
Report from Dagstuhl Seminar 23391

The Futures of Reactive Synthesis
Nathanaël Fijalkow∗1, Bernd Finkbeiner∗2, Guillermo A. Pérez∗3,
Elizabeth Polgreen∗4, and Rémi Morvan†5

1 CNRS – Talence, FR. nathanael.fijalkow@gmail.com
2 CISPA – Saarbrücken, DE. finkbeiner@react.uni-saarland.de
3 University of Antwerp, BE. guillermoalberto.perez@uantwerpen.be
4 University of Edinburgh, GB. elizabeth.polgreen@ed.ac.uk
5 University of Bordeaux, FR. remi.morvan@u-bordeaux.fr

Abstract
The Dagstuhl Seminar 23391 “The Futures of Reactive Synthesis” held in September 2023 was
meant to gather neighbouring communities on a joint goal: Reactive Synthesis. We identified
five trends: neural-symbolic computation, template-based solving for constraint programming,
symbolic algorithms, syntax-guided synthesis, and model learning; and the objective was to discuss
the potential futures of the field.
Seminar September 24–29, 2023 – https://www.dagstuhl.de/23391
2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Theory of

computation → Formal languages and automata theory; Computing methodologies → Parallel
programming languages

Keywords and phrases program synthesis, program verification, reactive synthesis, temporal
synthesis

Digital Object Identifier 10.4230/DagRep.13.9.166

1 Executive Summary

Nathanaël Fijalkow
Bernd Finkbeiner
Guillermo A. Pérez
Elizabeth Polgreen

License Creative Commons BY 4.0 International license
© Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen

This report documents the program and the outcomes of Dagstuhl Seminar 23391 “The
Futures of Reactive Synthesis”.

The seminar was meant to gather neighbouring communities on a joint goal: Reactive
Synthesis. We identified five trends: neural-symbolic computation, template-based solving for
constraint programming, symbolic algorithms, syntax-guided synthesis, and model learning.
They were represented by different participants, and in particular by four invited speakers.
We had three female invited speakers and one male invited speaker; all delivered very
insightful and forward-thinking talks:

Anne-Kathrin Schmuck
Armando Solar-Lezama
Ruzica Piskac
Dana Fisman

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

The Futures of Reactive Synthesis, Dagstuhl Reports, Vol. 13, Issue 9, pp. 166–184
Editors: Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathanael.fijalkow@gmail.com
mailto:finkbeiner@react.uni-saarland.de
mailto:guillermoalberto.perez@uantwerpen.be
mailto:elizabeth.polgreen@ed.ac.uk
mailto:remi.morvan@u-bordeaux.fr
https://www.dagstuhl.de/23391
https://doi.org/10.4230/DagRep.13.9.166
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 167

We introduced a number of mechanisms to encourage discussions and the exchange
of ideas: an open problem session, long Q&A sessions after each invited talk, and most
importantly working sessions. The working sessions were proposed by participants (who
volunteered in advance, after a call by email to all participants). The proposer would have a
few minutes to introduce the topic they would like to discuss. Each session included 3 or
4 different topics, discussed in parallel in smaller groups. In each case, we had (by some
miracle!) a fair division of all participants into the 3 or 4 topics, and we had very good
feedback that many working sessions resulted in very fruitful and insightful discussions. We
had “progress report sessions” where the leaders of the working sessions gave a 5 or 10-min
summary of the discussions.

We also had 9 contributed talks from participants, responding to an open call. They
were 20 minutes each, and greatly contributed to getting all participants involved and for
representing all trends and recent advances in the field.

We as organizers had very good feedback about the organization of the week: the rather
light schedule gave enough time for people to discuss, and the different talks and organized
sessions gave enough ways to get to know new people and topics. The seminar included a
number of junior participants, who got to meet experts in the field. The mix of tools and
theory topics covered during the seminar gives us hope that it will yield results both in the
short and long term.

23391

168 23391 – The Futures of Reactive Synthesis

2 Table of Contents

Executive Summary
Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 166

Overview of Talks
Solving Infinite-State Games via Acceleration
Rayna Dimitrova . 170

Fixpoint Equations for Synthesis – Towards a Renewed Interest
Rüdiger Ehlers . 170

Synthesis from LTL specifications and examples
Emmanuel Filiot . 171

A primer on reactive synthesis
Bernd Finkbeiner . 172

ω-Automata Learning
Dana Fisman . 172

Compositional Synthesis with Hyperproperties
Niklas Metzger . 172

Ups and downs of distributed synthesis
Anca Muscholl . 173

Making New Friends in Software Synthesis
Ruzica Piskac . 173

Synthesis Modulo Oracles
Elizabeth Polgreen . 174

A primer on SYNTCOMP
Guillermo A. Pérez . 175

Reactive Synthesis as a Programming Language Paradigm
Mark Santolucito . 175

Deep Learning for Reactive Synthesis
Frederik Schmitt . 176

The power of feedback
Anne-Kathrin Schmuck . 176

Constraint-based synthesis
Armando Solar-Lezama . 177

Synthesizing Pareto-optimal Interpretations for Black-box Models
Hazem Torfah . 177

Working groups
Quantitative Specification
Shaull Almagor . 178

A programmatic approach for reactive synthesis
Nathanaël Fijalkow . 178

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 169

Minimization of deterministic parity automata
Antonio Casares . 178

Minimization of deterministic (co)Büchi automata
Rémi Morvan . 179

Positionality and memory
Pierre Ohlmann . 179

Graph neural networks and reactive synthesis
Guillermo A. Pérez . 179

SYNTCOMP benchmarking
Guillermo A. Pérez . 180

IPASIR-UP: User Propagators for CDCL
Andre Schidler . 181

Reactive Synthesis Beyond the Bools
César Sánchez . 182

Reactive synthesis of Linear Temporal Logic on finite traces
Shufang Zhu . 182

Participants . 184

23391

170 23391 – The Futures of Reactive Synthesis

3 Overview of Talks

3.1 Solving Infinite-State Games via Acceleration
Rayna Dimitrova (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Rayna Dimitrova

Joint work of Philippe Heim, Rayna Dimitrova
Main reference Philippe Heim, Rayna Dimitrova: “Solving Infinite-State Games via Acceleration”, CoRR,

Vol. abs/2305.16118, 2023.
URL https://doi.org//10.48550/ARXIV.2305.16118

Two-player graph games have found numerous applications, most notably in the synthesis
of reactive systems from temporal specifications, but also in verification. The relevance of
infinite-state systems in these areas has lead to significant attention towards developing
techniques for solving infinite-state games. In this talk I will present novel symbolic semi-
algorithms for solving infinite-state games with omega-regular winning conditions. The
novelty of our approach lies in the introduction of an acceleration technique that enhances
fixpoint-based game-solving methods and helps to avoid divergence. Classical fixpoint-based
algorithms, when applied to infinite-state games, are bound to diverge in many cases, since
they iteratively compute the set of states from which one player has a winning strategy. Our
proposed approach can lead to convergence in cases where existing algorithms require an
infinite number of iterations. This is achieved by acceleration: computing an infinite set of
states from which a simpler sub-strategy can be iterated an unbounded number of times in
order to win the game. Ours is the first method for solving infinite-state games to employ
acceleration. Thanks to this, it is able to outperform state-of-the-art techniques on a range
of benchmarks, as evidenced by our evaluation of a prototype implementation.

3.2 Fixpoint Equations for Synthesis – Towards a Renewed Interest
Rüdiger Ehlers (TU Clausthal, DE)

License Creative Commons BY 4.0 International license
© Rüdiger Ehlers

Joint work of Ayrat Khalimov, Rüdiger Ehlers

Reactive synthesis is traditionally reduced to solving a game between two players, where
the game graph and the winning condition for one of the players in the game encodes
the specification and the known information about the environment of the system to be
synthesized. In this context, it is customary to encode all the available information into
the game graph itself, so that a simple parity, Rabin, or Streett winning condition (among
others) remains to be applied to the game graph. This allows to use game solving algorithms
optimized for the respective winning condition off-the-shelf to solve the synthesis games.

Combining complex game graphs and relatively simple winning conditions is however not
the only way to approach game-based reactive synthesis. We can alternatively distil only
a part of the available information (such as the known information about the environment
of the system to be synthesized and some simple specification parts) into the game graph,
and encode the more complicated specification parts into the winning condition. In practice,
this means computing a fixpoint equation that is evaluated over the game graph, where the
result of evaluating the equation is the set of game positions from which the specification is
realizable. This approach is followed in the Generalized Reactivity(1) Synthesis algorithm by

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2305.16118
https://doi.org//10.48550/ARXIV.2305.16118
https://doi.org//10.48550/ARXIV.2305.16118
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 171

Piterman, Pnueli, and Sa’ar, which exploits the fact that for the specifications supported for
it, there is a simple fixpoint formula template that can be instantiated for any specification
of the supported specification class. In this way, the fixpoint equation can be evaluated
symbolically if the game graph is easy to encode symbolically, which helped with scaling
Generalized Reactivity(1) synthesis to a good number of applications in robotics and control.

In this talk, we discuss one commonly known, one recent, and one new result on computing
fixpoint equations encoding complex specifications that go beyond Generalized Reactivity(1)
synthesis. All the discussed results are applicable to symbolically represented game graphs.
Apart from reviewing how to build such fixpoint formulas from deterministic parity automata
for a given specification to be enforced in a game graph, we discuss a recent result by
Hausmann, Lehaut, and Piterman and give a summary of our own results on translating a
polynomial-time minimizable chain-of-co-Büchi-automata representation of a given omega-
regular specification to a fixpoint equation. We provide some experimental results and employ
them to argue for establishing a branch of reactive synthesis research that aims at computing
efficient to evaluate fixpoint equations over symbolic game graphs. Focusing on such fixpoint
equations has three advantages: Firstly, even at the current early state of research, the
first approaches are already faster than previous full-LTL synthesis tools on specifications
that decompose quite naturally into a game graph and a complex specification. Then, a
compilation of a reactive synthesis problem to a game graph plus a fixpoint formula is a
concise starting point for performing symbolic reasoning beyond the use of BDDs. Finally,
fixpoint equations encoding complex specifications for synthesis would be useful for tackling
the synthesis problem in implicitly represented infinite state spaces of games, which may be
interesting for control and robotics applications.

This talk led to a working session.

3.3 Synthesis from LTL specifications and examples
Emmanuel Filiot (UL – Brussels, BE)

License Creative Commons BY 4.0 International license
© Emmanuel Filiot

Joint work of Emmanuel Filiot, Mrudula Balachander, Jean-François Raskin

We study a variant of the problem of synthesizing Mealy machines that enforce LTL specifica-
tions against all possible behaviours of the environment including hostile ones. In the variant
studied here, the user provides the high level LTL specification S of the system to design, and
a set E of examples of executions that the solution must produce. The examples are used
to guide the synthesis procedure, and are generalized as much as possible, while preserving
realizability of the specification. This talk presents some approach to this problem based on
a combination of RPNI automata learning and antichain-based LTL synthesis methods.

References
1 Mrudula Balachander, Emmanuel Filiot and Jean-François Raskin. LTL Reactive Synthesis

with a Few Hints. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2023.

23391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

172 23391 – The Futures of Reactive Synthesis

3.4 A primer on reactive synthesis
Bernd Finkbeiner (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Bernd Finkbeiner

The synthesis of reactive systems has been actively investigated since the inception of the
problem by Alonzo Church more than sixty years ago. This talk gives an overview of the
main results of the area and an outlook on potential future directions to be discussed in
the seminar, including neural-symbolic computation and, more generally, machine learning
techniques, template-based solving in the context of constraint programming, active learning
algorithms, and connections to program synthesis and in particular Syntax Guided Synthesis.

3.5 ω-Automata Learning
Dana Fisman (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 4.0 International license
© Dana Fisman

Joint work of Dana Angluin, Timos Antonopoulos, Udi Boker, Dana Fisman, Nevin George, Yaara Shoval

This talk surveys the results on learning automata models for regular languages of infinite
words. It discusses several positive and negative results across different learning paradigms.
The positive results are mostly for automata models that are less common, in particular
families of DFAs (FDFAs), strongly unambiguous Büchi automata (SUBAs) and mod-2
multiplicity automata (M2MA). These models have other good qualities, in particular the
complexity of the boolean operations (intersection, union, complementation) and decision
problems (emptiness, inclusion, equivalence) are good compared to the common omega-
automata types. It is thus worth exploring whether they can also be usable for model
checking and synthesis of reactive systems.

References
1 Dana Angluin, Dana Fisman Learning regular omega languages. Theor. Comput. Sci. 650:

57-72 (2016)
2 Dana Angluin, Udi Boker, Dana Fisman Families of DFAs as Acceptors of ω-Regular

Languages. Log. Methods Comput. Sci. 14(1) (2018)
3 Dana Angluin, Timos Antonopoulos, Dana Fisman Strongly Unambiguous Büchi Automata

Are Polynomially Predictable With Membership Queries. CSL 2020: 8:1-8:17
4 Dana Angluin, Timos Antonopoulos, Dana Fisman, Nevin George Representing Regular

Languages of Infinite Words Using Mod 2 Multiplicity Automata. FoSSaCS 2022: 1-20
5 Constructing Concise Characteristic Samples for Acceptors of Omega Regular Languages.

3.6 Compositional Synthesis with Hyperproperties
Niklas Metzger (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Niklas Metzger

The distributed synthesis problem is to translate a logical specification of a distributed
system into an implementation that is guaranteed to satisfy the specification. What makes
the synthesis of distributed systems far more challenging than standard reactive synthesis

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 173

is that each component only has partial knowledge of the global system state. Currently,
there are no scalable algorithms for distributed synthesis. The challenge is to devise a
compositional synthesis method, i.e., a method that constructs one component at a time.
The fundamental difficulty is that the components often need to act upon information that is
available only in another component. However, we do not know how that component encodes
the information before we know its implementation; seemingly, it is impossible to build one
component without knowing the implementation of the other. In this talk, I will present
a compositional synthesis method based on the key idea of characterizing the necessary
flow of information between the components as a hyperproperty. We introduce information
flow assumptions, which are requirements that are necessary in order to realize a particular
component. By formulating these assumptions as hyperproperties, we avoid referring to
any particular encoding of the information. We develop methods that automatically derive
information flow assumptions from the specification and a technique for the automatic
synthesis of component implementations based on information flow assumptions. Together,
these methods provide a compositional approach to the synthesis of distributed systems.

3.7 Ups and downs of distributed synthesis
Anca Muscholl (University of Bordeaux, FR)

License Creative Commons BY 4.0 International license
© Anca Muscholl

Joint work of Hugo Gimbert, Corto Mascle, Anca Muscholl, Igor Walukiewicz
Main reference Hugo Gimbert, Corto Mascle, Anca Muscholl, Igor Walukiewicz: “Distributed controller synthesis for

deadlock avoidance”, CoRR, Vol. abs/2204.12409, 2022.
URL https://doi.org//10.48550/ARXIV.2204.12409

The talk gave an overview of several approaches to distributed reactive synthesis: Pnueli &
Rosner model, controller synthesis for Zielonka automata and controller synthesis for lock-
sharing systems. While partial information is a direct source of undecidability in the Pnueli
& Rosner model, full causal information does not guarantee decidability either (cf. Gimbert
2022). Loose synchronization as in lock-sharing systems allows to recover decidability of
controller synthesis at reasonable cost.

3.8 Making New Friends in Software Synthesis
Ruzica Piskac (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© Ruzica Piskac

Joint work of Wonhyuk Choi, Bernd Finkbeiner, Ruzica Piskac, Mark Santolucito, Felix Klein
Main reference Wonhyuk Choi, Bernd Finkbeiner, Ruzica Piskac, Mark Santolucito: “Can reactive synthesis and

syntax-guided synthesis be friends?”, in Proc. of the PLDI ’22: 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, San Diego, CA, USA, June 13 –
17, 2022, pp. 229–243, ACM, 2022.

URL https://doi.org//10.1145/3519939.3523429

While reactive synthesis and syntax-guided synthesis (SyGuS) have seen enormous progress
in recent years, combining the two approaches has remained a challenge. To overcome this
obstacle, we introduced Temporal Stream Logic (TSL) [1], a new temporal logic that separates
control and data. We developed a CEGAR-like synthesis approach for the construction of

23391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2204.12409
https://doi.org//10.48550/ARXIV.2204.12409
https://doi.org//10.48550/ARXIV.2204.12409
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3519939.3523429
https://doi.org//10.1145/3519939.3523429
https://doi.org//10.1145/3519939.3523429
https://doi.org//10.1145/3519939.3523429
https://doi.org//10.1145/3519939.3523429

174 23391 – The Futures of Reactive Synthesis

implementations that are guaranteed to satisfy a TSL specification for all possible instan-
tiations of the data processing functions. However, specifications often involve interpreted
functions: for example, arithmetic functions or string manipulations. We extended TSL to
Temporal Stream Logic modulo theories (TSL-MT) [2], a framework that unites the two
approaches to synthesize a single program. In our approach, reactive synthesis and SyGuS
collaborate in the synthesis process, and generate executable code that implements both
reactive and data-level properties. We demonstrate the applicability of our approach over a
set of real-world benchmarks [3].

References
1 Bernd Finkbeiner, Felix Klein, Ruzica Piskac, Mark Santolucito, Temporal Stream Logic:

Synthesis Beyond the Bools. CAV (1) 2019: 609-629
2 Bernd Finkbeiner, Philippe Heim, Noemi Passing, Temporal Stream Logic modulo Theories.

FoSSaCS 2022: 325-346
3 Wonhyuk Choi, Bernd Finkbeiner, Ruzica Piskac, Mark Santolucito, Can reactive synthesis

and syntax-guided synthesis be friends?. PLDI 2022: 229-243

3.9 Synthesis Modulo Oracles
Elizabeth Polgreen (University of Edinburgh, GB)

License Creative Commons BY 4.0 International license
© Elizabeth Polgreen

Joint work of lizabeth Polgreen, Andrew Reynolds, Sanjit A. Seshia
Main reference Elizabeth Polgreen, Andrew Reynolds, Sanjit A. Seshia: “Satisfiability and Synthesis Modulo

Oracles”, in Proc. of the Verification, Model Checking, and Abstract Interpretation – 23rd
International Conference, VMCAI 2022, Philadelphia, PA, USA, January 16-18, 2022, Proceedings,
Lecture Notes in Computer Science, Vol. 13182, pp. 263–284, Springer, 2022.

URL https://doi.org//10.1007/978-3-030-94583-1_13

In classic program synthesis algorithms, such as counterexample-guided inductive synthesis
(CEGIS), the algorithms alternate between a synthesis phase and an oracle (verification)
phase. Many (most) synthesis algorithms use a white-box oracle based on satisfiability
modulo theory (SMT) solvers to provide counterexamples. But what if a white-box oracle is
either not available or not easy to work with?

In this talk, I will present a framework for solving a general class of oracle-guided synthesis
problems which we term synthesis modulo oracles (SyMO). In this setting, oracles are black
boxes with a query-response interface defined by the synthesis problem. This allows us to
lift synthesis to domains where using an SMT solver as a verifier is not practical.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-94583-1_13
https://doi.org//10.1007/978-3-030-94583-1_13
https://doi.org//10.1007/978-3-030-94583-1_13
https://doi.org//10.1007/978-3-030-94583-1_13
https://doi.org//10.1007/978-3-030-94583-1_13

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 175

3.10 A primer on SYNTCOMP
Guillermo A. Pérez (University of Antwerp, BE)

License Creative Commons BY 4.0 International license
© Guillermo A. Pérez

Joint work of Swen Jacobs, Guillermo A. Perez
Main reference Swen Jacobs, Guillermo A. Pérez, Remco Abraham, Véronique Bruyère, Michaël Cadilhac,

Maximilien Colange, Charly Delfosse, Tom van Dijk, Alexandre Duret-Lutz, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger, Klara J. Meyer, Thibaud
Michaud, Adrien Pommellet, Florian Renkin, Philipp Schlehuber-Caissier, Mouhammad Sakr,
Salomon Sickert, Gaëtan Staquet, Clément Tamines, Leander Tentrup, Adam Walker: “The Reactive
Synthesis Competition (SYNTCOMP): 2018-2021”, CoRR, Vol. abs/2206.00251, 2022.

URL https://doi.org//10.48550/ARXIV.2206.00251

The Reactive Synthesis Competition (SYNTCOMP) is a competition for reactive synthesis
tools. The competition’s goal is to collect benchmarks in a publicly available library and
foster research in new tools for automatic synthesis of systems. SYNTCOMP is organized
annually (since 2014) as a satellite event of CAV.

In this talk, the status of the competition (in particular the state of the benchmarks) and
its evolution through the last couple of years is presented.

3.11 Reactive Synthesis as a Programming Language Paradigm
Mark Santolucito (Barnard College, Columbia University – New York, US)

License Creative Commons BY 4.0 International license
© Mark Santolucito

URL https://barnard-pl-labs.github.io/CYOA-TSL

There has been an explosion of interest in the use of LLMs to generate code in recent years,
complimenting a long history of formal methods-driven program synthesis. However, code
generation remains a largely all-or-nothing problem – either users can take advantage of
the flexibility and adaptivity of LLMs and generate code that might not be correct, or they
can rely on more rigid program synthesis tools which are guaranteed to generate correct
results, but are limited in their generative grammars. In this talk, we propose a strategy for
the combination of these techniques – leveraging formal methods to generate structures of
provable correct programs, and allowing the LLM to complete the details with more flexibility.
We focus on the problem of generating reactive programs, where these types of programs
consume streams of input and produce streams of output. These programs are critical across
application domains, including circuit design, self-driving cars, mobile apps, and chatbots –
all of which we have been able to synthesize using our synthesis procedure. We end with an
outline of the challenges still facing the integration of reactive synthesis into code generation
paradigms.

23391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2206.00251
https://doi.org//10.48550/ARXIV.2206.00251
https://doi.org//10.48550/ARXIV.2206.00251
https://doi.org//10.48550/ARXIV.2206.00251
https://doi.org//10.48550/ARXIV.2206.00251
https://doi.org//10.48550/ARXIV.2206.00251
https://doi.org//10.48550/ARXIV.2206.00251
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://barnard-pl-labs.github.io/CYOA-TSL

176 23391 – The Futures of Reactive Synthesis

3.12 Deep Learning for Reactive Synthesis
Frederik Schmitt (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Frederik Schmitt

Neural-symbolic computing offers a broad and largely unexplored spectrum of integrating
neural and algorithmic components for developing new solutions to the reactive synthesis
problem. At one end of the spectrum are purely symbolic and algorithmic methods that
defined the field from its very beginning. In this talk, we will move to the other end of the
spectrum and discuss how far we can get by relying on pure deep learning methods to solve
synthesis problems. In particular, three approaches are presented that trace the current
developments in deep learning:
1. training neural networks from scratch on data derived from specification patterns,
2. fine-tuning language and code generation models,
3. evaluating large language models and few-shot prompting on instances of parameterized

specifications.
We specifically focus on representing the structure of synthesis problems in neural network
architectures, the bundling of both algorithmic tools and neural networks, and we hope to
spark discussions about approaches that are centred on the spectrum of neural-symbolic
methods.

3.13 The power of feedback
Anne-Kathrin Schmuck (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Anne-Kathrin Schmuck

Feedback allows systems to seamlessly and instantaneously adapt their behavior to their
environment and is thereby the fundamental principle of life and technology – it lets animals
breathe, it stabilizes the climate, it allows airplanes to fly, and the energy grid to operate.
During the last century, control technology excelled at using this power of feedback to
engineer extremely stable, robust, and reliable technological systems. With the ubiquity of
computing devices in modern technological systems, feedback loops become cyber-physical –
the laws of physics governing technological, social or biological processes interact with (cyber)
computing systems in a highly nontrivial manner, pushing towards higher and higher levels
of autonomy and self-regulation. While stability, reliability and robustness remain to be
of uppermost importance in these systems, a control-inspired utilization of cyber-physical
feedback loops for this purpose is lacking far behind. In this talk, I will discuss how a
control-inspired view on formal methods for reliable software design can enable us to utilize
the power of feedback for robust and adaptable cyber-physical system design.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 177

3.14 Constraint-based synthesis
Armando Solar-Lezama (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
© Armando Solar-Lezama

In this talk, I describe some recent efforts to combine functional and reactive synthesis. In the
first part of the talk, I describe the Sketch program synthesis system, which allows users to
write partial programs and solves for the missing details using an SMT solver. The talk focused
on a new feature in Sketch that allows the user to write temporal specifications describing
the behaviour of the program through its execution and showed how such constraints could
be used to speed up the synthesis process and to give the user more control over the resulting
program.

During the second part of the talk, I described a new effort to use a combination of
reactive and functional synthesis to derive models of an environment from observations. The
idea was implemented in a tool called Autumn, which focuses on pixel-world domains and is
able to synthesize functional reactive programs from observations.

3.15 Synthesizing Pareto-optimal Interpretations for Black-box Models
Hazem Torfah (Chalmers University of Technology – Göteborg, SE)

License Creative Commons BY 4.0 International license
© Hazem Torfah

Joint work of Hazem Torfah, Shetal Shah, Supratik Chakraborty, S Akshay, Sanjit Seshia
Main reference Hazem Torfah, Shetal Shah, Supratik Chakraborty, S. Akshay, Sanjit A. Seshia: “Synthesizing

Pareto-Optimal Interpretations for Black-Box Models”, in Proc. of the Formal Methods in Computer
Aided Design, FMCAD 2021, New Haven, CT, USA, October 19-22, 2021, pp. 153–162, IEEE, 2021.

URL https://doi.org//10.34727/2021/ISBN.978-3-85448-046-4_24

We present a multi-objective optimization approach for synthesizing interpretations of black-
box models. Existing methods for synthesizing interpretations use a single objective function
and are often optimized for a single class of interpretations. In contrast, we provide a more
general and multi-objective synthesis framework that allows users to choose (1) the class of
syntactic templates from which an interpretation should be synthesized, and (2) quantitative
measures on both the correctness and explainability of an interpretation. For a given black-
box, our approach yields a set of Pareto-optimal interpretations with respect to the correctness
and explainability measures. We show that the underlying multi-objective optimization
problem can be solved via a reduction to quantitative constraint solving, such as weighted
maximum satisfiability. To demonstrate the benefits of our approach, we have applied it to
synthesize interpretations for black-box neural-network classifiers. Our experiments show
that there often exists a rich and varied set of choices for interpretations that are missed by
existing approaches.

23391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.34727/2021/ISBN.978-3-85448-046-4_24
https://doi.org//10.34727/2021/ISBN.978-3-85448-046-4_24
https://doi.org//10.34727/2021/ISBN.978-3-85448-046-4_24
https://doi.org//10.34727/2021/ISBN.978-3-85448-046-4_24

178 23391 – The Futures of Reactive Synthesis

4 Working groups

4.1 Quantitative Specification
Shaull Almagor (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Shaull Almagor

Our discussion was aimed at the following question: can we find a natural specification
formalism for which winning strategies in the synthesis problem are captured by well-studied
quantitative computational models, such as One Counter Automata, One Counter Nets,
VASS, etc.

After discussing several game types and specifications, we came up with the following
concrete specification. Consider inputs {a, #} and outputs {b, @}, the specification is to
accept only words of the form an#bn@. That is, the environment inputs a sequence of a’s,
and the system should respond with a length-matching sequence of b’s. It is natural to model
a winning strategy using a One Counter Automaton in this case. We therefore wonder if
this is a particular case of a more general specification formalism. One possible candidate is
“PSL with local variables”, which seems to be able to capture specifications in this spirit.

4.2 A programmatic approach for reactive synthesis
Nathanaël Fijalkow (CNRS – Talence, FR)

License Creative Commons BY 4.0 International license
© Nathanaël Fijalkow

I proposed this working group to discuss a novel approach to reactive synthesis, where instead
of a finite state controller the goal is to output a controller in the form of a program in a
high-level programming language.

The key questions are:
What is the (or a?) right programming language for reactive synthesis?
How to perform inference?
Even model-checking of programs is not obvious

The working session gathered about a dozen participants, and the lively discussions
touched upon the three key questions mentioned above. Different approaches were sketched.
The matter will be investigated more thoroughly in the coming months, thanks to the
interests it sparked during this working session.

4.3 Minimization of deterministic parity automata
Antonio Casares (University of Bordeaux, FR)

License Creative Commons BY 4.0 International license
© Antonio Casares

In this working group, we discussed the complexity of the following decision problem: Input:
A deterministic transition-based parity automaton A and an integer k. Question: Is there a
deterministic transition-based parity automaton of size at most k equivalent to A?

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 179

We considered the minimization procedure for good-for-games coBüchi automata by Abu
Radi and Kupferman [1], and studied what are the kind of combinatorial problems that arise
when trying to determinize these automata by adding a minimal number of states.

References
1 Bader Abu Radi, Orna Kupferman. Minimization and Canonization of GFG Transition-

Based Automata. Log. Methods Comput. Sci., 2022

4.4 Minimization of deterministic (co)Büchi automata
Rémi Morvan (University of Bordeaux, FR)

License Creative Commons BY 4.0 International license
© Rémi Morvan

This working group is a follow-up of Antonio Casares’ session “Minimization of deterministic
parity automata”. We studied the following functional problem:
input: A deterministic transition-based (co)Büchi automaton A.
output: A deterministic transition-based (co)Büchi automaton which is equivalent to A, and

state-minimal.

Contrary to minimization of parity automata, we believe this problem to be polynomial-
time computable. We mostly focused on a congruence-based approach.

4.5 Positionality and memory
Pierre Ohlmann (University of Warsaw, PL)

License Creative Commons BY 4.0 International license
© Pierre Ohlmann

We worked on understanding memory requirements in games with topologically open winning
conditions. The question can be phrased as follows. Let Σ be an alphabet:
input: L a language of Σ∗, say regular;
output: minimal k such that on any game graph with objective L ⊆ Σω, if Eve wins then

she wins with a k-states memory
We discussed a few examples and motivations and talked about the case where L is a singleton
which has a simple solution. We did not make substantial progress on the general case.

4.6 Graph neural networks and reactive synthesis
Guillermo A. Pérez (University of Antwerp, BE)

License Creative Commons BY 4.0 International license
© Guillermo A. Pérez

Joint work of Guillermo A. Perez, Isseinie Calviac

During this working session, we discussed the possibility of using graph neural networks
(GNNs) to reduce the state space of automata used for synthesis from LTL specifications.
The state of the art (in current LTL-synthesis solvers) concerns the syntactic recognition

23391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

180 23391 – The Futures of Reactive Synthesis

of subformulas that are treated with special transformations which may lead to minimal
subautomata. Finally, the product of said automata is taken to obtain a final automaton. To
further reduce the size of the final automaton, Spot /ltlsynt implements an approximation
of an isomorphism check (rather, it resembles graded bisimulation). This option seems to
be disabled by default as it takes too long. An alternative concerns guessing a bisimulation
relation and checking (in logspace, using one step of the classical partition refinement
algorithm for bisimulation) that it is indeed a bisimulation relation. This begs the question
of whether machine learning can help us make such a guess.

On the GNN side, it was mentioned that they are a very hot topic in AI and that
the main focus of current research concerns the proposal of new architectures to improve
their “expressiveness”. GNNs can be seen as a “recolouring” function applied to a coloured
graph. It is known that this recolouring function cannot colour nodes differently that the
Weisfeiler-Leman (WL) algorithm would deem as equivalent. Conversely, for every coloured
graph, there are weight matrices and bias vectors such that GNNs implement the WL
algorithm. Guillermo A. Perez mentioned an unpublished result: GNNs can also implement
the (coarsest) bisimulation relation.

Open questions:
1. Can other relations of interest be implemented using different GNN architectures?
2. To leverage GNNs in graphs that come from verification applications, one needs to obtain

useful and meaningful features for the vertices. How can these be obtained easily or even
automatically?

3. For large graphs, recent works and libraries suggest sampling a number of neighbours of
each node. Will this render GNNs useless for verification methods in large graphs?

References
1 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,

Gaurav Rattan, Martin Grohe: Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks. AAAI 2019: 4602-4609

2 Floris Geerts, Filip Mazowiecki, Guillermo A. Pérez: Let’s Agree to Degree: Comparing
Graph Convolutional Networks in the Message-Passing Framework. ICML 2021: 3640-3649

3 Tobias Hecking, Swathi Muthukrishnan, Alexander Weinert. Predicting Winning Regions in
Parity Games via Graph Neural Networks. Deep Learning-aided Verification @ CAV 2023.

4.7 SYNTCOMP benchmarking
Guillermo A. Pérez (University of Antwerp, BE)

License Creative Commons BY 4.0 International license
© Guillermo A. Pérez

Joint work of Swen Jacobs, Guillermo A. Perez, Philipp Schlehuber-Caissier

Benchmark sets for existing and upcoming tracks of the reactive synthesis competition
(SYNTCOMP) were discussed. The main points that were touched during the discussion can
be summarized as follows.

1. PDDL is a well-established family of languages in the planning community for describing
tasks. In the short term, we can try to translate (non-deterministic) PDDL specifications
to TLSF. In the long term, PDDL itself may become a reasonable format for some tracks,
and we may further extend it with goals expressed in LTL over finite words.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 181

2. While reports of SYNTCOMP usually include graphs covering all benchmarks, it may be
of more importance to highlight how well tools scale per parametric family of benchmarks
as the parameter values increase. This is already present in the report for the 2018-2021
editions of the competition. A proposal is to include such graphs in the results of every
forthcoming edition of the competition.

3. PSL is a well-established extension of LTL that seems to be used in industry. We will
survey the literature on PSL case studies and perhaps even approach IBM, Synopsys,
and other companies to ask whether they have such specifications so that we can enrich
the set of benchmarks.

4. Regarding the output format of synthesis tools: The current one is quite succinct and
it matches the input of model checking tools. Namely, SYNTCOMP requires output in
AIGER format. However, semi-explicit representations such as HOA for Mealy/Moore
machines may be easier to visualize. Hence, for future editions of the competition, an
“explainable badge” will be awarded to tools that produce such semi- or fully explicit
versions of their output (as an additional option, not as the official output for the
competition).

5. Finally, we noted that the parity game track is currently biased as it measures the time for
parsing and minimization of the parity game together with the time it takes to actually
solve the game. Instead, a proposal is to split this into preprocessing time and solving
time. In the short term, tools will have to output a message and timestamp stating when
preprocessing is finished so that we can split the two processes. In the long term, we can
consider more succinct formats of a parity game to have parsing become faster (after
using, perhaps, the BDD version of hoa-tools) and to be able to succinctly encode even
larger games.

4.8 IPASIR-UP: User Propagators for CDCL
Andre Schidler (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Andre Schidler

URL https://simons.berkeley.edu/talks/katalin-fazekas-tu-wien-2023-04-17

This talk is a teaser talk about a new SAT solver API – IPASIR-UP – that provides
interactions with the solver during the solving process. Hence, instead of calling the solver
incrementally, it is possible to interact with the solver during the solving process, i.e.,
whenever the solver makes a decision, propagates a variable, finds a conflict, finds a model,
etc.

IPASIR-UP allows, among other things, implementing CEGAR approaches or theories
quickly and cleanly. So far, this API is available in Cadical.

23391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://simons.berkeley.edu/talks/katalin-fazekas-tu-wien-2023-04-17

182 23391 – The Futures of Reactive Synthesis

4.9 Reactive Synthesis Beyond the Bools
César Sánchez (IMDEA Software Institute – Madrid, ES)

License Creative Commons BY 4.0 International license
© César Sánchez

There has been a growing interest in the last few years in increasing the expressivity of
reactive synthesis from propositional LTL into richer languages that can handle data. One
impact-full line of research includes temporal stream logic (TSL) that has managed to
synthesize sophisticated controllers. Another example was Raina Dimitrova’s work presented
in this seminar. However, most attempts to increase the expressivity quickly render the
realizability decision problem undecidable.

In the first part of this working session we discussed the recent work on realizability of
“LTL modulo theory” that shows decidability of an extension of LTL where the propositions
are replaced by literals from a first order theories. The Boolean abstraction method generates
an equi-realizable propositional LTL specification as long as the first-order theory enjoys
a decidable exists-forall (validity) decision problem. Moreover, the resulting specification
remains in the same temporal class and is amenable of Boolean reactive synthesis. Then
we discussed how the resulting (Boolean) controllers obtained using existing synthesis tools
can be extended to “theory controllers”, thus obtaining a full LTL modulo theory synthesis
algorithm.

However, current LTL modulo theory does not allow to transfer data across time (which
is the main reason for undecidability of richer formalisms like TSL). We briefly discussed
possibilities for enriching LTL modulo theories with controlled data transferred, particularly
based on known decidability results from register automata. We concluded that a first
promising approach should be based on specific characteristics of each theory and not (as for
LTL modulo theories described above) agnostic to the theory in question.

4.10 Reactive synthesis of Linear Temporal Logic on finite traces
Shufang Zhu (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Shufang Zhu

In this working group, we discussed the following problem in reactive synthesis of Linear
Temporal Logic on finite traces (LTLf):

Consider an autonomous system immersing in an environment, where there are multiple
abstraction levels of how the environment behaves, depending on how much environment
dynamics to be concerned:

Env1 (any possible env behaviours),
Env2,
· · ·
Envm (most restricted env behaviours).

The system is given multiple tasks, ranging from most difficult to easiest:
Task1 (most difficult),
Task2,
· · ·
Taskn (easiest).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen 183

Question: How to achieve a good balance to achieve a more difficult task considering a
more flexible environment?

We discussed different ways of dealing with this problem. A good direction might be
looking at robust LTL [1]. Another interesting direction is MaxSAT or Weighted MaxSAT.

References
1 Paulo Tabuada, Daniel Neider. Robust Linear Temporal Logic

23391

184 23391 – The Futures of Reactive Synthesis

Participants

Shaull Almagor
Technion – Haifa, IL

Guy Avni
University of Haifa, IL

Mrudula Balachander
Free University of Brussels, BE

Véronique Bruyère
University of Mons, BE

Michaël Cadilhac
DePaul University – Chicago, US

Antonio Casares
University of Bordeaux, FR

Rayna Dimitrova
CISPA – Saarbrücken, DE

Alexandre Duret-Lutz
EPITA – Le Kremlin Bicêtre, FR

Rüdiger Ehlers
TU Clausthal, DE

Nathanaël Fijalkow
CNRS – Talence, FR

Emmanuel Filiot
UL – Brussels, BE

Bernd Finkbeiner
CISPA – Saarbrücken, DE

Dana Fisman
Ben Gurion University –
Beer Sheva, IL

Hadar Frenkel
CISPA – Saarbrücken, DE

Swen Jacobs
CISPA – Saarbrücken, DE

Ayrat Khalimov
TU Clausthal, DE

Bakh Khoussainov
Univ. of Electronic Science &
Technology – Chengdu, CN

Rupak Majumdar
MPI-SWS – Kaiserslautern, DE

Théo Matricon
University of Bordeaux, FR

Niklas Metzger
CISPA – Saarbrücken, DE

Rémi Morvan
University of Bordeaux, FR

Anca Muscholl
University of Bordeaux, FR

Pierre Ohlmann
University of Warsaw, PL

Guillermo A. Pérez
University of Antwerp, BE

Ruzica Piskac
Yale University – New Haven, US

Elizabeth Polgreen
University of Edinburgh, GB

Mickael Randour
F.R.S.-FNRS & UMONS –
Université de Mons, BE

César Sánchez
IMDEA Software Institute –
Madrid, ES

Mark Santolucito
Barnard College, Columbia
University – New York, US

Andre Schidler
TU Wien, AT

Frederik Schmitt
CISPA – Saarbrücken, DE

Anne-Kathrin Schmuck
MPI-SWS – Kaiserslautern, DE

Martina Seidl
Johannes Kepler Universität
Linz, AT

Armando Solar-Lezama
MIT – Cambridge, US

Hazem Torfah
Chalmers University of
Technology – Göteborg, SE

Tom van Dijk
University of Twente –
Enschede, NL

Shufang Zhu
University of Oxford, GB

Martin Zimmermann
Aalborg University, DK

	Executive Summary (Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, and Elizabeth Polgreen)
	Table of Contents
	Overview of Talks
	Solving Infinite-State Games via Acceleration (Rayna Dimitrova)
	Fixpoint Equations for Synthesis – Towards a Renewed Interest (Rüdiger Ehlers)
	Synthesis from LTL specifications and examples (Emmanuel Filiot)
	A primer on reactive synthesis (Bernd Finkbeiner)
	omega-Automata Learning (Dana Fisman)
	Compositional Synthesis with Hyperproperties (Niklas Metzger)
	Ups and downs of distributed synthesis (Anca Muscholl)
	Making New Friends in Software Synthesis (Ruzica Piskac)
	Synthesis Modulo Oracles (Elizabeth Polgreen)
	A primer on SYNTCOMP (Guillermo A. Pérez)
	Reactive Synthesis as a Programming Language Paradigm (Mark Santolucito)
	Deep Learning for Reactive Synthesis (Frederik Schmitt)
	The power of feedback (Anne-Kathrin Schmuck)
	Constraint-based synthesis (Armando Solar-Lezama)
	Synthesizing Pareto-optimal Interpretations for Black-box Models (Hazem Torfah)

	Working groups
	Quantitative Specification (Shaull Almagor)
	A programmatic approach for reactive synthesis (Nathanaël Fijalkow)
	Minimization of deterministic parity automata (Antonio Casares)
	Minimization of deterministic (co)Büchi automata (Rémi Morvan)
	Positionality and memory (Pierre Ohlmann)
	Graph neural networks and reactive synthesis (Guillermo A. Pérez)
	SYNTCOMP benchmarking (Guillermo A. Pérez)
	IPASIR-UP: User Propagators for CDCL (Andre Schidler)
	Reactive Synthesis Beyond the Bools (César Sánchez)
	Reactive synthesis of Linear Temporal Logic on finite traces (Shufang Zhu)

	Participants

