods with optimal confidence properties have already been known, in few cases
even linear methods that succeed in that regard.[1] In this talk we promote a method called
stratified control variates (SCV), see [2], and by it show that already linear methods achieve
optimal probabilistic error rates in the high smoothness regime without the need to adjust
algorithmic parameters to the uncertainty δ. We also analysed a version of SCV in the low
smoothness regime where W s

p ([0, 1]d) may contain functions with singularities. Here, we
observe a polynomial dependence of the error on δ−1 which cannot be avoided for linear
methods. This is worse than what is known to be possible using non-linear algorithms where
only a logarithmic dependence on δ−1 occurs if we tune in for a specific value of δ. This
new way of looking at randomized integration still leaves many questions open, for instance,
precise lower bounds for linear methods in the low smoothness regime, as well as universal
methods or optimality in mixed-smoothness spaces.

References
1 Robert J. Kunsch; Daniel Rudolf, Optimal confidence for Monte Carlo integration of smooth

functions, Advances in Computational Mathematics, 45:3095–3122, 2019
2 Robert J. Kunsch, Linear Monte Carlo quadrature with optimal confidence intervals,

arXiv:2309.09059 [math.NA], 2023
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3.9 High-dimensional approximation: Transforming periodic
Approximations vs. Rando Fourier Features

Laura Lippert (TU Chemnitz, DE)

License Creative Commons BY 4.0 International license
© Laura Lippert

We study the problem of scattered-data approximation on Rd, where we have given sample
points and the corresponding function evaluations. We compare two approaches. In the first
one we transform functions on Rd to Td, apply an approximation based on hyperbolic wavelet
regression and transform the resulting function back. In fact, we transform the sample points
to points on Td, evaluate the periodic basis functions at these points, create a matrix and
solve the matrix equation with an LSQR-algorithm to get an approximation.
The other approach involves random Fourier features, where we draw frequencies ωj ∈ Rd at
random and learn coefficients aj from the given data to construct the approximant, i.e.

f(·) ≈
∑

j

aj exp (⟨ωj , ·⟩) .

We give error estimates for both cases, involving different function spaces. We truncate the
ANOVA decomposition to approximate high-dimensional functions of low effective dimension.

References
1 Laura Lippert; Daniel Potts, Variable Transformations in combination with Wavelets and

ANOVA for high-dimensional approximation, arXiv:2207.12826, 2022
2 Laura Lippert; Daniel Potts; Tino Ullrich, Fast Hyperbolic Wavelet Regression meets

ANOVA, Numerische Mathematik 154, 155–207, 2023

3.10 On the minimal dispersion in the unit cube
Alexander Litvak (University of Alberta – Edmonton, CA)

License Creative Commons BY 4.0 International license
© Alexander Litvak

We discuss ideas which lead to recent improvements of upper bounds for the minimal
dispersion of a point set in the unit cube and its inverse. We also discuss sharpness of bounds.
The talk is partially based on a joint work with G. Livshyts.

3.11 Fixed-radius spherical cap discrepancy
Michelle Mastrianni (University of Minnesota – Minneapolis, US)

License Creative Commons BY 4.0 International license
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Joint work of Dmitriy Bilyk, Stefan Steinerberger
Main reference Dmitriy Bilyk, Michelle Mastrianni, Stefan Steinerberger: “Single radius spherical cap discrepancy

via gegenbadly approximable numbers”, CoRR, Vol abs/2308.00694, 2023
URL https://doi.org/10.48550/arXiv.2308.00694

A seminal result of Beck shows that for any set of N points on the d-dimensional sphere,
there always exists a spherical cap such that the number of points in the cap deviates from
the expected value by at least N (1/2−1/2d). We refine the result by removing a layer of
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averaging: we show that, when d is not 1 mod 4, there exists a set of real numbers such
that for each r > 0 in the set one is always guaranteed to find a spherical cap with radius r

for which Beck’s result holds. The main ingredient is a generalization of the notion of badly
approximable numbers to the setting of Gegenbauer polynomials, which we call Gegenbadly
approximable numbers. These are fixed numbers x such that the sequence of Gegenbauer
polynomials evaluated at x avoids being close to 0 in a precise quantitative sense.

3.12 Complexity of composite linear problems
Peter Mathé (Weierstraß Institut – Berlin, DE)

License Creative Commons BY 4.0 International license
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Joint work of Peter Mathé, Bernd Hofmann
Main reference Bernd Hofmann, Peter Mathé: “The degree of ill-posedness of composite linear ill-posed problems

with focus on the impact of the non-compact Hausdorff moment operator”, CoRR,
Vol abs/2111.01036, 2021.

URL https://doi.org/10.48550/arXiv.2111.01036

We consider compact composite linear operators in Hilbert space, where the composition is
given by some compact operator followed by some non-compact one possessing a non-closed
range. Focus is on the impact of the non-compact factor on the overall behavior of the decay
rates of the singular values of the composition.

3.13 Comparison of Two Search Criteria for Lattice-based Kernel
Approximation

Weiwen Mo (KU Leuven, BE)

License Creative Commons BY 4.0 International license
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Joint work of Weiwen Mo, Frances Y. Kuo, Dirk Nuyens, Abirami Srikumar, Ian H. Sloan
Main reference Frances Y. Kuo, Weiwen Mo, Dirk Nuyens, Ian H. Sloan, Abirami Srikumar: “Comparison of Two

Search Criteria for Lattice-based Kernel Approximation”, CoRR, Vol. abs/2304.01685, 2023.
URL https://doi.org//10.48550/ARXIV.2304.01685

The kernel interpolant in a reproducing kernel Hilbert space is optimal in the worst-case
sense among all approximations of a function using the same set of function values. In
this talk, we compare two search criteria to construct lattice point sets for use in lattice-
based kernel approximation. The first candidate, P ∗

n , is based on the power function that
appears in machine learning literature. The second candidate, S∗

n, is a search criterion used
for generating lattices for approximation using truncated Fourier series. We find that the
empirical difference in error between the lattices constructed using the two search criteria
is marginal. The criterion S∗

n is preferred as it is computationally more efficient and has a
bound with a superior convergence rate.
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3.14 On the complexity of strong approximation of SDEs with a
non-Lipschitz drift coefficient

Thomas Müller-Gronbach (Universität Passau, DE)

License Creative Commons BY 4.0 International license
© Thomas Müller-Gronbach

We study the complexity of pathwise approximation in p-th mean of the solution of a
stochastic differential equation at the final time based on finitely many evaluations of the
driving Brownian motion. First, we briefly review the case of equations with globally Lipschitz
continuous coefficients, for which an error rate of at least 1/2 in terms of the number of
evaluations of the driving Brownian motion is always guaranteed by using the equidistant
Euler-Maruyama scheme. Then we illustrate that giving up global Lipschitz continuity may
lead to non-polynomial error rates for the Euler-Maruyama scheme or even for any method
based on finitely many evaluations of the driving Brownian motion. Finally, we turn to
recent complexity results in the case of equations with a drift coefficient that is not globally
Lipschitz continuous. Here we focus on scalar equations with a Lipschitz continuous diffusion
coefficient and a drift coefficient that satisfies piecewise smoothness assumptions or has
fractional Sobolev regularity.

3.15 Training of DNNs with lattice rules
Dirk Nuyens (KU Leuven, BE)
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Joint work of Dirk Nuyens, Alex Keller, Frances Kuo, Ian Sloan

Following Mishra, Rusch (2021) and Longo, Mishra, Rusch, Schwab (2021) we consider the
so-called “generalization error” which describes how well a trained DNN can approximate a
function on the whole domain. In fact this is just the L2 approximation error if measured in
the L2-norm. We start from the assumption that the underlying function is periodic and in
any Korobov space with smoothness alpha. This is motivated by the periodic model of the
random diffusion field when doing uncertainty quantification.

3.16 Super-polynomial Accuracy of Median-of-means
Zexin Pan (Stanford University, US)

License Creative Commons BY 4.0 International license
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Joint work of Zexin Pan, Art Owen
Main reference Zexin Pan, Art B. Owen: “Super-polynomial accuracy of multidimensional randomized nets using

the median-of-means”, CoRR, Vol. abs/2208.05078, 2022.
URL https://doi.org//10.48550/ARXIV.2208.05078

Digital net is an important class of Quasi-Monte Carlo methods used for multidimensional
integration. In the talk, I am going to show digital net randomized by linear scrambling
and digital shift exhibits surprising concentration behavior. Taking the median of several
digital net averages can exclude outliers and boost the convergence rate from nearly cubic
to super-polynomial when the integrand is smooth. I will end with some discussions on the
difficulties in building confidence intervals.
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3.17 Sampling recovery in the uniform norm
Kateryna Pozharska (National Academy of Sciences of Ukraine – Kyiv, UA & TU Chemnitz,
DE)

License Creative Commons BY 4.0 International license
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Joint work of David Krieg, Kateryna Pozharska, Mario Ullrich, Tino Ullrich
Main reference David Krieg, Kateryna Pozharska, Mario Ullrich, Tino Ullrich: “Sampling recovery in the uniform

norm”, CoRR, Vol. abs/2305.07539, 2023.
URL https://doi.org//10.48550/ARXIV.2305.07539

In the talk, I will present the results of our joint work with David Krieg, Mario Ullrich and
Tino Ullrich [1] on the recovery of functions based on function evaluations.

The main emphasis is made on the uniform recovery, however we provide a method to
transfer results for L2-approximation to rather general seminorms (including Lp, 1 ≤ p ≤ ∞).
The underlying (least squares) algorithm is based on a random construction and subsampling
based on the solution of the Kadison-Singer problem.

Besides an explicit bound for the corresponding sampling widths, we also obtain some
interesting inequalities between the sampling, Kolmogorov and Gelfand widths. Namely, we
show that there is an absolute constant c > 0, such that for a compact topological space D

and a compact subset F of C(D) the following holds

glin
2n(F, L∞) ≤ c

√
n dn(F, L∞). (1)

The bound in (1) is optimal up to constants, also if we consider only convex and symmetric
F and replace the Kolmogorov width dn by the Gelfand width cn on the right hand side. This
means, that there are linear algorithms using 2n samples that are as good as all algorithms
using arbitrary linear information up to a factor of at most

√
n. A result that cannot be

true without oversampling [2]. Moreover, our results imply that linear sampling algorithms
are optimal up to a constant factor for many reproducing kernel Hilbert spaces.

Acknowledgements. KP would like to acknowledge support by the Philipp Schwartz
Fellowship of the Alexander von Humboldt Foundation.
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3.18 Randomized Euler algorithm for SDEs with drift in integral form
and its connection with Perturbed SGD

Pawel Przybylowicz (AGH Univ. of Science & Technology-Krakow, PL)
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We will present a version of randomized Euler algorithm for approximation of solutions
of stochastic differential equations when the drift is in integral form. We will show upper
estimates for the error and some lower bounds in the worst-case model. We will show
some relationship of the randomized Euler algorithm with perturbed SGD used in machine
learning.
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3.19 Infinite-variate Integration and L2-Approximation
Klaus Ritter (RPTU – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
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In this survey we consider two basic computational problems, integration and L2-
approximation, for functions of countably infinite real variables. For motivation we briefly
refer to stochastic models based on iid-sequences of random variables, e.g., series expansions
of stochastic processes and random fields.

Thereafter we discuss appropriate cost models (information cost) for infinite-variate
problems as well as the general structure of the functions spaces (RKHS of tensor product
form) that have been studied so far. Finally, we present results (decay of the minimal errors)
and key ingredients of the proofs for tensor products of weighted spaces and of spaces of
increasing smoothness.

3.20 Integration and L2-Approximation on Gaussian Spaces
Robin Rüßmann (RPTU – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
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Joint work of Robin Rüßmann, Michael Gnewuch, Klaus Ritter

We study integration and approximation on reproducing kernel Hilbert spaces with Gaussian
kernels of tensor product form. We find new results in the infinite-variate case, and we
improve some known results in the finite-variate case.

Our most important tool is a close relation between Gaussian spaces and Hermite spaces
of infinite smoothness and tensor product form.

This relation allows us to transform any algorithm for integration or approximation on
the Gaussian space into an algorithm for the same problem on the Hermite space and vice
versa, preserving error and cost, which means that known upper and lower error bounds for
one function space setting also apply to the other setting.

3.21 Large holes in large point sets
Mathias Sonnleitner (Universität Passau, DE)

License Creative Commons BY 4.0 International license
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Dispersion is a measure of equidistribution of point sets. We give a brief introduction and
survey known results with focus on a large number of points compared to the dimension.
From the literature on coverings of Euclidean space and convex body approximation, we
deduce implications for the spherical case and point to open problems.
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3.22 Multi-level quasi-Monte Carlo methods for kernel interpolation in
uncertainty quantification

Abirami Srikumar (UNSW Sydney, AU)
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Joint work of Abirami Srikumar, Alexander D. Gilbert, Michael Giles, Frances Y. Kuo, Ian H. Sloan

As high-dimensional problems become increasingly prevalent in many applications, the
effective evaluation of these problems within the limits of our current technology poses a great
hurdle due to the exponential increase in computational cost as dimensionality increases.
One class of strategies for evaluating such problems efficiently are quasi-Monte Carlo (QMC)
methods.

In this talk, we explore the effectiveness of multi-level quasi-Monte Carlo methods for
approximating solutions to elliptic partial differential equations with stochastic coefficients
that depend periodically on the stochastic parameters. In particular, we are interested in
fast approximation using kernel-based lattice point interpolation. We present some regularity
results, theory on the convergence properties of errors of such approximations and the results
of numerical experiments.

3.23 Well-distributed Point Configurations
Stefan Steinerberger (University of Washington – Seattle, US)

License Creative Commons BY 4.0 International license
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This is a survey talk to describe several different problems in the broad framework of well-
distributed point configurations. Problems discussed include: low-discrepancy sets of points,
minimizers of energy functionals, greedy sequences, problems on the sphere S2 and minimizer
of the logarithmic energy as well as the connection to the crystallization conjecture.

3.24 Improving diversity in StableDiffusion with genetic crossover and
well distributed point configurations

Olivier Teytaud (Meta AI Research – Tournon-sur-Rhone, FR)

License Creative Commons BY 4.0 International license
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Joint work of Olivier Teytaud, Mariia Zameshina, Laurent Najman, Mathurin Videau

Latent diffusion models excel at producing high-quality images from text. Yet, concerns
appear about the lack of diversity in the generated imagery. To tackle this, we introduce
Diverse Diffusion, a method for boosting image diversity beyond gender and ethnicity, span-
ning into richer realms, including color diversity. Diverse Diffusion is a general unsupervised
technique that can be applied to existing text-to-image models. Our approach focuses on
finding vectors in the Stable Diffusion latent space that are distant from each other. We
generate multiple vectors in the latent space until we find a set of vectors that meet the
desired distance requirements and the required batch size. To evaluate the effectiveness of our
diversity methods, we conduct experiments examining various characteristics, including color
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diversity, LPIPS metric, and ethnicity/gender representation in images featuring humans.
The results of our experiments emphasize the significance of diversity in generating realistic
and varied images, offering valuable insights for improving text-to-image models. Through
the enhancement of image diversity, our approach contributes to the creation of more inclusive
and representative AI-generated art.

We also present genetic crossovers for combining latent variables into a better latent
variable.

After the seminar, we start a cool collaboration with Carola, Stefan, Dmitry, Laurent, for
producing fantastic point configurations in high-dimensional point spaces.

Joint work ESIEE and Meta.

3.25 On optimal approximation based on random samples
Mario Ullrich (Johannes Kepler Universität Linz, AT)
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Joint work of Mario Ullrich, Matthieu Dolbeault, David Krieg, Katerina Pozharska, Mathias Sonnleitner, Tino
Ullrich

URL https://arxiv.org/search/?query=Ullrich%2C+Mario&searchtype=author&abstracts=hide&order=-
announced_date_first&size=50

In this talk we give an overview of some recent and not so recent developments in the
area of approximation of functions based on function evaluations. The emphasis is on
information-based complexity and the worst-case setting, i.e., we ask for the minimal number
of information (aka measurements) needed by any algorithm to achieve a prescribed error
for all inputs, basically ignoring implementation issues.

However, it turned out that in many cases, certain (unregularized) least squares methods
based on “random” information, like function evaluations, can catch up with arbitrary
algorithms based on arbitrary linear information, i.e., the best we can do theoretically.

3.26 Sampling numbers of smoothness classes via l1 minimization
Tino Ullrich (TU Chemnitz, DE)
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Joint work of Thomas Jahn, Tino Ullrich, Felix Voigtlaender
Main reference Thomas Jahn, Tino Ullrich, Felix Voigtlaender: “Sampling numbers of smoothness classes via

l1-minimization”, Journal of Complexity, Vol. 79, p. 101786, 2023.
URL https://doi.org//10.1016/j.jco.2023.101786

Using techniques developed recently in the field of compressed sensing we show new upper
bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in L2.
In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener
classes or Sobolev spaces with mixed smoothness, sampling numbers in L2 can be upper
bounded by best n-term trigonometric widths in L∞. We describe a recovery procedure from
m function values based on l1-minimization (basis pursuit denoising). With this method, a
significant gain in the rate of convergence compared to recently developed linear recovery
methods is achieved. In this deterministic worst-case setting we see an additional speed-up of
m−1/2 (up to log factors) compared to linear methods in case of weighted Wiener spaces. For
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their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly,
our approach allows to recover mixed smoothness Sobolev functions belonging on the d-torus
with a logarithmically better rate of convergence than any linear method can achieve when
1 < p < 2 and d is large. This effect is not present for isotropic Sobolev spaces.

3.27 Some Computational Approaches to the Pair Correlation Statistic
Christian Weiß (Hochschule Ruhr-West – Mülheim, DE)
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The pair correlation statistic measures the behavior of gaps between the first elements of a
sequence on a local scale. Although a generic independent, identically distributed random
sequence drawn from uniform distribution has so-called Poissonian pair correlations, there
are only few explicitly known such examples. The main reason why they are difficult to
find is that it is in general hard to calculate the pair correlation statistic. In this talk, we
therefore concentrate on computational aspects of the pair correlation and present some
possible approaches. For instance, geometric properties like the gap structure, an underlying
lattice structure of the sequence or the discrepancy turn out to be useful tools. We also
present some recent combinatorial results.

3.28 The fixed vector randomised lattice algorithm for high-dimensional
integration

Laurence Wilkes (KU Leuven, BE)
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lattice-based algorithm for high-dimensional integration”, J. Complex., Vol. 79, p. 101785, 2023.
URL https://doi.org//10.1016/J.JCO.2023.101785

The fixed vector algorithm offers a very simple solution to the problem of producing a
lattice-based randomised algorithm for numerical integration with the optimal randomised
error. We shift the construction of the generating vector of the lattice to a precomputation
so that the only randomised element is to choose the number of function evaluations from a
suitable range. In the talk, we will look at the existence result for such a fixed generating
vector, a method to construct the vector and finally look at how the algorithm can be
generalised to work in the half-period cosine space and with a lower smoothness parameter.
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3.29 Randomized approximation of summable sequences: adaptive and
non-adaptive

Marcin Wnuk (Universität Osnabrück, DE)
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We are considering approximation of the identical embedding of finite-dimensional spaces
SM : ℓM

1 → ℓM
∞ by randomized algorithms. We establish a lower bound on the n-th minimal

error which is, roughly speaking, of the form: there exists an ε > 0 such that if for all M ∈ N

eran-non(n(M), SM ) < ε

then

n(M) ≥ C
√

log(M).

Here eran-non(n, S) denotes the n-th minimal error which can be obtained when using
randomized non-adaptive algorithms. This has at least two interesting consequences:
1. We are able to give an example of a sequence of linear problems for which the n-th

minimal error for randomized adaptive algorithms decreases much faster than the minimal
error for randomized non-adaptive algorithms-a phenomenon which was only recently
observed by S.Heinrich in the context of vector-valued mean computation.

2. It enables us to show that the only operators which can be arbitrarily well approximated
by randomized non-adaptive algorithms are compact operators- i.e. exactly the same
operators which can be arbitrarily well approximated by deterministic algorithms.

4 Open problems

4.1 Low discrepancy sets in 2D
Dmitriy Bilyk (University of Minnesota – Minneapolis, US)

License Creative Commons BY 4.0 International license
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Problem 1: Permutation sets

This problem is concerned with new constructions of two-dimensional low discrepancy sets.
Two standard examples of sets achieving the lowest possible growth of the discrepancy
O(log N) are the van der Corput set and the Fibonacci lattice.

The digit-reversing van der Corput set is a set of N = 2n points of the following form(
0.x1x2 . . . xn, 0.xnxn−1 . . . x1

)
,

where the coordinates are written as binary fractions of length n, and the binary digits xi

take values zero or one. Many other variations are known (digit shifts and digit scrambling,
cyclic shifts, constructions in bases other than two etc).

The Fibonacci lattice consists of N = Fn, where Fn is the nth Fibonacci number, and
has the form(

k

Fn
,

{
kFn−1

Fn

})
, k = 0, 1, . . . , Fn − 1.
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This can be viewed as an approximation of the Kronecker lattice, i.e. points (k/N, {kα}),
where α is the golden ratio. This generalizes to similar constructions using approximants to
other badly approximable numbers.

One can easily observe that both of the examples presented above are of the form(
k

N
,

σ(k)
N

)
, k = 0, 1, . . . , N − 1,

where σ is a permutation of an N -elements set {0, 1, . . . , N −1}. Therefore, natural questions
arise:

Which other permutations σ produce low discrepancy sets?
Which structural and combinatorial properties of the permutation σ are responsible for
low discrepancy of the arising point sets?
Do minimizers of the discrepancy always have a structure of such “permutation sets”?
(at least, if restricted to the grid (i/N, j/N)?)
Are L2 (or more generally, Lp discrepancies) minimized by “permutation sets”?
Closely related question: For a set of points z1, . . . , zN ∈ T2, where zi = (xi, yi), consider
the tensor-product interaction energy of the form

E(z1, . . . , zN ) =
∑
i,j

f(xi − xj)f(yi − yj).

Under which conditions on the function f are the minimizers of this energy “permutation
sets”? And which permutations produce minimizers? (Through Warnock-type formulas,
the periodic L2 discrepancy can be rewritten exactly as such an energy, and other versions
of the L2 discrepancies are closely related to similar energies.)
Are there generalizations of permutation constructions to higher dimensions?

Problem 2: Projections of the vertices of the unit cube

The aforementioned van der Corput set can be realized as an image of the 2n vertices of the
n-dimensional unit cube {0, 1}n under a linear mapping A : Rn → R2 given by the matrix

A =
( 1

2
1
22 . . . 1

2n

1
2n

1
2n−1 . . . 1

2

)
.

Can other mappings be constructed which similarly produce low discrepancy sets?
Can probabilistic results be proved for the discrepancy of random projections?
Can this approach be extended to construct well distributed sets in higher dimensions?

4.2 Standard information versus linear information for Lp-approximation
David Krieg (Johannes Kepler Universität Linz, AT)
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Let D be a compact domain of unit volume and let C(D) be the space of continous complex-
valued functions on D. Consider a compact, convex and symmetric subset F of C(D). For
1 ≤ p ≤ ∞, we want to compare the rate of convergence of the numbers

gn(F, Lp) = inf
x1,...,xn∈D

ϕ : Cn→Lp(D)

sup
f∈F

∥∥f − ϕ
(
f(x1), . . . , f(xn)

)∥∥
p
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and

cn(F, Lp) = inf
L1,...,Ln∈C(D)′

ϕ : Cn→Lp(D)

sup
f∈F

∥∥f − ϕ
(
L1(f), . . . , Ln(f)

)∥∥
p

for n → ∞. These numbers describe the minimal worst case error for Lp-approximation on
F if n function values, respectively n arbitrary continuous linear measurements are allowed.
The rate of convergence of a non-negative and non-increasing sequence (xn), denoted by
deg(xn), is the supremum of all t > 0 such that (xn) ∈ O(n−t).

How much can we loose in the rate when restricting from arbitrary linear information to
function evaluation? That is, the task is to study the loss function

lossp(α) = sup
D & F as above :
deg(cn(F,Lp)) = α

[
deg(cn(F, Lp)) − deg(gn(F, Lp))

]
.

How does the loss function behave as a function of α > 0 and 1 ≤ p ≤ ∞?

Results until 2012 are collected in [4, Section 29.1]. The univariate Sobolev spaces
W s

1 ([0, 1]) of integrability one show that lossp(α) ≥ 1/2 for all p ≥ 2, at least if α > 1. Recent
upper bounds imply that in fact lossp(α) = 1/2 if either p = 2 (see [2] together with [1]) or
p = ∞ (see [3]). Is it true that lossp(α) = 1/2 holds for all p ≥ 2 and α > 1?
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4.3 Are linear algorithms non-adaptive?
Mathias Sonnleitner (Universität Passau, DE)
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Let F, G be normed spaces (over R) and S : F → G be linear and bounded. Suppose that
for each f ∈ F , we have n pieces of adaptive information

N(f) = (L1(f), L2 (f, L1(f)) , . . . , Ln (f, L2 (f, L1(f)) , . . .)) , f ∈ F

based on linear and continuous functionals on F . Let A = φ ◦ N : F → G be a linear
algorithm with φ : Rn → G.

Can we find Nnon(f) = (L1(f), . . . , Ln(f)) , f ∈ F , where L1, . . . , Ln : F → R are linear
and (linear) φ̃ : Rn → G such that A = φ̃ ◦ Nnon?

This basic problem was solved completely using elementary means in a discussion with
David Krieg, Robert Kunsch and Marcin Wnuk during the seminar.
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4.4 4-regular graphs from the van der Corput sequence
Stefan Steinerberger (University of Washington – Seattle, US)
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Consider the following test for pseudorandomness: to any distinct, real numbers x1, . . . , xn,
we associate a 4-regular graph G as follows: using π to denote the permutation ordering the
elements, xπ(1) < xπ(2) < · · · < xπ(n), we build a graph on {1, . . . , n} by connecting i and
i + 1 (cyclically) and π(i) and π(i + 1) (cyclically).

1

13 23

41

42

56

73

Figure 1 The Graph for the first few digits of
√

2: 1, 41, 42, 13, 56, 23, 73. If the digits of
√

2
behave like truly random numbers, these graphs have optimal expansion properties.

One reason why these graphs are interesting is the following result for the second eigenvalue
λ2 of the adjacency matrix of such a graph.

▶ Theorem 1 (Friedman, Theorem 1.2. in [1]). If x1, . . . , xn are i.i.d. random variables
chosen from an absolutely continuous distribution and G is the 4-regular graph constructed
from them as above, then for any ε > 0 there exists c > 0 such that with likelihood at least
1 − c/n, we have

|λ| ≤ 2
√

3 + ε.

As it turns out, this graph construction can indeed be effectively used for understanding
the strength of a random number generator: if the numbers are truly random, the arising
graphs are random in a “near-”optimal way [3].

One could now wonder what happens to these graphs when the underlying real numbers
are far from “random” and two canonical examples are the Kronecker sequence and the van
der Corput sequence. Fig. 2 shows the type of graph obtained from the van der Corput
sequence in base 2

1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 , . . .

We observe the emergence of some strange topological features that are currently unex-
plained.
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Figure 2 The first 4096 elements of the van der Corput sequence in base 2 (left) and the first
2187 = 37 elements of the van der Corput sequence in base 3 (right).

Problem. What is this emerging manifold? How does it depend on the base b of the van
der Corput sequence?

Something similar happens to the Kronecker sequence but there it is perhaps slightly less
mysterious (the continued fraction expansion can help to explain it). It has since become
clear that this graph structure tends to exhibit all sorts of strange patterns for structured
sequences and many examples are given in [2]. Very few of these cases are understood.

References
1 J. Friedman, A proof of Alon’s second eigenvalue conjecture and related problems, Mem.

Amer. Math. Soc. 195 (2008), no. 910
2 D. Korssjoen, B. Li, S. Steinerberger, R. Tripathi, R. Zhang, Finding Structure in Sequences

of Real Numbers via Graph Theory: a Problem List, Involve 15, 251-270 (2022).
3 S. Steinerberger, Using Expander Graphs to test whether samples are i.i.d, arXiv:2008.01153

4.5 On a problem of classes of optimal information
Mario Ullrich (Johannes Kepler Universität Linz, AT)
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Joint work of Mario Ullrich, Mathias Sonnleitner
Main reference Mathias Sonnleitner, Mario Ullrich: “On the power of iid information for linear approximation”,

CoRR, Vol. abs/2310.12740, 2023.
URL https://doi.org//10.48550/ARXIV.2310.12740

New open problem arise after recent results on the power of standard information (function
values), and more general classes Λ, indicate that already under mild assumptions on Λ we
might hope for optimal approximations, i.e., that the corresponding minimal errors are of
the same order as minimal errors based on arbitrary information. Several of related open
problems can be found in the survey paper [1], which was nearly finished during the Dagstuhl
Seminar 23351. A (simple, and too optimistic) version of an open problem was presented at
the seminar, and already disproved in a subsequent discussion with David Krieg and Erich
Novak.
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