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Abstract
The Dagstuhl Seminar 23361 Multiobjective Optimization on a Budget carried on a series of
seven previous Dagstuhl Seminars (04461, 06501, 09041, 12041, 15031, 18031, 20031) focused on
Multiobjective Optimization. The original goal of this series has been to strengthen the links
between the Evolutionary Multiobjective Optimization (EMO) and the Multiple Criteria Decision
Making (MCDM) communities, two of the largest communities concerned with multiobjective
optimization today. This seminar particularly focused on the case where the approaches from
both communities may be challenged by limited resources.

This report documents the program and the outcomes of Dagstuhl Seminar 23361 “Multiob-
jective Optimization on a Budget”. Three major types of resource limitations were highlighted
during the seminar: methodological, technical and human related. The effect of these limitations
on optimization and decision-making quality, as well as methods to quantify and mitigate this
influence, were considered in different working groups.
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1 Executive Summary
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Multiobjective optimization (MO), a discipline within systems science that provides models,
theories, and methodologies to address decision-making problems under conflicting objectives,
has a myriad of applications in all areas of human activity ranging from business and
management to engineering. This seminar is a result of the desire to continue to make
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MO useful to society as it faces complex decision-making problems and experiences limited
resources for decision making. Of particular interest are processes that evolve competitively
in environments with scarce resources and lead to decision problems that are characterized by
multiple, incommensurate, and conflicting objectives, and engage multiple decision-makers.
Viewing optimization and decision making as the complementary aspects of the multiobjective
paradigm, the seminar set out to focus around three major types of resource limitations:
methodological (e.g., number of solution evaluations), technical (e.g., computation time,
energy consumption), and human related (e.g., decision maker availability and responsiveness).
The effect of these limitations on optimization and decision-making quality, as well as methods
to quantify and mitigate this influence, were of particular interest. Ideas related to modelling,
theory, algorithm design, benchmarking, performance metrics, and novel applications of MO
under budget constraints were discussed.

To initiate a discussion among the participants on how to address challenges of MO under
a budget, the organizers presented specific research directions at the beginning of the seminar.
These directions along with their highlights are described below.

Model reduction: In the MO problem not all functions may be of interest to the decision
maker (DM) or not all objectives may be in conflict with each other. Under a limited
budget, it is of interest to make the original problem simpler by removing unnecessary
objective functions while the solution set remains unchanged. Another reason to reduce
the problem is its size. MO problems with four or more criteria bring computational and
decision-making challenges that are not typical when the number of objectives is lower.
Model decomposition and coordination-based decision making: If a reduction of the
objectives is not possible, then the solution of the overall MO problem in its entirety
may be challenging or even impossible to obtain. In this situation, decomposition of the
MO problem into a set of MO subproblems with a smaller number of criteria becomes
appealing provided solving the subproblems can be coordinated and related to solving
the original problem. When the MO problem is decomposed while computation of the
overall solution set is possible, the decomposition goal is to enhance capability of making
coordinated tradeoff decisions by working in lower dimensional spaces, which decreases
the cognitive burden on DMs. Otherwise, if computation of the overall solution set is
not possible, the decomposition goal becomes more challenging since the intention is to
coordinate the subproblems’ solution sets to construct the overall set and to facilitate
decision making in a similar way.
Representation of the optimization solution set: It is of interest to design cost-effective
methods for obtaining a complete or partial description of the Pareto set. An exact
description of this set might be available analytically as a closed-form formula, numerically
as a set of points, or in mixed form as a parametrized set of points. Unfortunately, for
the majority of MO problems, it is not easy to obtain an exact description of the solution
set that includes typically a very large number or infinite number of points. Even if it is
theoretically possible to find these points exactly, this is often computationally challenging
and expensive, and therefore is usually abandoned. On the other hand, if it is possible to
obtain the complete solution set, one might not be interested in this task due to overflow
of information. Another reason for approximating the solution set, rather than finding
the solution set exactly, is that many real-world problems (e.g., in engineering) cannot be
completely and correctly formulated before a solution procedure starts. Since the exact
solution set is very often not attainable, an approximated description of the solution set
becomes an appealing alternative.
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Surrogate-assisted optimization: The combination of evolutionary MO (EMO) algorithms
with efficient computational models, often known as metamodels or surrogates, has
become a common approach to approximate outcomes of a time-consuming, expensive,
and/or resource intense simulation or physical experiment, and thus to tackle problems
with a limited budget. Surrogate-assisted (SA) methods vary in aspects such as the use
of the metamodel (e.g., different models for different objective functions or one model for
all objective functions), type of metamodel (e.g., Gaussian process, radial basis neural
network, etc.), how the metamodel is updated (e.g., expected improvement, expected
hypervolume improvement), and training time of the metamodel. In particular, the
combination of optimization with Gaussian process approximation, known as Bayesian
optimization, is a recent trend to efficiently deploy data in model development.
Multistage optimization: In real-world applications, problem data does not always become
available all at once, but at different points in time until a final decision needs to be made.
In particular, waiting until all the required data is available may not leave enough time
to run the optimization process on the whole problem and successfully compute a final
decision. In addition, it is often possible to model the uncertainty associated with the yet
unknown data given the data that is already known, at least to some extent. Two-stage
(and, more generally, multi-stage) approaches to optimization reformulate the original
problem as a number of sub-problems to be solved sequentially, in such a way that the
last problem(s) in the sequence can effectively be solved in the (short) time available.
Preference acquisition and communication with the decision maker: The ultimate goal
in MO is to serve one or multiple DMs whose goal is to come up with a single most
preferred solution from among the ones that are available. Given an optimization model,
DM’s preferences may be incorporated prior to, during or after employing a solution
procedure. In particular, interactive methods require the DM’s involvement in the solution
process during which they reveal their preferences based on the presented information.
Under a limited budget, communication with the DM shall be designed effectively and
economically.
Benchmarking of algorithms: SA methods are considered as the method of choice to
tackle problems subject to a limited budget in terms of function evaluations. However,
SA methods are not often compared to widely different alternatives (e.g., different kernels
and distance measures, non-SA methods, etc.), and are often tested on narrow sets
of problems (multimodal, low-dimensional, static, deterministic, unconstrained, and
continuous functions) and rarely on real-world problems, which makes it difficult to assess
where (or if) these methods actually achieve state-of-the-art performance in practice.
Moreover, several aspects in the design of SA algorithms vary across implementations
without a clear recommendation emerging from current practices, and many of these
design choices are not backed up by authoritative test campaigns. This seminar topic
aimed to raise awareness and hence a push to more work being carried out on developing
benchmarking guidelines for SA algorithms.

In response to the presented research directions, some participants found research topics
of interest among those suggested by the organizers. These topics included model reduction,
decomposition and coordination, solution set representation, and surrogate modeling. Other
participants proposed different topics that also targeted the theme of MO under a budget.
Those topics included design of experiments for MO, correlations in MO, and design of
evolutionary algorithms. Overall, seven research topics were proposed and pursued.

Independently of developing and forming research topics, a collection of eight talks were
given during the seminar. Two of the speakers were considered “invited” because they
were asked before the seminar to give a talk. These talks addressed two of the research
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directions initiated by the organizers. The other speakers, being inspired by the ongoing
seminar, proposed talks that were integrated daily into the seminar program. The invited
and contributed talks kept the seminar in balance ensuring ample time for working in groups.

During the seminar the schedule was updated on a daily basis to maintain flexibility in
balancing time slots for the invited and contributed talks, discussions, and working group
sessions. The working groups were established on the first day in an interactive fashion.
Starting with three large working groups focused around the three central topics of the
seminar (methodological, technical, and human-related resource limitations), participants
were invited to formulate their favorite topics and most important challenges. The three
initial groups split to eventually form eight groups by the end of the seminar. During the
week the participants were allowed to change the working groups based on their research
interest. The abstracts of the delivered talks and the extended abstracts of the working
groups can be found in the subsequent chapters of this report.

Further notable events during the week included: (i) a hike that took place on Wednesday
afternoon, (ii) a session allowing the participants to share the details of upcoming professional
events in the research community, (iii) a joint session with the participants of the concurrent
seminar 23362 “Decision-Making Techniques for Smart Semiconductor Manufacturing” and
(iv) an informal get together on Thursday evening.

Offers and Needs Market
An Offers & Needs Market ran throughout the entire week. The participants could write
their research offers and needs regarding MO on note paper in different colors and post them
on pin boards (see Fig. 1) to attract or find a possible collaborator. Participants discussed
potential collaboration opportunities during the coffee breaks and after hours.

Figure 1 Offers and needs market.

Outcomes
The outcomes of each of the working groups can be seen in the sequel.

The organizers have arranged a special issue of the Journal of Multi-Criteria Decision
Analysis entitled “Multiobjective Optimization on a Budget” for which they will serve as
Guest Editors. This issue will be an outlet for papers authored and submitted by the
seminar’s participants as well as by researchers world-wide.

This seminar resulted in a very insightful, productive and enjoyable week. It has already
led to first new results, cooperations and research topics.
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3 Overview of Talks

3.1 Objective Space Methods: Pareto Front Approximations on a
Budget

Kathrin Klamroth (Universität Wuppertal, DE), Kerstin Dächert (HTW Dresden, DE),
Daniel Vanderpooten (University Paris-Dauphine, FR)

License Creative Commons BY 4.0 International license
© Kathrin Klamroth, Kerstin Dächert, and Daniel Vanderpooten

Joint work of Kerstin Dächert, Kathrin Klamroth, Renaud Lacour, Daniel Vanderpooten
Main reference Kerstin Dächert, Kathrin Klamroth, Renaud Lacour, Daniel Vanderpooten: “Efficient computation

of the search region in multi-objective optimization”, European Journal of Operational Research,
Vol. 260(3), pp. 841–855, 2017.

URL https://doi.org//10.1016/j.ejor.2016.05.029

Objective space methods usually rely on (often recursive) decompositions of the objective
space, and on the associated formulation of problem scalarizations that are solved by available
(single-objective) solvers. The number of solver calls and the complexity of the scalarizations
are decisive for the computational effort and may be subject to time, energy or cost constraints.
We will briefly review objective space methods and initiate a discussion on the impact of
pre-specified budget constraints on the algorithmic choices.

References
1 K. Dächert. C++ Implementation of the Defining Point Algorithm on github (Version 2023).

https://github.com/kerstindaechert/DefiningPointAlgorithm
2 K. Dächert and K. Klamroth. A linear bound on the number of scalarizations needed to solve

discrete tricriteria optimization problems. Journal of Global Optimization 61(4):643-676,
2015

3 K. Dächert, K. Klamroth, R. Lacour and D. Vanderpooten. Efficient computation of the
search region in multi-objective optimization. European Journal of Operational Research
260(3):841-855, 2017

4 K. Klamroth, R. Lacour and D. Vanderpooten. On the representation of the search region
in multi-objective optimization. European Journal of Operational Research 245(3):767-778,
2015

5 R. Lacour, K. Klamroth and C.M. Fonseca. A box decomposition algorithm to compute the
hypervolume indicator. Computers & Operations Research 79:347-360, 2017

6 S. Tamby and D. Vanderpooten. Enumeration of the nondominated set of multiobjective
discrete optimization problems. INFORMS Journal on Computing 33(1):72-85, 2000

3.2 Perspectives to Dealing with Computationally Expensive
Multiobjective Optimization Problems

Kaisa Miettinen (University of Jyväskylä, FI)

License Creative Commons BY 4.0 International license
© Kaisa Miettinen

Multiobjective optimization methods are needed since real-life problems typically have several
conflicting objective functions to be optimized simultaneously. To find the most preferred
Pareto optimal solution as the final one to be implemented in practice, we typically need
preference information from a domain expert, a decision maker (DM).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/j.ejor.2016.05.029
https://doi.org//10.1016/j.ejor.2016.05.029
https://doi.org//10.1016/j.ejor.2016.05.029
https://doi.org//10.1016/j.ejor.2016.05.029
https://github.com/kerstindaechert/DefiningPointAlgorithm
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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We concentrate on interactive methods, where the DM takes actively part and directs
the solution process with one’s preference information. One can learn and gain insight about
the problem and also adjust preferences while learning. Importantly, one can concentrate
on solutions that seem most promising and avoid high cognitive load of analyzing too much
information at a time.

In real applications, function evaluations may be expensive and we outline different
approaches. The first is to generate a representative set of Pareto optimal solutions in
advance and create a surrogate problem that is computationally inexpensive. In the second
approach, we replace a scalarizing function that a multiobjective optimization method employs
by a computationally inexpensive metamodel. The third approach is to fit a metamodel to
each computationally expensive objective function. Appropriate approaches are also needed
if constraint functions are expensive or functions in the problem to be solved have different
latencies.

By speeding up calculations, we avoid keeping the DM waiting when applying interactive
methods. But the presence of the human DM means that attention must be paid to the
understandability and amount of information expected from the DM. We briefly outline pros
and cons of some methods and mention further challenges.

3.3 Surrogate model guided optimization of expensive black-box
multiobjective problems

Juliane Mueller (NREL – Golden, US)

License Creative Commons BY 4.0 International license
© Juliane Mueller

Many engineering applications require the simultaneous optimization of multiple conflicting
objective functions. Often, these objective functions are evaluated using highly accurate
computer simulations that are computationally too expensive to be evaluated hundreds or
thousands of times during optimization. Thus, the goal is to find good approximations of the
Pareto front using as few of these expensive simulations as possible. Here, we describe an
optimization approach based on surrogate models and diverse sampling strategies to accelerate
the search for the Pareto solutions. We use a separate surrogate model for approximating
each objective function and then we use the surrogate models to inform where additional
expensive simulations should be run. The surrogate models are updated in an active learning
framework whenever new information from the expensive simulations becomes available. The
sampling strategies aim at balancing local improvements of the approximate Pareto front and
global exploration to identify the extrema and fill in large gaps of the approximate Pareto
front. We demonstrate on a large set of benchmark problems the effectiveness of the method
for finding good approximations of the Pareto front.

23361
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3.4 Fast Pareto Optimization Using Sliding Window Selection
Frank Neumann (University of Adelaide, AU)

License Creative Commons BY 4.0 International license
© Frank Neumann

Joint work of Frank Neumann, Carsten Witt
Main reference Frank Neumann, Carsten Witt: “Fast Pareto Optimization Using Sliding Window Selection”, in

Proc. of the ECAI 2023 – 26th European Conference on Artificial Intelligence, September 30 –
October 4, 2023, Kraków, Poland – Including 12th Conference on Prestigious Applications of
Intelligent Systems (PAIS 2023), Frontiers in Artificial Intelligence and Applications, Vol. 372,
pp. 1771–1778, IOS Press, 2023.

URL https://doi.org//10.3233/FAIA230463

Pareto optimization using evolutionary multi-objective algorithms such as the classical
GSEMO algorithm has been widely applied to solve constrained submodular optimization
problems. A crucial factor determining the runtime of the used evolutionary algorithms to
obtain good approximations is the population size of the algorithms which grows with the
number of trade-offs that the algorithms encounter. In this paper, we introduce a sliding
window speed up technique for recently introduced algorithms. We prove that our technique
eliminates the population size as a crucial factor negatively impacting the runtime of the
classical GSEMO algorithm and achieves the same theoretical performance guarantees as
previous approaches within less computation time. Our experimental investigations for the
classical maximum coverage problem confirms that our sliding window technique clearly
leads to better results for a wide range of instances and constraint settings.

3.5 Towards decision analytic workflows for real-world problems:
Simulation model calibration and multi-objective optimization on a
shared evaluation budget

Robin Purshouse (University of Sheffield, GB)

License Creative Commons BY 4.0 International license
© Robin Purshouse

Joint work of Oliver P. H. Jones, Jeremy E. Oakley, Robin C. Purshouse
Main reference Oliver P. H. Jones, Jeremy E. Oakley, Robin C. Purshouse: “Simulation-based engineering design:

solving parameter inference and multi-objective optimization problems on a shared simulation
budget”, in Proc. of the 2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 1399–1405, 2021.

URL https://doi.org//10.1109/SMC52423.2021.9658645

Real-world multi-objective optimization problems sometimes include evaluation functions
that rely on computationally expensive simulation models. These types of problems typically
constrain the optimization budget to a relatively small number of candidate solutions, e.g. 500-
5000. An often-overlooked issue in such problems is that the simulations (i.e. evaluation
functions) typically require the calibration of their parameters before they are ready for use
in solving a particular problem instance. The simulations can also contain discrepancies
– e.g. simplifications in the representation of the physics of the problem–that affect the
robustness of solution evaluations. Simulation model calibration is a research field in its
own right and concerns itself with inference of model parameters and model discrepancy
structures. Inference is typically computational in nature, uses Bayesian methods, and
involves the evaluation of sampled candidate parameterisations and discrepancy terms via
the simulation model – i.e. it also involves evaluation functions and a constrained evaluation
budget. To improve the efficiency of the inference process, low fidelity “emulators”, often

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/FAIA230463
https://doi.org//10.3233/FAIA230463
https://doi.org//10.3233/FAIA230463
https://doi.org//10.3233/FAIA230463
https://doi.org//10.3233/FAIA230463
https://doi.org//10.3233/FAIA230463
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1109/SMC52423.2021.9658645
https://doi.org//10.1109/SMC52423.2021.9658645
https://doi.org//10.1109/SMC52423.2021.9658645
https://doi.org//10.1109/SMC52423.2021.9658645
https://doi.org//10.1109/SMC52423.2021.9658645
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Gaussian processes, are estimated using data sampled from the high fidelity model, closely
mirroring the use of surrogate models in optimization workflows. Perhaps surprisingly, very
little research has been conducted into the joint problem of simulation model calibration
and multi-objective optimization based on such models. How should an evaluation budget
best be allocated to the two activities, how should they be sequenced, and how can synergies
between the two be exploited? This presentation introduces this novel topic, demonstrates
some illustrative benchmark problems, and sketches some tentative solution architectures.

Acknowledgements: Robin Purshouse is supported by SIPHER (MR/S037578/1), a UK
Prevention Research Partnership funded by the UK Research and Innovation Councils, the
Department of Health and Social Care (England) and the UK devolved administrations, and
leading health research charities https://ukprp.org/. Oliver Jones was supported by the UK
Engineering and Physical Sciences Research Council.

References
1 Jones OPH, Oakley JE, Purshouse RC, Toward a unified framework for model calibration

and optimisation in virtual engineering workflows, 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), 2019, pp. 3148–3153.

2 Jones O, A framework for combining model calibration with model-based optimization in
virtual engineering design workflows, PhD thesis, University of Sheffield, 2021.

3 Jones OPH, Oakley JE, Purshouse RC, Simulation-based engineering design: solving
parameter inference and multi-objective optimization problems on a shared simulation
budget, 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
2021, pp. 1399–1405.

3.6 Efficient Approximation of Expected Hypervolume Improvement
Using Gauss-Hermite Quadrature

Alma Rahat (Swansea University, GB)

License Creative Commons BY 4.0 International license
© Alma Rahat

Joint work of Alma A. M. Rahat, Tinkle Chugh, Jonathan E. Fieldsend, Richard Allmendinger, Kaisa Miettinen
Main reference Alma A. M. Rahat, Tinkle Chugh, Jonathan E. Fieldsend, Richard Allmendinger, Kaisa Miettinen:

“Efficient Approximation of Expected Hypervolume Improvement Using Gauss-Hermite Quadrature”,
in Proc. of the Parallel Problem Solving from Nature – PPSN XVII – 17th International Conference,
PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceedings, Part I, Lecture Notes in
Computer Science, Vol. 13398, pp. 90–103, Springer, 2022.

URL https://doi.org//10.1007/978-3-031-14714-2_7

Many methods for performing multi-objective optimisation of computationally expensive
problems have been proposed recently. Typically, a probabilistic surrogate for each objective
is constructed from an initial dataset. The surrogates can then be used to produce predictive
densities in the objective space for any solution. Using the predictive densities, we can
compute the expected hypervolume improvement (EHVI) due to a solution. Maximising the
EHVI, we can locate the most promising solution that may be expensively evaluated next.
There are closed-form expressions for computing the EHVI, integrating over the multivariate
predictive densities. However, they require partitioning of the objective space, which can be
prohibitively expensive for more than three objectives. Furthermore, there are no closed-
form expressions for a problem where the predictive densities are dependent, capturing the
correlations between objectives. Monte Carlo approximation is used instead in such cases,
which is not cheap. Hence, the need to develop new accurate but cheaper approximation
methods remains. Here we investigate an alternative approach toward approximating the
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EHVI using Gauss-Hermite quadrature. We show that it can be an accurate alternative
to Monte Carlo for both independent and correlated predictive densities with statistically
significant rank correlations for a range of popular test problems.

3.7 Problem decomposition in biobjective optimisation
Andrea Raith (University of Auckland, NZ)

License Creative Commons BY 4.0 International license
© Andrea Raith

Joint work of Matthias Ehrgott, Ruchard Lusby, Andrew Mason, Siamak Moradi, Melanie Reuter-Oppermann, Ali
Sohrabi Yousefkhan

Decomposition techniques for optimisation problems have significantly improved the ability
to solve problems of ever-increasing complexity and problem size by decomposing a complex
optimisation problem into related smaller ones. The premise of a decomposition technique is
to omit parts of the problem that are unlikely to influence the final solution, and iteratively
include, as needed, the parts which will have an impact. Many real-world problems must
be formulated with two or more objectives and solving such multiobjective optimisation
problems means identifying sets of so-called efficient solutions representing available trade-offs.
Different solution algorithms for biobjective linear programmes (BLPs) will be discussed in
this talk. Building on a biobjective (parametric) version of the well-known simplex algorithm,
different decomposition approaches are presented here. One approach, also known as column
generation, is to omit some or all variables (corresponding to columns of the constraint
matrix) from the original optimisation problem and then iteratively re-introduce them into
the problem. An alternative approach, known as Benders decomposition, separates decision
variables into different stages and related optimisation problems, and then dynamically adds
constraints into the first-stage formulation to capture the full problem. We present theoretical
developments and algorithms that adapt these ideas into decomposition techniques for BLPs.
We will also briefly discuss initial developments of a so-called math-heuristic approach that
combines exact optimisation concepts with a neighbourhood search heuristic that can be
used instead of an exact column generation approach.

3.8 A Visualization-Aided Approach to Solving Tri-Criterion Portfolio
Problems

Ralph E. Steuer (University of Georgia – Athens, US)

License Creative Commons BY 4.0 International license
© Ralph E. Steuer

Joint work of Ralph E. Steuer, Sebastian Utz

This talk contains no text or equations, only graphs. It is about (1) how much more
enormously difficult it is to identify one’s best point on an efficient surface than on an efficient
frontier and (2) how, on problems in which one objective appears to carry more influence, a
visually assisted approach utilizing a new type of line stretched across the efficient set can be
applied. Of course, the approach works best the less severely disordered the efficient surface
is. A non-trivial tri-criterion portfolio optimization problem is used to illustrate throughout.
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3.9 Multi-objective Branch-and-Bound on a Budget
Michael Stiglmayr (Universität Wuppertal, DE)

License Creative Commons BY 4.0 International license
© Michael Stiglmayr

Joint work of Julius Bauß, Michael Stiglmayr

In this talk we discuss modifications of multi-objective branch-and-bound to diversify solutions
and yield a good approximation of the non-dominated set when only limited computation
time is available. It is crucial not only to find efficient solutions in early stages of the
algorithm but also to find a set of solutions whose images are close to and well distributed
along the non-dominated frontier. In particular the adaptation of branching and queuing of
sub-problems seems to be important. We use, e.g., the hypervolume indicator as a measure
for the gap between lower and upper bound set to implement a multi-objective best-first
strategy. Moreover, gap measure indicate the solution quality when prematurely stopping
the branch-and-bound algorithm.

References
1 Bauß, J., Stiglmayr, M.: Augmenting bi-objective branch and bound by scalarization-based

information (2023), https://arxiv.org/abs/2301.11974
2 Bauß, J., Stiglmayr, M.: Adapting branching and queuing for multi-objective branch and

bound (2023), https://arxiv.org/abs/2311.05980

4 Working groups

4.1 Decoupled Design of Experiments for Multi-objective Optimisation
on a Budget

Mickaël Binois (INRIA – Sophia Antipolis, FR), Jürgen Branke (University of Warwick, GB),
Jonathan Fieldsend (University of Exeter, GB), Robin Purshouse (University of Sheffield,
GB)

License Creative Commons BY 4.0 International license
© Mickaël Binois, Jürgen Branke, Jonathan Fieldsend, and Robin Purshouse

4.1.1 Introduction

Fundamental to the performance of surrogate-based optimisation frameworks is the need
to construct an initial model based on a carefully selected set of initial designs, and any
prior system knowledge. This is both in the case of Bayesian optimisation, which used and
iteratively update model(s) mapping decision vectors to predicted performance criteria values,
and for evolutionary computation approaches which involving surrogates. The selection and
construction of initial designs, which are often treated separately to the decision vectors
queried during the subsequent optimisation process, are usually referred to as the design of
experiments (or DoE for short). This is because these decision vectors are selected to – in
some fashion – be maximally informative on the global underlying process, rather than being
biased towards particular regions.

Without any prior information regarding the properties of the objective function(s) such
DoE for model fitting are commonly based around space filling sequences such as Latin
hypercube sampling [9] or Sobol sequences [10], as purely random sampling tends to naturally
result in clusters, which do not serve model fitting well, particularly when the budget for
sampling is tight.
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Where there are multiple criteria being modelled, this leads to an interesting and under-
explored question: should one evaluate all initial designs fully, or selectively evaluate a
subset of objectives per design, allowing a greater number of locations to be partially evaluated
when building the model(s)? A few works have looked at decoupling objective evaluations
during the search process – particularly where there are different costs associated with each
objective, but this can also be advantageous where there is a difference in the complexity
of the functions being modelled (e.g. one being smooth slowly changing, the other being
rugged and fast changing). As such, this appears to be a promising direction for further
investigation and research, as even small improvements in such areas can effectively lead to
large savings for expensive optimisation problems.

4.1.2 Related Work

A small number of existing works have considered decoupled and/or cost-aware multi-objective
optimisation – some of which have considered these factors during the initial DoE phase.
Below we discuss the most relevant approaches. A wider survey on the topic of objectives
with different costs can be found in [1].

Hernández-Lobato and colleagues proposed the Predictive Entropy Search for Multi-
Objective Bayesian Optimization (PESMO) method [6]. PESMO uses predictive entropy
search as the acquisition function. This function represents each objective using an additive
component, which enables a decoupled evaluation approach to be adopted. The approach
was subsequently extended to also consider constraints (again where decoupling is possible)
[5].

Suzuki et al. developed the Pareto-frontier entropy search (PFES) approach [11]. PFES
is also an entropy approach but considers the entropy in objective-space rather than decision-
space, which is computationally simpler. This method also includes cost in evaluating the
objectives by including cost in the denominator of the acquisition function. Like PESMO,
the approach is easily extended to consider decoupled evaluations.

Iqbal and colleagues proposed the Flexible Multi-Objective Bayesian Optimization
(FlexiBo) algorithm [7]. The approach uses a decoupled evaluation in the Bayesian op-
timisation run but uses a coupled initial DoE procedure. FlexiBo includes two main features:
(1) a new acquisition function that is the expected change in hypervolume if only one
objective function is evaluated, divided by the cost of this function evaluation; and (2) a
confidence region in the objective space for the partially evaluated points. The estimated
cost of evaluating each objective is updated each time the objective is evaluated – this is a
mean estimate of the cost (treating any observed variability as occurring at random).

Most recently, Buckingham et al. extended the multi-attribute Knowledge Gradient [2] to
the case where objectives can be evaluated independently [3]. The authors demonstrate the
benefit of independent evaluation not only when the computational times for objectives differ,
but also when the lengthscales of the modelled landscapes (which determine the smoothness
of the landscape) differ.

A slightly different problem is considered in [8], where one objective is much cheaper
(essentially free) to evaluate than the other. They directly incorporate evaluation of the
cheap objectives into a pair of hypervolume-based acquisition functions for BO. Consequently,
the cheap objectives are evaluated many times while the acquisition function is optimized.

A summary of the different approaches is shown in Table 1, highlighting which methods
feature decoupled and cost-aware acquisition functions during the initial DoE, the subsequent
optimisation run, or both phases.
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Table 1 Existing methods for decoupled cost-aware multi-objective optimisation.

Design of experiments Optimisation
Approach Decoupled? Cost-aware? Decoupled? Cost-aware? Acquisition function
PESMO [6] ✓ ✗ ✓ ✗ predictive entropy search
PFES [11] ✗ ✗ ✓ ✓ cost-weighted Pareto frontier entropy
FlexiBO [7] ✗ ✗ ✓ ✓ cost-weighted objective space entropy
C-MOKG [3] ✗ ✗ ✓ ✓ cost-weighted multi-objective knowledge gradient

4.1.3 New analyses by the working group

4.1.3.1 Initial DoE when evaluations are decoupled

The costs of the objectives are assumed to be the same for now.
Goal: studying the effect on coupled vs. decoupled designs of experiments (DoE) on the

uncertainty on the Pareto front.
To this end, we experiment on Gaussian process models (GPs). More precisely, we

generate samples from a Gaussian process model and use it as the ground truth. The
hyperparameters are supposed to be known to remove the effect of inference. Hence there is
no model mismatch. Examples of outcome are given in Figure 2.
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Figure 2 Top: two realisations of Gaussian process priors, with Matérn 5/2 covariance kernel,
with lengthscale hyperparameters (0.3, 0.4) (resp. (0.4, 0.2)) for f1 (resp. f2), and unit variance.
Bottom: corresponding image in the objective space.

Next, to measure the uncertainty on the Pareto front associated with the fitted GPs, we
rely on the so called Vorob’ev deviation (VD), a set based variance measure, see Algorithm 1
for a pseudo code and, e.g., [4] for the details. The reference point used for hypervolume
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Algorithm 1: Pseudo-code for the testing procedure.
1 Generate the first design of experiments X1 for objective 1.
2 (Coupled case) X2 = X1 the DoE of the second objective is the same.
3 (Decoupled case) Generate X2 the second DoE.
4 Build GP models.
5 Generate s conditional samples on some designs Xs from all GPs.
6 Compute the s non-dominated points on couples of samples from the different GPs.
7 Compute the corresponding Vorob’ev deviation.
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Figure 3 Attainment function representation in the coupled (left) and decoupled (right) cases.
The blue triangle mark observations in the coupled case, where both objectives are evaluated. The
cyan line represents the estimated Pareto front of the GP while the reference Pareto front is in blue.

computations is taken to be (3, 3). An example is provided in Figure 3, where the DoE for
the first objective is the same while the second one is either coupled or decoupled. One
visible effect is that when both objectives are jointly evaluated, the area that is dominated
(attainment value = 1) is larger. This is probably because in the decoupled case, solutions
are never surely dominated (even though the domination probability is extremely low).

We compare VD values of different setups for the coupled and decoupled case:

the DoE for the first objective is either uniformly sampled or is a maximin Latin hypercube
design;
the DoE for the second objective is the same as the first objective (coupled case), uniformly
sampled or an LHS augmenting the DoE of the first objective.

Figure 4 shows the results. Comparing the top row (both initial designs uniformly
sampled) with the middle row (an augmenting LHS used to complement the first uniform
DoE), there seems to be not much difference. However, the bottom row (first design is
sampled with LHS, second uses augmenting LHS) shows a significant improvement of the
Vorob’ev deviation of either the coupled (red dots) or decoupled (box plots) sampling. Clearly,
a space-filling design improves our estimate of the Pareto front, but it seems not sufficient to
only make the design of the second objective space-filling.

Note that with respect to the Vorob’ev deviation, when at least one of the designs is
random (first two rows, first two columns), the red dots are sometimes above and sometimes
below the median of the boxplots, while the red dots are mostly below the median of the
boxplots in the bottom row (full space-filling design). This indicates that at least if a
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space-filling design is used, decoupled sampling is worse than coupled sampling, possibly due
to the effect mentioned above on the size of the known dominated region. Note, however,
that in these experiments we assume equal cost of sampling the two objectives, and equal
lengthscales of the two objectives. As we see later, in other cases decoupling may be beneficial.

The results look slightly different when considering the expected product of the standard
deviations of the GP (right column), which is an indication of the accuracy of the estimation
quality of the models over the entire search space, rather than the Pareto frontier. Here, the
first two rows show a clear benefit of decoupled sampling. However, this benefit seems to
disappear once both objectives are sampled using space-filling designs (third row).
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Figure 4 Boxplots of Vorob’ev deviation with decoupled designs, over 11 different runs and 10
replications per run. In the top row, both initial designs are uniformly sampled, in the middle
row, an augmenting LHS is used to complement the first uniform DoE, and in the bottom row, an
augmenting LHS is used to complement the first LHS design. Left column shows VD, middle column
shows VD against true Pareto front, and right column shows standard deviation product. The value
of the coupled design is in red.
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4.1.3.2 Initial DoE when evaluations have different costs

Now let us assume the cost is different between different objectives f1 and f2 (etc). The first
tasks are to define the total time budget for experiments and get relative costs of f1, f2, . . .,
f3. We will then consider a number of alternative approaches to DoE, including a coupled
baseline.

1. (Coupled) Both functions evaluated at once.
2. (Decoupled naive) Both functions evaluated the same number of times, but at differing

locations. (generated by Augmented LHS)
3. (Decoupled) The allocation of total budget to the two functions depends on lengthscales

and relative costs, according to Eq. 1. Objectives with smaller lengthscales and smaller
cost are sampled more often.

Considering how to split the computational budget, let us consider the simplest case
of optimising a (weighted) sum of two objectives. In such a case, if we want to minimise
integrated mean squared prediction error (IMSPE), then it is not possible to improve beyond
coupled sampling, as the variances of the two functions just add up, and the optimal design
for each function would be the same. However, if the costs or lengthscales are different,
then we could use IMSPE to determine an appropriate allocation of the budget to the two
functions as follows:

min IMSPE(n1)
c1 × n1

+ IMSPE(N − n1)
c2 × (N − n1) , (1)

where N is the total budget, n1 is the number of samples allocated to objective f1, and c1(c2)
are the cost of evaluating objective f1(f2).

As in the previous section, we rely on GP samples to define a ground truth. We also
assume some known values of the lengthscales of the objectives: (0.3, 0.4) for the first,
(0.4, 0.2) for the second. We start with four initial designs for each objective in the various
cases, then 26 decoupled evaluations are performed. We only compare the ‘coupled’, ‘naive’
and ‘decoupled’ strategies. The results are in Figure 5. First, from the IMSPE results, we
observe that the values for objective 1 and 2 are different (importantly, the GP variances
are equal here), due to the different lengthscales. The naive baseline always performs worst.
Then, in the same cost case, there is no change between the coupled and decoupled case. As
the cost of f2 increases, the effect is that the IMSPE of f1 is reduced faster compared to f2,
with no strong detrimental effect on f2 for the same total cost. The outcome is that it is
reasonable to sample more f1, in a ratio that only depends on the lengthscales and relative
cost.

4.1.4 Discussion and future research ideas

In this report, we have examined the possibility of improving the quality of the surrogate
models obtained through a DoE in case of multi-objective optimisation where the evaluation
of the different objectives can be decoupled. We found that for the case of equal lengthscales,
decoupling the evaluations (i.e., evaluating different solutions on different objectives) did
tend to worsen the quality of the Pareto front estimate as measured by Vorob’ev deviation.
However, when objectives had different costs and/or lengthscales, decoupling could improve
results substantially in terms of total IMPSE.

In the future, we plan to investigate also other sampling strategies such as taking into
account the posterior of the first objective when deciding where to evaluate the second
objective, or to learn each objective function’s lengthscale and cost on the fly.
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Figure 5 Left: IMSPE vs. cost for the various strategies. Right: objectives evaluated per iteration.
Top: cost is equal for both objectives, Middle: cost of f2 is 5 times greater, Bottom: cost of f2 is 10
times greater.
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4.2.1 Motivation

Indicator-based evolutionary algorithms are among the most powerful multi-objective al-
gorithms, in particular when using hypervolume (HV) contribution as indicator. They are
not really suitable for many-objective problems, as the computational cost for computing HV
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contributions becomes prohibitive as the number of objectives increases. This working group
was looking at ways to make HV-indicator based evolutionary algorithms computationally
feasible also for many-objective problems. Since steady-state indicator-based EAs in every
iteration only generate one new solution and remove one solution from the population, we
saw the following opportunities:

1. Identifying the solution with the least HV contribution may be easier than computing
the HV contribution for all solutions.

2. The problems to be solved in each iteration are very similar, with only one solution
replaced by another. A lot of the computational results may be transferred from one
iteration to the next.

3. Evolutionary algorithms are stochastic algorithms and inherently tolerant to noise. Thus
it is not clear whether it is actually necessary to always correctly identify the solution
with the minimal HV contribution. Perhaps an approximation with tuneable precision
would be sufficient and not jeopardise the optimisation behaviour of the MOEA.

4. HV calculations, in particular Monte Carlo approximations, could benefit from the use of
GPUs.

4.2.2 Basic definitions

▶ Definition 1. Hypercuboid-bounded hypervolume indicator. Given a set of points S in
the objective space Rd and a hypercuboid [r∗, r∗] such that ∀p∈S r∗ ⪯ p, the hypercuboid-
bounded hypervolume indicator of S is the measure of the region weakly dominated by S

within [r∗, r∗], i.e.:

H(S, [r∗, r∗]) = L({q ∈ [r∗, r∗] | ∃p ∈ S : q ⪯ p}) (2)

where L(.) denotes the Lebesgue measure.
Note that

H(S, [r∗, r∗]) = H(nd-worse(S, r∗), r∗) (3)

where nd-worse(S, r∗) = {q ∈ Rd | ∃q′ ∈ S : ∀j qj = min(q′
j , r∗

j )} may be interpreted as
projection of S onto [r∗, r∗]. Note also that Hypercuboid-bounded hypervolume is equivalent
to the standard hypervolume if all points in S are weakly dominated by r∗.

▶ Definition 2. Hypervolume contribution. Hypervolume contribution of a point s to
H(S ∪ {s}, r∗) (allowing both s ∈ S or s /∈ S) is the difference between hypervolume of
S ∪ {s} and hypervolume of S \ {s}, i.e.:

HV C(s, S, r∗) = HV (S ∪ {s}, r∗)−HV (S \ {s}, r∗) (4)

Hypervolume contribution of a point s defined by equation (4) could alternatively be
calculated as the difference of hypervolume of {s} and hypercuboid-bounded hypervolume of
S \ {s} within [r∗, s], i.e.:

HV C(s, S, r∗) = L([r∗, s])−HV (S \ {s}, [r∗, s]) (5)

where L([r∗, s]) is the hypervolume of hypercuboid [r∗, s]. In practice, the use of equation
(5) allows for a faster calculation of hypervolume contribution than equation (4), since
hypervolume is calculated just once (the time of calculation of L([r∗, s]) is negligible) and
many points in S may become dominated after projection onto [r∗, s].
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4.2.3 Literature review

There is a lot of literature on how to efficiently compute the HV, and also some literature
on how to compute HV contributions. In fact, it is too much to list here, so the interested
reader is instead referred to the surveys in [6, 11].

[8] proposed the Quick Extreme Hypervolume Contribution (QEHC) algorithm which
may be used to efficiently find a point (solution) with either the minimum or the maximum
contribution for any number of objectives. Since calculation of hypervolume contribution
boils down to the calculation of hypervolume (see (5)), QEHC uses the algorithm introduced
in [7] to calculate concurrently HV contribution of each solution with quickly converging
guaranteed lower and upper bounds for hypervolume contribution. It then uses these bounds
to stop calculation of HV contributions for solutions that may not give the unique minimum
or maximum contribution.

[3] and [9] proposed greedy lazy approaches for hypervolume subset selection problem
with either incremental or decremental approach. These algorithms in each iteration select
the solution with the maximum ([3]) or minimum ([9]) hypervolume contribution and utilize
the fact that hypervolume is a non-decreasing submodular function:

HV C(s, S ∪ {p}, r∗) ≤ HV C(s, S, r∗),∀S,∀p /∈ S (6)

Since these algorithms only add ([3]) or remove ([9]) a solution in each iteration, they may use
contributions calculated in a previous iteration as the upper or lower bounds in a subsequent
iteration. Note, however, that these bounds cease to be valid if solutions are both added and
removed form a set of solutions.

[4] extends [3] and exploits submodular properties of the HV indicator to reduce the
number of HV contribution calculations when selecting a subset from a large number of
Pareto-optimal solutions. [10] proposes a local search method for selecting the subset of size
k with maximum HV from a larger set of Pareto optimal solutions. Among other things,
they show that the number of solutions whose HV contribution is affected by removal of one
solution grows very quickly with increasing number of objectives (Fig. 4 in [10]).

[2] propose a fast approximation algorithm to determine the solution with the smallest
HV contribution. For given ϵ, δ > 0 it identifies, with probability at least (1− δ), a solution
with contribution at most (1 + ϵ) times the true minimal HV contribution. It is shown to
work on very large problem instances with thousands of solutions and hundred dimensions.

[12] proposes a method to efficiently approximate a solution’s HV contribution using line
segments.

[5] develop a neighborhood structure among local nadir points (also referred to as local
upper bounds) in order to compute the entire nondominated set of a discrete multi-objective
optimization problem in an efficient way. The neighborhood structure is updated with every
new nondominated point. An advantage of this neighborhood structure is that once one
local nadir point is known that has to be updated due to the insertion of a new point, one
can easily navigate through the list of local nadir points to find all those that have to be
updated in this iteration, too.

4.2.4 Proposed algorithm

We concluded that the following combination of algorithms might be promising.
As a baseline, we could use the algorithm from [8] to quickly identify the solution with

the minimum HV contribution. As a result, we obtain bounds of the HV contribution of each
solution in the population. After removing the solution with the minimum HV contribution
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and adding a new solution, we would have to update the information to quickly identify the
next solution with minimum HV contribution. This would be done in two steps:

1. First, we would check whether there are any dominated solutions. If there is at least one
dominated solution, we can remove one of them at random as all of their HV contributions
are equal to zero, and thus minimal. If several dominated solutions are found, they can
be removed iteratively without the need to recompute any HV contributions.

2. If there are no dominated solutions, we can use the algorithm in [5] to identify the
solutions whose HV contribution may have changed. Only those solutions need to have
their bounds re-set, while the other solutions may keep their bounds from the previous
iteration. With this update, the algorithm from [8] can be used again to quickly identify
the solution with minimal HV contribution.

We also noted that it is easy to adapt the algorithm in [8] to work with approximations,
rather than running it until the solution with the guaranteed smallest HV contribution
remains. One could stop the algorithm earlier, while some intervals still overlap, with the
tolerated overlap controlling the approximation error.

The number of solutions that need to be updated in one iteration of Step 2 may vary
from one iteration to another, but it can generally not be large in all iterations.

4.2.5 Additional ideas

Additional ideas discussed at the working group include

The paper by [2] proposes an efficient algorithm to identify the solution with minimal HV
contribution and approximation guarantee. It would be worthwhile to explore whether it
is possible to speed this up by transferring computational results from one iteration to
the next.
For algorithms that add or remove more than one solution, [4] discusses possibilities to
speed up computations.
For ray-based approximations: when increasing the budget to increase accuracy, is it
better to use more rays or more points along each ray?
Can we cleverly employ GPUs for MC estimation approaches for HV? Which way to cut?
Should each sample be evaluated in a core containing the reference set, or each reference
set member on a core compared to a set of samples?
How accurate do we need the estimation to be for effective use in (expensive) optimisation
algorithms – i.e., what budgets do we need to employ. Is this fixed throughout the run
or should it vary? Can we reproduce the observations from [1] for noisy single-objective
problems: Accuracy is important at the start, not really in the middle, very important at
the end?
What is our budget for approximation given known computation time for fitness evaluation,
i.e., should we rather spend more time on accurate HV computations, or work with crude
approximations and instead do more iterations?
If we only add points to the Pareto front, or only remove points, then we can make use
of the fact that HV contributions can only decrease or increase, respectively. But only
adding points will mean that we need to have an unconstrained size of the Pareto front.
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Real world optimization problems typically incorporate multiple objectives, and therefore
generating and selecting a solution is not straightforward, and often leads to repeated
interactions between decision makers and analysts before a final solution can be identified.
Existing literature focus primarily on methodological contributions to elements of this
overarching process, without elaborating the ecosystem within which interactive decisions
are being made. Thus, there is a need to develop a concise and abstract frame of reference
that allows discussions about these interactive knowledge exchanges, and in this report we
present a skeleton structure to promote discussions in interactive decision-making in the
context of multiobjective problem-solving on a budget.

https://creativecommons.org/licenses/by/4.0/
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4.3.1 Introduction

Multiobjective optimization refers to finding optimal solutions under the presence of multiple,
often conflicting objective functions. Often, this is to be done within a predefined budget
arising from resource limitations. The typical process consists of solving a multiobjective
optimization problem specified by problem owners (POs) followed by decision makers (DMs)
interacting with the solutions and studying the trade-offs between objective functions, and
considering constraints (e.g., manufacturability of a mechanical apparatus), and ancillary
information to identify solutions that meet their requirements. This is a rich field of study
with many publications focusing on solving specific aspects of the whole process, see, for
example, [1] for a survey on the various interactive multiobjective optimization methods, and
[2] for a recent overview and survey of how to assess performance in this context. Nonetheless,
there is a lack of an overall framework and taxonomy that allow discussion and contributions
to be directed within a well-thought-out structure. As pointed out, e.g., in [3], the whole
process with the problem formulation is rarely discussed in publications. In this report, we
aim to propose an initial sketch for such a frame of reference that can be used as a tool
by researchers to facilitate discussions and identify the scope of contributions within this
structure. Next, we briefly discuss the proposed frame of reference.

4.3.2 Frame of Reference for Knowledge Exchange (FKE)

Multiobjective optimization and related decision-making is an iterative process, and there are
many elements to it. Firstly, we have the DMs or POs, who are attempting to solve a decision-
making problem with many objective functions, supported by an (or a team of) analyst(s),
or in other words an expert in optimization and decision-making methodologies. Together
they are the elements of the human side of the process. Naturally, the other component of
this process is then the computational side consisting of a mathematical or computational
model devised through a specification, a suite of solvers appropriates for addressing the
multiobjective optimization problem (MOP), and a module for information and knowledge
extraction (e.g., for visualising the trade-offs) with an interactive user interface.

Analyst

Preference
Decision
Maker

Request
Yes

Complete?

Exit

Model

SolverInterface

Information

Figure 6 The proposed frame of reference for knowledge exchange (FKE). The core concept
captures the idea that the DM and the analyst work together on the human side in identifying the
best solution, through cycles of requests and elicitations through model updates in the computational
world (in blue shaded region), which is used by the solver to produce a set of solutions that the DM
can interact with to reach final conclusions.

23361



26 23361 – Multiobjective Optimization on a Budget

There are different forms of interactions between the elements. On the human side,
the interactions are between the DM and the analyst. DMs use requests, to inform the
analyst of what would be required of the model. Requests are related to the objective
functions, constraints and decision variables. They can be reductionist (e.g., locate the best
subset), expansive (e.g., include a new aspect), or a form of amendments (e.g., refinement or
reformulations). Furthermore, the requests tend to be triggered by some recognition or need
for change. The instigator in this case can be either the DM or the analyst. When the DM
instigates, apart from the initial model specification, it may be because of new information
becoming available, for example, a recognition of a new element of the problem that was
not defined initially, a change in preference information relative to objective functions,
new knowledge about the problem becoming available, or discrepancy with the real world
requirements. On the other hand, an analyst may be able to instigate a change request after
observing the behaviour of the DM. The latter may be automated through anomaly detection
techniques.

At the boundary of the human-computer ecosystem, the analyst uses the requests to
(re-)formulate model specifications and configure the appropriate solvers. On the other
hand, the DMs interact with the computational side through a user interface where they can
query the (estimated) Pareto front, and iteratively identify interesting (regions) of solutions.
Moreover, they may instigate another run of the solver to investigate particular regions of
interest through preference elicitation.

These core elements and interactions can be used to construct an frame of reference for
knowledge exchange (FKE) that captures the solution process. An illustration of the IDF is
shown in Figure 6. We now discuss the framework through an example.

4.3.2.1 A first Example: Multiobjective Interactive Radiotherapy Assistant (MIRA)

A software tool was proposed in [4] known as a multiobjective Interactive Radiotherapy
Assistant (MIRA). It is used for radiotherapy planning with multiobjective optimization
through an interactive exploration of the solution space. In this tool, a radiologist identifies
a target volume and an associate dosage. Typically, there will be millions of voxels (where
each voxel is a collection of pixels in a volumetric image), with each representing an objective
function. Therefore, only a subset of the objective functions is used to reflect an organ of
interest. A dose distribution should immediately go down for a healthy organ to protect
them, while other target parts follow a different distribution.

Considering FKE, the interactions between the DM and the analyst may occur as follows:
a DM identifies the voxels and defines thresholds for exploration, and then the analyst
configures the solver and the model to extract an approximate Pareto front. In addition, a
DM can pick a point on the imageries to highlight a new voxel, and hence introduce a new
objective function. On the other hand, the DM working with the interface can merely look
at a subset of the currently generated front. Alternatively, they could also focus on a part of
the front, and rerun the solver to improve the approximation.

4.3.2.2 A Second Example: Multiobjective dynamic vehicle performance optimisation

A second example is given by the improvement of dynamic vehicle performance during
automotive design processes [5]. The high-speed stability of a vehicle is crucial for comfortable
drive during highway scenarios. It relates to stable, predictable and controllable vehicles and
finally results in ride comfort and road holding capabilities. The vehicle behaviour is mainly
influenced by the interaction between components in the suspension system, the steering
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subsystems and the tire characteristics, resulting in a high number of adjustment factors.
Usually, these tests and tuning related to the comfort level of a vehicle are done late in the
design stages with road registered prototype vehicles. However, with the introduction of
virtual developments tools these test can be performed early in the design process and allow
for much higher variety of tests. The subjective evaluation of a vehicle however requires the
consideration of various scenarios during day to day driving which results in a high number
of criteria for the optimisation. This results on the one hand in a high number of parameters
describing the vehicle, on the other hand a high dimensional solution space in which most
criteria are in a trade-off relationship. The selection of one single vehicle configuration
requires therefore the identification of a preferred solution in the high dimensional search
space. At the same time, it can become obvious, that evaluation scenarios needs to be
exchanged or adapted during decision making and analysis processes, resulting in changes in
the optimisation criteria or even in the underlying system structure, resulting in changes in
the pasteurisation of the problem.

In the next section, we discuss briefly how different levels of budget relate to the frame of
reference.

4.3.3 Context and Examples of Budgets

Different interactions may be associated with different types of budgets, but they are primarily
due to resource limitations. The DM must identify the ultimate solution within any such
budget. Below, we present a few examples of budgets in this context.

Wall clock time. The overall time before the DM must finalise their decision may be well-
defined.

Model related budget. Many real world problems would require substantial time for each
function evaluation if it requires numerical simulations. For example, a computational
fluid dynamic simulation of a draft tube may take a thousand seconds [6]. So, the budget
may be about a few hundred function evaluations, and thus impact the interactions and
their nature.

Solver budget. The solver may itself be expensive. For example, entropy search for multiob-
jective optimization requires numerically approximating an acquisition function that can
discriminate between solutions, but optimizing such acquisition functions to identify the
next best solution may be exorbitant [7]. Thus, there are practical limitations on how
much time we can spend before evaluating the next solution.

Proprietery software. Many professional simulation software are proprietary, and therefore,
there may be limits to how many licences are available to a DM.

Preparation budget. Interactions between the DM and analysts may take an insignificant
amount of time for discussions. In addition, for the analyst to evaluate and prepare
models/solvers with DM guidance may take some time.

4.3.4 Conclusion

In this report, we briefly proposed and discussed a framework for iterative discovery of final
solutions by a DM while interacting with multiobjective optimization methods supported by
analysts. Future work involves expanding the framework and validating it with multiple real
examples, with the possibility of incorporating multiple DMs working independently.

23361



28 23361 – Multiobjective Optimization on a Budget

References
1 Bin Xin, Lu Chen, Jie Chen, Hisao Ishibuchi, Kaoru Hirota, and Bo Liu. Interactive

multiobjective optimization: A review of the state-of-the-art. IEEE Access, 6:41256–41279,
2018.

2 Bekir Afsar, Kaisa Miettinen, and Francisco Ruiz. Assessing the performance of interactive
multiobjective optimization methods: a survey. ACM Computing Surveys, 54(4):1–27, 2021.

3 K. Deb, P. Fleming, Y. Jin, K. Miettinen, and P. M. Reed. Key issues in real-world applica-
tions of many-objective optimisation and decision analysis. In D. Brockhoff, M. Emmerich,
B. Naujoks, and R. Purshouse, editors, Many-Criteria Optimization and Decision Analysis,
pages 29–57. Springer, 2023.

4 Christian Thieke, Karl-Heinz Küfer, Michael Monz, Alexander Scherrer, Fernando Alonso,
Uwe Oelfke, Peter E Huber, Jürgen Debus, and Thomas Bortfeld. A new concept for
interactive radiotherapy planning with multicriteria optimization: first clinical evaluation.
Radiotherapy and Oncology, 85(2):292–298, 2007.

5 Martin Heiderich, Timo Friedrich, and Minh-Tri Nguyen. New approach for improvement of
vehicle performance by using a simulation-based optimization and evaluation method. In 7th
International Munich Chassis Symposium 2016: chassis.tech plus (Proceedings). Springer,
LNCS, LNAI, LNBI, June 2016.

6 Steven Daniels, Alma Rahat, Gavin Tabor, Jonathan Fieldsend, and Richard Everson.
Application of multi-objective bayesian shape optimisation to a sharp-heeled kaplan draft
tube. Optimization and Engineering, pages 1–28.

7 Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive
entropy search for multi-objective bayesian optimization. In International Conference on
Machine Learning, pages 1492–1501. PMLR, 2016.

4.4 Reducing Complexity in Multiobjective Optimization by Model
Reduction

Gabriele Eichfelder (TU Ilmenau, DE), Juliane Mueller (NREL – Golden, US), Enrico
Rigoni (ESTECO SpA – Trieste, IT), Stefan Ruzika (RPTU – Kaiserslautern, DE), Michael
Stiglmayr (Universität Wuppertal, DE)

License Creative Commons BY 4.0 International license
© Gabriele Eichfelder, Juliane Mueller, Enrico Rigoni, Stefan Ruzika, and Michael Stiglmayr

4.4.1 Introduction

Optimization problems have often to be solved on a limited budget, e.g. due to time restriction
or restrictions on the number of function evaluations. Multiobjective optimization problems
are in general more costly to solve compared to single-objective optimization problems.
Specifically, the number of objective functions and the type of objective functions directly
influence the effort needed to solve the problem. Hence, in case of budget constraints for
solving the problem, an important first step is to reduce the complexity of the multiobjective
model as far as possible. In our working group, we have discussed and analyzed different
ways to simplify a multiobjective optimization problem using reduction approaches.

We considered both reduction of structural complexity (e.g. by low-order polynomial
approximation of objective functions) and reduction of problem size, in particular with
respect to objective functions (e.g. by scalarization and aggregation of different objective
functions). We refer to Figure 7 for an overview of different possible reduction scopes.
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Figure 7 Overview of different possible reduction scopes. In this report, we focus on the reduction
of the number of objectives by means of scalarization and aggregation of different objective functions.

As mentioned above, reducing the complexity of a multiobjective problem is relevant in
the context of optimization on a budget, with the idea of making better use of the limited
number of evaluations available. The price of the reduction in general as well as measures
for the quality of some reduction in particular are other interesting topics that deserve to be
explored.

In this report, we present the main results achieved during the seminar:

Reducing the number of objective functions by scalarizing some of the convex objectives –
refer to Section 4.4.2
Sufficient conditions for reducing the number of objectives locally using gradients – refer
to Section 4.4.3

For completeness, we list other interesting discussion topics that we did not have time to
delve into due to the limited time resources available:

Reducing the complexity of the problem by (local) low-order polynomial approximation
of objective functions (linearization or quadratic approximation)
Best balance of high- and low-fidelity models during optimization
Possible use of surrogate models to check local convexity

4.4.2 Reducing the Number of Objective Functions by Convex Combination

We aimed at the examination of the relation between the efficient set, i.e. the set of efficient
solutions of a tri-objective problem and a family of bi-objective problems, obtained by
combining two of the functions using weighted sums and by varying the weights. To be more
specific, we examine the problem

min
x∈S

 f1(x)
f2(x)
f3(x)

 (MOP)

with fi : Rn → R, i ∈ [3] := {1, 2, 3} continuous functions and a feasible set S ⊆ Rn. The
set of efficient solutions of (MOP) is denoted by E and the set of weakly efficient solutions
by Ew.
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With this problem, we associate the family of problems

min
x∈S

(
fk(x)

wfi(x) + (1− w)fj(x)

)
(BOP(k, w))

where k ∈ [3] and w ∈ [0, 1]. The set {i, j} := [3] \ {k} refers to the remaining indices, i.e. the
indices other than k. The set of efficient solutions of (BOP(k, w)) is denoted by E(k, w) and
the set of weakly efficient solutions by Ew(k, w). In the literature, the effects of adding or
deleting an objective function have been studied, see [2]. Moreover, for a fixed choice of
k and w, (BOP(k, w)) and its relation to (MOP) has been addressed among others in [1].
Here, we examine the family of problems (BOP(k, w)).

The following result relates the set of optimal solutions of the problems mention above to
each other:

▶ Theorem 1. Let the set f(S) + R3
+ be convex (which, for instance, holds true if the

functions fi : Rn → R, i ∈ [3] and the set S ⊆ Rn are both convex). Then, for any k ∈ [3], it
holds ⋃

w∈(0,1)

E(k, w) ⊆ E ⊆
⋃

w∈[0,1]

Eω(k, w).

Proof. We start with the first inclusion. W.l.o.g. let k = 1 and then i = 2, j = 3. Let
w ∈ (0, 1) and x̄ ∈ E(1, w). Assume x̄ ̸∈ E . Then, there exists x̃ ∈ S with f1(x̃) ≤ f1(x̄),
f2(x̃) ≤ f2(x̄), and f3(x̃) ≤ f3(x̄), with strict inequality for at lest one of the inequalities.
Thus, it holds wf2(x̃) + (1− w)f3(x̃) ≤ wf2(x̄) + (1− w)f3(x̄).

If f1(x̃) < f1(x̄), then this is a contradiction to x̄ ∈ E(1, w).
Otherwise, f2(x̃) < f2(x̄) or f3(x̃) < f3(x̄) holds true. We have wf2(x̃) + (1− w)f3(x̃) <

wf2(x̄) + (1− w)f3(x̄) in contradiction to x̄ ∈ E(1, w).
For the second inclusion, let x̄ ∈ E . Then, due to convexity of f(S) + R3

+, there exists a
vector v ∈ R3

+ \ {0} such that x̄ is a minimal solution of

min
x∈S

v1f1(x) + v2f2(x) + v3f3(x).

Set α := v2 + v3 ≥ 0. If α = 0, then v2 = v3 = 0, v1 > 0 and x̄ is a minimal solution of

min
x∈S

v1f1(x)

and, thus, x̄ ∈ Eω(k, w). Otherwise, α > 0 and x̄ is also a minimal solution of

min
x∈S

v1

α
f1(x) + v2

α
f2(x) + v3

α
f3(x)

and for w := v2
α ∈ [0, 1], the point x̄ is a minimal solution of a weighted sum ob the

objectives f1(x) and wf2(x) + (1 − w)f3(x) with the two weights v1/α ≥ 0 and 1. Thus,
x̄ ∈ Eω(k, w). ◀

However, the biobjective problems (BOP(k, w)) are in general not capable of covering
the full complexity of the three-objective problem (MOP) as the following counterexample
within the next proposition shows.
▶ Proposition 1. Efficient solutions of (MOP) are not necessarily efficient for one of the
associated biobjective problems (BOP(k, w)), i.e. there may exist an efficient solution x ∈ E
such that x /∈ E(k, w) for all k ∈ [3] and w ∈ [0, 1].
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f1

f2

f3

P4

P1

P2

P3

Figure 8 For all biobjective weighted sum problems of the form (BOP(k, w)), k ∈ {1, 2, 3}, the
point P4 is dominated.

Proof. For the following counterexample, we consider the points in outcome space. Let four
feasible points in outcome space be given by P1 = (5, 0, 0)⊤, P2 = (0, 5, 0)⊤, P3 = (0, 0, 5)⊤,
P4 = (4, 4, 4)⊤, see Figure 8. Then, P4 is dominated for all problems of the form (BOP(k, w))
(i.e., for all k ∈ {1, 2, 3}):

For k = 1, the four points are mapped to
(

5
0

)
,

(
0

5 w

)
,

( 0
5 (1−w)

)
,

(
4
4

)
. Then,

(
4
4

)
is

dominated for all w ∈ [0, 1] by
(

0
5 w

)
or by

( 0
5 (1−w)

)
. The cases, k = 2, 3 yield the same

result due to symmetry. ◀

The proof of Proposition 1 shows that unsupported efficient solutions may not be obtained
as optimal solutions of one of the associated biobjective subproblems (BOP(k, w)). Thus,
additional convexity assumptions seem to be necessary. However, as the following proposition
shows, it is not sufficient if only two of the three objectives are convex.
▶ Proposition 2 ([3]). Consider the problem (MOP). Moreover, we assume that S is a convex
set, f2 and f3 are convex functions. Then, there may exist efficient solutions x ∈ E for
(MOP) which can not be obtained as efficient solutions of (BOP(1,w)) with w ∈ [0, 1], i.e.,
x /∈

⋃
w∈[0,1] E(k, w).

Proof. Consider the tri-objective problem (MOP) with n = 2, f1(x) = (1− (x1 − 1)2 − x2)2,
f2(x) = x1+ε x2, f3(x) = 2−x1+ε x2 for some ε > 0. Moreover, let S = {(x1, x2)⊤ : x1, x2 ≥
0}, i.e. we study

min
x1,x2≥0

 (1− (x1 − 1)2 − x2)2

x1 + ε x2
2− x1 + ε x2

 (7)

Then, x̄ = (1, 1)⊤, x̂ = (0, 0)⊤ and x′ = (2, 0)⊤ are efficient solutions, since the non-negative
objective function f1 equals zero for all of them (i.e., f1(x̄) = f1(x̂) = f1(x′) = 0). The

23361



32 23361 – Multiobjective Optimization on a Budget

corresponding vectors in the outcome space are

f(x̄) =

 0
1 + ε

1 + ε

 f(x̂) =

 0
0
2

 f(x′) =

 0
2
0


For x̄, x̂, x′, we determine the corresponding outcome vectors for the bi-objective optimiz-

ation problem (BOP(1,w))(
f1(x̄)

w f2(x̄) + (1− w) f3(x̄)

)
=

(
0

1 + ε

)
(

f1(x̂)
w f2(x̂) + (1− w) f3(x̂)

)
=

(
0

2 (1− w)

)
(

f1(x′)
w f2(x′) + (1− w) f3(x′)

)
=

(
0

2 w

)
One can easily verify, that x̄ is a dominated solution of (BOP(1,w)) for all values w ∈ [0, 1],
since x̄ is a dominated by x̂ if w > 1

2 (1− ε) or by x′ if w < 1
2 (1 + ε). ◀

Note that similar results can be easily shown for k = 2, 3, since the weighted sum in the
second objective of (BOP(k, w)) involves a potentially non-convex function.

4.4.3 Descent Algorithms

Let us consider an algorithm for solving the multiobjective optimization problem (MOP)
and assume that this algorithm relies on iteratively computing descent directions of the
individual objective functions in a local optimization procedure. Then, if the gradient of one
individual objective function is locally a convex combination of the others, this objective
function does not have to be considered in the optimization process. More precisely, the
following statement holds true.

We use the definition that a direction d is a descent direction for a continuously differen-
tiable function g : Rn → R in x̄ if ∇g(x̄)⊤d < 0.

▶ Lemma 2. Consider (MOP) as above with continuously differentiable objective functions
and S = Rn. Suppose there is x̄ ∈ S and µ ∈ [0, 1] such that ∇f3(x̄) = µ∇f1(x̄)+(1−µ)f2(x̄).
Then, any descent direction d for f1 and f2 in x̄ is also a descent direction for f3 in x̄.

Proof. Using that d is a descent direction for f1 and f2 we immediately get

∇f3(x̄)⊤d = µ∇f1(x̄)⊤d + (1− µ)f2(x̄)⊤d < 0. ◀
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4.5.1 Introduction

Some decisions within current (evolutionary) multiobjective optimization algorithms are
solely based on rankings among solutions. The environmental selection step is one classical
example. In the case where these decisions are costly, for example because the objective
functions playing a role in the decision are expensive to evaluate, surrogate models for this
decision process can be learned to replace the costly exact decision process by a cheaper,
hopefully adequate enough process. This is in contrast with most existing surrogate-assisted
(multiobjective) algorithms in which the objective functions are modelled by surrogates and
the decision process is run on the surrogate-evaluated solutions.

In the subgroup on rank-based surrogates, we explored the possibilities of how rank-based
surrogates can be used when rank-based decisions have to be made within an algorithm. As a
first simple example, we propose to use a support vector machine to predict the environmental
selection decisions in the NSGA-II algorithm [2]. In the following, we discuss the main ideas
behind this rank-surrogate based NSGA-II and provide its pseudocode. Implementation,
testing, and numerical benchmarking of the proposed algorithm remains a task for future
work.

4.5.2 The Proposed Algorithm

Following the ideas of the lq-CMA-ES algorithm [3] for single-objective surrogate-based
optimization, we discuss a very basic multiobjective algorithm with a rank-based surrogate.
The main working principle of the algorithm is to learn a rank-based surrogate model for the
decision which solutions to keep and which to abandon at each step (environmental selection).
The pseudocode in Algorithm 2 uses as baseline algorithm the well-known NSGA-II [2]
and a Support Vector Machine (SVM, [1]) as the surrogate model but other multiobjective
algorithms and surrogate models could be used instead as well.

In order to save as many expensive function evaluations as possible, we evaluate, in
each iteration, only a small proportion pλ of the λ newly sampled solutions. Based on the
last λ evaluated solutions in an archive A and the corresponding environmental selection
decision on them, a surrogate model is learned to predict, for each solution xi of a new set
of λ solutions x1, . . . , xλ whether the solution xi is to be kept (value 1) or not (value 0)
for the next iteration. If the new model is predicting the environmental selection decisions
well enough compared to the previous model (in terms of the Kendall-tau rank correlation
coefficient, [4], line 15), we save the remaining function evaluations of the iteration and
continue with the original algorithm, here NSGA-II. Only if the predictions between the old
and the new surrogate model differ too much, i.e., if the Kendall rank correlation coefficient
is smaller than a given threshold Tτ , the next ⌈pλλ⌉ solutions of the current iteration are
evaluated successively on the true objective functions, and a new model is learned until the
rank correlation coefficient between the old and the new model is larger than the target Tτ

(or until all λ solutions in the iteration are evaluated).
Note that in the pseudocode of Algorithm 2, the classifier Ct returns µ solutions out of

a set of µ + λ solutions (i.e., the ones that are selected for survival). To achieve this with
SVMs, we return the µ solutions with the largest predicted value among all µ + λ solutions.
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Algorithm 2: NSGA-II with environmental selection replaced with SVM prediction.
Inputs:

µ: population size of the multiobjective algorithm
λ: number of offspring per iteration
pλ: percentage of offspring evaluated together (default: 10%)
Tτ : threshold for Kendall-τ comparison (default: 85%)
n0: size of initial sampling/DOE

1: t← 0, init population X0 with n0 points (via DOE or uniformly at random)
2: yi ← f(xi) for all xi ∈ X0, store results (xi, yi) in archive A
3: X1 ← mutation_crossover_NSGA–II(X0) ▷ with random mating selection for now
4: ▷ and µ := |Xt| = |Xt+1| =: λ

5: yi ← f(xi) for all xi ∈ X1, add results (xi, yi) to archive A
6: X ′

1 ← environmentalselection(A)
7: Train classifier C1 based on A and X ′

1
8: X1 ← X ′

1, t← t + 1,
9: while not happy:

10: Xt+1 ← mutation_crossover_NSGA-II(Xt) ▷ as above
11: for j in {1, . . . , ⌊1/pλ⌋}:
12: for all i ∈ {(j − 1) · ⌈pλλ⌉+ 1, . . . , j · ⌈pλλ⌉} do:
13: yi ← f(xi) and replace oldest entry in archive A with (xi, yi)
14: Train classifier Ct+1 based on A and environmentalselection(A)
15: If Kendall-τ(Ct(Xt ∪Xt+1), Ct+1(Xt ∪Xt+1)) > Tτ ▷ Classifier good enough
16: or if all solutions are already evaluated:
17: Xt+1 ← Ct+1(Xt ∪Xt+1), t← t + 1, break

4.5.3 Final Notes

Rank-based decisions in randomized algorithms such as the environmental selection of
evolutionary algorithms might profit from rank-based surrogates that are only trained on
and can only provide rankings. If the algorithm is invariant to monotonous transformations
of the objective functions, for example, it will keep this property with a rank-based surrogate.
Our proposal of using a support vector machine to predict the environmental selection within
NSGA-II is the first step towards this goal.

It remains to be shown that such a simple rank-based surrogate actually works in practice.
Potentially, we need to feed more information to the surrogate model than just the decision
of whether a solution is kept or not. Pairwise rankings between solutions or a total ranking
on the input solution set can be imagined here.
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4.6.1 Introduction

Decision-making problems under conflicting objectives can be modeled and solved using
multiobjective optimization. In general, such optimization problems with two or more
objectives do not lead to a single optimal solution; instead, they lead to a whole set of
so-called efficient solutions and corresponding nondominated points in the objective space.
The set of all corresponding nondominated points is often called the Pareto front. Since each
point cannot be improved in one or more objectives without worsening in at least one of
the other objectives, all of these points are incomparable with respect to the optimization
problem itself. Thus, usually in practice a decision maker must decide which solution is the
best; such a decision should be made within the application context.

Decision-makers may bring inherent limitations to the optimization process, for example,
in their availability and responsiveness. Furthermore, the set of nondominated points of a
multiobjective optimization problem may become very large and, therefore, difficult for a
decision maker to assort. In the following work, we present ideas that assist the decision-
making process by creating a concise representation of the Pareto front that contains only
a pre-determined number of nondominated points. That is, we assume the decision maker
knows in advance a “budget” of how many nondominated points to consider when making a
decision. The task is then to find a “good” representation of the Pareto front subject to the
budget, so that the representation includes at most the given number of points. We consider
a representation to be “good” if it is optimal with respect to some performance indicator of
interest; further, the representation should not require advance computation of the complete
Pareto front (or advance computation of a representation or approximation containing far
more than the given number of points). The ability to compute such representations may
improve decision-making by presenting a few options rather than all options, and may
provide improved storage performance when multiple Pareto fronts must be computed as
sub-problems of some larger multiobjective optimization (e.g., stochastic multistage) problem.

The remainder of this report is organized as follows. In the rest of the introduction, we
provide a short overview on basic definitions and notation of multiobjective optimization and
representation (Section 4.6.1.1), state the representation problem on a budget in a formal
way (Section 4.6.1.2), and present previous work and existing literature (Section 4.6.1.3). In
Section 4.6.2, we concentrate on the R2-indicator as quality measure for the representation.
We provide an overview of the R2-indicator (Section 4.6.2.1), present a problem definition
where the whole representation is computed “all-at-once” (Section 4.6.2.2), and present a
mixed-integer reformulation of the problem (Section 4.6.2.3). The special case of multiobject-
ive (mixed-integer) linear problems is discussed in Section 4.6.2.4. Computational results are
included in Section 4.6.3, and Section 4.6.4 contains concluding remarks and future research.
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4.6.1.1 Basic Definitions, Assumptions, and Notation

We consider the context of solving a multiobjective optimization problem

maximize f(x) = (f1(x), . . . , fq(x))
s.t. x ∈ X ⊂ Rn, (8)

where at least two of the q objective functions are conflicting and the feasible set X is
nonempty. The solution to (8) is the efficient set, denoted by Xeff, that consists of all the
feasible points x ∈ X that can not be improved in all or some objectives without deterioration
in at least one objective. More formally, the set of all efficient or Pareto optimal points is

Xeff := {x ∈ X : ∄x′ ∈ X such that f(x′) ⩾ f(x)},

where whenever we compare two vectors y, y′ ∈ Rq, we write y′ ⩾ y to indicate that y′
j ⩾ yj

for all j = 1, . . . , q and y′ ̸= y. (We use y′ ≧ y when equality is allowed.) The image f(x) of
an efficient point x ∈ Xeff is called nondominated, and the set of all nondominated points in
the objective space is referred to as the nondominated set, Pareto set, or Pareto front,

YPar = f(Xeff) := {f(x) : x ∈ Xeff}.

We refer the reader to the books [8, 15] for a thorough introduction to the field of multiobjective
optimization.

Throughout the remainder of this work, we assume that the Pareto front YPar is non-
empty and bounded. Under this assumption, without loss of generality, we further assume
that all nondominated points are nonnegative in all components. That is,

YPar ⊂ Rq
≧ := {y ∈ Rq : y ≧ 0}; (9)

in what follows, let Rq
⩾ and Rq

> be defined accordingly.
We remark here that we consider a representation of the Pareto front, rather than an

approximation. In [18], a discrete representation of the Pareto front is defined as a finite
number of points selected from the Pareto front. In this sense, a representation of the Pareto
front may differ from an approximation to the Pareto front, since an approximation may
contain points that are dominated or otherwise do not belong to the Pareto front.

The notion of ϵ-efficiency and the related concept of ϵ-approximation [17] are well-known
performance measures for approximations (see, for example, [9]); performance indicators
to evaluate how close the representation is to the true Pareto front are also proposed. For
general overviews of performance indicators, see [1, 13]. While some of these indicators
require the Pareto front as an input, the efficient set and the Pareto front are often unknown
a priori, so any methods developed to obtain representations cannot necessarily exploit such
information while building the representation.

4.6.1.2 Problem Statement

In the context of the multiobjective optimization problem (8), we consider the following
problem statement.
▶ Problem 1. [Representation on a Budget] Suppose we are given an instance of problem (8)
with unknown efficient set and unknown Pareto front, a performance indicator (for example,
hypervolume, R2, coverage error, etc.), and a fixed budget T for the number of representative
points. Then, our problem is to find a representation of the Pareto front R ⊆ YPar with
cardinality |R| ≤ T for which no other representation R′ achieves a better performance with
respect to the given performance indicator.
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We remark that the budget of points T applies only to the number of the points in the
representation and does not otherwise limit the number of evaluations for the function f . In
other words, in our case, the budget applies to the cognitive burden of the decision maker
rather than to the computational resources.

Furthermore, our aim is to compute the whole representation at once (“all-at-once”)
such that we compute the representation “offline” and receive a guarantee that the entire
representation R optimizes the performance indicator. Another approach would be to follow
an iterative procedure, adding one point after the other to the representation (“one-by-one”);
we use this term to encompass any sequential procedure, even if it adds more than one
point at a time in an “online” fashion. Depending on the procedure and the underlying
performance indicator, it may also be possible to provide a guarantee in the one-by-one case.

4.6.1.3 Previous Work and Related Literature

We categorize previous work and related literature by whether the representation is determined
all-at-once or one-by-one, as defined in Section 4.6.1.2. In addition to all-at-once and
one-by-one, some procedures also require knowledge of the Pareto front in advance, or a
finer representation before the representation of desired cardinality is constructed. Other
approaches, not based on the optimization of a specific performance indicator, use binary
relations relaxing the dominance relation, so as to control the quality of the representation
in terms of coverage of the points that are not part of the representation set while ensuring a
diversity among the points belonging to the representation set. This idea was implemented
in [2] through the concept of ε-kernel. In this work, we take an all-at-once approach and we
do not assume a known Pareto front or pre-construct a finer representation.

All-at-Once. The problem of finding an optimal representation of the Pareto front with
respect to some performance indicator all-at-once, that is, so that the selected point set is
(globally) optimal with respect to the chosen performance indicator, is also referred to as the
subset selection problem. In this case, it is usually assumed that the complete Pareto front
YPar is known beforehand. We refer to [10] for a recent review on this topic. In this context,
the hypervolume indicator is frequently used to assess the representation quality. A closed
formulation for the problem of finding T representative points all-at-once without knowledge
of the Pareto front with respect to the hypervolume indicator is given in [21] regarding the
bi-objective fixed cardinality knapsack problem.

In the study of [25], the problem of finding a representative subset of nondominated points
with respect to different combinations of quality measures is modeled as a multi-objective
problem itself. Based on the knowledge of the nondominated set, these representation
problems can be formulated as facility location problems with a special structure in the
locations which makes the bi-objective problems solvable in polynomial-time.

One-by-One. For multiobjective linear programs, [19] provides an approach that aims to
find discrete representations of the Pareto front. The approach suggests adding one new
element to the representation of the Pareto front in each iteration with a control over the
coverage error and it can terminate when T Pareto points are obtained or the coverage error
of the representation meets a target level. To implement this approach, the efficient faces are
assumed to be known and a Mixed Integer Linear Programming (MILP) formulation per
face is solved to obtain the representation. Two related studies that seek diverse subsets of
the Pareto front are given by [24] and [14]. Both approaches are iterative in nature and build
a representation by adding one nondominated point at a time. In [24], the goal is to locate
a next point that has the largest Chebyshev distance to the region dominated by earlier
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points. The algorithm may terminate when this distance becomes acceptable or when T

points are obtained. Similarly, [14] proposes an approach that finds the next nondominated
point that is at maximal Chebyshev distance from the existing points. Both approaches
rely on a single MILP formulation to achieve their respective goals. As the number of
points in the representation grows, the MILP formulation grows as well and may become
computationally expensive. In [5], a variant with a better computational profile is presented.
Moreover, [5] develops an approach that finds T nondominated points simultaneously. This
approach suggests building an approximation of the nondominated set first and obtaining its
representation in a second step. Then nondominated points that are close to the approximate
ones are identified.

In [20], an algorithm that is based on the Chebychev scalarization is introduced for
biobjective discrete optimization problems. The algorithm stops when a prespecified coverage
error is met by the representation that it builds. In [11], an algorithm that is based on the
ε-constraint scalarization is given for biobjective discrete optimization problems. The study
introduces the representation error as a performance indicator and uses it as a stopping
condition.

A work that aims for an optimal representation of fixed cardinality with respect to the
hypervolume indicator, that measures the dominated hypervolume of the point set with
respect to some given reference point, is given by [16]. A hypervolume scalarization is used to
define a sequence of, for bi-objective problems quadratic, optimization problems that provide
one nondominated point at a time without assuming prior knowledge of the set YPar. The
representation then yields a (1− 1

e )-approximation to the optimal representation in terms of
the hypervolume indicator.

4.6.2 R2-Representation on a Budget

The selection of an appropriate performance indicator is crucial when computing representa-
tions of the Pareto front. In this context, the R2-indicator has recently received attention
since it is relatively easy to evaluate, and since it yields representations that also perform
well with respect to the hypervolume indicator [7]. We provide a formal definition below and
refer to [12] and [4] for a more detailed introduction to the concept.

4.6.2.1 Introduction to the R2-Indicator

The R2-indicator relies on weighted Chebyshev functions that can be defined as follows (note
that problem (8) is a maximization problem):

▶ Definition 1 (Weighted Chebyshev function). The weighted Chebyshev (scalarizing) function
for a feasible solution x ∈ X of problem (8) is defined in the following way:

s∞(x, u, w) = max
j=1,...,q

wj(uj − fj(xt)) (10)

where u is a reference point such that u ≧ f(x), and w ⩾ 0 is a nonzero and nonnegative
weight vector. The map s∞ may be interpreted as a model of the decision maker’s preferences
– maximum weighted deviation from the reference point. The direction(

− 1
w1

, . . . ,− 1
wq

)
(11)

is called the diagonal direction of s∞ w.r.t. the reference point u.
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A common choice for the reference point u would be the ideal point or a utopia point of (8).
Note that the value of the weighted Chebyshev function is the maximum weighted deviation
from the reference point. Each weighted Chebyshev scalarizing function has at least one
global optimum (minimum) belonging to the set Xeff of efficient solutions. For each efficient
solution x ∈ Xeff there exists a weighted Chebyshev scalarizing function such that s is a
global optimum (minimum) of this function (Ch. 14.8 in [23]).

▶ Definition 2 (R2-indicator). Given a set S of mutually non-dominated points in the
objective space Rq and a reference point u such that u ≧ f(xt) for all f(xt) ∈ S, the
R2-indicator of S is the expected value over a set of normalized weight vectors Ψ of the
minimum value of the weighted Chebyshev functions achieved in the set S [4, 12]:

R2(S, u) = Ew∈Ψ[s∗
∞(S, u, w)] =

∫
w∈Ψ

s∗
∞(S, u, w)p(w) dw (12)

where p is a probability distribution function on Ψ and

s∗
∞(S, u, w) = min

f(xt)∈S
s∞(xt, u, w) = min

f(xt)∈S
max

j=1,...,q
wj(uj − fj(xt)). (13)

Since s∞ is a model of decision maker’s preferences, the R2-indicator may be interpreted as
the expected best utility achieved over S for all possible preferences. This quality indicator
has been also independently proposed in [3] under the name Integrated Preference Functional.
In the following we assume that p is a uniform probability distribution function on Ψ.

In [7, 22], it has been proved that the R2-indicator is equivalent to the hypervolume
indicator if Ψ is a set of weight vectors corresponding to the set of diagonal directions uniformly
distributed in polar coordinates and normalized with the ℓ2 norm, and the Chebyshev function
is changed to its inverse form.

The expected value needed to calculate the R2-indicator may be estimated by an average
over a finite sample of uniformly distributed weight vectors W ⊆ Rq

⩾, with

W = {w1, . . . , wK}

for K large. Then we can calculate

R2(S, u,W) = Ew∈W [s∗
∞(S, u, w)] = 1

K

K∑
k=1

s∗
∞(S, u, wk). (14)

4.6.2.2 Representation on a Budget using the R2-Indicator

We can now reformulate Problem 1 for the case of the R2-indicator as the performance
indicator. We assume throughout this and the following sections that a representation of
YPar with T distinct points exists, i.e., that YPar contains at least T distinct points.
▶ Problem 2. [R2-representation on a budget] Suppose we are given an instance of problem
(8) with unknown efficient set and unknown Pareto front, a reference point u ∈ Rq such that
u ≧ f(x) for all x ∈ Xeff, a finite sample of (uniformly distributed) weight vectors W ∈ Rq

⩾,
and a fixed budget of representative points T with T ≤ K for number of weights K. Then,
our problem is to find a representation R ⊆ YPar of the Pareto front with cardinality |R| = T ,
i.e., find a subset R of the Pareto front containing T distinct nondominated points, that is
optimal with respect to the R2-indicator.
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Formally, Problem 2 can be written as

min
R⊂f(X ), |R|=T

K∑
k=1

min
f(xt)∈R

(
max

j∈{1,...,q}
wk

j (uj − fj(xt))
)

. (15)

Note that we can omit the constant factor 1
K from (14) here since it has no impact on the

optimal representation R. Note also that the weighted Chebyshev formulation guarantees
that all solutions in R are at least weakly efficient. To guarantee that R ⊆ f(Xeff) we may
add an augmentation term to the weighted Chebyshev formulation

min
R⊂f(X ), |R|=T

K∑
k=1

min
f(xt)∈R

(
max

j∈{1,...,q}
wk

j (uj − fj(xt))
)
− δ

q∑
j=1

fj(xt)

 (16)

with a sufficiently small constant δ > 0. See [6] for an analysis on reasonable choices for this
augmentation parameter.

4.6.2.3 Mixed-Integer Reformulation

Problems (15) and (16) both have a min-max-structure which may not be preferable. However,
it is possible to model a mixed-integer reformulation.

Indeed, an optimal representationR for the R2-representation problem is always associated
with a (not necessarily unique) assignment between weight vectors wk ∈ W and representative
points f(xt) ∈ R. For every weight vector wk ∈ W we can identify a point f(xt) ∈ R such
that f(xt) minimizes the wk-weighted Chebyshev distance to the reference point among
points in R. We can thus reformulate the R2-representation problem (15) (and similarly its
augmented variant (16)) as a mixed integer programming problem by introducing binary
variables ztk ∈ {0, 1}, t = 1, . . . , T , k = 1, . . . , K that represent such an optimal assignment.
More precisely, ztk = 1 if f(xt) is assigned to weight wk (and hence minimizes the wk-
weighted Chebyshev distance to u) and ztk = 0 otherwise. If ztk = 1 we will also say that
the weight wk is covered by the solution xt (or the point f(xt)). To ensure that each weight
wk ∈ W is actually covered by a point f(xt) ∈ R, we enforce that

∑T
t=1 ztk = 1 for all

k = 1, . . . , K. Similarly, we generally want to avoid unnecessary points in the set R and
thus ensure that every solution covers at least one weight by requiring

∑K
k=1 ztk ≥ 1 for all

t = 1, . . . , T .
This approach is combined with the standard reformulation of (weighted) Chebyshev

distances using auxiliary upper bound variables that are minimized in the objective function.
Towards this end, let k ∈ {1, . . . , K} and t ∈ {1, . . . , T} be fixed and consider the subproblem
of choosing the solution xt ∈ X such that f(xt) minimizes the wk-weighted Chebyshev
distance from the reference point u:

min
xt∈X

max
j=1,...,q

wk
j (uj − fj(xt)). (17)

Let dtk ≥ 0 be an additional continuous variable that is supposed be equal to the value of the
wk-weighted Chebyshev distance between f(xt) and u at optimality. Then (17) is equivalent
to

min dtk

s.t. wk
j (uj − fj(xt)) ≤ dtk, ∀ j = 1, . . . , q

xt ∈ X , dtk ≥ 0.
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Combining this reformulation with the assignment variables introduced above yields the
following integer programming formulation for (15):

min
T∑

t=1

K∑
k=1

dtk (18)

s.t. wk
j (uj − fj(xt)) ≤ dtk + (1− ztk) wk

j uj︸ ︷︷ ︸
=:Mjk

∀ j =1, . . . , q, t=1, . . . , T, k =1, . . . , K,

(19)
T∑

t=1
ztk = 1 ∀ k = 1, . . . , K, (20)

K∑
k=1

ztk ≥ 1 ∀ t = 1, . . . , T, (21)

xt ∈ X , ztk ∈ {0, 1}, dtk ≥ 0 ∀t = 1, . . . , T, k = 1, . . . , K. (22)

Note that constraints (19) are inactive whenever ztk = 0 and fj(xt) ≥ 0 for all j = 1, . . . , q,
which is satisfied at optimality under our assumption that the Pareto front is a subset of
the nonnegative orthant in (9). Indeed, if ztk = 0 then (19) is equivalent to −fj(xt) ≤ dtk

which is always satisfied with the smallest possible value of dtk = 0 when fj(xt) ≥ 0. Note
that dominated solutions x ̸∈ Xeff may get penalized by this reformulation when ztk = 0.
This is, however, irrelevant for the optimal solution. Thus, Mjk = wk

j uj is a sufficiently
large constant to be used in a “big-M” constraint in this model. Moreover, the choice of
Mjk = wk

j uj allows for a simplification of constraints (19) to

wk
j (ztkuj − fj(xt)) ≤ dtk, ∀ j = 1, . . . , q, t = 1, . . . , T, k = 1, . . . , K. (19′)

Note also that an augmentation term can be added to the objective function (18) by replacing
it by

T∑
t=1

K∑
k=1

dtk + ztk · δ
q∑

j=1
fj(xt)

 , (18′)

where δ > 0 is a sufficiently small constant (c.f. formulation (16) above). This yields, however,
nonlinear terms in the objective function even if the original problem (8) is a linear problem.

The complexity of the MIP formulation (18)-(22) depends on the type of considered
multiobjective optimization problem (8). We will discuss several interesting special cases
in the following subsections. The MIP formulation contains T ·K binary z-variables, T ·K
continuous d-variables, and T solution vectors x that must be feasible for the original problem
(8). Besides these feasibility constraints, the formulation contains q · T ·K bound constraints
(19′) and K + T assignment constraints (20) and (21).

4.6.2.4 Multiobjective (Mixed-Integer) Linear Problems

Consider the case that problem (8) is a multiobjective linear programming problem

min Cx

s.t. Ax = b

x ≧ 0 (23)
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with a rational objective matrix C ∈ Qq×n, a rational constraint matrix A ∈ Qm×n, and
a rational right-hand-side vector b ∈ Qm. We assume that rank(A) = m ≤ n and that
Xeff ≠ ∅ and bounded. Then the MIP formulation (18)-(22) yields a mixed integer linear
programming problem

min
T∑

t=1

K∑
k=1

dtk (24)

s.t. wk
j (ztkuj − Cj•xt) ≤ dtk, ∀ j =1, . . . , q, t=1, . . . , T, k =1, . . . , K,

(25)
T∑

t=1

ztk = 1 ∀ k = 1, . . . , K, (26)

K∑
k=1

ztk ≥ 1 ∀ t = 1, . . . , T, (27)

Axt = b, xt ≧ 0, ztk ∈ {0, 1}, dtk ≥ 0 ∀t = 1, . . . , T, k = 1, . . . , K. (28)

The MILP (24)-(28) can be solved with available solvers as, e.g., CPLEX or Gurobi. This
is also possible when the original problem (8) is a multiobjective mixed-integer linear
programming problem, i.e., if some of the original variables in x ∈ X have to satisfy
integrality constraints.

4.6.3 Illustrative Example

We have implemented the MILP model (24)-(28) for a biobjective binary knapsack problem
in AMPL and solved it with Gurobi 10.0.2. Figure 9 shows R2-optimal representations R
for an instance of a biobjective binary knapsack problem with 30 items together with the
complete Pareto front YPar. We chose T ∈ {3, 4, 5} and considered a weight set W given by

W =
{(

i− 1
K − 1 ,

K − i

K − 1

)
: i = 1, . . . , K

}
with K = 11 for all shown representations. The reference point u is set to the ideal point,
shifted by a multiplicative factor of 1.01.
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Figure 9 Optimal R2-representations for an instance of a bi-objective binary knapsack problem
with 30 items and with T = 3 (left), T = 4 (center), and T = 5 (right) points. In each case, the
returned representation is indicated by blue circles. The set of weight vectors W was uniformly
generated such that

(
i−1

K−1 , K−i
K−1

)
, i ∈ {1, . . . , K}, and K = 11.
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4.6.4 Concluding Remarks and Future Research

In this work, we provide a closed form mixed integer programming formulation for the
computation of (globally) optimal R2-representations for general multiobjective optimization
problems. The complexity of the formulation depends on the underlying multiobjective
optimization problem. For example, if the underlying problem is a multiobjective linear or
mixed integer linear programming problem, then our formulation is a mixed integer linear
programming problem that can be solved by available solvers.

Future research should discuss multiobjective problems with a more complex structure or
with an increasing number of objective functions. In this case, the development of efficient
solution heuristics, including iterative and greedy approaches, could be complemented by
further improvements of the presented mixed integer programming formulations.

Given that, as it was mentioned above, the R2-indicator becomes equivalent to hyper-
volume under appropriate settings [7, 22], our formulation could probably also be adapted to
finding an approximately optimal hypervolume representation. The representation would
be only approximately optimal since we use a finite number of weight vectors. This would
require adaptation of our model to a slightly different, inverse version of the Chebyshev
function.

In this report, we focus on the all-at-once approach, which may be difficult for available
solvers. If the model is too difficult for available solvers, this approach could also be easily
adapted to locating the solutions one-by-one in a greedy manner. We would just need to
treat values of already selected solutions as fixed parameters and optimize location(s) of
just a single (or several) new solution(s). Since R2 most likely shares with the hypervolume
the property of being a non-decreasing submodular function, the greedy approach would
probably give some approximation guarantee. Another approach that could be used if the
model is too difficult for available solvers would be to solve it with some single-objective
metaheuristics or a hybrid approach combining metaheuristics with solvers called for some
smaller subproblems. Furthermore, even if the proposed model could not be solved for some
practical problems in acceptable time, it could still be applied to generate benchmarks for
benchmarking heuristic methods aiming at finding a given number of efficient solutions.
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4.7.1 Introduction

Many real-world decision problems are too large or too complex to be modeled and solved
as one large optimization problem. A well established idea to solve such problems is to
decompose them into smaller subproblems that can be solved so that their optimal solutions
recover an optimal solution to the original problem. In the literature, the approaches to
decomposing the original problem and to solving the subproblems are designed in many
different ways, which we now briefly review. Decomposition of a complex problem into
subproblems and coordination of their solutions are meant to bring savings and are therefore
often used in optimization-based decision processes with scarce resources or limited budgets.

The original or overall optimization problem models a complex decision-making process on
a man-made system whose performance is determined by the values of the decision variables,
that is subject to constraint functions, and is evaluated by one or more objective functions.
We refer to the original or overall optimization problem as an All-in-One (AiO) problem.
Decomposition of the AiO problem into subproblems may be conducted with respect to the
following concepts:

The disciplines of science or engineering that are used to develop the mathematical model
of the AiO system (e.g., control theory, mechanics, mixed-integer programs, PDEs);
The physical parts the AiO system consists of – the subsystems, components, and
subcomponents;
The structure of the AiO mathematical model that is reflected in the placement of the
decision variables in the objective and constraint functions;
The tradeoffs between specific objectives the decision maker (DM) is able to assess;
The scenarios in which the AiO system is expected to perform;
The scalarization type that is applied to multiple objective functions to transform them
into a single objective function.

Given the subproblems, various methods for solving them and coordinating the solutions
obtained have been proposed with the ultimate goal to retrieve an optimal AiO solution
without actually solving the AiO problem. The solution methods are based on the following
strategies:

Simultaneous coordination: the subproblems are solved concurrently and independently
with minimum or no information exchanged among them;
Sequential coordination: the subproblems are solved consecutively or in subsequent stages,
and an optimal solution of a predecessor subproblem is carried over to solve the successor
subproblem;
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Hierarchical coordination: the subproblems are solved consecutively and an optimal
solution of a successor subproblem guarantees the optimality of the predecessor subproblem
that has already been achieved.

For more details on the decomposition and coordination the reader is referred to [9, 4, 15]
and the references therein.

In this paper we are interested in a decomposition of a decision problem with respect to
the mathematical model and in a sequential coordination that allows the construction of
an AiO optimal solution. In particular, the decomposition is conducted with respect to the
decision variables that make up the model, while the coordination proceeds in a multistage
fashion, meaning that subsequent optimizations at the level of subproblems are performed in
lower-dimensional spaces and therefore offer computational savings. Many planning problems
consist of subproblems that are solved in stages which often (but not always) proceed in
a given order. To motivate our focus on this type of complex decision making problems,
we provide examples from location science and from public transportation to illustrate that
multistage decision problems appear naturally.

In location science, the p-median problem consists of two stages: In the first stage, the p

new facilities are determined. In the second stage, the assignment from the demand points to
the new facilities is computed. If the facilities are fixed, finding the best assignment is easy.
On the other hand, when the assignment is fixed, the facilities follow directly. While each
stage is polynomially solvable, finding the facilities for the AiO problem with the assignment
is NP-hard.

Public transportation is a complex man-made system usually designed via subproblems
that are associated with several stages. First, the location of the stations is determined. Then
the lines that connect the stations are constructed. After the lines have been planned, one
determines a timetable, and later on, a vehicle- and finally the crew schedule. Consider the
three consecutive subproblems: line planning, timetabling, and vehicle scheduling. Although
analyzed and solved consecutively in most theoretical and practical approaches, these three
subproblems are interconnected. Sometimes one could save a complete vehicle by only one
small modification of the lines. However, each of the three subproblems is already NP-hard
by itself, so there is no chance of determining an exact optimal solution simultaneously by
solving the AiO problem. Hence, these subproblems are solved step by step according to the
following strategy:

1. Finding a starting solution: An easy (greedy-type) heuristic to find an initial solution
is to proceed sequentially. One first determines a line plan, then adds a timetable, and
finally a vehicle schedule. It is well known that this approach is only a heuristic.

2. Improving the starting solution: Given the initial solution, one chooses one of the
subproblems and optimizes with respect to its variables while keeping all the other
variables fixed. For example, one keeps the line plan and the vehicle schedule fixed, but
re-optimizes the timetable. Then another subproblem, e.g., line planning, is selected and
re-optimized with respect to its variables. This process is performed until no further
improvement is possible. The resulting coordination method is called the blockwise
coordinate descent (BCD).

Figure 10 depicts a graph (called Eigenmodel) which illustrates finding a starting solution
as well as the iteration steps (red). Notice that it contains more nodes than the ones referring
to the algorithms mentioned before. In particular, each path through the Eigenmodel
corresponds to solving a sequence of suproblems and hence to a heuristic. The name
Eigenmodel refers to the own (=eigen) subproblems which form the nodes of the depicted
graph. Eigenmodels have been introduced in [12], and analyzed, e.g., in [8, 14].
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Figure 10 A part of the Eigenmodel for public transportation planning

In the examples presented, a scalar-valued objective function is associated with each
subproblem resulting in multiple and conflicting objectives. As a result, a vector-valued
objective function is related to the AiO problem but is ignored by the BCD heuristic that
solves the single objective optimization problem at every stage. In this study we recognize the
existence of an AiO vector-valued function that is carried by every subproblem at every stage.
In other words, we deal with AiO multiobjective optimization problems (MOPs) that remain
multiobjective at every stage. MOPs lend themselves to decomposition into multiobjective
(or single objective) subproblems whose solutions shall provide the efficient solutions to the
original MOPs. In the public transportation example one might follow several objectives: the
costs of the public transport system should be minimized. At the same time, the traveling
time for passengers as well as the carbon emission should be minimized.

The standard single objective BCD relies on a well-established algorithm with a proof of
convergence [1] for continuous optimization problems. The contribution of this preliminary
study is the formulation of the BCD for the biobjective two-stage case with some supporting
theory and implementation variants. The latter include approximation algorithms and
evolutionary heuristics.

4.7.2 Block coordinate descent algorithm for two criteria and two blocks

Consider the following biobjective unconstrained optimization problem with two blocks:

min [f1(x1, x2), f2(x1, x2)] (29)
s.t. (x1, x2) ∈ R2

where fi : R2 → R, i ∈ {1, 2}, and xi ∈ R for i ∈ {1, 2} are the two scalar coordinate
directions, also referred to as blocks of one or more variables in the general block coordinate
descent method. Let
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E∗ denote the efficient set of (29)
Ek

i denote the efficient set in iteration k for block i

Ek denote the efficient set at the completion of iteration k

EN denote the efficient set at the completion of N iterations
Eff (S) denote the operator of extracting the efficient points from an arbitrary set S

4.7.2.1 Algorithm: Biobjective Block Coordinate Descent (BBCD)

1. Initialization: starting point x0 = (x0
1, x0

2) ∈ R2 (not necessarily an efficient starting
solution), E0 = {(x0

1, x0
2)}, k := 1

2. Iteration k:
(B1) (fix variable x2)

For all y ∈ Ek−1: Solve problem (29) with x2 = y2, i.e.,

Ek
1 (y) = arg min

x1
[f1(x1, y2), f2(x1, y2)]

Compute Ek
1 = Eff

(⋃
y∈Ek−1 Ek

1 (y)
)

(B2) (fix variable x1)
For all y ∈ Ek

1 : Solve problem (29) with x1 = y1, i.e.,

Ek
2 (y) = arg min

x2
[f1(y1, x2), f2(y1, x2)]

Compute Ek
2 = Eff

(⋃
y∈Ek

1
Ek

2 (y)
)

Set Ek = Ek
2

3. If Ek = Ek−1 stop, set EN = Ek, otherwise set k = k + 1 and return to step 2.

To understand the properties of the proposed BBCD algorithm, the extension of block
coordinate descent to the biobjective case, we seek to answer the following research questions.
Let N be the number of iterations of the BBCD algorithm (N can be assumed finite or
infinite).

1. Under which conditions does the set EN contain only efficient solutions, i.e., EN ⊆ E∗?
2. Under which conditions are all efficient solutions found, i.e., E∗ ⊆ EN ?
3. How big is N , or in other words, what is the number of iterations needed to achieve the

two goals above?

4.7.2.2 Auxiliary background

The following notation is used: a vector-valued function f : R2 7→ R2, scalar-valued function
f : R2 7→ R, level set L≤(f(x̄)) = {x ∈ R2 : f(x) ≤ f(x̄)}, and level curve L=(f(x̄)) = {x ∈
R2 : f(x) = f(x̄)}.

We also define the coordinate lines (hyperplanes) passing through a point x̄ ∈ R2 for
i ∈ {1, 2}: Hi(x̄) = {(x1, x2) ∈ R2 : xj = x̄j for j ∈ {1, 2} and j ̸= i}, i.e. Hi(x̄) represents
the coordinate line in the xi-direction.

Theorem 1 shows how level sets and curves can be used to characterize the efficient
solutions of an unconstrained p-objective optimization problem. Figure 11 depicts two level
curves of two hypothetical objective functions indicating that a point x ∈ R2 is not efficient.
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Figure 11 Case 1: the intersection of L≤(f1(x)) and L≤(f2(x)) is aligned with a search direction.

▶ Theorem 1. [6] Let x̂ ∈ Rn and define ŷk = fk(x̂), k = 1, 2, . . . , p. Then x̂ is efficient if
and only if

p⋂
k=1
L≤(ŷk) =

p⋂
k=1
L=(ŷk) . (30)

A curve in R2 is said to be smooth provided for every point on this curve there exists a
neighborhood on which this curve is a graph of a differentiable function. In the following we
assume f : R2 7→ R differentiable and that L=(f(x̄)) is a smooth curve in R2, and therefore
L≤(f(x̂)) ∩Hi(x̄) ̸= ∅.

4.7.2.3 Conjectures with proof outlines

The first research question asks whether all solutions found by the BBCD are efficient,
i.e., EN ⊆ E∗. In the following it is assumed that the functions f1, f2 are convex and
differentiable.

Proof sketch for EN ⊆ E∗: Assume x ∈ EN and x /∈ E∗. In particular, EN = Ek =
Ek−1 where k is the number of iterations of the BBCD. According to Theorem 1, an efficient
point satisfies (30). Since x is not efficient, the intersection of the level sets L≤(f1(x)) and
L≤(f2(x)) has a nonempty interior. Two cases of this intersection are shown in Figures 11
and 12.

In Case 1 depicted in Figure 11, we observe that the search into one of the search
directions leads into the area containing solutions x̃ that improve both f1 and f2, hence
f(x̃) ≤ f(x). In the scenario shown in Figure 11 the BBCD searches into the direction x1
first. We note that in this case, x remains an efficient solution in the search along H1(x) as
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Figure 12 Case 2: the intersection of L≤(f1(x)) and L≤(f2(x)) is not aligned with a search
direction.

it cannot be dominated by other solutions encountered along H1(x) (if there are any). (Also
the search along H1(x) yielded at least x in the last iteration as EN = Ek = Ek−1). Once
the BBCD searches in direction x2, solutions in the interior of L≤(f1(x)) ∩ L≤(f2(x)) are
encountered. Since f(y) ≤ f(x) for any such solution y ∈ L≤(f1(x)) ∩ L≤(f2(x)) we have a
contradiction to x ∈ EN . Similarly, such a solution y would be encountered immediately if
H1(x) intersects the interior of L≤(f1(x)) ∩ L≤(f2(x)).

In Case 2 depicted in Figure 12, the interior of L≤(f1(x)) ∩ L≤(f2(x)) and Hi(x) do not
intersect for i = 1, 2. Here, we know that, starting from x, we can find efficient solutions
along either H1(x) or H2(x) (H1(x) in the scenario shown in Figure 12). (Otherwise x would
be efficient as the level sets do not intersect). Moving at least some way in a direction that
improves an objective (f1 in Figure 12) would yield other efficient solutions y such that f(y)
and f(x) do not dominate each other.
The point y is shown in Figure 13 together with the level sets of y where we have L≤(f1(y)) ⊆
L≤(f1(x)) and L≤(f2(x)) ⊆ L≤(f2(y)). The search along the other block H2(y) from point
y will move towards and into the intersection L≤(f1(x)) ∩ L≤(f2(x)) as f2 decreases and f1
increases. We have f(x̃) ≤ f(x) for any solution x̃ ∈ H2(y) ∩ L≤(f1(x)) ∩ L≤(f2(x)). If x̃

itself is not efficient as there exists another x̂ constructed by the BBCD with f(x̂) ≤ f(x̃),
then we also have f(x̂) ≤ f(x). This is a contradiction to x ∈ EN .

The second research questions investigates whether all efficient solutions can be found by
the BBCD. To address the question whether E∗ ⊆ EN , the objective functions are assumed
to be strictly convex (to avoid weakly efficient solutions). For the inclusion of interest, the
differentiability is required to avoid stalling as happens in the following example (31) where
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Figure 13 Case 2 point y and associated level sets.

the BBCD is unable to identify the complete E∗.

min [x1 + 2|x2|,−x1 + 2|x2|] (31)
s.t. (x1, x2) ∈ R2

In this example, the efficient set is E∗ = {(x1, x2) ∈ R2|x1 ∈ R, x2 = 0}.

Proof idea for E∗ ⊆ EN : Start with an efficient solution in EN , and then demonstrate
that the search will always expand outwards along connected efficient solutions until the
lexicographic solutions are reached (and hence everything in between). This argument should
work as the efficient set is connected for convex differentiable multiobjective optimization
problems [11].

The third research question addresses the number of required iterations, i.e,. what is N

equal to? A first exploration of this question suggests the following observations. Firstly, we
observe that N = 1 in the case of a simple quadratic problem. Secondly, based on a nonlinear
and convex example problem where E∗ is unbounded, an infinite number of iterations is
required.

4.7.2.4 Ongoing and future work

The initial investigation presented in this section proposed the BBCD for a problem with two
variables, where two of the research questions (the inclusion E∗ ⊆ EN and the number of
iterations) remain open. This theory needs to be further extended to the case of n coordinate
directions x1, x2, . . . , xn, or blocks of variables xi, as well as p > 2 objectives.

We recognize that the block coordinate descent is a powerful heuristic tool to solve large-
scale practical optimization problems. Further into the future, the proposed BBCD could
be similarly applied as a heuristic for solving biobjective (mixed) integer linear programs.
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In order to find the most effective implementation in terms of a budget on computational
resources or time, the analysis could be performed in two directions. First, the time to solve
AiO problems shall be compared to the time to solve them with the BBCD. Second, working
only with the BBCD, the time spent on balancing between solving individual subproblems
and exchanging information between them needs to be analyzed.

4.7.3 Multiobjective Evolutionary Algorithms

As alluded to above, the block coordinate descent approach is employed in various applications
of optimization such as transportation systems [17], wireless communication networks [18],
signal processing [13], multiclass classification [2], and others. We aim to highlight through
runtime analysis the benefit of incorporating the block coordinate approach into evolutionary
multiobjective algorithms. We employ state-of-the-art algorithms such as the Global Simple
Evolutionary Multiobjective Optimizer (GSEMO) [7] and the Nondominated Sorting Genetic
Algorithm II (NSGA-II) [3].

We plan to use problems that we understand and analyze the runtime for GSEMO/NSGA-
II when incorporating the block coordinate approach. Our aim is to provide an example
where we can prove that the block coordinate descent incorporated into these evolutionary
algorithms leads to an asymptotic speed up of the optimization process.

4.7.3.1 Algorithms with different levels of complexity

We consider how to implement the algorithm using three different “complexity" algorithms:

At each iteration, choose only one solution to continue
At each iteration, find all the locally Pareto optimal solutions and continue expanding
this set (similar to the Pareto Local Search)
At each iteration, find only p > 1 solutions to continue with, using something analogous
to the ‘uncrowded hypervolume’ method.

We will compare with Pareto Local Search and multiobjective Branch-and-Bound al-
gorithms to obtain or reuse results on how to continually expand a set to approximate a
Pareto set. It might be possible to interpret the three different choices of implementation as
budgets or relatable to budgets.

4.7.3.2 Candidate Problems

We consider the following problem candidates:

MO-version HIFF function [16]
MO-version of bilinear functions [10]
MO version of wCLOBl,k (concatenated LeadingOnes with blocks and weights) [5].

Possibilities for allocating budgets may be:

Computing the whole set of Pareto optimal solutions for a fixed set of search points
Allocating budgets for solving the different subproblems.
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Algorithm 3: Global simple evolutionary multiobjective optimizer (GSEMO).
1 Initialize x ∈ {0, 1}n uniformly at random;
2 P ← {x};
3 repeat
4 Choose x ∈ P uniformly at random;
5 Create y from x by mutation;
6 if ∄w ∈ P : w ≻ y then
7 P ← (P \ {z ∈ P | y ⪰ z}) ∪ {y};

8 until stop;

4.7.3.3 Runtime Analysis for Block Coordinate MOEAs

We now define a problem where we hope to show the benefit of incorporating the block
coordinate approach. We consider a bi-objective version of the wCLOBl,k (concatenated
LeadingOnes with blocks and weights) problem [5].

Our aim is to show a lower bound for the standard GSEMO (see Algorithm 3) and an
upper bound for BC-GSEMO (see Algorithm 4), where the lower bound is lower than the
upper bound. This would prove a clear advantage of BC-GSEMO over GSEMO for the
problems considered. Let x = (xB1 , . . . , xBk

) where xBi is the ith block of the bitstring x of
length ℓ = n/k.

We define

LOz(xBi
) =

ℓ∑
i=1

i∏
j=1

(zi = xi)

as the number of leading positions where xBi agrees with a given string z.
Let z1 = 1ℓ and z2 = 1ℓ−d0d, where d is an appropriate constant.
We consider the biobjective problem f = (f1, f2) : {0, 1}n → R2 given as

f1(x) =
k∑

i=1
(ℓ + 1)k−i · LOz1(xBi

)

f2(x) =
k∑

i=1
(ℓ + 1)k−i · LOz2(xBi) .

We consider optimization using the classical GSEMO algorithm (see Algorithm 3) as well
as a block coordinate variant called BC-GSEMO (see Algorithm 4). The algorithm optimizes
the blocks sequentially and terminates if the optimization part for the current block does not
change the population, i.e., there is no change to the population when executing the repeat
loop.

To apply the block coordinate mutation to block i, we flip each bit of xBi
independently

of the others with probability 1/ℓ. For the local variant called the Block coordinate SEMO
(BC-SEMO), one randomly chosen bit is flipped in the chosen block xBi

.
We consider different budgets of tmax , e.g.,

tmax ≤ ℓ (slow parallel progress, good runtime bounds s)
tmax = cℓ2, c appropriate large constant (optimizes block (i + 1) for each individual in
the population if population size is constant)
tmax = c′|P |ℓ2, c appropriate large constant (optimizes block (i + 1) for each individual
in the population).
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Algorithm 4: Block coordinate GSEMO (BC-GSEMO).
1 Initialize x ∈ {0, 1}n uniformly at random;
2 P ← {x};
3 i← 0;
4 repeat
5 t← 0;
6 repeat
7 t← t + 1;
8 Choose x ∈ P uniformly at random;
9 Create y from x by block-coordinate mutation on block xi+1;

10 if ∄w ∈ P : w ≻ y then
11 P ← (P \ {z ∈ P | y ⪰ z}) ∪ {y};

12 until t ≥ tmax ;
13 i← (i + 1) mod k;
14 until stop;

Note that a careful consideration is required for different choices of tmax , which is
potentially dependent on the current population size.

Let X∗ be the set of all search points x for which xBi
= 1ℓ−dBd where B ∈ {0, 1} for all

i ∈ {1, . . . , k}. Note that for each search point z ∈ {0, 1}n \X∗, there is at least one search
point in X∗ that strongly dominates z. Hence, those search points are not Pareto optimal.

For each x ∈ X∗, we have

f1(x) + f2(x) =
k∑

i=1
(ℓ + 1)k−i(2ℓ− 1) .

Furthermore, let x, y ∈ X∗ be two search points with x ̸= y. Then we have f1(x) ̸= f1(y)
and f2(x) ̸= f2(y). This implies that each search point x ∈ X∗ is Pareto optimal and the
Pareto front is given by f(X∗) =

⋃
x∈X∗ f(x).

We provided this problem and the algorithmic setting. It remains to show that BC-
GSEMO outperforms GSEMO on the problem by providing upper and lower bounds for the
algorithms that show the conjectured difference in performance. During the seminar, we
worked on proving a conjecture, and believe we may have a result showing an asymptotic
advantage to BC-GSEMO based on the application of modern drift theory. The result follows
from differences in the evolving population size in the optimization phases of each algorithm,
and different interactions between solutions, with BC-GSEMO suffering from less negative
drift.

Our goal is also to complement the theoretical analysis with an experimental study on
problem instances of realistic size and examine the performance of the two algorithms in
terms of the dependence of the input size, and when different types of budget are imposed.
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4.8.1 Introduction

A frequent assumption in evolutionary computation is that all function evaluations take
the same amount of time. However, this rarely holds for real-world optimization problems,
especially those that rely on simulations for evaluating solutions. There, the evaluation time
can differ for different objectives as well as for different solutions.

The case where evaluation time depends on objectives has already been explored in a
previous Dagstuhl Seminar [7]. This typically occurs in problems where some objectives can
be computed with a closed-form expression while others require lengthy simulations. Various
strategies for handling objectives with heterogeneous evaluation times are reviewed in [1].

During this seminar, we focused on the second case, in which the evaluation time depends
on solutions. Specifically, we wanted to explore whether the correlation between objectives and
their evaluation times can be modeled and exploited to save expensive function evaluations.

4.8.2 Motivation from real-world applications

In some real-world problems, the relation between solution properties and evaluation times is
rather straightforward. For example, in the tunnel alignment problem [9], where a solution
represents a tunnel trajectory, the computational expense of assessing tunnel objectives and
constraints is proportional to the length of the tunnel – a longer tunnel will generally take
longer to evaluate. Similarly holds for neural architecture search [3], where a solution defines
the architecture of a neural network whose training time is strongly positively correlated
with its size.

However, there are also other kinds of real-world problems where such a relation is hard
to find. Consider the airfoil optimization problem [11], where computational fluid dynamics
is used in solution evaluation, and the electrical motor design problem [13], which relies on
electromagnetic field simulations. In both cases, evaluation times vary among solutions, but
a clear correlation between solution characteristics and evaluation duration has not been
discovered.

Another source of solution-dependent evaluation times is the presence of hidden constraints.
For instance, the MarioGAN optimization problem [14] involves generating Mario game levels,
which are assessed through playthrough simulations with artificial intelligence players. If a
generated level cannot be solved (that is, Mario cannot reach the level end), the simulation
would continue endlessly unless terminated. The distance in the search space between feasible
solutions that are relatively quick to evaluate and infeasible solutions whose evaluation takes
a long time can be very small in such cases.

These examples show that the correlation between objective quality and its evaluation
time depends on the problem and the solutions. We can model it by considering the evaluation
time as an additional independent objective to be minimized.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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4.8.3 Visualization of correlations

We use search space visualizations to gain a better understanding of the correlations between
objectives. The correlation for each pair of objectives is estimated in different regions of
the search space using the Pearson correlation coefficient for a small (local) sample of the
search space. The Pearson correlation coefficient measures the linear correlation between
two samples’ objectives and takes a value between −1 (perfect linear anti-correlation) and 1
(perfect linear correlation). A 0 value implies that there is no linear dependency between
the objectives. The Pearson correlation coefficient is invariant when the two objectives are
shifted and/or scaled.

4.8.3.1 Experimental setup

For demonstration purposes, we choose some continuous test problems with 2-D search spaces
that are straightforward to visualize. They have either two, three or five objectives and
various characteristics (more details below). We assume minimization of their m objectives.

The 2-D problem search space is discretized into a grid of 501 × 501 points. For each
grid point x = (x1, x2), the correlation between two objectives is computed with the Pearson
correlation coefficient as follows. First, p equidistant points are created on the circle with
radius 10−6 centered at (x1, x2) with one point placed at position (x1 + 10−6, x2), see
Figure 14. Next, the p points are evaluated, i.e. m objective values are computed for each
of them. Finally, the correlation between each pair of objectives at x is estimated with
the corresponding Pearson correlation coefficient for the set of p points. Note that the p

points could have been constructed also in some other way. We opted for this deterministic
approach to minimize the disturbances caused by a stochastic choice of point placement. In
all experiments, the number of points p was set to 100.

x = (x1, x2)

10−6

Figure 14 The grid point x = (x1, x2) and the p points (shown in orange) used in the computation
of the Pearson correlation coefficient (here, p = 15).

4.8.3.2 Problems with two objectives

First, we wish to explore the simplest case of two objectives. For this, we select six bi-objective
problems from the bbob-biobj suite of benchmark problems [2]. They are constructed by
combining two single-objective functions from the bbob suite [8]. Figure 15 shows the
visualization of correlations between the two objectives for each of the six problems.

The double sphere problem F1 = (f1, f1), where f1 is the bbob sphere function, is a
unimodal problem with a known Pareto set – the line segment connecting the two single-
objective optima. We can see from the correlation plot in Figure 15a the expected outcome –
close to the Pareto set, the objectives are anti-correlated (red hues), while further away they
are correlated (blue hues).
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(a) The double sphere problem F1. (b) The double different powers problem F41.

(c) The sphere-Rastrigin problem F7. (d) The sphere-Schaffer problem F8.

(e) The Rastrigin-Schaffer problem F47. (f) The double Gallagher problem F55.

Figure 15 Person correlation coefficient for some chosen 2-D bbob-biobj problems (these and other
plots for bbob-biobj problems will be made available at https://numbbo.github.io/bbob-biobj/
vis/). Blue hues denote positive correlations, red hues negative ones and white indicates no
correlation.

https://numbbo.github.io/bbob-biobj/vis/
https://numbbo.github.io/bbob-biobj/vis/


R. Allmendinger, C. M. Fonseca, S. Sayin, and M. M. Wiecek 59

In the problem F41 = (f14, f14), both objectives are unimodal as well, but they correspond
to the bbob sum of different powers function f14, which is non-separable and ill-conditioned.
Figure 15b shows that in this case, the objectives are anti-correlated also far away from the
Pareto set.

The next two problems are a combination of a unimodal objective (the bbob sphere
function f1) and a highly multimodal one. In the problem F7 = (f1, f15), this is the bbob
Rastrigin function f15, while in the problem F8 = (f1, f17), it is the bbob Schaffer F7 function
f17 with condition number 10. In both instances, visualized in Figures 15c and 15d, the
resulting bi-objective problems have multiple disconnected regions of the search space where
the objectives are anti-correlated.

Finally, in the last two selected problems, both objectives are highly multimodal. The
problem F47 = (f15, f17) combines the bbob Rastrigin function f15 with the bbob Schaffer F7
function f17 with condition number 10 and the problem F55 = (f21, f21) two bbob Gallagher’s
Gaussian functions f21 with 101 median peaks. We can see from the correlation plots in
Figures 15e and 15f the high number of disconnected regions of anti-correlated objectives.

These examples challenge some of our preexisting notions about the correlation between
objectives. In particular, they show that it is closely connected to the problem multimodality
– understandably, given that the correlation between two objectives equals −1 at any locally
optimal set. In fact, the notion of a globally (i.e., Pareto) optimal set is inconsequential
for correlation values. It is therefore rather meaningless to discuss correlations between
objectives without taking into account their multimodality. We also see that the Pearson
correlation coefficient values are themselves positively correlated with the length of the
normalized bi-objective gradient as defined in [10] and visualized in [2].

4.8.3.3 Problems with three objectives

The Pearson correlation coefficient is defined only for two objectives. When the objectives
are three (or more), we can compute all their pairwise correlations. We wish to visualize
their minimal values to emphasize parts of the search space with the highest anti-correlation
as they are locally optimal.

Exemplary three-objective problems are again constructed by combining bbob functions
– now three. This time, we chose the triple sphere problem, the sphere-Rastrigin-Schaffer
problem and the triple Gallagher problem. See Figure 16 for their visualizations. For each
problem we show on the left hand side the pairwise correlations for objectives 1 and 2,
objectives 1 and 3 and objectives 2 and 3 as well as their mean. On the right hand side, their
minimum is presented.

The Pareto set of the triple sphere problem is the triangle spanned by the three single-
objective optima. From Figure 16a we see that its minimal pairwise Pearson correlation
coefficient equals −1 only at the edges of this triangle, not in its interior. This shows that,
unlike in the bi-objective case, one cannot rely on pairwise correlations alone to infer local
optimality of a solution in case of more than two objectives. A procedure similar to the one
from [12] should be tried to amend this issue.

Further examples show the minimal pairwise correlation for the sphere-Rastrigin-Schaffer
problem (Figure 16b) and the triple Gallagher problem (Figure 16c). Both are highly
multimodal, resulting in many disconnected regions with anti-correlated pairs of objectives
(red hues).
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(a) The triple sphere problem.

(b) The sphere-Rastrigin-Schaffer problem.

(c) The triple Gallagher problem.

Figure 16 Visualization of correlations for three three-objective problems. Smaller plots from
top to bottom, left to right: pairwise Pearson correlation coefficients for objectives 1 and 2, 1 and 3
and 2 and 3, and their mean. Larger plot: minimum value of the pairwise correlation coefficients.
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4.8.3.4 Problems with five objectives

We next consider a couple of planar problems with five objectives, using the distance-based
multi-objective point problem (DBMOPP) generator [5]. This generator allows us to create
problem instances which natively live in 2-D (or map to 2-D), which can have an arbitrary
number of objectives and can exhibit a range of other problem properties.

We first generate a box-constrained instance with a single spatially contiguous Pareto
set (shown in red in Figure 17a) and seven other regions which generate local fronts of the
same shape, but which are dominated (shown in green in Figure 17a). Figure 17b shows the
corresponding dominance landscape [4]. Black regions in this figure show locations which
are not dominated by any immediate neighbor (dominance neutral regions). Gray regions
in contrast denote locations which have at least one dominating neighbor, but where all
point-based dominance hill-climbs (by moving to an adjacent dominating neighbor) lead
to the same dominance neutral region – different shades of gray are used to distinguish
these different basins. White regions signify where point-based dominance hill-climbs lead
to multiple different dominance neutral regions (effectively multi-objective saddle-points),
depending on which chain of dominating neighbors one follows. Figure 17c shows the
dominance ratio [6] landscape for the problem instance. In this plot, the value at a location
denotes the proportion of the entire domain which weakly dominates it (i.e. dominates or is
equal to it). That is, a value of 0.0 will indicate a location is Pareto optimal, whereas a value
of 0.2 indicates that 20% of the domain relates to locations with equal or better performance
on all criteria. Pearson correlation plots are shown in Figures 17d–17f. For this problem we
can see the eight distinct local optima regions clearly in the Dominance ratio plot, with the
induced dominance neutral plateaus between these regions additionally identifiable in the
dominance landscape and correlation plots.

The second example shown in Figure 18a has a single spatially contiguous Pareto set
region (red), 3 dominance resistance regions (blue), 3 local fronts regions (green) and 30% of
the decision space is designed as being flat under the objectives (cyan). The corresponding
dominance landscape is shown in 18b, and the dominance ratio landscape in 18c. Pearson
correlation plots are shown in Figures 18d–18f. The impact of the flat objective regions is
clear across the plots, and all views of the landscape are considerably more cluttered due to
the interactions of the various problem features.

4.8.4 Conclusions

We recognized that evaluation times can differ among solutions of expensive real-world
problems. We were therefore interested in exploring whether the correlation between objectives
and their evaluation times can be used to save time-consuming function evaluations. A
deeper look into the properties of some real-world applications has shown that a general
model for such a correlation is hard to find. Therefore, the evaluation time was regarded as
an additional objective to be minimized.

Next, we researched the correlation between objectives, estimating it with the Pearson
correlation coefficient. To gain a better understanding of the distribution of its values in the
search space, we visualized them for a number of test problems with two variables and two,
three and five objectives. The visualizations have shown that some of our intuition about the
correlation between objectives was wrong. For example, we could find unimodal problems
with anti-correlated objectives not only close to the Pareto set, but also far away from
it. Visualizations of multimodal problems have proven that many distinct anti-correlated
regions can be located throughout the search space, surrounded by regions with correlated
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(a) Problem configuration.
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(b) Dominance landscape.

(c) Dominance ratio. (d) Mean Pearson coefficient.

(e) Median Pearson coefficient. (f) Min Pearson coefficient.

Figure 17 Problem plots and Person correlation values for a 5-objective 2-D DBMOPP instance.
In the correlation plots blue hues denote positive correlations, red hues negative ones and white
indicates no correlation.
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(a) Problem configuration.
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Figure 18 Problem plots and Person correlation values for a more complex 5-objective 2-D
DBMOPP instance. In the correlation plots blue hues denote positive correlations, red hues negative
ones and white indicates no correlation.
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objectives. In fact, the visualizations have demonstrated that correlation is closely tied to
the problem multimodality and has a nonlinear monotonous relation with the length of the
bi-objective gradient. Finally, while pairwise anti-correlations between objectives correspond
to the locally optimal solutions for problems with two objectives, this is no longer the case
when the number of objectives is three or more.
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6 Topics of interest for participants for next Dagstuhl Seminar

In the closing session on Friday, the participants reflected upon their experience and presented
their ideas on a potential future seminar that would leverage the progress made during
the current one. During this discussion, some topics appeared to center around “Artificial
Intelligence (AI)”. A two-way perspective was suggested: AI for multiobjective optimization
and multiobjective optimization for AI. Another suggestion was to focus on the “gap” between
the industrial and the academic practice of multiobjective optimization. This suggestion was
well-received by both industrial and academic participants of the seminar as the focus during
the week was on a “budget” that might also mean decision maker’s limitations. Focusing on
how the theoretical and methodological achievements on the academic front can be made
more accessible to practitioners in industry may be a future direction to pursue. This
direction will also possibly require placing more emphasis on modelling, handling the noise,
errors and uncertainties in the process. The organizers will use these suggestions as the basis
for their discussion about possible topics for the next edition of this seminar series and for
the preparation of a proposal for a continuation of the series.

7 Changes in the seminar organization body

As part of a continuing effort to renew the organizing board of this series of Dagstuhl
Seminars, Margaret Wiecek steps down from the team of organizers, a role that she has
held for three terms of office. On behalf of all the participants of the seminar, Richard
Allmendinger, Carlos Fonseca and Serpil Sayin would like to express appreciation to Margaret
for her contributions and leadership that have been fundamental for the series success.

We are pleased to announce that our esteemed colleague and a multiple-times Dagstuhl
attendee Susan Hunter has agreed to serve as a co-organizer for future editions of this
Dagstuhl Seminar series on Multiobjective Optimization. We look forward to collaborating
with her in the near future.
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