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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23401 “Automated
mathematics: integrating proofs, algorithms and data”. The seminar brought together system
developers, library authors, and users from key branches of computer-supported mathematics:
formalized mathematics, symbolic computation, and mathematical databases. We addressed
issues that were common to all areas of computer-supported mathematics: library management,
dependencies and interoperability between software components, quality and correctness assur-
ances, searching for information, and usability by end users. Early on in the week, we formed
working groups that worked on specific tasks, as described in this report. Each day was divided
into a morning talk session and an afternoon period devoted to working in groups. To keep
everyone well-informed, we gathered each day before dinner for an informal “show & tell” session.
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Modern mathematical software and large datasets of mathematical knowledge allow new
approaches to solving mathematical problems, and support new kinds of mathematical
exploration. In the past, lack of cooperation led to each project developing its own standards
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and techniques. Both developers and users experienced the resulting incompatibilities and
fragmentation as serious usability issues and major obstacle to wider adoption, and none
of the projects can address these successfully on their own. To make further progress that
will eventually result in truly comprehensive and advanced computer mathematical assistant
systems, the developers of individual software projects must start working together and
tackle questions of interoperability, software engineering, and knowledge management on a
large scale.

Concretely, this Dagstuhl Seminar brought together system developers, library authors,
and users from three key areas of computer-supported mathematics: theorem provers, sym-
bolic computation, and databases of mathematical structures. All three areas develop large
formal mathematical libraries, but they do so in fundamentally different and incompatible
ways. Theorem provers optimize for precise definitions and automation of proof support,
often employing complex and abstract representation languages that capture exactly the
semantics of the mathematical concepts of interest. Computer algebra systems, on the
other hand, prioritize the efficiency of computation, which usually requires hardware-near
representations that can be optimized for speed. Mathematical datasets finally employ
general purpose database languages, which are optimized for indexing and fast querying,
often requiring non-trivial encodings of mathematical objects in terms of concrete data. Over
several decades of mostly independent development, these different communities have built
software systems that are as impressively large as they are different from each other.

Work Groups

Broadly speaking, the seminar participants employed three independent approaches towards
system integration.

Firstly, direct integration builds individual bridges between (usually) two systems. These
tend to be more ad hoc but enable a problem-driven approach that delivers a specific
practically needed integration solution. Multiple work groups were formed that tackled
individual bridges.

Secondly, ontology-based integration uses a central representation that acts as an in-
teroperability layer. The ontology describes mathematical concepts abstractly without a
commitment to any of the three flavors of systems. Two work groups investigated this
approach:

Alignments: This work group worked towards building a central ontology of mathematical
concepts. It surveyed existing approaches and judged the feasibility of major future
approaches. Of special interests was the difficulty of library alignment, the task of
connecting the central ontology to the individual libraries.
Knowledge graphs: This work group investigated services that can be built on top of
a central ontology. Of particular interest were knowledge graph techniques, which use
concepts as the nodes and alignments as some of the edges.

Thirdly, for the special goal of integrating datasets, a work group on building an index
of datasets started a major push towards cataloging the many existing datasets, which are
distributed all over the internet, often without active maintenance. This is a necessary step
towards more systemic integration with each other and deduction and computation systems.

Outcomes

Overall, we observed that the field has made major progress over the last 10 years. Direct
integrations that would have been very expensive in the past, often prohibitively so, have
become feasible targets for short meetings as within a Dagstuhl Seminar. This can be
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attributed to increased awareness in the community of interoperability needs that has led
to better interface design. Nonetheless, integrations are still brittle, and a major incentive
problem remains: it is difficult for two communities to maintain bridges between their
systems.

Ontology-based integration had developed little momentum in the past because of the
high cost of additionally maintaining the central ontology. Here, the seminar showed that
the time is right for a major push towards this and initiated a community-driven ontology
curation project.

The work on building an index of datasets kick-started a dataset curation project. This
project has already attracted the attention of outside researchers and has led to the founding
of the Mathbase project.

23401
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3 Overview of Talks

3.1 Who finds the short proof? Searching for Wormholes in Proof-Space
Christoph Benzmüller (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Christoph Benzmüller

Joint work of Christoph Benzmüller, David Fuenmayor, Alexander Steen, Geoff Sutcliffe
Main reference Christoph Benzmüller, David Fuenmayor, Alexander Steen, Geoff Sutcliffe: “Who Finds the Short

Proof?”, Logic Journal of the IGPL, p. jzac082, 2023.
URL https://doi.org//10.1093/jigpal/jzac082

In my talk I presented recently published results that had not been communicated at
conferences or workshops before: An exploration of Boolos’ Curious Inference using higher-
order automated theorem provers (ATPs). Surprisingly, only suitable shorthand notations
had to be provided by hand for ATPs to find a short proof. The higher-order lemmas
required for constructing a short proof are automatically discovered by the ATPs. Given
the observations and suggestions in this paper, full proof automation of Boolos’ and related
examples now seems to be within reach of higher-order ATPs.

References
1 Benzmüller, C., Fuenmayor, D., Steen, A. and Sutcliffe, G. Who Finds the Short Proof?

Logic Journal of the IGPL. 2023. Doi: 10.1093/jigpal/jzac082
2 Benzmüller, C. and Brown, C. The curious inference of Boolos in MIZAR and OMEGA. In

Matuszewski, R., Zalewska, A., editor(s), From Insight to Proof – Festschrift in Honour
of Andrzej Trybulec, volume 10(23), of Studies in Logic, Grammar, and Rhetoric, pages
299-388. The University of Bialystok, Polen, 2007.

3 Boolos, G. A Curious Inference. Journal of Philosophical Logic 16(1):1-12, 1987.

3.2 A catalogue of mathematical datasets
Katja Berčič (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Katja Berčič

Main reference Katja Bercic: “Towards a Census of Relational Data in Mathematics”, in Proc. of the Conference on
“Lernen, Wissen, Daten, Analysen”, Berlin, Germany, September 30 – October 2, 2019, CEUR
Workshop Proceedings, Vol. 2454, pp. 207–217, CEUR-WS.org, 2019.

URL https://ceur-ws.org/Vol-2454/paper_40.pdf

In addition to well-known mathematical databases, such as the OEIS, LMFDB and the
House of Graphs, there is a multitude of smaller projects. Any of these might be interesting
to researchers from other areas, including machine learning. However, the smaller dataset
projects are typically hard to find: just the right keywords are usually necessary (but not
necessarily sufficient) to find them with standard search engines and even in scientific research
data repositories (like Zenodo). As a community, we should build a collaborative, and at
least partly automated, index of mathematical datasets. Personal projects, such as my own
mathdb.mathhub.info, can serve as a starting point.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1093/jigpal/jzac082
https://doi.org//10.1093/jigpal/jzac082
https://doi.org//10.1093/jigpal/jzac082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ceur-ws.org/Vol-2454/paper_40.pdf
https://ceur-ws.org/Vol-2454/paper_40.pdf
https://ceur-ws.org/Vol-2454/paper_40.pdf
https://ceur-ws.org/Vol-2454/paper_40.pdf


Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 7

3.3 Formal verification of mathematical algorithms when the definitions
are out of reach

Alex Best (King’s College – London, GB)

License Creative Commons BY 4.0 International license
© Alex Best

Joint work of Alex Best, Sander Dahmen, Sacha Huriot-Tattegrain

I’d be happy to report on and discuss some ongoing work (with S. Dahmen and S. Huriot-
Tattegrain) implementing a tricky mathematical algorithm in the field of number theory /
arithmetic geometry in a proof assistant (this computes certain quantities appearing in the
famous BSD conjecture many of which are recorded in the LMFDB). This algorithm, known
as Tate’s algorithm in the field, is quite involved with many subcases and a non-trivial proof
of terminations, and takes many pages to describe when expressed in paper form.

One thing that makes this an interesting is that to give a formal definition of the quantities
the algorithm actually computes is still out of reach, nevertheless the steps of this algorithm
as described in the literature can be implemented and termination can be proved with
some non-trivial tracking of the state involved, but in what ways is this implementation
more trustworthy than one in a regular programming language? I’d like to consider what
guarantees implementing such code in a the strict setting of a proof assistant can give us,
compared to ordinary code, even when the gold standard isn’t yet attainable.

The direct relationship between the mathematical theory and the code in this case means
that this implementation very clearly states what assumptions are made about the ring
we are working in, and in fact makes this the most general implementation available, this
then begs the question: how can we best integrate mathematical code written using proof
assistants into existing CASes? So it may be useful to users not running proof assistants
themselves.

3.4 Learning from “invisible mathematics”
Jacques Carette (McMaster University – Hamilton, CA)

License Creative Commons BY 4.0 International license
© Jacques Carette

Recently Andrej Bauer coined the term “invisible mathematics” for those aspects of math-
ematics which are readily apparent when doing them mechanically (especially, but not only,
in proof assistants) but which is essentially invisible in traditional paper-math. Three main
examples were given, and their formalization discussed.

Here we aim to give more such examples – but the aim is not on how to formalize
them, but rather to observe their consequences. In particular, some instances of “invisible
mathematics” readily reveal the cognitive load on learners of some (visible) mathematics.
Rather than seeing parts of the “de Bruijn factor” as an impediment, we instead regard it as
a learning opportunity.
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3.5 Proving an Execution of an Algorithm Correct?
James H. Davenport (University of Bath, GB)

License Creative Commons BY 4.0 International license
© James H. Davenport

We have previously [1] asked the question “Do I believe the output from my (complicated,
optimised, unverified) computer algebra system?”. If it gives me a positive answer, e.g.
“the answer to

∫
f is g”, then we can check that g′ = f , etc. But what if it says “there is

no answer”? In particular, if we ask to factor the polynomial F , then we can check that
the factors multiply to F , but what about the (implicit) statement that these factors are
irreducible? Currently, the user just has to believe the algebra system. We ask, and partially
answer, the question “could the algebra system also produce a certificate, or the hints to
construct a certificate, of irreducibility of the factors” (based on the work the algebra system
has already done). This was taken up by one working group.

References
1 James Harold Davenport. Proving an Execution of an Algorithm Correct? In Dubois and

Kerber [2], pages 255–269.
2 Catherine Dubois and Manfred Kerber, editors. Proceedings CICM 2023, volume 14101 of

Springer Lecture Notes in Computer Science, 2023.

3.6 Extracting Mathematical Concepts from Text
Valeria de Paiva (Topos Institute – Berkeley, US)

License Creative Commons BY 4.0 International license
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Joint work of Valeria de Paiva, Lucy Horowitz, Jacob Collard, Eswaran Subramahnian, Pavel Kovalev, Qiyue Gao,
Lawrence Moss

Main reference Lucy Horowitz, Valeria de Paiva: “MathGloss: Building mathematical glossaries from text”, CoRR,
Vol. abs/2311.12649, 2023.

URL https://doi.org//10.48550/ARXIV.2311.12649
Main reference Jacob Collard, Valeria de Paiva, Eswaran Subrahmanian: “Parmesan: mathematical concept

extraction for education”, CoRR, Vol. abs/2307.06699, 2023.
URL https://doi.org//10.48550/ARXIV.2307.06699

Main reference Jacob Collard, Valeria de Paiva, Brendan Fong, Eswaran Subrahmanian: “Extracting Mathematical
Concepts from Text”, CoRR, Vol. abs/2208.13830, 2022.

URL https://doi.org//10.48550/ARXIV.2208.13830
Main reference Valeria de Paiva, Qiyue Gao, Pavel Kovalev, Lawrence S. Moss: “Extracting Mathematical Concepts

with Large Language Models”, CoRR, Vol. abs/2309.00642, 2023.
URL https://doi.org//10.48550/ARXIV.2309.00642

We describe the project Network Mathematics we are developing at the Topos Institute,
Berkeley, CA. We hope to take advantage of the tremendous recent progress in Natural
Language Processing (NLP), including LLMs, transformers, etc, to extract information from
mathematical texts. Also we think mathematical language is what mathematicians use when
communicating with each other, so we should leverage mathematical English to increase the
accessibility of mathematics to mathematicians, students and the general public.

To work on these goals, we have three main preliminary subprojects:
1. MathGloss (together with Lucy Horowitz, Chicago) – a collection of glossaries of college

math, connected to each other via WikiData.
2. Parmesan (together with Jacob Collard and Eswaran Subramahnian, NIST) provides

semantic search on the field of Category Theory, using different knowledge bases at
different levels (research math, wiki math and textbook math).
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3. MathChat (together with Gao, Kovalev and Moss, Indiana) using generative AI (chatGPT
and GTP-4) to extract concepts from text.

All these subprojects need to grow and need to include more sources. Also, further work
needs to be done to structure the extracted concepts into a proper ontology, to obtain a
proper Knowledge Graph for mathematics.

3.7 (Re)Verification of Proofs
Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 4.0 International license
© Catherine Dubois

Main reference Guillaume Burel, Guillaume Bury, Raphaël Cauderlier, David Delahaye, Pierre Halmagrand, Olivier
Hermant: “First-Order Automated Reasoning with Theories: When Deduction Modulo Theory
Meets Practice”, J. Autom. Reason., Vol. 64(6), pp. 1001–1050, 2020.

URL https://doi.org//10.1007/S10817-019-09533-Z

The talk gives a quick overview of some tools developed around Dedukti to verify, re-verify or
cross-verify proofs, more precisely, Zenon Modulo, iProverModulo, Archsat, and Ekstrakto.
The three first ones directly produce Dedukti proofs that can be checked by the Dedukti
checker. The latter reconstructs a Dedukti proof from a proof trace by reproving each step
using a Dedukti producing tool and combining the proofs of the steps to get a proof of the
original formula. In the talk, we also point out two projects: BWare and ICSPA. The first
one aimed at developing a mechanized framework for automated verification of AtelierB
proof obligations where Zenon Modulo and iProvermodulo were developed or used. ICSPA is
a project in progress where the objectives are to improve confidence in the proofs realized in
the context of B/Event-B and TLA+ by formally and independently verifying these proofs
and also to enable sharing and reusing proofs and models between B/Event-B and TLA+
using lambda-PI calculus modulo theory and Dedukti.

3.8 Understanding the Symmetries of Bin Packing Problems Inspired by
Application Deployment in the Cloud

Madalina Erascu (West University of Timisoara, RO)

License Creative Commons BY 4.0 International license
© Madalina Erascu

Automated deployment of component-based applications in the Cloud consists in the allocation
of virtual machines (VMs) offers from various Cloud Providers such that the constraints
induced by the interactions between components and by the components hardware/software
requirements are satisfied and the performance objectives are optimized (e.g. costs are
minimized). It can be formulated as a constraint optimization problem, hence, in principle,
the optimization can be carried out automatically. In the case the set of VM offers is large
(several hundreds), the computational requirement is huge, making the automatic optimization
practically impossible with the current general optimization modulo theory (OMT) and
mathematical programming (MP) tools. We overcame the difficulty by methodologically
analyzing the particularities of the problem with the aim of identifying search space reduction
methods. Some of these methods are exploiting the symmetries of the general Cloud
deployment problem leading to symmetry breakers. However, little is know/understood

23401
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about the symmetries of this problem which could lead to symmetry breakers which are not
experimentally constructed. We present some of the symmetries of a simplistic formulation
of automated deployment with the hope that the audience:

can bring input regarding approaches applied for similar problems (bin-packing)
is interested in taking part in a small working group to discuss if invariant theory of finite
groups (see, e.g., Chapter 7 of [1]) could bring some insights towards the formalization of
symmetries.

References
1 Cox, D.A., Little, J., O’Shea, D.. Invariant Theory of Finite Groups. In: Ideals, Varieties,

and Algorithms. Undergraduate Texts in Mathematics. Springer, Cham, 2015

3.9 House of Graphs: A searchable database of interesting graphs and
more

Jan Goedgebeur (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Jan Goedgebeur

Joint work of Jan Goedgebeur, Gunnar Brinkmann, Kris Coolsaet, Sven D’hondt, Gauvain Devillez, Hadrien Mélot
Main reference Kris Coolsaet, Sven D’hondt, Jan Goedgebeur: “House of Graphs 2.0: A database of interesting

graphs and more”, Discret. Appl. Math., Vol. 325, pp. 97–107, 2023.
URL https://doi.org//10.1016/J.DAM.2022.10.013

We will present the House of Graphs (https://houseofgraphs.org/), which is a database
of graphs. The House of Graphs hosts complete lists of graphs of various graph classes (e.g.
cubic graphs, fullerenes, trees, etc.), but its main feature is a searchable database of so
called “interesting” graphs, which includes graphs that already occurred as extremal graphs
or as counterexamples to conjectures. We will highlight the features of the website and
demonstrate how users can perform queries on this database and how they can add new
interesting graphs to it.

3.10 Mostly Automated Proof Repair for Verified Libraries
Kiran Gopinathan (National University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Kiran Gopinathan

Joint work of Kiran Gopinathan, Mayank Keoliya, Ilya Sergey
Main reference Kiran Gopinathan, Mayank Keoliya, Ilya Sergey: “Mostly Automated Proof Repair for Verified

Libraries”, Proc. ACM Program. Lang., Vol. 7(PLDI), pp. 25–49, 2023.
URL https://doi.org//10.1145/3591221

The cost of maintaining formally specified and verified software is widely considered pro-
hibitively high due to the need to constantly keep code and the proofs of its correctness in
sync—the problem known as proof repair. One of the main challenges in automated proof
repair for evolving code is to infer invariants for a new version of a once verified program
that are strong enough to establish its full functional correctness.

In this work, we present the first proof repair methodology for higher-order imperative
functions, whose initial versions were verified in the Coq proof assistant and whose spe-
cifications remained unchanged. Our proof repair procedure is based on the combination
of dynamic program alignment, enumerative invariant synthesis, and a novel technique for
efficiently pruning the space of invariant candidates, dubbed proof-driven testing, enabled by
the constructive nature of Coq’s proof certificates.
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3.11 Towards a centralized system for mathematical objects
Dimitri Leemans (UL – Brussels, BE)

License Creative Commons BY 4.0 International license
© Dimitri Leemans

Mathematical data are available in all sorts of formats on the web. Often it is difficult for
those who did not create the data to use them. Also these data are at risk of disappearing.
We advocate for the building of a system consisting of

a centralised database of mathematical objects, checked by peers,
a website permitting to extract data from the database and send it to computational
software (Magma, gap, etc.) to test conjectures, build more objects, ...

3.12 Machine-learnable Data Sets for Formalized Mathematics
(MLFMF)

Matej Petkovic (University of Ljubljana, SI), Andrej Bauer (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
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Joint work of Andrej Bauer, Matej Petković, Ljupčo Todorovski
Main reference Andrej Bauer, Matej Petkovic, Ljupco Todorovski: “MLFMF: Data Sets for Machine Learning for

Mathematical Formalization”, CoRR, Vol. abs/2310.16005, 2023.
URL https://doi.org//10.48550/ARXIV.2310.16005

MLFMF is a collection of data sets for benchmarking recommendation systems used to
support formalization of mathematics with proof assistants. Each data set is derived from a
library of formalized mathematics written in proof assistants Agda or Lean. The collection
includes the largest Lean 4 library Mathlib, and some of the largest Agda libraries: the
standard library, the library of univalent mathematics Agda-unimath, and the TypeTopology
library. Each data set represents the corresponding library in two ways: as a heterogeneous
network, and as a list of s-expressions representing the syntax trees of all the entries in
the library. The network contains the (modular) structure of the library and the references
between entries, while the s-expressions give complete and easily parsed information about
every entry.

3.13 Heterogenous search in formal mathematical libraries
Claudio Sacerdoti Coen (University of Bologna, IT)

License Creative Commons BY 4.0 International license
© Claudio Sacerdoti Coen

I will present how I integrated in LambdaPi an indexer and search engine for mathematical
formulae up to instantiation/generalization. The search engine allows to query in parallel
libraries obtained by various provers (e.g. HOL/Matita/Coq/...) via an encoding into
Dedukti/LambdaPi.

The task poses several challenges that are novel compared to search engines developed
for a single system:
1. the statements occur encoded in LambaPi and the same statement coming from several

systems is encoded in a different way
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2. the statement can occur in several shapes, up to rewriting rules
3. in order to look in parallel in several libraries, one need to search up to alignment of

constants.
I have solved all three previous challenges exploiting the rewriting engine of LambdaPi in
order to:
1. undo the encoding via a non-type preserving transformation,
2. normalize the statements before indexing and the queries as well,
3. rewrite all cosntants to a canonic form (the representative of the equivalence class of

aligned formula).
Indexing has been implemented combining substitution trees and information positioning
(the one exploited in the Whelp system).

3.14 Proof and Computation with PVS
Natarajan Shankar (SRI – Menlo Park, US)

License Creative Commons BY 4.0 International license
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SRI’s Prototype Verification System (PVS) is an interactive proof assistant based on higher-
order logic developed at SRI over the last three decades as a unified platform and language
for formal specification, mathematical modeling, programming, and proof. It has been used
to develop extensive libraries for mathematics and computing and for verification projects
spanning fault-tolerant systems, air-traffic control systems, parsers, compilers, separation
kernel, data refinement, and hardware. Nearly all of the specification language is efficiently
executable with code extraction to Common Lisp and C, and experimental code generators
targetting standard ML and Rust. We describe some of our experiments with modeling,
proof, and computation focusing on extracting efficient C code from verified definitions.

During the Dagstuhl Seminar, we used PVS to verify two witness formats and executable
checkers for graph connectivity. The witness for connectivity is a sequence containing all
of the vertices such that each vertex has a neighbor in the preceding part of the sequence.
This implies, by induction, that the graph is connected. For disconnectivity, the witness is a
k-coloring of the vertices for k > 1 such that no vertex has a neighbor of a different color.

3.15 Enumerion, a system for systematic enumeration of finite
mathematical structures

Jure Taslak (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
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Joint work of Jure Taslak, Andrej Bauer

In the talk I presented my recent work in progress on Enumerion, which is a system for
systematic enumeration of finite mathematical structures based on dependent type theory and
implemented in OCaml. The problem of counting and enumerating discrete finite structures is
a classical one. In the history of counting there are however quite a few published mistakes[1].
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The idea of this system is to have a systematic way of describing the enumeration problem
which is amenable to formalization. After explaining the idea behind the system I showed a
short demo of the current capabilities of Enumerion.

References
1 McKay, Brendan D and Meynert, Alison and Myrvold, Wendy. Small Latin squares, quasig-

roups, and loops Journal of Combinatorial Designs

3.16 Alien Coding: Learning Synthesis of OEIS Sequences
Josef Urban (Czech Technical University – Prague, CZ)

License Creative Commons BY 4.0 International license
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Joint work of Thibault Gauthier, Miroslav Olšák, Josef Urban
Main reference Thibault Gauthier, Miroslav Olsák, Josef Urban: “Alien coding”, Int. J. Approx. Reason., Vol. 162,

p. 109009, 2023.
URL https://doi.org//10.1016/J.IJAR.2023.109009

We introduce a self-learning algorithm for synthesizing programs that provide explanations
for OEIS sequences. The algorithm starts from scratch initially generating programs at
random. Then it runs many iterations of a self-learning loop that interleaves (i) training
neural machine translation to learn the correspondence between sequences and the programs
discovered so far, and (ii) proposing many new programs for each OEIS sequence by the
trained neural machine translator. The algorithm discovers on its own programs for more
than 78000 OEIS sequences, sometimes developing unusual programming methods. We
analyze its behavior and the invented programs in several experiments.

3.17 Isabelle as System Platform for the Archive of Formal Proofs
(AFP)

Makarius Wenzel (Dr. Wenzel – Augsburg, DE)

License Creative Commons BY 4.0 International license
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Isabelle is usually seen as an interactive proof assistant, mostly for Higher-Order Logic
(HOL), but that is somehow accidental. In reality, Isabelle is a system platform for functional
programming and formal proofs, with sufficient infrastructure to carry its own weight and
gravity. The Archive of Formal Proofs (AFP) is the official collection of Isabelle applications
that is maintained together with the base system. That poses ever growing demands on the
Isabelle platform. This talk gives an overview of Isabelle software technology, with specific
focus on Programming and Scaling, e.g. distributed build clusters for AFP.
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4 Working groups

4.1 Using verified code inside CASes
Alex Best (King’s College – London, GB) and Tobias Nipkow (TU München – Garching,
DE)

License Creative Commons BY 4.0 International license
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Joint work of Alex Best, Tobias Nipkow, Samuel Lelièvre, Olexandr Konovalov, Mario Carneiro, Assia Mahboubi

Proof assistants are by now able to produce reasonably efficient executable code for a variety
of mathematical algorithms. This, together with the high degree of confidence they can
provide in the correctness of the code (and therefore in the answers produced), makes using
code produced using a proof assistant in an otherwise unverified computer algebra system
quite attractive. This could be used to replace existing unverified implementations (or
complement them with possibly slower reference implementations) or add new functionality
completely.

This working group used the expertise from participants on both the ITP and CAS sides
to explore different methods and implementations to pass results of computations from code
generated by ITPs to CASes. This was in order to understand what is possible and evaluate
whether CASes could feasibly benefit from using such code more widely.

As a proof of concept, Tobias Nipkow took a verified (in Isabelle) implementation (in
Haskell) of the Berlekamp and Zassenhaus integer polynomial factorization algorithm (which is
available at the AFP https://www.isa-afp.org/entries/Berlekamp_Zassenhaus.html)
and made it callable from the computer algebra systems Sage (with the help of Samuel
Lelièvre) and GAP (with the help of Olexandr Konovalov). Although it was not meant to
compete with the standard Sage and GAP functions, it turned out that in the case of GAP
it outperformed the standard Factors function on large polynomials.

Alex Best, with the help and input of Mario Carneiro and Assia Mahboubi experimented
with linking directly to binary (compiled) objects produced by Lean 4 using Python (with
the intention of targeting SageMath). Using the low level CTypes library it was possible to
directly call Lean implementations of functions on simple types, such as a nextPrime on 64
bit integers. A proof of concept for working at a higher level, using Lean interpreter to look
up Lean functions stored memory, without needing prior knowledge of their exported names
in compiled code, was also written. This allowed more flexibility as no wrapping function
would need to be written on the Lean side, the CAS could call arbitrary code producing
answers in a desired format without having to re-run the Lean compiler. Finally initial
experiments with using polymorphic functions implemented in Lean on types implemented
on the Python side were successful, for example with this paradigm a Python program could
provide a list of Python objects and a callback comparison function to a Lean implementation
of quicksort (which operates an arbitrary ordered type), this combination would produce
correct output subject to the assumption that the python comparison function satisfies the
partial order hypothesis used in the Lean code. In this way mixing verified and unverified
code could be done with little overhead.

Going forward next steps would be to turn these examples into user facing libraries,
to dynamically load and call code from ITP libraries from CASes, we believe that our
experiments have shown such libraries can be of benefit to CAS users, even those with little
formalization experience.
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4.2 Reconceptualization
Jacques Carette (McMaster University – Hamilton, CA), Gilles Dowek (ENS – Gif-sur-Yvette,
FR), and Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 4.0 International license
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Main reference Florian Rabe, Franziska Weber: “Morphism Equality in Theory Graphs”, in Proc. of the Intelligent
Computer Mathematics – 16th International Conference, CICM 2023, Cambridge, UK, September
5-8, 2023, Proceedings, Lecture Notes in Computer Science, Vol. 14101, pp. 174–189, Springer, 2023.

URL https://doi.org//10.1007/978-3-031-42753-4_12

4.2.1 Motivation

Many concepts in mathematics have evolved over time, perhaps none more so than the
concept of “space”. While it seemed to have settled on “topological space” for a certain time,
it was then rethought later and today it seems that “locale” and “infinity groupoid” are both
solid contenders for the modern notion. Many notions have a similarly rich ongoing history:
integration (quadrature), function, equality, and so on. Recent examples of such rethinking
abound (perfectoid spaces and condensed mathematics, homotopy type theory, and so on).

In parallel, it is equally clear that many concepts have a multitude of equivalent (or
quasi-equivalent) formulations. For example, the number of different representations of
graphs is quite astounding.

4.2.2 Purpose

The working group was formed to discuss how to enable proof assistants in particular, and
mechanized mathematics systems in general, to deal with these issues.

4.2.3 Discussion

We first discussed the simpler issue, that of having multiple presentations and representations.
Historically, the first realization of the importance of this is via change of variables: working
on orbital mechanics in Cartesian coordinates is close to sheer insanity while being rather
workable in spherical coordinates. This is a very common theme in mathematics where a
change in point-of-view can make a substantial difference in how easy a concept is to handle.
This ranges for simple issues like different axiomatizations of what is a group, to larger shifts
such as switching from indexed categories to fibered categories (and more recently, using
displayed categories for similar aims).

It is worthwhile remembering that Lie Symmetries are a classical example of this phe-
nomenon: they are all about finding a “good” set of coordinates for which a PDE non-trivially
simplifies. What makes them different is that one can compute what this change of viewpoint
needs to be, while in most cases creativity is required.

Alas, current proof assistants are largely hampered by a sub-optimal design decision,
namely that concepts are assumed to have a single “canonical” definition. While univalent
mathematics promises that one can transport between equivalent concepts, no system has
yet to build in features that facilitate this. In other words, there has been no engineering
effort made to create user-friendly facilities to accommodate multiple representations. There
does exist work [3, 4] that lays out the concept of a Realm which is supposed to encompass
this very idea: a single concept with potentially many presentations and/or representations.
Many engineering and usability hurdles remain.

Beyond convenience, the reason to want concepts to have multiple interfaces and sub-
interfaces is to be able to allow more powerful development by refinement. Here the idea of
sub-interfaces really shines: if we know in advance that certain methods will never be used,
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it is sometimes the case that significantly more efficient representations and/or algorithms
become feasible. For example, if we want a set representation where we can perform union,
intersection and membership but neither count the number of elements or perform iteration
on all elements, then there is a fast representation.

The overlap with the alignment working group was also discussed: for example, anyone
who does constructive mathematics knows that there is no such singular concept as “finite
set”. Rather, there are a multitude of subtly related concepts all of which are equivalent to
“finite set” classically. Whether to lump them all together or not is a thorny issue.

We also discussed the inverse interface problem: given some definitions and proven
properties, how to find a good set of axioms that would abstract over that? Many proof
developments, in practice, contain natural “layers” where outer layers only depend a de facto
interface given by a lower layer, but this interface is never made explicit. Can the process of
finding these layers in a given development be automated? That would help us create strong
abstraction barriers. Weak barriers are a real problem as some systems are rather eager
to δ-expand, leading to proof scripts which are much lower-level than necessary. As different
formalizations may give rise to very different interfaces, the need for Realms re-appears.

Another aspect of automation was discussed: transport by meta-programming. The
idea here is to not just transport across isomorphisms “in theory” but to perform it as a
meta-program that tries to eliminate the transport altogether by attempting to rephrase
everything in terms of the target language. In particular, such transport meta-programs
remain very useful even when Univalence is false.

4.2.4 Conclusion

It became clear that, given the scope of the problem and the short amount of time at the
seminar, we could not obtain any tangible results beyond clearly documenting the problem.
The group then disolved early.

4.3 Formal Verification of Computer Algebra (Factorisatoion)
James H. Davenport (University of Bath, GB), Alex Best (King’s College – London, GB),
Mario Carneiro (Carnegie Mellon University – Pittsburgh, US), and Edgar Costa (MIT –
Cambridge, US)

License Creative Commons BY 4.0 International license
© James H. Davenport, Alex Best, Mario Carneiro, and Edgar Costa

Of the problems listed by Davenport ([1] and talk here) we chose polynomial factorisation
as having least mathematical pre-requisites. For computer algebra, we took FLINT as an
easy-to access library of algorithms (specifically factor_Zassenhaus). As proof engine we
took LEAN (familiarity). We have realised what we need as a certificate, seen that we
can extract these data from FLINT (but could FLINT do a little more work to make the
verification easier?), and have started formalising the required statements in LEAN. This
has also led to identification of improvements to LEAN, and research questions in computer
algebra. We are continuing to develop this ideas, in Davenport’s case as a challenge to his
students’ LEAN study group.
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4.4 Coq, Isabelle and Dedukti as heterogeneous networks
Filip Koprivec (University of Ljubljana, SI), Mario Carneiro (Carnegie Mellon University –
Pittsburgh, US), Stefania Dumbrava (ENSIIE – Paris, FR), Matej Petkovic (University of
Ljubljana, SI), and Makarius Wenzel (Dr. Wenzel – Augsburg, DE)
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The working group worked on pushing the entries (that correspond to formalized mathematical
concepts) from Coq, Isabelle and Dedukti systems into graph databases, on which machine
learning can be applied.

To unify the schema of the created networks, we
adjusted the RDF triplets describing the Coq entries,
wrote an extension of Dedukti parser that extracts the necessary information from abstract
syntax trees of the entries,
and wrote parsing tool for Isabelle XMLs.

The end goal was include this work to the series of the existing networks, extracted from the
largest Agda libraries and Mathlib4 library of Lean.

We thank Talia Ringer and Catherine Dobuis for the ideas.

4.5 Object identification using invariant based decision trees
Filip Koprivec (University of Ljubljana, SI) and Matej Petkovic (University of Ljubljana, SI)
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Object identification up to isomorphism is in general computationally expensive (group
isomorphism, graph isomorphism...) and identifying a given object with a representative
from a known dataset is difficult.

But often, one is presented with object together with few pre-computed invariants or
some invariants, that can quickly be computed from a given representation. Most of the
time, the difficulty of calculating the invariant can be approximated relatively well or one
can use the timings produced as a side effect of constructing the whole database of objects
and associated invariants.

The working group was mostly focused on the problems where objects are graphs or
groups and the preliminary experiments were carried out on the dataset, representing graphs.
Every graph (a row in the data table) was represented by the number of invariants (columns
in the dataset). Some of the values in the table were missing, i.e., not all the variants were
computed for all the graphs. The working group experimented with a modification of decision
tree algorithm that uses both information gain of an invariant and its calculation difficulty
to compute the next invariant on which to split the dataset. With such an approach, we can
speed up the identification of unknown object in an existing database of objects.
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The results of experimentation: implemented decision tree variant and data acquisi-
tion from house of graphs together with evaluation are available at https://github.com/
Petkomat/invariant-computation-trees.

4.6 Datasets
Dimitri Leemans (UL – Brussels, BE), Katja Berčič (University of Ljubljana, SI), Jan
Goedgebeur (KU Leuven, BE), Darij Grinberg (Drexel Univ. – Philadelphia, US), Samuel
Lelievre (University Paris-Saclay – Orsay, FR), Harshit J Motwani (Ghent University, BE),
and Tom Kaspar Wiesing (Universität Erlangen-Nürnberg, DE)
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Participants in this working group worked on several smaller, but related tasks.

4.6.1 Cataloguing and/or indexing mathematical datasets.

1. Mathrepo: https://mathrepo.mis.mpg.de/, https://ar5iv.labs.arxiv.org/html/
2202.04022

2. MathDB: https://mathdb.mathhub.info/
It may be possible to automate a part of the collection process by scraping Zenodo for
mathematical datasets. This would probably require a list of mathematical concepts to be
used in search queries. We identified a few considerations for catalogue/index projects:

automatic uploading of datasets to Zenodo for long-term storage,
accommodating reproducibility (recomputing the datasets, cf. Rescience),
ratings and tags: independently recomputed, found same results; independently recom-
puted, found different results; not independently recomputed; formally certified.

4.6.2 Connecting databases and CAS.

Implementing an interface to the House of Graphs database in SageMath, including improv-
ing the House of Graph’s API. The pull request can be viewed at https://github.com/
sagemath/sage/pull/36409.

4.7 Aligning Mathematical Concepts Across Libraries
Florian Rabe (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 4.0 International license
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4.7.1 Motivation

Irrespective of the knowledge aspect (such as deduction, computation, data, or document-
ation), mathematical libraries share several abstract characteristics. Most importantly,
they can be seen as a set of fragments each carrying a global identifier and describing a
mathematical concept. Here we use concept as a generic term to subsume any named type,
object, operation, theorem, or similar. For example, in a logical library, these are (mostly)
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definitions and theorems; in a computer algebra library, they are (mostly) type and function
definitions; in a concrete data set, they are the entries of the data set, often rows in a table;
and in a document library, they are the articles explaining a concept.

The work group recognized the alignment problem [5, 6] as a major roadblock to inter-
operability across mathematical software systems: The mathematical concepts introduced
by the various libraries overlap substantially, but there is no systematic connection between
the same mathematical concept described in different libraries. Concretely, we call a pair
of identifiers, typically but not necessarily from different libraries, an alignment if both
are descriptions of the same concept. Then the alignment problem can be formulated as
the challenge of (a) collecting alignments for existing large mathematical libraries and (b)
leveraging these alignments for knowledge interchange.

The group identified three levels at which the problem can be attacked:
At the identifier level, the alignments are just pairs of identifiers without a machine-
checkable guarantee that they correspond to each other in any way.
At the expression level, an alignment (c, d) additionally carries information how terms
with head c can be translated to terms with head d. This translation can be quite complex
and involve, e.g., changing (which may require computation), adding (which may require
inference), omitting, or reordering arguments.
At the semantic level, the alignments are additionally verified for correctness. This can
be done, e.g., by translating theorems about c along the alignment and proving the
translated theorems in the system of d. Critically, from (i) to (iii), task (a) becomes
harder while task (b) becomes easier. But even identifier level alignments are useful, e.g.,
to cross-reference across libraries or to search for the same query in multiple libraries in
parallel.

4.7.2 Results

The group surveyed the available technologies and alignment collection efforts and concluded
that, while semantic alignments must be the ultimate goal, only for identifier level alignments
is a major community-driven collection effort feasible at this point.

The group compiled the following existing collections of identifier alignments and concept
lists:

the Math Subject Classification (MSC)
the nLab page titles (https://ncatlab.org/nlab/)
the SMGloM concept and translation library [2]
the concept list for the undergraduate math curriculum and the alignments into Lean
Mathlib
(https://github.com/leanprover-community/mathlib4/blob/master/docs/undergrad.yaml)
the concept translation library maintained by Hosgood
(https://thosgood.com/maths-dictionary/)
the manual alignments collected for theorem prover libraries in [7]
the concept list used by SageMath to align computer algebra systems integrated with SageMath
(https://doc.sagemath.org/html/en/reference/categories/index.html)
the MathGloss alignments for undergraduate math education [4] (https://mathgloss.github.
io/MathGloss/)
the relevant subset of the Wikidata ontology, which includes various alignments to informal
libraries
the nNexus alignments across informal libraries [1]
the semantic alignments between HOL systems found by machine learning in [3]
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The work identified a set of several hundred concepts that can be used as a seed for an
alignment library and started using the above resources to compile alignments for it. These
resources are collected at https://github.com/UniFormal/alignments/.

In order to scalably collect, maintain, and leverage alignment sets in the future, the group
makes two recommendations:

All developers of math libraries should add a feature to their tool that allows tagging
definitions with the aligned identifier in a central concept list. The build process of the
library should generate the list of alignments between those central concepts and the
tagged identifiers in the system’s library. This list should be published alongside the
library.
Wikidata is suggested as the central concept list. This is motivated by the observation
that Wikidata is a neutral library (in the sense of not being biased towards any research
system or community) and the most likely to be scalably maintained and broadly used in
the long term.
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4.8 Scalability Estimates of Graph Certificates in a Theorem Prover
Using SAT Encodings

Kathrin Stark (Heriot-Watt University – Edinburgh, GB), Madalina Erascu (West University
of Timisoara, RO), Kazuhiko Sakaguchi (INRIA – Nantes, FR), and Jure Taslak (University
of Ljubljana, SI)
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4.8.1 Motivation

What is the minimum amount of information needed to certify that a graph has a specific
property? For some properties, these certificates are easy to provide. For example, to prove
that a graph is Hamiltonian, one only requires describing a Hamiltonian path. But for some
properties, it is not obvious what an efficient certificate is. For example, to prove that a
graph is not Hamiltonian, the obvious certificates all get extremely large. SAT encodings are
a general way to encode properties, and it is well-known that most graph predicates can be
encoded via SAT. But how well does this scale?

This working group consists of experts on SMT solvers, theorem provers, and CoqELPI
(Madalina Erascu, Kazuhiko Sakaguchi, Kathrin Stark, Jure Taslak). The aim was to create
a proof of concept for end-to-end verified certificates for graph properties to check their
scalability.

4.8.2 Previous Work

Certificate checking of (Un)SAT problems has been used in several papers. SMTCoq (Ekici
et al. 2017, Keller 2019) is a certified checker for proof witnesses for the SAT solver ZChaff
and the SMT solvers veriT and CVC4. Lammich uses the GRAT certificate for a verified
SAT solver in Isabelle. Cruz-Filipe et al. implemented two certified LRAT checkers, one of
them for the Coq proof assistant.

This working group decided to start off with the work by Cruz-Filipe et al., as this was a
relatively lightweight development that was created in a theorem prover the group members
were familiar with. The theorem prover further offered the ability to define the SAT encoding
manually, making it easier to test scalability.

4.8.3 Overview

For any given graph, the approach consists of three steps. First, an unverified Python
program generates a SAT encoding of the desired graph property and solves the encoding
using a state-of-the-art SAT solver. This SAT solver also generates an LRAT certificate
to demonstrate the correctness of the result. Next, Cruz-Filipe et al.’s approach is used
to validate the LRAT certificate. Finally, a separate (constructive) Coq proof shows that
the SAT encoding indeed corresponds to the desired abstract graph property. The abstract
graph property uses a naive encoding of graphs, paths, and connectivity/Hamiltonicity in
Coq. It typically requires a proof by contradiction and hence requires the decidability of
the respective property. Using CoqELPI, we could moreover show that the SAT encoding of
Python and the one used in Coq coincide. Overall, the construction thus provides a proof
of the given property while leaving most of the heavy computational lifting to an external,
highly-optimized SAT solver.
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For the scalability tests in this seminar we considered two graph properties: connectivity
and Hamiltonicity. We randomly generated graphs through a simple python program and
checked at which node count the checker suffered a segmentation fault. The tests included
both graphs that have and that do not have the respective property.

4.8.4 Results

The first results provided a first idea of scalability and showed that the approach scaled up
to graphs that were around an order of magnitude bigger than initially expected.

For a proof of concept, the working group started with certificates for connectivity. The
process described above was shown to scale up to 2500 nodes (both for connectivity and the
absence of connectivity). An end-to-end correctness proof (with the assumed dependencies)
required around 300 lines of code. It seems likely that the code could be shortened significantly
by using a suitable graph library.

For certificates of being non-Hamiltonian, the first approaches scaled up to 50 nodes. In
the available time, no end-to-end proof was implemented.

4.8.5 Future Work

A full end-to-end proof for being non-Hamiltonian would be an obvious next step. Another
interesting direction would be to take a deeper look at graph certificates via SAT encodings in
the literature. For this proof of concept, we chose the simplest encoding for non-Hamiltonian
graphs. A more efficient SAT encoding should improve scalability accordingly and extend to
further graph properties.
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