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Abstract
In September 2023 the Dagstuhl Seminar 23362 explored the needs of the semiconductor industry
for novel decision-making techniques and the related information systems to empower flexible
decisions for smart production. The seminar participants also spent time identifying requirements
for a simulation testbed which allows for assessing smart planning and control decisions in
the semiconductor industry. The Executive Summary describes the process of the seminar
and discusses key findings and areas for future research regarding these topics. Abstracts of
presentations given during the seminar and the output of breakout sessions are collected in further
sections.
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The Industry 4.0 vision is a frequently discussed topic in manufacturing enterprises in
Europe, Asia, and North America. The Industry 4.0 vision is a frequently discussed topic
in manufacturing enterprises in Europe, Asia, and North America. It is expected that
advanced technologies such as Cyber-Physical Systems, Internet of Things, cloud computing,
and big data technologies enable the emergence of smart manufacturing systems. A smart
factory promises to bring transparency to manufacturing facilities by integrating technological
advances in computer networks, data integration, and analytics. At the same time, critical
questions are asked related to the benefits of Industry 4.0. It is mainly criticized that the
requirements and consequences of Industry 4.0 regarding future production planning and
control strategies are not fully understood or not even taken into account in the overall
Industry 4.0 conception, i.e., many of key decision processes are not included.
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The semiconductor industry is capital intensive. The manufacturing process is very
complex due to reentrant flows in combination with very long cycle times and multiple
sources of uncertainty. This industry is an extreme field for production planning and control
solutions from an algorithmic point of view, as well as from a software and information
systems point of view. The degree of automation was always – and is still – high compared
to other industries. On the one hand, one can argue that in wafer fabs elements of smart
manufacturing are already realized, namely most of manufacturing information is available
in real-time, the manufacturing process is paperless, lots can be uniquely identified and
located, and collaborative human-machine interaction exists. On the other hand, there
are significant differences in automation efforts related to manual work-intensive industries
such as automotive or aircraft manufacturing where assembly operations are performed in
flow lines. In addition to shop-floor control concerns, supply chain management problems
have become more and more important which necessitate a horizontal integration of the
semiconductor supply chain and digital transformation for the industry ecosystem.

The major objective of this Dagstuhl Seminar was related to developing a research agenda
for making smart semiconductor manufacturing decisions and the information systems to
empower flexible decisions for smart production. The research agenda was developed around
the following two main topics:
Topic 1: Novel decision-making approaches that exploit the huge amount of available data

and orchestrate the interrelated decisions
Topic 2: Future information systems for decision support and facilitating digital transforma-

tion.
The purpose of this seminar was to bring together researchers from different disciplines
including information systems, computer science, industrial engineering, supply chain man-
agement, data science, and operations research whose central interest is in decision-making
for smart semiconductor manufacturing. Moreover, practitioners from the semiconductor
industry who have frequently articulated their perception that academic research did not
always address the real problems faced by the industry brought in their domain knowledge to
make sure that progress towards applicability and feasibility was made during this seminar.
Detailed introduction to the topic, the objectives, and results of the seminar, as well as the
next steps will be presented in the following sections of this report.
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Complex manufacturing processes are the heart of semiconductor manufacturing. A semi-
conductor chip is a highly miniaturized, integrated circuit (IC) consisting of thousands of
components. Semiconductor manufacturing starts with thin discs, called wafers, made of
silicon. A large number of usually identical chips can be produced on each wafer by fabricating
the ICs layer by layer in a wafer fabrication facility (wafer fab). The corresponding step is
referred to as the Fab step. Next, electrical tests that identify the individual dies that are
likely to fail when packaged are performed in the Probe facility. An electronic map of the
condition of each die is made so that only the good ones will be used. The probed wafers are
then sent to an Assembly facility where the good dies are put into an appropriate package.
The assembled dies are sent to a test facility where they are tested to ensure that only good
products are sent to customers. Wafer fabrication and probe are often called the front-end
and assembly and test are called the back-end.

The semiconductor industry is capital intensive caused primarily by extremely expensive
machines, some up to $ 100 million US. The manufacturing process is very complex due
to the reentrant flows in combination with very long cycle times and the multiple sources
of uncertainty involved. The demand is highly volatile. The consequences of the current
chip shortage are felt throughout the economy and in everyday life. The semiconductor
industry is an extreme field for decision support solutions from an algorithmic as well as
from a software and information systems point of view. The huge size of the supply chains
involved, the pervasive presence of different kinds of uncertainties, and the rapid pace of
change leads to an environment that places approaches developed in other industries under
major stress. Modeling and analysis approaches that are successful in this industry are likely
to find applications in other areas, and to significantly advance the state of the art in their
fields (Chien et al. 2011).

The principle architecture of the planning and control system of a conventional semicon-
ductor supply chain consisting of several wafer fabs/sort facilities and assembly and test
(A&T) facilities is shown in Figure 1.

The first objective of the seminar consisted of developing a research agenda for decision-
making in smart semiconductor manufacturing. This included innovative modeling approaches
for supply chain planning and detailed production planning and scheduling/dispatching in
semiconductor supply chains. But it also included ideas on how to design the related future
information systems. Proposing such a research agenda is timely, since on the one hand there
is a technology pressure and on the other hand a demand pull for advanced decision-making
procedures that support digitalization efforts in semiconductor manufacturing.

The proposed research agenda is not only important for semiconductor manufacturing,
because decision-making approaches that are successful in this industry are likely to find
applications in other areas. We expect that these applications will significantly advance the
state of the art in their fields.
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Figure 1 Planning and Control System of a Semiconductor Supply Chain (adapted from Mönch
et al. 2013).

The developed research agenda is around the following two main topics:
Topic 1: Novel decision-making approaches that exploit the huge amount of
available data and orchestrate the interrelated decisions:

Which parts of the Industry 4.0 and/or the smart manufacturing vision are already
implemented in semiconductor manufacturing and what is still missing?
What are the specific automation drivers in semiconductor manufacturing compared
to other industries?
Can techniques from smart manufacturing help to reduce the current chip shortage?
Which additional data, for instance, provided by sensors and cyber-physical systems can
be used to make better decisions (Chien and Chuang 2014)? How can the improvement
potential based on the advanced data availability be quantified (Khakifirooz et al.
2018)?
Which decisions can or even should be integrated? Possible examples for integrated
short-term decisions are job scheduling on machines and automated transportation
and job scheduling and preventative maintenance planning. Integrated scheduling and
process control decisions are another example. Energy-aware scheduling approaches
require integrated decisions too (Rocholl et al. 2020, Rocholl and Mönch 2021). On the
mid-term planning level, the integrated management of production jobs and engineering
jobs is challenging. Up to 30% of all jobs in a wafer fab are engineering jobs. They
com¬pete with the production jobs for the scarce capacity of the machines. It is also
interesting to make integrated production planning and inventory planning decisions
in semiconductor manufacturing.
Which changes are required or are even possible for planning and control algorithms
in smart manufacturing systems? Do we expect fundamentally new algorithms?
Is there a need for new fab layouts in the context of smart manufacturing? Initial steps
towards the possible redesign of the automated material handling system (AMHS) are
discussed by Ham and Kim (2017) and Hwang and Jang (2020).
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How can dynamics and stochasticity be included into decision-making? Different
ways to anticipate stochasticity including robust optimization, approximate dynamic
programming, and stochastic programming have to be researched in the smart semicon-
ductor manufacturing context. Different ways to appropriately deal with stochasticity
including rolling planning techniques and inventory holding strategies have to be stud-
ied. Generation of scenarios and other distribution parameters for planning problems
in supply chains using big data techniques have to be researched.
Many planning and control approaches are based on (distributed) hierarchical ap-
proaches. What is the role of anticipation of lower level behavior in upper level
decision-making? Because many different, often autonomous decision-making entities
including humans occur in semiconductor manufacturing, negotiation approaches are
typical in such distributed hierarchical planning and control systems How can such
negotiation approaches be automated and which decisions should continue to be made
by humans?
How can sustainability issues be incorporated into decision making? For instance,
taking advantage of real-time pricing in future energy markets is only reasonable when
scheduling decisions can be made in real-time.
What is the relationship of real-time decisions based on real-time information on the
status of the shop-floor (or even the supply chain) and planning nervousness?
As the level of automation increases in the factory of the future, there is a need to
adapt the decision-making entities to the current situation at the shop floor and the
entire supply chain. Which machine learning paradigms are appropriate to reach this
goal (Chien et al. 2021)?

Topic 2: Future information systems for decision support and facilitating
digital transformation:

What changes for next-generation decision support systems are required? It is expected
that decentralized decision support systems are more important than in the past.
Can advanced information systems help to reduce the current chip shortage?
What alternative software solutions including software agents and service-oriented com-
puting for planning and scheduling applications in smart semiconductor manufacturing
are beneficial?
What is the role of different simulation paradigms in the factory of the future/supply
chain of the future?
What is the expected benefit of digital twins in semiconductor manufacturing? For
instance, it has to be decided at what levels (e.g. factory, supply chain) they should
be considered.
What integration concepts for state-of-the-art computing techniques to obtain models
that are computationally tractable and address the different uncertainties encountered
in this industry are appropriate for their usage in smart semiconductor manufacturing?
What interaction of human agents with information systems in the factory of the future
is beneficial?
Because of the complexity of semiconductor supply chains, long computing times
still hinder the usage of analytic solution approaches especially for what-if analysis.
What is the role of state-of-the-art computing techniques including parallel computing
on Graphics Processing Units (GPU) machines or cloud computing techniques in
decision-making for smart semiconductor manufacturing?
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Since the expected potential of smart manufacturing is based on advanced information
and communication technologies, we thought that the second topic is important and should
be also addressed in the research agenda. Research related only to the first main topic is not
sufficient since it is expected that technologies such as cyber-physical systems, software agents,
cloud computing, and simulation are technological enablers for the novel decision-making
paradigms of the first topic.

Due to the inherent complexity of semiconductor supply chains it requires simulation of
the physical supply chain to understand the interactions between the planning and control
components and the physical supply chain, to find solution approaches to problems, and to
verify them in the risk-free simulation environment before implementing them. There are
widely accepted reference (simulation) models for single wafer fabs and simple semiconductor
supply chains. These models are primarily based on simulation models proposed in the
Measurement and Improvement of Manufacturing Capacity (MIMAC) project (led by one of
the organizers of this proposed Dagstuhl Seminar) 25 years ago that are still used by many
academic researchers working with the semiconductor industry. These models do not reflect
the complexity and the level of detail of current and future semiconductor supply chains.
Even more recent simulation models such that the models from the SMT 2020 testbed (Kopp
et al. 2020) are not fully appropriate for smart manufacturing since they do not support,
for instance, AMHS- or sustainability-related decisions. Therefore, the second goal of the
seminar consisted in identifying the core elements of a simulation testbed which allows for
assessing smart planning and control decisions in the semiconductor industry.
The second objective can be reached by the following steps:

specification of the main ingredients of the simulation models of the testbed ,
specification of additional requirements compared to conventional wafer fab or semi-
conductor supply chain simulation models that arise from the smart semiconductor
manufacturing context, for instance, providing data gathering schemes that allow to
mimic the application of big data analytics,
design of rich reference application scenarios.

Of course, this work was not completed during the seminar, but because of the working
groups we were able to come up with a significant draft that can be refined in various ways
after the seminar. We believe that the research agenda is what is important and that the
simulation testbed model for assessing smart decision-making procedures is simply a means
to that end.

3.1 The Process
In the opening session, the organizers welcomed the participants. Next, the participants
each introduced themselves. An overview of the goals and objectives of the seminar and a
detailed review of the seminar program including the ground rules for interactions followed
after the introduction. The remainder of the day on Monday consisted of an introduction
into smart manufacturing (by John Fowler and Lars Mönch) and six industry overview talks
(by Adar Kalir, Marcel Stehli, Alexandru Prisacaru, Thomas Ponsignon, Hans Ehm, and
Peter Lendermann). Tuesday and half a day on Wednesday were devoted to presentations
and discussions about the various elements of the semiconductor supply chain planning
and control systems shown in Figure 1 above and their relations to smart semiconductor
manufacturing. See Table 1 below for a list of topics and presenters and Appendix B for
abstracts of the presentations.
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Table 1 Individual Presentations.

Topic Presenter
Machine Learning-based Process Modeling in Semiconductor

Manufacturing
Gian Antonio Susto

Demonstration of the Feasibility of the Application of Machine
Learning for Production Scheduling

Cathal Heavey

Advancing Automation through Robot Collaboration
Intelligence and Digital Twin Integration

Young Jae Jang

Digital Twins Andrea Matta
SMT2020 Reference Model Michael Hassoun

Cloud-based Simulation Experiments for Optimization and
Machine Learning

Oliver Rose

Order-lot Pegging in a Multi-fab Setting Liji Shen
Agent-based Decision Support in Borderless Fab Scenarios in

Semiconductor Manufacturing
Raphael Herding

DTFab: Performance Improvement, Analytics and Security in
DT-controlled Semiconductor Systems

Giulia Pedrielli

Complex flexible Job-shop Scheduling Problems and
Semiconductor Manufacturing

Stephane Dauzère-Pérès

Scheduling in Semiconductor Reliability Testing Labs Jessica Hautz
Minimizing Makespan for a Multiple Orders per Job Scheduling

Problem in a Two-stage Permutation Flow Shop
Rohan Korde

Genetic Programming for Energy-aware Scheduling Daniel Schorn
Reinforcement Learning Mahsa Shekari

Wednesday afternoon was the excursion to Trier that was enjoyed by the participants.

Thursday was devoted to a set of three breakout sessions with report outs on the topics
in Table 2. Appendix C has the breakout report outs.

The first set of breakout sessions had three groups focus on machine learning (ML)
since ML techniques are an important element of smart manufacturing. The second set
of breakouts had again three groups consider simulation-based decision support since such
techniques are an important element of smart manufacturing. The third breakout session
had again three groups, one dealing with sustainability issues as a core element of smart
manufacturing, one with information systems including ontologies, and a last one that
prepared a joint session with the participants of the Dagstuhl Seminar running in parallel
with the present seminar. During the joint session with the other seminar on Thursday
evening we learned from some basic facts about multi-criteria optimization (well-known
for many participants of our seminar) and introduced various multi-criteria optimization
problems found in semiconductor manufacturing to the participants of the other seminar.

Friday consisted of a panel discussion (panelist Heavey, Lendermann, Matta, Pedrielli)
moderated by John Fowler on the required core elements of a simulation testbed which
allows for assessing smart planning and control decisions in the semiconductor industry and
a wrap-up session.
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Table 2 Breakout Sessions.

Session Topic Participants (lead in bold)
1 What are the state-of-the-art and future

needs for ML-based decision support for
different (smart) planning and control tasks

Ehm, Hautz, Jang, Lendermann, Rose,
Schmielau, Stehli

same topic Bitsch, Dauzère-Pérès, Heavey, Korde,
Mönch, Prisacaru, Pedrielli

same topic Bisslich, Fowler, Hassoun, Matta,
Ponsignon, Schorn, Shekari, Shen

2 What are the state-of-the-art and future
needs for simulation-based decision support
for different (smart) planning and control
tasks?

Bisslich, Hautz, Jang, Matta, Mönch,
Ponsignon, Prisacaru, Stehli

same topic Bitsch, Ehm, Dauzère-Pérès, Hassoun,
Korde, Pedrielli, Shekari

same topic Fowler, Heavey, Lendermann, Rose,
Schmielau, Schorn, Shen

3 Sustainability issues Bitsch, Dauzère-Pérès, Hassoun, Mönch,
Schorn

Information systems and ontologies Ehm, Matta, Prisacaru, Schmielau,
Shekari, Stehli

Preparation of exchange with the parti-
cipants of the parallel seminar on multi-
objective optimization under budget

Bisslich, Fowler, Ponsignon

3.2 Key Take Aways
There were a number of key findings and areas for future research that were identified in the
seminar. We will first summarize some of the key findings and will follow this with some
areas for future research.

One of the first findings was that the participants generally agreed that some of the major
elements of smart manufacturing are already implemented in semiconductor manufacturing,
but there are also elements that are less well understood and consequently implemented.
Having said this, ML approaches are considered as promising for semiconductor manufacturing,
but their potential is still not fully understood and explored. This is especially true for the
role of reinforcement learning which is recently often applied to semiconductor scheduling.

Second, it appears that there are still limitations in applying different simulation paradigms
in practice such as ML approaches are often not integrated into simulation models and existing
reference simulation models are too difficult to apply for benchmarking purposes. Digital twins
are considered as another promising direction for semiconductor manufacturing, however,
they are not fully implemented so far.

Third, both the industrial and academic participants generally agree that the integration
of sustainability efforts into decisions on the wafer fab and the supply chain level is often
fairly ad hoc and could/should be improved in the future.

Finally, the participants generally agreed that there does not currently exist an adequate
reference (simulation) model for smart manufacturing. Such a simulation model should allow
for making sustainable decisions and for supporting the application of ML techniques when
decisions are made.

In addition to the findings mentioned above, several areas for future research were
identified.
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An overarching idea was that the future research should focus more on formulation of
appropriate models for smart manufacturing because this is fundamentally more important
than the actual solution techniques chosen. Some of the future research areas are included
below:

More applications of CPSs, for instance for AMHS operations or for lot processing are
desirable in semiconductor manufacturing.
Multi-agent systems (MAS) are a desirable software paradigm for smart semiconductor
manufacturing. However, more real-world applications are required.
Developing better integration of various decisions made in the elements of Figure 1.
Incorporating sustainability aspects into strategic and tactical supply chain planning
models.
Exploring the use of different simulation paradigms (systems dynamics, agent-based,
hybrid models, reduced simulation models) to model and analyze semiconductor supply
chains.
Exploring and applying the possibilities of the semantic web to facilitate a meaningful
data exchange between different planning and control applications.

3.3 Next Steps
As a way to further the discussion of and collaboration on the topics of the seminar,
Prof. Lars Mönch, Hans Ehm, and Prof. John Fowler are guest editing a special issue of the
Flexible Services and Manufacturing Journal entitled Decision-Making Techniques for Smart
Semiconductor Manufacturing. The deadline for submission is May 1, 2024. This date was
selected to allow time for ideas created by the participants of the seminar to be incorporated
into papers https://www.springer.com/journal/10696/updates/26269410.

3.4 Acknowledgements
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4 Overview of Talks

4.1 Complex Flexible Job-shop Scheduling Problems and Semiconductor
Manufacturing

Stéphane Dauzère-Pérès (Mines Saint-Etienne, FR)

License Creative Commons BY 4.0 International license
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The presentation focused on the flexible job-shop scheduling problem and some of its
extensions, on neighborhood-based metaheuristics and their application to semiconductor
manufacturing. The extensions include additional constraints, such as sequence-dependent
setup times and batching, and new criteria. The disjunctive graph modeling was presented
for various complex flexible job-shop scheduling problems, together with various properties
that allow to speed up the search in neighborhhod-based metaheuristics. Scheduling in
semiconductor manufacturing was then discussed to emphasize the complexity and the
size of the real-life problems that must be solved. A batch-oblivous approach was then
presented, which has been implemented and is being used in a real factory to solve problems
with more than 2,500 operations and 200 machines. The presentation ended with some
general conclusions, in particular on various industrial constraints not discussed but already
considered, and perspectives on future relevant academic and industrial research, in particular
robust scheduling.

4.2 Reducing Bullwhip in Supply Chains Containing Semiconductors
Using Anonymous Survey and Semantic Web Technologies

Hans Ehm (Infineon Technologies – München, DE)

License Creative Commons BY 4.0 International license
© Hans Ehm

URL https://www.researchgate.net/lab/Supply-Chain-Innovation-Hans-Ehm

Corona triggered a bullwhip amplified demand reduction for semiconductors – especially
from the automotive industry. In conjunction with rising demand in communication industry
(more home offices, more cameras, more audio tools, ...) global capacities for the automotive
industry was lost and this caused global chip shortages when the demand came back in the
automotive industry with the consequence of shutting off of car manufacturing factories.

With analytics and simulation the root causes of the root causes could be identified,
which is beyond others a Kanban driven replenishment which acts a bullwhip accelerator in
disruptive times like during COVID and the human behavior based on prospect theory.

Due to the magnitude and possible further impacts of the problem not only the usual
business stakeholders searched for long term solution also governments got involved and
triggered and supported decision techniques to learn from the problem and mitigate it for
the future.

The 4-step plan emerged: 1) higher inventory, 2) anonymous survey and 3) breakdown
this coarse survey results with 3) semantic web based AI techniques to enable a 4) a leadtime
based pricing. This plan is now in implementation in EU funded projects and supported by
semi IAC
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Furthermore general current problems and opportunities in the domain semiconductor
and supply chains containing semiconductors have been shared from an industry point of
view.

In the URL noted above full text of around 100 papers relevant for the domain (not
limited to the presentation title), are provided.

4.3 Scheduling in Semiconductor Reliability Testing Labs
Jessica Hautz (KAI – Villach, AT) and Lars Mönch (FernUniversität in Hagen, DE)

License Creative Commons BY 4.0 International license
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Power semiconductor components have to fulfill high-quality standards. To meet these
requirements, so-called Reliability Product Testing (RPT) laboratories perform product qual-
ification tests, process monitoring tests, and tests accompanying the technology development.
Reliability testing is resource-intensive, requiring trained engineers and high-tech equipment.
The complex allocation of tests to the respective resources to create a scheduling plan
within RPT labs is a very challenging task. Currently, this plan is created by senior experts
with the help of a static dispatcher that doesn’t consider resource capacities. Introducing
scheduling models to the RPT labs has the potential to reduce equipment idle times, to
avoid bottlenecks, to meet the costomer deadlines more confident, and to use resources more
efficiently. Also, costly lab extensions and equipment purchases can be prevented. The
problem we are considering belongs to the family of complex job shop scheduling problems,
having the following α|β|γ-representation:

FJm | aux, prec, reentr, wj , rj , dji, tjik, p − batch, Bk, sj , sf , pmtn, s − batch, sjiℓk, incompatible |
∑

wjTji +
∑

wjTjik + α · Cmax.

The development of a rolling-horizon approach to solve the problem using metaheuristics
based on disjunctive graphs will be investigated.

4.4 Demonstration of the Feasibility of the Application of Machine
Learning for Production Scheduling

Cathal Heavey (University of Limerick, IE)

License Creative Commons BY 4.0 International license
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Joint work of Amir Ghasemi, Amir Ashoori, Cathal Heavey
Main reference Amir Ghasemi, Amir Ashoori, Cathal Heavey: “Evolutionary Learning Based Simulation

Optimization for Stochastic Job Shop Scheduling Problems”, Appl. Soft Comput., Vol. 106,
p. 107309, 2021.

URL https://doi.org//10.1016/J.ASOC.2021.107309

Simulation Optimization (SO) techniques refer to a set of methods that have been applied to
stochastic optimization problems, structured so that the optimizer(s) are integrated with
simulation experiments. Although SO techniques provide promising solutions for large
and complex stochastic problems, the simulation model execution is potentially expensive
in terms of computation time. Thus, the overall purpose of this research is to advance
the evolutionary SO methods literature by researching the use of metamodeling within
these techniques. Accordingly, we present a new Evolutionary Learning Based Simulation

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/J.ASOC.2021.107309
https://doi.org//10.1016/J.ASOC.2021.107309
https://doi.org//10.1016/J.ASOC.2021.107309
https://doi.org//10.1016/J.ASOC.2021.107309


Hans Ehm, John Fowler, and Lars Mönch 83

Optimization (ELBSO) method embedded within Ordinal Optimization. In ELBSO a
Machine Learning (ML) based simulation metamodel is created using Genetic Programming
(GP) to replace simulation experiments aimed at reducing computation. ELBSO is evaluated
on a Stochastic Job Shop Scheduling Problem (SJSSP), which is a well known complex
production planning problem in most industries such as semiconductor manufacturing. To
build the metamodel from SJSSP instances that replace simulation replications, we employ a
novel training vector to train GP. This then is integrated into an evolutionary two-phased
Ordinal Optimization approach to optimize an SJSSP which forms the ELBSO method.
Using a variety of experimental SJSSP instances, ELBSO is compared with evolutionary
optimization methods from the literature and typical dispatching rules. Our findings include
the superiority of ELBSO over all other algorithms in terms of the quality of solutions
and computation time. Furthermore, we present how approaches similar to the ELBSO
method could be integrated with a Manufacturing Execution System (MES) in semiconductor
manufacturing to allow scheduling at an operational level.

4.5 Agent-based Decision Support in Borderless Fab Scenarios in Semi-
conductor Manufacturing

Raphael Herding (Westfälische Hochschule – Bocholt, DE) and Lars Mönch (FernUniversität
in Hagen, DE)
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The design and the implementation of a multi-agent system (MAS) for a borderless fab
scenario is presented. In a borderless fab scenario, lots are transferred from one semiconductor
wafer fabrication facility (wafer fab) to another nearby wafer fab to process certain process
steps of the transferred lots. Production planning is carried out individually for each of
the wafer fabs. The modeling of the available and requested capacity in the production
planning models of the participating wafer fabs is affected by the lot transfer. Three scenarios,
namely no borderless fab (NBF), borderless fab with no production planning (BF-NPP),
and borderless fab with advanced production planning (BF-APP) are discussed and the
performance results are presented. The transfer of the route information from one wafer
fab to another one to automatically generate the linear programming models for production
planning is described. Production planning is carried out in a rolling horizon setting. We
show by simulation experiments that a correct modeling of the capacity in the production
planning formulations results in improved profit compared to a setting where the lot transfer
is not taken into account in the planning formulations. In addition, we demonstrate that
an ontology to standardize the data exchange between the wafer fabs can be beneficial in a
borderless fab setting.
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4.6 Advancing Automation Through Robot Collaboration Intelligence
and Digital Twin Integration

Young Jae Jang (KAIST – Daejeon, KR)
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This presentation delves into the evolving realm of automation, emphasizing the role of robot
collaboration intelligence. Leveraging advanced AI, this innovation facilitates synergistic
interactions among industrial robots, streamlining their control and management. With the
rise of adaptable agent-based robots, such as automated guided vehicles (AGVs), autonomous
mobile robots (AMRs) and overhead hoist transporters (OHTs) in manufacturing, there’s
a marked increase in operational flexibility. As these robots grow more sophisticated and
their numbers expand, robot collaboration intelligence emerges as a pivotal tool, amplifying
their efficacy. Through industry case studies, we will elucidate the immense potential of this
nascent technology:

Management of over 1,000 Overhead Hoist Transport (OHT) Systems in semiconductor
fabrication plants
Fleet regulation of 200 AGV/AMR in warehouse settings

Additionally, we introduce the Digital Twin concept tailored for Robot Collaboration Intel-
ligence. The outlined Digital Twin (OMS-DT) encompasses a robot emulator, integrated
hardware-software links, and a simulated environment, with real-world applications of this
Digital Twin being showcased.

4.7 On the Application of Machine Learning in Semiconductor
Manufacturing

Adar Kalir (Intel Israel – Qiriat-Gat, IL)
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Semiconductor manufacturing is data-intensive. It is also very complex. Combined, these two
aspects drive ML usage in this industry. Big success is already evident in Yield, Equipment
Diagnosis, . . . and growing in productivity, capacity. “Signal-to-Noise” is still a challenge in
many problems (e.g. wafer breaks; CQT’s [violations]).

4.8 Minimizing Makespan for a Multiple Orders per Job Scheduling
Problem in a Two-stage Permutation Flowshop

Rohan Korde (Arizona State University – Tempe, US), John Fowler (Arizona State University
– Tempe, US), and Lars Mönch (FernUniversität in Hagen, DE)
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We introduced the “multiple orders per job” scheduling problem (Mason et al., 2004) in a
two-stage permutation flowshop with the goal of minimizing the makespan. This problem,
F2∥ moj(.), Bk(.), prmu∥ Cmax is NP-hard. We discussed different types of methods we
used to solve this problem for both small-sized and large-sized problem instances. These
methods include exact methods, heuristics, and metaheuristics. Finally, we compared the
performance of these methods on the different problem instances that were generated using
a full factorial numerical experiment.
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4.9 Smart Capacity Planning and Material Flow Optimisation in the
Semiconductor Wafer Fab

Peter Lendermann (D-SIMLAB – Singapore, SG)
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In the “AI-Driven Smart Factory” as propagated by SEMI in the Smart Manufacturing
Roadmap, Artificial Intelligence, and in particular Reinforce Learning techniques are a distin-
guishing enabling element along the transition from today’s Smart/Industry 4.0 approaches
to the future “Smart 2.0 Factory” and especially the “Autonomous Control Room”. This
raises the question for what kind of tasks and functions such techniques can add value on
top of what is possible with established methods, which in this presentation will be discussed
from the Industrial Engineering point of view, i.e. decisions around capacity planning and
material flow optimisation in a semiconductor wafer fab. Whenever such a decision is to be
taken, the expected performance of the selected option with regard to a particular objective
against alternative options is required. In the case of a wafer fab, the underlying objective
function should be a capacity model that is able to represent a Discrete Event Logistics
System, and since in most cases the interdependency between capacity and cycle time, i.e. the
causality between a certain solution option and its impact on capacity and cycle time needs
to be considered, this capacity model should be (in the case of a schedule to be generated) a
deterministic or (in the case of a longer term plan to be generated) a stochastic Discrete
Event Simulation model, also because these causalities need to be portrayed with sufficient
fidelity.
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To determine an optimal plan or schedule, powerful optimisation techniques are needed,
requiring detection of correlations between decision variable values and objective values. That
is where Reinforcement Learning techniques come into the picture. The presentation will
also explain why such Reinforcement Learning techniques can be more useful for scheduling
but may have limited value for situation-based dispatching. Also, in an environment where
the underlying capacity model is always a simplified representation of actual operations,
an optimal solution would never be found anyway. Rather, for all practical purposes it is
sufficient to determine a much better solution with as few iterations as possible.

4.10 Smart (Semiconductor) Manufacturing
Lars Mönch (FernUniversität in Hagen, DE) and John Fowler (Arizona State University –
Tempe, US)
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In this talk, we discuss the notion of smart (semiconductor) manufacturing. The talk is
motivated by the fact that the notion of smart manufacturing is fuzzy to some extent.
The term is often used by software vendors. Goal of this presentation: some unification
as a prerequisite for the seminar based on the diverse existing literature. The roots of
Smart Manufacturing can be find in flexible manufacturing systems, computer integrated
manufacturing (CIM), and the intelligent manufacturing systems (IMS) program. We
start by defining the term smart manufacturing. The pillars materials, manufacturing
technology processes, data, predictive manufacturing, and sustainability will be discussed.
Opportunities and challenges for smart manufacturing are described. Moreover, applications
to semiconductor manufacturing are described. Research topics for semiconductor smart
manufacturing are identified in the last part of the talk.

4.11 DTFab: Performance Improvement, Analytics and Security in DT –
controlled Semiconductor Systems

Giulia Pedrielli (Arizona State University – Tempe, US)
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Digital factories have been recognized as a paradigm with considerable promise for improving
manufacturing performance. Digital Twins have emerged as a powerful tool to improve
control performance for large-scale smart manufacturing systems. We argue that DT-based
smart factories are vulnerable to attacks that use the DT to damage the system while
remaining undetectable, specifically in high-cost processes, where DT technologies are more
likely to be deployed. As an instructive example, we look into smart semiconductor processes
with focus on photolithography.

We formulate a static optimization problem to maximize the damage of a cyber-attack
against a photolithography digital twin that minimizes detectability to the process controller.
Results demonstrate that this problem formulation provides attack policies that successfully
reduce the throughput of the system at trade off of increased detectability to a common
process control technique. Results encourage more research in the domain, especially to face
scalability and policy-like solutions.
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4.12 Consideration of Customer Agreements in End-to-End Supply
Chain Planning Processes

Thomas Ponsignon (Infineon Technologies – München, DE)
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Customer agreements have gained increasing strategic importance in the semiconductor
business over the last two years. One type of customer agreements is Capacity Reservation
Agreement (CRA). CRA is a premium service offered to selected customers with key benefits
for both the manufacturer and the customer. However, supply chains are required to handle
not only CRAs, but a large variety of customer agreements, which bring along new problem
statements during the entire contract lifecycle. There are only very few papers in the literature
addressing those challenges. Infineon’s approach was to implement a dedicated application
called Customer Agreement Tracking Solution (CATS), which allows the centralized and
digitalized storage of volume-related customer agreements as a single source-of-truth system.
CATS data is used throughout all phases, from contract negotiation to contract fulfilment,
to support decision-making in downstream supply chain processes and systems. Further
details about Infineon’s practices are provided along long-, mid-, and short-term decisions.
Remaining open challenges are outlined. Finally, implications for smart semiconductor
manufacturing are described along the lines of horizontal and vertical integration.

4.13 Semiconductor Manufacturing Digitalisation Challenges
Alexandru Prisacaru (Bosch GmbH – Stuttgart, DE)
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In semiconductor manufacturing, many process steps are required to realize the desired chip
design. Up to 600 steps and five months are needed to produce a wafer. Complexity further
increases when having a high volume and high mix of products. Digitalisation is helping
in handling such complexity to improve production and optimize utilization. Digitalisation
comes with different challenges that must be tackled. Data availability and connectivity of
the production systems are only sometimes available for the analytics. The data is either
distributed in silos or in closed systems. In addition, the existing databases are designed
for local purposes and do not have big data functionalities in the design. Another challenge
represents the equipment legacy, in which software or hardware updates can be costly to
have the required functionality. Software extensions built internally must have additional
infrastructure to support it. In a manufacturing environment, software reliability plays an
important role. It must always be available and robust enough to fulfill the high requirements.
Most proof of concept fails because it does not bring any advantage or is costly. Additionally,
finding the balance between a one-solution/one-platform strategy and a very complex and
hard-to-train many-solution platform strategy is challenging. Even when these challenges
are met and solved, there is the human factor challenge, mainly how to digitize the expert
knowledge. Highly trained teams with different skill sets are required to operate these
solutions.
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4.14 Cloud-based Simulation Experiments for Optimization and
Machine Learning

Oliver Rose (Universität der Bundeswehr – München, DE)
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Main reference Warren B. Powell: “Reinforcement Learning and Stochastic Optimization: A Unified Framework for
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In simulation-based decision support in industry and the military, large numbers of con-
figurations are usually examined using simulation experiments. This is true for classical
optimization problems of operations research as well as for the creation of machine-learned
models, especially for decision making based on reinforcement learning. In both cases,
enormous amounts of simulation data are generated and consumed. Running the experiments
on ordinary office computers is possible in principle but leads to exceptionally long problem-
solving times. It therefore makes sense to outsource the experiments to a "simulation cloud".
The paper/chapter deals with the software and hardware requirements for such a simulation
infrastructure and gives first insights into the expected performance of this solution.

4.15 Genetic Programming for Energy-aware Scheduling
Daniel Schorn (FernUniversität in Hagen, DE) and Lars Mönch (FernUniversität in Hagen,
DE)
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We consider a scheduling problem for identical parallel batch processing machines in semi-
conductor wafer fabrication facilities (wafer fabs). Unequal ready times of the jobs and
incompatible job families are assumed. An integrated objective function consisting of the
total weighted tardiness and the total electricity cost is considered. A time-of-use (TOU)
tariff is assumed. A genetic programming procedure is proposed to automatically discover
dispatching rules for list scheduling approaches. A decision theory heuristic is used to decide
when to schedule idle times on the machines to improve the TEC measure. A time window
decomposition is applied to take into account the different ready times of the jobs. Results of
the computational experiments show that the learned dispatching rules lead to high-quality
schedules in respect to the integrated objective function.

4.16 Order-lot Pegging in a Multi-Fab Setting
Liji Shen (WHU – Vallendar, DE), John Fowler (Arizona State University – Tempe, US),
Lars Mönch (FernUniversität in Hagen, DE)
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This study considers the highly sophisticated wafer fabrication process and extracts a specific
lot-order pegging problem. Given are a set of orders containing different numbers and types
of wafers, as well as multiple identical wafer fabs. Wafer lots in each fab which are either
already released or to be released, are used to satisfy orders. Our goal is to find a matching
of orders and lots so that the total tardiness is minimized.
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In our approach, we first consider genetic algorithm (GA) which is based on the random-
key representation for parallel machine problems. Besides the population-based method,
we develop an iterated local search (ILS) algorithm with diverse rules for generating initial
solutions and determining fab assignment, as well as neighbourhoods. To further improve
performance, we also combine GA and ILS.

For our computational tests, we adopt and extend the problem instances in the literature
where a simulated annealing (SA) algorithm is proposed. When solving the original instances
with one fab, ILS outperforms SA. ILS also reaches better solutions comparing to GA in a
multi-fab setting. On the other hand, hybridizing GA and ILS achieves best results.

4.17 Automation Challenges in Semiconductor Fabs
Marcel Stehli (Globalfoundries – Dresden, DE)
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Semiconductor manufacturing is one of the most complex production systems ever build. To
manage the complexity, enormous efforts have been made in the last decades to automate the
manufacturing process. Nowadays for modern 300mm manufacturing lines the entire value
creation chain within a fab is fully automated. This concerns the actual wafer processing as
well as the logistics around the production process. Standardization of machine interfaces,
transport systems and software interface have made a decisive contribution here.

The achivements in full fab automation provide a significant baseline for the overall
optimization of the production process from a WIP flow perspective. However, challenges
remain due to the systems complexity and interdependcies and the still required humand
interaction with the system and its processes. Furthermore it remains challenging to build
an overall and comprehensive fab control model that allows for a unified and standardized
way of controlling and optimization of the fab operation.

4.18 Machine Learning-based Process Modeling in Semiconductor
Manufacturing

Gian Antonio Susto (University of Padova, IT)
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Main reference Mattia Carletti, Matteo Terzi, Gian Antonio Susto: “Interpretable Anomaly Detection with DIFFI:
Depth-based feature importance of Isolation Forest”, Eng. Appl. Artif. Intell., Vol. 119, p. 105730,
2023.

URL https://doi.org//10.1016/J.ENGAPPAI.2022.105730

Machine Learning (ML) has had a tremendous impact on many industries, especially those
that rely heavily on data. In Semiconductor Manufacturing (SM), ML solutions have proven
highly effective at various levels. The seminar primarily focused on ML applications at the
process level, involving sensors and metrology data. Several technologies fall within this
domain, including Predictive Maintenance, Virtual Metrology, Fault Detection, Dynamic
Sampling, to name just a few.

The seminar emphasized Anomaly Detection, a critical task in process-level modeling
aimed at enhancing monitoring capabilities. Currently, the industry relies mainly on univariate
control charts for process monitoring, which have several limitations: (i) they fail to capture

23362

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/J.ENGAPPAI.2022.105730
https://doi.org//10.1016/J.ENGAPPAI.2022.105730
https://doi.org//10.1016/J.ENGAPPAI.2022.105730
https://doi.org//10.1016/J.ENGAPPAI.2022.105730


90 23362 – Decision-Making Techniques for Smart Semiconductor Manufacturing

the multivariate nature of the problem; (ii) they rely on unimodal/Gaussian distribution
assumptions; (iii) they can overwhelm users when monitoring hundreds of Key Performance
Indicators (KPIs). Unsupervised Anomaly Detection (AD) tools can address these issues,
offering comprehensive and concise information that can be utilized in Decision Support
Systems.

During the seminar, we also introduced DIFFI, an approach designed to make Isolation
Forest, arguably the most popular and effective AD method, more interpretable. This has
the potential to significantly impact the adoption and trustworthiness of AD, as well as
expedite root cause analysis and decision-making processes.

Furthermore, we highlighted some general challenges in developing ML solutions for
semiconductor manufacturing and identified potential actors who could successfully overcome
these obstacles.

5 Breakout Reports

5.1 Breakout Session 1a
Young Jae Jang (KAIST – Daejeon, KR), Henrik Schmielau (Infineon Technologies –
München, DE), Hans Ehm (Infineon Technologies – München, DE), Jessica Hautz (KAI –
Villach, AT), Peter Lendermann (D-SIMLAB – Singapore, SG), Oliver Rose (Universität
der Bundeswehr – München, DE), and Marcel Stehli (Globalfoundries – Dresden, DE)

License Creative Commons BY 4.0 International license
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Quality Control

Supervised learning has become a cardinal tool in overseeing defect identification processes,
fundamentally altering the traditional approaches witnessed in semiconductor manufacturing
environments. Previously, the identification and sorting of defected chips or wafers hinged
on manual visual inspection or rudimentary rule-based classification systems. Leveraging the
data accrued from these past exercises, contemporary machine learning algorithms are trained
to facilitate an automated, and rapid identification and sorting of defects. A notable method
employed in this endeavor is deep learning predicated on supervised learning paradigms.

Machine Maintenance

Supervised learning is once again pivotal in discerning abnormalities in machine function.
Notwithstanding the prevalence of supervised learning, it is faced with impediments such as the
onerous task of data labeling delineating normal and abnormal functionalities, compounded
by frequent unavailability of requisite data. This has engendered a transition towards
unsupervised learning approaches, where strategies like deep auto-encoders are gaining
traction owing to their aptitude in addressing the aforementioned challenges effectively.

Operations Decision-Making

A critical facet of semiconductor fabrication operations encompasses a broad spectrum of
activities including, but not limited to, inventory control, lot release control, and production
planning and scheduling. Equally imperative are the strategies deployed in lot dispatching and
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Overhead Hoist Transfer (OHT) vehicle routing and dispatching. In recent times, there has
been a discernible shift towards adopting reinforcement learning approaches, diverging from
the traditional optimization or rule-based decisions that previously held sway. For instance,
many large chip manufacturers have embraced reinforcement learning in OHT dispatching
and routing. Parallelly, processing machine scheduling and dispatching are gradually being
recalibrated to incorporate data and simulation-based optimization leveraging the strengths
of reinforcement learning. This trend signals a commitment to efficiency and optimization,
utilizing the capabilities of modern learning approaches to enhance decision-making processes.

This in-depth analysis showcases the modern advancements in the manufacturing sector,
accentuating the pivotal role of learning algorithms in steering quality control, machine
maintenance, and operational decision-making towards an epoch of heightened efficiency and
precision. It is pertinent to continue exploring and expanding upon these technological strides
to foster a robust manufacturing landscape that is aligned with the demands of contemporary
production exigencies.

Future needs

In consideration of imminent advancements in artificial intelligence (AI) applications within
the manufacturing domain, a pivotal focus rests on fostering a synergistic collaboration
between AI specialists and domain experts. The deployment of AI cannot reach its optimum
efficacy without the integral guidance of experienced field engineers in data labeling processes,
ensuring a judicious application of AI mechanisms rooted in a profound understanding of
both the algorithmic logic and the relevant domain knowledge.

Given the inherent complexity of AI algorithms, which often preclude a comprehensive
understanding of their underlying logic, it becomes incumbent upon decision-makers to
at least grasp the foundational principles of AI model construction. This facilitates more
informed decisions, precluding misconceptions that may arise from a lack of understanding
of the modeling assumptions and the provenance of the data utilized. Consequently, we
underscore the necessity of collaboration between AI and domain experts to mitigate potential
errors in conclusions derived from AI analytics.

In furtherance of this objective, we propose the integration of expert systems that
amalgamate conventional knowledge and logical reasoning with machine learning. This
approach promises to be a robust conduit for the cohesive assimilation of domain and
AI expertise, generating solutions that are both innovative and grounded in established
knowledge.

Moreover, we envision the establishment of a digital test bed, operationalizing a virtual
factory predicated on simulated factory operations, to serve as a fertile ground for AI
and domain experts to foster collaborative innovations. This virtual environment not only
facilitates a harmonious collaborative endeavor but also engenders a repository of simulated
data, enhancing the reliability and efficacy of AI applications in real-time operations.

Lastly, we turn our focus to the burgeoning application of reinforcement learning in
Automated Material Handling System (AMHS) operations. Despite its nascent stage in
acceptance, it harbors considerable potential to revolutionize other operational realms includ-
ing inventory control, lot release control, and lot dispatching. We posit that these domains
present a ripe landscape for the efficacious implementation of machine learning solutions
predicated on reinforcement learning, thereby heralding a new frontier in manufacturing
optimization.

In conclusion, as we stand on the cusp of a transformative era in manufacturing, it is
imperative to strategically leverage the collaborative might of AI and domain expertise, steer-
ing towards a future characterized by innovation, efficiency, and precision. The propositions
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delineated herein advocate for a meticulous and collaborative approach to integrating AI in
manufacturing, urging an embracing of systems that are both logical and adaptive, with an
eye towards a harmonized and prosperous future in manufacturing.

5.2 Breakout Session 1b
Cathal Heavey (University of Limerick, IE), William Bitsch (WHU – Vallendar, DE),
Stéphane Dauzère-Pérès (Mines Saint-Etienne, FR), Lars Mönch (FernUniversität in Hagen,
DE), Giulia Pedrielli (Arizona State University – Tempe, US), and Alexandru Prisacaru
(Bosch GmbH – Stuttgart, DE)
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After initial discussion a number of questions were derived among the breakout group. These
questions are given below:

What are the problems that ML can tackle in semiconductor topics:
Root cause analysis: take measures for specific lots and see the impact on the yield of
the different parts
Many applications are now in the control part, examples are:

Sampling of the lot: how do one choose if a lot is important to measure a lot or not
Process control
∗ Virtual metrology:

· Predict the value of the measure. Try to predict the value of the metric
· measurements
· SPC enhancement, with techniques that replace the traditional SPC with control

charts
· in general advanced process control (APC)
· equipment Process Control: controlling the machining parameters
· run-to-run: take measures and change machining parameters and ML is used to

build the run-to-run model
Production control

Cycle time prediction is another important area: ML is paired with the MES system in
this case. It could be:

Fab level:
Single step:
Phases in the fab that predict where the lot is going to be in the next few days: this
can be for:
∗ Production planning
∗ Scheduling

Dispatching & Scheduling (ML is used more towards dispatching)
Lot release/order release could also be done via ML
ML to shorten simulation time, through the use of a metamodel
Optimize parameters of a dispatching rule to calibrate the hyperparameters of the policy
Predictive Maintenance:

ML can be used to predict the failure time
Policy improvement can be used in the context of Reinforcement Learning
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Optimizing transportation within the material handling systems:
Evaluation of vehicle health
Routing of vehicles in the system

Critical aspects

How do we understand what data need to be “forgotten” and what new data should be
included?
When decisions are complicated the effectiveness of the methods decreases
Dispatching seems doable but more challenges appear for things like scheduling
High dimensionality is still a challenge. We need to understand what the dimensionality
is where these techniques work.

We also discussed questions on ML approaches, such as:

ML methods

Image recoginition
Image processing techniques
Dynamic Neutral Network
Large Language Models (?)
Bayesian NN

Challenges

Computing infrastructure required, what is the economical cost, what are solutions for
HW architecture? Is that a huge beyond the computing power of Fab companies, as they
do not want to use cloud computing
Preparation effort:

Labeling
Annotation
Prepping the problem in a way that it can be handled with ML techniques

Transparency-inexplicability
Verification and guarantees associated to the model
Reboustness to:

Changes in the features
Dynamical changes in time

Other Issues

Explainable ML/AI – have an alternative model
Move of expertise to software from Industrial Engineering (IE)
Job security.
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5.3 Breakout Session 1c
Thomas Ponsignon (Infineon Technologies – München, DE), Dominik Bisslich (Infineon
Technologies AG – Neubiberg, DE), John Fowler (Arizona State University – Tempe, US),
Michael Hassoun (Ariel University, IL), Andrea Matta (Polytechnic University of Milan, IT),
Daniel Schorn (FernUniversität in Hagen, DE), Mahsa Shekari (Polytechnic University of
Milan, IT), and Liji Shen (WHU – Vallendar, DE)
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Introduction

The application ML in various sectors, including smart manufacturing in the semiconductor
industry, has revolutionized the way decisions are made and operations are conducted.
However, this integration comes with its own set of challenges. The breakout session centered
around discussions on challenges such as expertise and skill gaps, data and knowledge
misalignment, standardization issues, unclear roles and expectations from ML, job security
concerns, decision-making and validation challenges, and potential future directions. This
essay aims to summarize the key discussions and potential solutions addressed during the
session.

Expertise and Skill Gaps

The dichotomy between AI enthusiasts and engineering domain experts is particularly
evident in the semiconductor industry. This creates a perceived preference for modern
ML methods over classical statistical or operational research techniques. The necessity for
domain knowledge in labeling and complex decision-making was discussed, highlighting the
importance of integrating domain expertise with ML knowledge to effectively address this
gap in smart manufacturing.

Data and Knowledge Gap

The misalignment between collected data and actual knowledge poses a significant challenge,
impacting the transparency, verification, and robustness of ML systems in the semiconductor
industry. Communication challenges between Cyber-Physical Systems (CPS) AI experts
and field engineers make it difficult to understand which data can be used to solve specific
problems, a crucial aspect in the complex world of semiconductor manufacturing.

The lack of established standards for ML in the manufacturing domain, including the
semiconductor industry, was noted. Variances in definitions and methodologies across differ-
ent vendors and suppliers, and the development of proprietary standards, question the need
for universal ones. This necessitates exploring semi-standard approaches and recognizing the
value-driven work of companies and the role of standards in it.

Role and Expectations from ML

Ambiguities in setting clear goals for ML and the need for new roles like Labeler, Decision
Maker, and Exception Handler were discussed in the context of smart manufacturing. There
are concerns about the trustworthiness of ML and its implications, highlighting the importance
of clearly outlining expectations from ML in decision support and changing classical tasks
towards ML-embedded functions.
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Job Security Concerns

Fears of job displacement due to ML, along with the emphasis on the creation of advanced
qualification roles, were discussed. It is crucial to recognize the shift of talents to software
domains and address the talent gap in hardware sectors, including the semiconductor industry.
Encouraging talents to understand both classical and ML approaches for a holistic skill set,
with Factory Physics as a fundamental skill before diving into ML, is essential.

Approach and Methodology Challenges

Balancing between supervised and unsupervised learning, the importance of labeling, and the
challenges associated with it were discussed. There was a debate over the usage of images in
ML modeling and their significance in semiconductor manufacturing.

Decision Making and Validation

The challenge of verifying ML-based decisions in complex systems, like semiconductor
manufacturing, and concerns about the speed versus explainability trade-off in ML were
discussed. The need for human oversight in decision validation and advocacy for explainable
AI to facilitate decision-making were noted. A potential solution discussed was a dual-system
approach, one system for decision generation and another for explanation, which could
be particularly beneficial in the complex and critical processes involved in semiconductor
manufacturing.

Applications for ML and Boundaries

Discussions included the problems that ML can tackle in the semiconductor industry, such
as (Advanced) Process control, Equipment Process control, Cycle Time (CT) Predictions,
Dispatching & Scheduling, Hyperparameter Tuning, Lot and order release, Predictive Main-
tenance, and AMHS – Routing Problems.

Conclusions

The integration of ML into smart manufacturing in the semiconductor industry brings about
various challenges. Bridging the expertise and skill gaps, addressing data and knowledge
misalignment, resolving standardization issues, clarifying roles and expectations from ML,
addressing job security concerns, tackling approach and methodology challenges, and ensuring
proper decision-making and validation are crucial areas of focus. The potential for a dual-
system approach for decision generation and explanation was discussed as a possible solution.
Addressing these challenges requires a holistic approach that considers the complexities of
integrating ML into the semiconductor manufacturing domain while ensuring the transparency,
robustness, and effectiveness of the systems.
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5.4 Breakout Session 2a/c
Andrea Matta (Polytechnic University of Milan, IT), Cathal Heavey (University of Limerick,
IE), Dominik Bisslich (Infineon Technologies AG – Neubiberg, DE), John Fowler (Arizona
State University – Tempe, US), Jessica Hautz (KAI – Villach, AT), Young Jae Jang
(KAIST – Daejeon, KR), Peter Lendermann (D-SIMLAB – Singapore, SG), Lars Mönch
(FernUniversität in Hagen, DE), Thomas Ponsignon (Infineon Technologies – München,
DE), Alexandru Prisacaru (Bosch GmbH – Stuttgart, DE), Oliver Rose (Universität der
Bundeswehr – München, DE), Henrik Schmielau (Infineon Technologies – München, DE),
Daniel Schorn (FernUniversität in Hagen, DE), Liji Shen (WHU – Vallendar, DE), and
Marcel Stehli (Globalfoundries – Dresden, DE)
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Simulation-based decision support remains an integral tool for semiconductor manufacturing
optimization. Using simulation-based methods can enhance operational efficiency, from
individual tools to entire supply chains, fostering adaptability and strategic decision-making.
Addressing current challenges in the field will help semiconductor manufacturers to improve
their operations and align them with business goals, in this fast progressing industry.

Applications in Semiconductor Manufacturing

Semiconductor manufacturing leverages simulation-based decision support across a spec-
trum of decision types.
Applications can be categorized based on their frequency.
Real-time and operational decision-making covers immediate decisions and near-time
operational decisions, like planning machine maintenance in the next shifts.
Tactical and strategic decision-making is more concerned with long-term planning and
design decisions that are less frequent and more permanent.
Decisions can also be distinguished by the resources involved. At the lowest level, there
are the tools or tool sets within a semiconductor wafer fab. At a higher level, the focus
shifts to the entire production line, the fab, or material handling systems that connect
different tools or tool sets. One step higher still, the internal supply chain and the
end-to-end supply chain come into consideration.
Different tools are used based on the type of decisions.

Simulation Types

Simulation-based decision-making approaches are often distinguished by the level of
integration between the simulation and the corresponding physical entity. At the one
extreme, we can find offline simulations that are solely used to plan and design. At the
other extreme, we can find fully integrated digital twins that enable a real-time connection
from the simulation model to the physical entity and vice versa.
While online models can be used concurrently with real-world processes, offline models
provide a way to plan and analyze the operations through simulation. These models
provide a valuable tool to validate models in the complex semiconductor manufacturing
environment.
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Furthermore, with the increased usage and interest in machine learning to optimize those
models, simulations can be used for training or to generate data for training.
Last, simulation results can be extracted and used in a production environment. This
approach is limited by the computational power needed, which makes it necessary to either
limit the simulation complexity, not use edge computing or only apply it for decisions
with longer time horizons.

Challenges in Industry and Academia

The Dagstuhl Seminar highlighted several critical challenges in this field for industry practi-
tioners as well as researchers.

Sharing data between operations and simulation models is complicated due to the specific
requirements of semiconductor fabrication, which involves highly specialized machines
and complex processes spanning sometimes over a thousand processing steps and more
than ten weeks.
Due to cybersecurity concerns of cloud computing, wafer fabs often only use local servers
for controlling the production environment.
The restriction to local infrastructure makes it harder to collect and process the data for
simulations, as well as feed in results from simulation-based decision support into the
system.
Integrating simulation-based decision support into the system is therefore a substantial
task.
Another significant industry challenge pertains to the integration of machine learning
into simulation-based decision support. Addressing how to effectively employ machine
learning, particularly reinforcement learning, in semiconductor manufacturing emerges as
a critical concern.
Moreover, integrating operational measures to achieve business objectives is a difficult
challenge due to the complex environment. Measuring the impact of operational changes
in the sophisticated semiconductor manufacturing process and aligning them with business
goals presents unique difficulties, although simulation has proven to be a valuable tool in
this regard.
Finally, a recurrent issue is the reusability of simulations and models. The intricate
manufacturing environment makes it necessary to simulate only parts of the manufacturing
process with different levels of detail. This leads to rework due to the necessity of creating
different simulation models for the same physical entities.
Additionally, the proposal of a standardized language with a digital ontology model as a
reference point aims to enhance reusability.

In academia, the challenges are shaped by the ever-evolving landscape of semiconductor
manufacturing.

Testbeds for simulations, comprising benchmarking data and industrial and simulation
data, are deemed essential for addressing the most pressing challenges faced by researchers.
Finally, simulation optimization emerged as a key topic of discussion, emphasizing the
importance of developing and implementing effective simulation models for achieving
optimal outcomes within semiconductor manufacturing.
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Conclusions

Simulation-based decision support plays a crucial role in semiconductor manufacturing
optimization.
Its applications span from real-time operational decisions to long-term strategic planning,
encompassing various levels of the manufacturing process.
Simulation types vary from offline models for planning and design to fully integrated
digital twins for real-time control.
However, the industry faces challenges in data sharing, cybersecurity, machine learn-
ing integration, operational alignment with business goals, and simulation reusability.
Addressing these challenges is vital for semiconductor manufacturers to enhance their
operations and stay competitive in this rapidly evolving industry.
In academia, the emphasis lies on testbeds, simulation optimization, and fostering active
collaboration with the industry to acquire essential insights and advance research in
semiconductor manufacturing simulation.

5.5 Breakout Session 2b
Michael Hassoun (Ariel University, IL), William Bitsch (WHU – Vallendar, DE), Stéphane
Dauzère-Pérès (Mines Saint-Etienne, FR), Hans Ehm (Infineon Technologies – München,
DE), Rohan Korde (Arizona State University – Tempe, US), Giulia Pedrielli (Arizona State
University – Tempe, US), and Mahsa Shekari (Polytechnic University of Milan, IT)
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Background and semiconductor manufacturing simulation major characteristics

Granularity

In general, simulation in semiconductor manufacturing is carried out at these levels:
End to end supply chain (E2E). From raw material suppliers to end customers
Internal supply chain (INT). Fabrication, Sort, Assembly/Test
Factory (FAB). The fabrication itself. Usually withing a single fab, production and
transport.
Tool set (TS). Usually the external operation of a group of identical tools, production
and transport.
Tool (T). Usually the internal sequence of operations inside the machine itself.

Types of simulations

Discrete event simulation (DES)
Agent-based modeling (ABM)
System dynamics (SD)
Differential equations and Markov Decision Process (MDP)
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Table 3 Connection Between the Different Simulation Dimensions.

Frequency of use/ type of problem

Strategic (Long term capacity planning)
Tactical (Medium term capacity planning, specific mix scenarios, capacity adjustments
etc.)
Operational (Day or shift planning. Actual WIP situation)
Real Time: (Immediate decision-making at the lot/PM/tool level)

Software

Typically, two simulation software tools are used in semiconductor manufacturing:
AnyLogic
Autosched AP

The connections between SOFTWARE, FREQUENCY, GRANULARITY, and
SIMULATION TYPE are captured in Table 3.

Future needs

Specific areas in the fab that require attention, and simulation is most probably the tool of
choice.

We first point out the need to develop simulation to tackle operation questions that are
not yet solved. The most prominent examples of such operational topics are, amongst others,
reticle management, and preventive maintenance.

Open questions in terms of simulation abilities:
1. The team has recognized that simulation models developed to tackle certain issues are

seldom reusable for other inquiries. Lots of rework is required because old models need to
be modified to accommodate business-level changes. The question is how can simulation
models be designed and documented in such a way to ease their reuse?
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2. Semiconductor-specific simulation toolbox: Today, only Autosched AP offers a semicon-
ductor oriented set of tools and functionalities. There seem to be a need for such a
dedicated semiconductor-specific simulation toolbox similar for example to the transport-
ation toolbox that can be found in AnyLogic

3. How to create a standardized language with an ontology for simulation? Create a “role
model” as a digital reference (NXP, STMicro, Infineon).

4. How to create fab-level testbeds for simulation models? Several models exist, the latest
to have been presented to the community as a replacement for the aging MIMAC is
the SMT2020. Yet, their complexity makes them difficult to implement. Furthermore,
the data format, although “open” (Excel tables) fits the Autosched software which is
expensive to purchase. As a result, University struggles to implement such testbeds for
research purposes. An open-source tool, already implementing the baseline model while
allowing customization would greatly ease the use of such testbeds.

5. How to capture industrial data in the testbeds? Actual industrial data (WIP/availabil-
ity/qualification/etc. snapshots) has been made available to researchers. How can such
data be integrated to testbed to test, for example, scheduling policies?

6. How and when to integrate simulation with optimization, and what is the adequate level
of detail of simulation model inside an optimization model?

7. How can digital twins be integrated with simulation models to manage operations more
effectively?

8. How can machine learning models be integrated with simulation models to manage
operations more effectively?

5.6 Breakout Session 3a
Lars Mönch (FernUniversität in Hagen, DE), William Bitsch (WHU – Vallendar, DE),
Stéphane Dauzère-Pérès (Mines Saint-Etienne, FR), Michael Hassoun (Ariel University, IL),
and Daniel Schorn (FernUniversität in Hagen, DE)
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Sustainability (in a narrow sense)

Wafer fabs highly energy-intensive
annual energy utility bills huge
emission of non-CO2 greenhouse gases, such as perflorocarbons (PFCs), extremely long
atmospheric lifetime huge

Topics

energy reduction vs. energy management
pollution reduction (CO2/greenhouse gases)
Waste management => “control” wafers, nonproductive (NP) wafers
Water management (water needs to be cleaned, reuse rate)
Introduction of renewable energy sources (such as photovoltatics (PVs), wind turbines
(WTs)), considering pollution taxes and/or subsidies => strategic network design problems
Workforce: work from home
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Scheduling

Clean room requires around 60% of overall energy consumption
Management of peak demand (during summer time)
Maybe backend more appropriate compared to frontend

Conclusion

Getting data (energy consumption by tools, energy offered by PV, WT) challenging
Which topics can be addressed by OR tools?
It is important to generate/store energy on the fab level?
A Survey is needed, not much work done so fare.

Breakout Session 3b

The discussions in this session were not collected.

Breakout Session 3c

The discussions in this session were not collected.
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