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Abstract
Recently developed non-volatile memory (NVM) devices provide persistency guarantees along
with byte-addressable accesses and performance characteristics that are much closer to volatile
random-access memory (RAM). However, writing programs that correctly use these devices is
challenging, and bugs related to their use can cause permanent data loss in applications.

This Dagstuhl Seminar brought together experts in a range of areas related to concurrency
and persistent memory to explore and develop formal methods for ensuring the correctness
of applications that use persistent memory. Talks and discussions at the seminar highlighted
challenges related to correctness criteria for concurrent objects using persistent memory, liveness
properties of persistent objects, and how changes in NVM and related technologies should shape
the development of formal methods for NVM.
Seminar October 8–11, 2023 – https://www.dagstuhl.de/23412
2012 ACM Subject Classification Hardware → Non-volatile memory; Theory of computation →

Program semantics; Theory of computation → Program verification
Keywords and phrases concurrency, formal methods, non-volatile-memory, persistency, verifica-

tion
Digital Object Identifier 10.4230/DagRep.13.10.50

1 Executive Summary

Ori Lahav
Azalea Raad
Joseph Tassarotti
Viktor Vafeiadis

License Creative Commons BY 4.0 International license
© Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis

Many systems and applications need to store data in a durable way. Historically, durable
storage devices had considerably higher latency than volatile random-access memory (RAM)
and provided interfaces with larger, coarser access granularity. To achieve acceptable
performance, applications requiring durable storage were structured to account for these
characteristics. However, in recent years, novel storage systems, such as non-volatile memory
(NVM), have emerged that provide durability along with performance and access granularity
much closer to RAM. This provides the opportunity for applications to achieve durability
with much lower latencies.

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Formal Methods for Correct Persistent Programming, Dagstuhl Reports, Vol. 13, Issue 10, pp. 50–64
Editors: Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orilahav@tau.ac.il
mailto:azalea.raad@imperial.ac.uk
mailto:jt4767@nyu.edu
mailto:viktor@mpi-sws.org
mailto:anton@podkopaev.net
https://www.dagstuhl.de/23412
https://doi.org/10.4230/DagRep.13.10.50
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 51

However, taking full advantage of that opportunity involves restructuring applications to
make proper use of these new devices. Doing so requires care because bugs in these parts
of applications can cause permanent data loss. Moreover, non-volatile memory interacts in
subtle ways with caches and other parts of modern memory hierarchies, making it challenging
for programmers to write correct code.

One promising approach to address this challenge is to develop formal methods techniques
to certify the absence of bugs in programs using non-volatile memory. This Dagstuhl Seminar
brought together experts in non-volatile memory, relaxed memory, concurrency, and formal
methods to explore the application of formal methods to programming with persistent
memory. Since this subfield involves deep theoretical work, but is also very dependent
on technological developments, the participants of the seminar were from a spectrum of
backgrounds ranging from theory of verification to hardware specification, design, and testing.

The seminar included a series of talks and discussions, some of which were unplanned
additions prompted by topics or misunderstandings identified during earlier parts of the
seminar. The addition of these unplanned talks proved beneficial, adding a dynamic element
to the event. We decided to forgo smaller break-out sessions based on the feeling that much
of the seminar’s value was in discussions that spanned from theoretical to practical, drawing
on the full range of participants’ expertise.

Several recurring themes arose in the talks and following discussions:
Correctness Criteria and Specifications for Persistent Objects: A number of
correctness criteria have been proposed for concurrent objects that persistently store data.
Many of these definitions are adaptations of the classical notion of linearizability. However,
we discussed ways in which these existing definitions can have surprising consequences
when objects are implemented in the setting of weak memory. A related topic was the
appropriate guarantees that transactional interfaces should provide, as certain strong
guarantees may prevent efficient implementations.
Liveness: Our discussions revealed a lack of consensus on assumptions that can be
made from existing architectures concerning liveness properties, underscoring the need
for further research in this area.
Future of NVM and Related Technologies: NVM remains an emerging technology,
and manufacturers continue to announce large changes in plans for future product lines.
We discussed the ramifications of these changes and how techniques for the semantics and
verification of certain forms of NVM might apply to other persistency models. Moreover,
we identified the need for generic verification methods, which would lend themselves
more easily to ongoing changes in the exact semantics of the underlying memory system.
Indeed, several talks suggested modular approaches for verification, that, to some extent,
take the memory model as an input. Related technologies, including Remote Direct
Memory Access (RDMA) and Compute Express Link (CXL), were discussed, focusing on
the appropriate abstractions and semantics of interfaces for these devices, and challenges
with testing these devices.

We believe that these issues will be an important focus in research on formal methods for
persistent memory in the future.

23412



52 23412 – Formal Methods for Correct Persistent Programming

2 Table of Contents

Executive Summary
Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis . . . . . . . . . . 50

Overview of Talks
Semantics of Remote Direct Memory Access
Guillaume Ambal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Checking Liveness Properties under Weak Consistency (TSO as an Example)
Parosh Aziz Abdulla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Correctly Combining Concurrent and Persistent Transactional Memory
Brijesh Dongol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Utilizing Coherence for Persistence
Michal Friedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Some compositional semantics for shared memory: sequential consistency and
release/acquire
Ohad Kammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Programming Persistency Should Be Easy – but is it?
Jeehoon Kang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Challenges in Empirically Testing Memory Persistency Models
Vasileios Klimis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Automating Weak Memory Model Metatheory and Verification
Michalis Kokologiannakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Abstraction for Crash-Resilient Objects
Ori Lahav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Fairness for load buffering memory models
Anton Podkopaev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

DARTAGNAN: One tool for all models
Hernán Ponce de León . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Towards a formal specification of the Intel Architecture
Alastair Reid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

System and Failure Models Matter
Michael Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Transactional Semantics with Zombies
Michael Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Specifying and Verifying Persistent Libraries
Léo Stefanesco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Type System for Intermittent Computing
Milijana Surbatovich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Separation Logic for Concurrent, Crash-Safe Systems
Joseph Tassarotti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Persistent Scripting
Haris Volos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 53

Verifying the persistency library FliT
Heike Wehrheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

23412



54 23412 – Formal Methods for Correct Persistent Programming

3 Overview of Talks

3.1 Semantics of Remote Direct Memory Access
Guillaume Ambal (Imperial College London, GB)
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Remote direct memory access (RDMA) is a modern technology enabling networked machines
to exchange information without involving the operating system of either side, and thus
significantly speeding up data transfer in computer clusters. While RDMA is extensively used
in practice and studied in various research papers, a formal underlying model specifying the
allowed behaviours of concurrent RDMA programs running in modern multicore architectures
is still missing. This paper aims to close this gap and provide semantic foundations of
RDMA on x86-TSO machines. We propose three equivalent formal models, two operational
models in different levels of abstraction and one declarative model, and prove that the three
characterisations are equivalent. To gain confidence in the proposed semantics, the more
concrete operational model has been reviewed by NVIDIA experts, a major vendor of RDMA
systems, and we have empirically validated the declarative formalisation on various subtle
litmus tests by extensive testing. We believe that this work is a necessary initial step for
formally addressing RDMA-based systems by proposing language-level models, verifying their
mapping to hardware, and developing reasoning techniques for concurrent RDMA programs.

3.2 Checking Liveness Properties under Weak Consistency (TSO as an
Example)

Parosh Aziz Abdulla (Uppsala University, SE)
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Vahanwala

Main reference Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, Shankaranarayanan Krishna, Mihir
Vahanwala: “Overcoming Memory Weakness with Unified Fairness – Systematic Verification of
Liveness in Weak Memory Models”, in Proc. of the Computer Aided Verification – 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part I, Lecture
Notes in Computer Science, Vol. 13964, pp. 184–205, Springer, 2023.

URL https://doi.org//10.1007/978-3-031-37706-8_10

We consider the verification of liveness properties for concurrent programs running on weak
memory models. To that end, we identify notions of fairness that preclude demonic non-
determinism, are motivated by practical observations, and are amenable to algorithmic
techniques. We provide both logical and stochastic definitions of our fairness notions, and
prove that they are equivalent in the context of liveness verification. In particular, we show
that our fairness allows us to reduce the liveness problem (repeated control state reachability)
to the problem of simple control state reachability. We show that this is a general phenomenon
by developing a uniform framework which serves as the formal foundation of our fairness
definition, and can be instantiated to a wide landscape of memory models. These models
include SC, TSO, PSO, (Strong/Weak) Release-Acquire, Strong Coherence, FIFO-consistency,
and RMO.
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3.3 Correctly Combining Concurrent and Persistent Transactional
Memory

Brijesh Dongol (University of Surrey – Guildford, GB)
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© Brijesh Dongol

Joint work of Brijesh Dongol, Piotr Balcer, Ori Lahav, Azalea Raad, John Wickerson
Main reference Azalea Raad, Ori Lahav, John Wickerson, Piotr Balcer, Brijesh Dongol: “Intel PMDK Transactions:

Specification, Validation and Concurrency (Extended Version)”, CoRR, Vol. abs/2312.13828, 2023.
URL https://doi.org//10.48550/ARXIV.2312.13828

Software Transactional Memory (STM) is an extensively studied paradigm that provides an
easy-to-use mechanism for thread safety and concurrency control. With the recent advent of
byte-addressable persisent memory, a natural question to ask is whether STM systems can be
adapted to support recoverability via failure atomicity. In this article, we answer this question
by showing how STM can be easily integrated with Intel’s Persistent Memory Development
Kit (PMDK) transactional library (which we refer to as txPMDK) to obtain STM systems
that are both concurrent and persistent. We demonstrate this approach using known STM
systems, TML and NOrec, which when combined with txPMDK result in persistent STM
systems, referred to as PMDK-TML and PMDK-NORec, respectively. However, it turns out
that existing correctness criteria are insufficient for specifying the behaviour of txPMDK and
our concurrent extensions. We therefore develop a new correctness criterion, dynamic durable
opacity, that extends the previously defined notion of durable opacity with dynamic memory
allocation. We provide a model of txPMDK that has been validated for accuracy with Intel
developers, then show that this model satisfies dynamic durable opacity. Moreover, dynamic
durable opacity supports concurrent transactions, thus we also use it to show correctness of
both PMDK-TML and PMDK-NORec.

3.4 Utilizing Coherence for Persistence
Michal Friedman (ETH Zürich, CH)
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Coherence Protocol Stack with a Persistence Layer”, in Proc. of the 1st Workshop on Disruptive
Memory Systems, DIMES 2023, Koblenz, Germany, 23 October 2023, pp. 8–15, ACM, 2023.

URL https://doi.org//10.1145/3609308.3625270

Mechanisms to explicitly manage data persistence for non-volatile main memories are
fundamental for the correctness and performance of modern systems. So far, however,
most solutions are primarily based on software techniques. In this talk, I will describe
a persistence layer on hardware, to support correct handling of persistent lock-free data
structures. By exploiting cache-coherence messages, persistence can be transparently managed
by the hardware, with minimal user intervention. We have experimented with a partial
design on a Soft-CPU running on an FPGA to explore the idea and plan to further extend it
into a real hardware implementation.
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3.5 Some compositional semantics for shared memory: sequential
consistency and release/acquire

Ohad Kammar (University of Edinburgh, GB)
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Main reference Yotam Dvir, Ohad Kammar, Ori Lahav: “A Denotational Approach to Release-Acquire

Concurrency”. ESOP 2024.

I motivated and presented recent results, joint with Dvir and Lahav, in the composition-
al/denotational semantics for shared state concurrency that is structurally similar to standard,
but general, denotational semantics for sequential programs.

The desire for a uniform treatment of programming languages as standard features (let-
binding, function abstraction, pattern matching) augmented with domain-specific features
(mutable state, backtracking search, etc.) is as old as the discipline itself. I traced a specific
thread starting with Landin’s pragmatics and axiomatics, later realised by Plotkin’s structural-
operational semantics and, in the sequential case, extended to denotational semantics by
Moggi, and later refined by Plotkin and Power. With this perspective, I outlined our recent
Brookes-trace account for sequential consistent shared state using universal algebra and
monads and its limitations. I also outlined our ongoing account for the non-relaxed atomic
fragment of the release-acquire weak memory model and invited participants to follow-up
informally.

These informal discussions covered: (a) Brookes’s seminal work on trace semantics
for sequentially consistent shared-state and some of Lahav’s more recent results about its
abstraction; and (b) a technical description of our release-acquire denotational semantics.

3.6 Programming Persistency Should Be Easy – but is it?
Jeehoon Kang (KAIST – Daejeon, KR)
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Main reference Kyeongmin Cho, Seungmin Jeon, Azalea Raad, Jeehoon Kang: “Memento: A Framework for

Detectable Recoverability in Persistent Memory”, Proc. ACM Program. Lang., Vol. 7(PLDI),
pp. 292–317, 2023.

URL https://doi.org//10.1145/3591232

Programming persistency poses two major challenges:
Non-determinism: Persist instructions may be reordered. Consequently, an earlier write
might be discarded while a later one is preserved in the event of a crash. Though this
challenge has been somewhat mitigated by recent hardware changes, including (e)ADR
and GPF.
Recovery: In the event of a crash, it is crucial to recover pre-crash contexts to complete
their execution.

Efficient and easy-to-implement crash recovery is still a promising area of research in
programming persistency. Although prior works like NVTraverse (PLDI 2020) and Mirror
(PLDI 2021) offer automatic translation of concurrent programs into persistent ones equipped
with recovery code, their applicability is confined to simpler program forms. Memento (PLDI
2023) is applicable to a broader range of programs but misses some optimization opportunities
related to DRAM caches and transactions.

What is the next generation technique for efficient and easy-to-implement crash recovery?
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3.7 Challenges in Empirically Testing Memory Persistency Models
Vasileios Klimis (Queen Mary University of London, GB)

License Creative Commons BY 4.0 International license
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Memory persistency models provide a foundation for persistent programming by specifying
which (and when) writes to non-volatile memory (NVM) become persistent. Memory
persistency models for the Intel-x86 and Arm architectures have been formalised, but not
empirically validated against real machines. Traditional validation methods used for memory
consistency models do not straightforwardly apply because a test program cannot directly
observe when its data has become persistent: it cannot distinguish between reading data from
a volatile cache and from NVM. We investigate addressing this challenge using a commercial
off-the-shelf device that intercepts data on the memory bus and logs all writes in the order
they reach the memory. Using this technique we conducted a litmus-testing campaign aimed
at empirically validating the persistency guarantees of Intel-x86 and Arm machines. We
observed writes propagating to memory out of order, and took steps to build confidence
that these observations were not merely artefacts of our testing setup. However, despite
gaining high confidence in the trustworthiness of our observation method, our conclusions
remain largely negative. We found that the Intel-x86 architecture is not amenable to our
approach, and on consulting Intel engineers discovered that there are currently no reliable
methods of validating their persistency guarantees. For Arm, we found that even a machine
recommended to us by a persistency expert at Arm did not match the formal Arm persistency
model, due to a loophole in the specification. Nevertheless, our investigation and results
provide confidence that if Intel were to produce machines with more transparent persistency
behaviour, or if Arm machines with proper persistency support were to become available,
our approach would be valuable for empirically validating them against their specifications.

3.8 Automating Weak Memory Model Metatheory and Verification
Michalis Kokologiannakis (MPI-SWS – Kaiserslautern, DE)
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Main reference Michalis Kokologiannakis, Ori Lahav, Viktor Vafeiadis: “Kater: Automating Weak Memory Model

Metatheory and Consistency Checking”, Proc. ACM Program. Lang., Vol. 7(POPL), pp. 544–572,
2023.

URL https://doi.org//10.1145/3571212

Weak memory consistency models capture the outcomes of concurrent programs that appear
in practice and yet cannot be explained by thread interleavings. Such outcomes pose two
major challenges to formal methods. First, establishing that a memory model satisfies its
intended properties (e.g., supports a certain compilation scheme) is extremely error-prone:
most proposed language models were initially broken and required multiple iterations to
achieve soundness. Second, weak memory models make verification of concurrent programs
much harder, as a result of which there are no scalable verification techniques beyond a few
that target very simple models.

In this talk, I present solutions to both of these problems. First, I show that the relevant
metatheory of weak memory models can be effectively decided and present Kater, a tool
that can answer metatheoretic queries in a matter of seconds. Second, I present GenMC, the
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first scalable stateless model checker that is parametric in the choice of the memory model.
To enhance the usability of GenMC, I demonstrate how Kater can be used to automate the
porting of new memory models into GenMC, as well as how the state-space size of concurrent
programs can be estimated.

3.9 Abstraction for Crash-Resilient Objects
Ori Lahav (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
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Main reference Artem Khyzha, Ori Lahav: “Abstraction for Crash-Resilient Objects”, in Proc. of the Programming

Languages and Systems – 31st European Symposium on Programming, ESOP 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Lecture Notes in Computer Science, Vol. 13240, pp. 262–289,
Springer, 2022.

URL https://doi.org//10.1007/978-3-030-99336-8_10

We study abstraction for crash-resilient concurrent objects using non-volatile memory (NVM).
We develop a library-correctness criterion that is sound for ensuring contextual refinement
in this setting, thus allowing clients to reason about library behaviors in terms of their
abstract specifications, and library developers to verify their implementations against the
specifications abstracting away from particular client programs. As a semantic foundation
we employ a recent NVM model, called Persistent Sequential Consistency, and extend its
language and operational semantics with useful specification constructs. The proposed
correctness criterion accounts for NVM-related interactions between client and library code
due to explicit persist instructions, and for calling policies enforced by libraries. We illustrate
our approach on two implementations and specifications of simple persistent objects with
different prototypical durability guarantees. Our results provide the first approach to formal
compositional reasoning under NVM.

3.10 Fairness for load buffering memory models
Anton Podkopaev (JetBrains – Amsterdam, NL)
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Main reference Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, Viktor Vafeiadis: “Making weak

memory models fair”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–27, 2021.
URL https://doi.org//10.1145/3485475

Liveness properties, such as termination, of even the simplest shared-memory concurrent
programs under sequential consistency typically require some fairness assumptions about
the scheduler. Under weak memory models, we observe that the standard notions of thread
fairness are insufficient, and an additional fairness property, which we call memory fairness,
is needed.

In previous work (Lahav et al., 2021), we proposed a uniform definition for memory
fairness that can be integrated into any declarative memory model enforcing acyclicity of
the union of the program order (po) and the reads-from (rf) relations. For the well-known
models, SC, x86-TSO, RA, and StrongCOH, that have equivalent operational and declarative
presentations, we showed that our declarative memory fairness condition is equivalent to an
intuitive model-specific operational notion of memory fairness, which requires the memory
system to fairly execute its internal propagation steps.
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Now, we raise a question on how memory models allowing poUrf-cycles, i.e., allowing load
buffering, should be restricted to provide liveness guarantees. We showed that for Armv8 and
Power memory models the memory fairness condition is enough to preserve our compilation
correctness result (Podkopaev et al., 2019) for the Promising semantics (Kang et al., 2017),
if the set of locations accessed by a program is finite (for both Armv8 and Power compilation
targets) as well as a number of threads spawned by the program (needed only for Power). We
also show that the compilation result is preserved for a restricted version of the Promising
semantics, which we call Promising_fair. The restriction guarantees that any promise made
by a thread is eventually fulfilled.

3.11 DARTAGNAN: One tool for all models
Hernán Ponce de León (Huawei Technologies – München, DE)
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Main reference Thomas Haas, Roland Meyer, Hernán Ponce de León: “CAAT: consistency as a theory”, Proc. ACM
Program. Lang., Vol. 6(OOPSLA2), pp. 114–144, 2022.

URL https://doi.org//10.1145/3563292

The notion of consistency exists in several communities within computer science: program-
ming languages, CPUs, databases, GPUs, non-volatile memory, etc. Despite the different
application domains, the foundations are not that different. CAT is a domain specific language
that allows to formalize different notions of consistency. Having a unified DSL facilitates the
building of verification technology that works across all the application domains.

In this talk, I present how to encode program correctness with respect to a given CAT
model using SMT based Bounded Model Checking. I show how to achieve scalability (i.e.,
we can verify real code coming from the Linux kernel) based on two key ideas. The first
contribution (OOPSLA’22) is based in interpreting consistency as an SMT theory. This
allows to simplify the part of the encoding that needs to be handled by the SAT solver and
moves the hardness of encoding consistency into the theory solver where we can use domain
specific knowledge to improve solving time. The second contribution (OOPSLA’23) is a static
analysis of the consistency model which allows to propagate information in two directions:
bottom-up from base relations to derived relations, and top-down from consistency axioms
over derived relations to base relations.

3.12 Towards a formal specification of the Intel Architecture
Alastair Reid (Intel – London, GB)
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Formal specifications of CPU architectures are useful for formally verifying hardware and
software; for verifying compilers; for discovering compiler peepholes; and for analyzing
programs for security issues. We are creating a formal specification of the Intel Architecture
(aka "x86") with the intention that the specification is complete (e.g., able to boot an OS or
run SGX code); correct (e.g., validated using the same tests that processors are tested with);
readable (e.g., suitable for use in the Intel Software Developer’s Manual); available (e.g., on
GitHub and licensed under a suitably permissive license); usable (tools are available and can
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be used as the basis of other tools); and used by our customers, 3rd party developers, the
open source community, academic researchers, etc. (we will help users understand what the
spec can do and how to use and adapt the tools to enable a diverse set of uses).

3.13 System and Failure Models Matter
Michael Scott (University of Rochester, US)

License Creative Commons BY 4.0 International license
© Michael Scott

Those of us here today are intensely interested in formal models of concurrency and persistence.
In addition to posing challenging problems from an intellectual perspective, these models
need to capture key aspects of real-world systems if they are to have an impact on practice.
In this talk I briefly survey (my opinions regarding) the space of interesting models. In
particular, we can consider

system models, which capture the hardware and software architecture on which our
algorithms run;
persistency models, which capture instruction-level ordering and the reads-see-writes
relationship in the presence of crashes; and
failure models, which consider what exactly may fail, what resumes, and how.

Among other things, I suggest that:
Independent thread failures (esp. with threads that are recovered and continue) have few
if any real-world analogues, and should be pursued with caution.
Real-world systems are likely to have much more NVM than DRAM, so work that mirrors
all persistent data in DRAM should be pursued with caution.
Hardware designers have considerable motivation to develop persistent caches, so work
that assumes that cached data will always be transient should be pursued with caution.
The world is still looking for an NVM killer app.

3.14 Transactional Semantics with Zombies
Michael Scott (University of Rochester, US)
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Theory of Transactional Memory (WTTM), Paris, France, July 2014.

Different formal models of transactional memory are required at different levels of the system
stack. This paper focuses on the run-time level, where the semantics of individual operations
(start, read, write, try-commit) govern the interactions between the compiler and the TM
system. For sandboxing TM systems, which allow a doomed transaction (a “zombie”) to
continue for some time beyond an inconsistent read, run-time–level semantics cannot be
captured by opacity as currently defined: we need a formal model of zombie execution.
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3.15 Specifying and Verifying Persistent Libraries
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We present a general framework for specifying and verifying persistent libraries, that is,
libraries of data structures that provide some persistency guarantees upon a failure of
the machine they are executing on. Our framework enables modular reasoning about the
correctness of individual libraries (horizontal and vertical compositionality) and is general
enough to encompass all existing persistent library specifications ranging from hardware
architectural specifications to correctness conditions such as durable linearizability. As case
studies, we specify the FliT and Mirror libraries, verify their implementations over Px86, and
use them to build higher-level durably linearizable libraries, all within our framework. We
also specify and verify a persistent transaction library that highlights some of the technical
challenges which are specific to persistent memory compared to weak memory and how they
are handled by our framework.

3.16 A Type System for Intermittent Computing
Milijana Surbatovich (Carnegie Mellon University – Pittsburgh, US)
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Batteryless, energy harvesting devices (EHDs) enable computing in environments that are too
remote or inaccessible to support battery maintenance, benefiting application domains like
disaster monitoring, health wearables, and smart civil and agricultural infrastructure. Instead
of relying on a battery, these devices harvest all energy they need from their surroundings.
Because the target application domains have high assurance requirements, computation on
EHDs should be correct; unfortunately, harvested energy is typically too weak to power a
device continuously, resulting in frequent power failures that break software and systems
designed to run on continuous power. The field of intermittent computing seeks to overcome
the correctness and programmability challenges introduced by these power failures but has
historically relied on ad-hoc correctness reasoning that provides no guarantees.

This talk motivates the need for formal methods research for designing correct intermittent
systems, highlighting the importance of modularity and abstraction in both formalism and
system design. It then presents Curricle, an information-flow type system for reasoning
about safe intermittent execution that gives programmers more control and provides natural
layering between the application and runtime system levels of the stack. The talk concludes
by discussing open problems in the intermittent computing field.
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3.17 Separation Logic for Concurrent, Crash-Safe Systems
Joseph Tassarotti (New York University, US)
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Storage systems, such as databases and file systems, often have concurrent implementations.
These systems are expected to be crash-safe, meaning that they should be able to recover
from failures caused by power loss. However, achieving crash-safety is difficult because
programmers must consider many potential interleavings of threads as well as the possibility
of interruption from crashes at any point. Perennial is a separation logic framework for
formally verifying crash safety of concurrent systems. This talk describes the core reasoning
principles of Perennial and our experience using Perennial to verify GoTxn, a concurrent
transaction system.

3.18 Persistent Scripting
Haris Volos (University of Cyprus – Nicosia, CY)
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Persistent scripting brings the benefits of persistent memory programming to high-level
interpreted languages. More importantly, it brings the convenience and programmer pro-
ductivity of scripting to persistent memory programming. We have integrated a novel generic
persistent memory allocator into a popular scripting language interpreter, which now exposes
a simple and intuitive persistence interface: A flag notifies the interpreter that a script’s
variables reside in a persistent heap in a specified file. The interpreter begins script execution
with all variables in the persistent heap ready for immediate use. New variables defined by
the running script are allocated on the persistent heap and are thus available to subsequent
executions. Scripts themselves are unmodified and persistent heaps may be shared freely
between unrelated scripts.

3.19 Verifying the persistency library FliT
Heike Wehrheim (Universität Oldenburg, DE)
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Springer, 2024.
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Non-volatile memory (NVM) technologies offer DRAM-like speeds with the added benefit
of failure resilience. However, developing concurrent programs for NVM can be challenging
since programmers must consider both inter-thread synchronisation and durability aspects
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at the same time. To alleviate this, libraries such as FliT have been developed to manage
transformations to durability, allowing a linearizable concurrent object to be converted into
a durably linearizable one with minimal programmer effort. However, a formal proof of
correctness for FliT is missing, and standard proof techniques for durable linearizability are
challenging to apply since FliT itself is not durably linearizable.

In this talk, I report on our work on showing correctness of transformations to durability.
First, we develop an abstract persistency library (called PLib) that operationally characterises
transformations to durability and we prove its correctness. Second, we show correctness of
the library FliT by proving that FliT refines PLib under the realistic Px86 memory model,
i.e., the persistent version of TSO memory model implemented by Intel architectures. The
proof of refinement between FliT and PLib has been mechanised within the theorem prover
KIV. Taken together, these proofs guarantee that FliT is also sound wrt transformations to
durability.
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