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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23422 “Graph
Algorithms: Cuts, Flows, and Network Design”. This seminar brought 25 leading researchers
in graph algorithms together for a discussion of the recent progress and challenges in two areas:
the design of fast algorithm for fundamental flow/cut problems and the design of approximation
algorithms for basic network design problems. The seminar included several talks of varying
lengths, a panel discussion, and an open problem session. In addition, sufficient time was set
aside for research discussions and collaborations.
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Graph algorithms are among the foundational pillars of algorithm design and combinatorial
optimization. In addition to its significance as a theoretical discipline, graph algorithms are
also ubiquitous in practice, with applications in essentially every scientific discipline. This
has spawned research in many different directions within graph algorithms over the past few
decades, and these individual research areas have come to play important roles in the evolution
of algorithms research as a whole. Two particularly large and successful subdisciplines are
those of fast algorithms for flows and cuts and approximation algorithms for network design.
Many of the algorithmic ideas and techniques that are a standard feature of an algorithmist’s
toolkit today trace their origins to groundbreaking research in these two areas spanning
problems such as minimum cuts, maximum flows, Steiner trees, and the traveling salesman
problem. The last few years, in particular, have been truly outstanding in achieving progress
on longstanding questions in both areas. Some of the highlights include the first progress
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in decades for problems such as the traveling salesman problem (e.g., [20, 19, 17, 28, 34]),
graph connectivity augmentation (e.g., [9, 10, 35]), minimum cut (e.g., [24, 11]), vertex
connectivity (e.g., [23]), all-pairs minimum cuts (e.g., [3, 2, 5, 4, 6, 25, 26, 1]), and last
but not the least, the recent breakthrough achieving an almost linear-time algorithm for
maximum flow (and minimum cost flow) [12] (see also [14, 16, 37, 36]).

Traditionally, to a large extent, research in these two subfields has progressed independent
of one another: connectivity problems such as minimum cuts and maximum flows are
typically polynomial-time solvable and goal is to improve the running time (efficiency) of
the algorithms; in contrast, network design problems such as Steiner tree and TSP are
NP-hard and the goal is to obtain the best approximation factor in (any) polynomial time.
This has meant that the two areas have focused on different sets of technical tools – the
former has developed combinatorial (and more recently, continuous) methods aimed at
improving running times, while the latter has focused on polyhedral techniques and the use
of mathematical programming for obtaining improved approximations.

In recent years, however, this distinction between the two subfields has started to blur,
and the the two areas have started to move closer to one another. This is for two main
reasons:
(a) Recent progress in foundational questions in each area has crucially relied on structural

insights from the other area. For example, one of the main new ingredients in the recent
breakthrough results in approximation algorithms for the traveling salesman problem
(e.g., [20, 17]) is a better understanding of the structure of near-minimum cuts (e.g., [7])
in an undirected graph. Or, recent work in the all-pairs minimum cuts problem [1] that
advances the state of the art for this problem after 60 years crucially makes use of Steiner
tree approximations [27]. Or, cut matching games originally devised for sparsest cut
approximations [22] have led to fast expander decompositions (e.g., [30]) that, in turn,
play a crucial role in recent progress in deterministic minimum cut algorithms [24].

(b) There is growing interest in understanding approximation-efficiency tradeoffs in graph
algorithms. Graph sparsification (e.g., [8, 15, 32, 33]) has emerged as a standard tool
that “compresses” an arbitrary graph into a sparse subgraph (called the sparsifier) while
approximately preserving the values of all cuts in the graph. This naturally leads to
an approximation-efficiency tradeoff by running existing algorithms on the sparsifier
rather than on the input graph. But, beyond the black box use of sparsifiers, efficiency
at the expense of mild approximation has been employed as a technical tool to breach
longstanding running time barrier in recent years, and has often eventually led to faster
exact algorithms as well. A famous example is the maximum flow problem in undirected
graphs, where nearly-linear time approximation algorithms were designed in the last
decade [21, 31, 29] and has eventually resulted in the very recent breakthrough achieving
an almost-linear time exact algorithm [12]. Another recent example is the all-pairs
minimum cuts problem for which the first paper to breach the 60-year old running time
bound of Gomory and Hu [18] incurred a mild approximation [25], but this has now led to
a faster exact algorithm as well [1]. Finally, understanding the efficiency-approximation
tradeoff is an important goal for NP-hard network design problems such as Steiner tree [27]
and Steiner forest [13], and this, in turn, has implications for minimum cut problems [1].

The goal of this seminar was to bring the leading researchers from these two communities
of fast flow/cut algorithms and approximation algorithms for network design together for an
exchange of ideas and knowledge, and a discussion of the major technical challenges in each
research area.
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Seminar Structure and Participants
The seminar brought together 25 researchers from the two communities highlighted above,
roughly equally split between the two areas. There was also a mix of senior and junior
participants, ranging from senior members of the community to current PhD students and
postdoctoral researchers. In terms of gender balance, around 20% of the attendees were
female. (The organizers had originally planned for a more equitable balance, but there were
several late retractions, primarily due to geopolitical reasons, that affected the gender ratio.)

There were 17 scheduled talks, divided into long (60 minutes) and short (30 minutes)
presentations. There was also an open problem session and a panel discussion on the future
directions for the community. The schedule left plenty of time for collaboration and free
discussion among the participants.

Outcomes
The main objective of the seminar was to provide a forum for the exchange of ideas between
the research communities of fast flow/cut algorithms and approximation algorithms for
network design. These are adjoining areas where researchers have a working knowledge
of, and appreciation for, each other’s work. As expected, the seminar lead to cohesive
interactions and meaningful discussions. Individual research talks and afternoon breaks
created concrete opportunities for learning about recent progress in each other’s areas and
fostering collaborations. The open problem session highlighted the major research challenges
in the two areas, which is particularly beneficial for junior members of the community who
attended the seminar. The panel discussion allowed the participants to reflect on and discuss
higher-level questions about the research directions that the communities should pursue in
the near future. Overall, we believe that the seminar played an important role in community
building, research collaborations, and in shaping the two research areas for the foreseeable
future.

The organizers would like to thank the Scientific Directorate and the administration of
the Dagstuhl Center for their amazing support in the organization of the Dagstuhl Seminar,
and for supporting this important research area.
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3 Overview of Talks

3.1 Fast Algorithms via Dynamic-Oracle Matroids
Joakim Blikstad (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 4.0 International license
© Joakim Blikstad

We initiate the study of matroid problems in a new oracle model called dynamic oracle.
Our algorithms in this model lead to new bounds for some classic problems, and a “unified”
algorithm whose performance matches previous results developed in various papers. We also
show a lower bound that answers some open problems from a few decades ago. We show
an algorithm with Õ(n + r

√
r) dynamic-rank-query and time complexities for the matroid

union problem. This implies an improvement over the traditional rank-query complexity for
matroid union. As an interesting special case, it is the first algorithm which, in sufficiently
dense graphs, achieves nearly linear time Õ(m + n

√
n) for the problem of finding k disjoint

spanning trees in a graph. We also show simple super-linear (Ω(n log n)) query lower bounds
for matroid intersection in our dynamic-rank-oracle and the traditional independence-query
models; the latter improves the previous log 2(3)n − o(n) bound.

3.2 The girth problem and its variants in network design
Greg Bodwin (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
© Greg Bodwin

The girth problem as a central open question in extremal combinatorics, which asks to
determine the maximum possible number of edges in an n-node graph whose girth (shortest
cycle length) is larger than k. In 1993, a seminal work of Althöfer, Das, Dobkin, Joseph,
and Soares showed that determining the size/stretch tradeoff available to graph spanners is
equivalent to settling the girth problem. This set in motion a line of research that seeks to
understand sparse graph structures by analyzing their forbidden patterns, and using these
patterns to invoke ideas from extremal combinatorics.

This talk will survey some successes of the method, including other objects that can
also be reduced to the girth problem (distance oracles, fault-tolerant spanners), and related
problems that capture other objects in network design, such as the weighted girth problem
(light spanners), the bipartite girth problem (distance preservers, reachability preservers),
the forbidden biclique problem (directed distance preservers), and the bridge girth problem
(reachability preservers, flow-cut gaps). We will survey the common technical threads in
these arguments, and overview the many open problems that remain.
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3.3 Differentially Private Densest Subgraph
Michael Dinitz (Johns Hopkins University – Baltimore, US)

License Creative Commons BY 4.0 International license
© Michael Dinitz

Joint work of Satyen Kale, Silvio Lattanzi, and Sergei Vassilvitskii
Main reference Michael Dinitz, Satyen Kale, Silvio Lattanzi, Sergei Vassilvitskii: “Improved Differentially Private

Densest Subgraph: Local and Purely Additive”, CoRR, Vol. abs/2308.10316, 2023.
URL https://doi.org//10.48550/ARXIV.2308.10316

We study the Densest Subgraph problem under the additional constraint of differential privacy.
In the LEDP (local edge differential privacy) model, introduced recently by Dhulipala et
al. [FOCS 2022], we give an (ϵ, δ)-differentially private algorithm with no multiplicative
loss: the loss is purely additive. This is in contrast to every previous private algorithm for
densest subgraph (local or centralized), all of which incur some multiplicative loss as well as
some additive loss. Moreover, our additive loss matches the best-known previous additive
loss (in any version of differential privacy) when 1/δ is at least polynomial in n, and in
the centralized setting we can strengthen our result to provide better than the best-known
additive loss. Additionally, we give a different algorithm that is ϵ-differentially private in
the LEDP model which achieves a multiplicative ratio arbitrarily close to 2, along with an
additional additive factor. This improves over the previous multiplicative 4-approximation
in the LEDP model. Finally, we conclude with extensions of our techniques to both the
node-weighted and the directed versions of the problem.

3.4 On Dynamic Graph Approximations: The case of j-Trees
Gramoz Goranci (Universität Wien, AT)

License Creative Commons BY 4.0 International license
© Gramoz Goranci

Joint work of Gramoz Goranci, Li Chen, Monika Henzinger, Richard Peng, Thatchaphol Saranurak

Approximating graphs by j-trees is a powerful algorithmic paradigm that has proven effective
in significantly speeding up cut-based optimization problems, approximate maximum flows,
and exact minimum cost-flow computations.

In this talk, I will explain how to dynamically maintain j-trees and discuss some of the
implications of this result.

3.5 Approximation Algorithms for 2-Connectivity
Fabrizio Grandoni (SUPSI – Lugano, CH)

License Creative Commons BY 4.0 International license
© Fabrizio Grandoni

Given an undirected graph G, the 2-edge-connected spanning subgraph problem is to compute
a subgraph S of G with the minimum possible number of edges which is 2-edge-connected,
i.e., removing any edge from S leaves a connected graph (spanning all the nodes). The 2-
vertex-connected spanning subgraph problem is defined similarly w.r.t. 2-vertex-connectivity.
In this talk I will illustrate some recent progress on approximation algorithms for these two
problems.
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3.6 Polylogarithmic Universal Steiner Trees and Strong Sparse Partition
Hierarchies

Ellis Hershkowitz (Brown University – Providence, US)

License Creative Commons BY 4.0 International license
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Joint work of Ellis Hershkowitz, Costas Busch, Da Qi Chen, Arnold Filtser, Daniel Hathcock, Rajmohan
Rajaraman

An alpha-approximate universal Steiner tree (UST) of a graph G is a spanning tree T such
that, for any vertex terminal subset S, the minimal subtree of T connecting S is within an
alpha factor of the cost of the cheapest Steiner tree in G connecting S. Alpha-approximate
USTs immediately give alpha-approximations for well-studied variants of Steiner tree such as
online or oblivious Steiner tree. Sub-linear-approximate USTs are known but neither the
existence of nor poly-time algorithms for computing poly-logarithmic-approximate USTs
were previously known.

In this talk, I will discuss the first construction of poly-logarithmic USTs. The result is
based on new constructions of poly-logarithmic-quality graph hierarchies called strong sparse
partitions which may be interesting in their own right. Roughly, strong sparse partitions
provide deterministic guarantees on how often balls of particular radii are cut.

3.7 All-Pairs Minimum Cuts in Almost-Linear Time
Jason Li (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
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Joint work of Jason Li, Amir Abboud, Robert Krauthgamer, Debmalya Panigrahi, Thatchaphol Saranurak, Ohad
Trabelsi

Main reference Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak, Ohad
Trabelsi: “Gomory-Hu Tree in Subcubic Time”, CoRR, Vol. abs/2111.04958, 2021.

URL https://arxiv.org/abs/2111.04958

We present recent progress on the problem of computing all-pairs minimum cuts, and more
generally the Gomory-Hu tree of a graph. In particular, we obtain the first running time
improvement since Gomory and Hu’s original algorithm in 1961, as well as a subsequent
improvement to almost-linear time, resolving the complexity of this problem. We discuss
important tools that paved the way for the discovery of the algorithm, most notably the
isolating cuts problem and a reduction to single-source minimum cut.

3.8 Recent Advances on Maximum Flows
Yang P. Liu (Institute for Advanced Study – Princeton, US)

License Creative Commons BY 4.0 International license
© Yang P. Liu

We discuss extensions of the recent almost-linear-time maximum flow and mincost flow
algorithm to dynamic and deterministic settings. Joint work with Jan van den Brand, Li
Chen, Rasmus Kyng, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva, and
Aaron Sidford.
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3.9 Fair Division of Indivisible Goods and Graph Algorithms
Kurt Mehlhorn (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
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A set of indivisible goods is to be allocated to a group of agents, e.g, a car, a computer, a
tooth-brush. Each agent has a valuation over sets of goods. There are only two restrictions
on a valuation. The value of the empty set is zero and more is better. We want to a allocate
the goods in a fair manner. Three notions of fairness have emerged: envy-freeness, fair share,
and maximum Nash-value. We discuss exact and approximate existence and complexity.

Some of the algorithm have a strong connection to matchings.

3.10 Hopsets and Algorithmic Applications
Yasamin Nazari (VU Amsterdam, NL)

License Creative Commons BY 4.0 International license
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Given a weighted graph G, a hopset of hopbound β and stretch (1 + ϵ) is a set of edges such
that for any pair of nodes u and v in G, there is a path in G ∪ H of at most β hops whose
length is within a (1 + ϵ) factor of the distance between u and v in G. Hopsets have recently
found many applications in fast distance computation in various computational models such
as dynamic, parallel and distributed models. This talk gives an introduction to hopsets for
undirected graphs and their algorithmic applications in these settings. We conclude with
open problems on applications of directed hopsets.

3.11 Algorithms for Coloring Tournaments
Alantha Newman (Grenoble INP, FR)

License Creative Commons BY 4.0 International license
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Joint work of Alantha Newman, Felix Klingelhoefer

A k-coloring of a tournament is a partition of its vertices into k acyclic sets. Deciding
if a tournament is 2-colorable is NP-hard. A natural problem, akin to that of coloring a
3-colorable graph with few colors, is to color a 2-colorable tournament with few colors. This
problem does not seem to have been addressed before, although it is a special case of coloring
a 2-colorable 3-uniform hypergraph with few colors, which is a well-studied problem with
super-constant lower bounds.

We present a new efficient decomposition lemma for tournaments, which we use to design
polynomial-time algorithms to color various classes of tournaments with few colors, notably,
to color a 2-colorable tournament with ten colors. We also use this lemma to prove equivalence
between the problems of coloring 3-colorable tournaments and coloring 3-colorable graphs
with constantly many colors. For the classes of tournaments considered, we complement
our upper bounds with strengthened lower bounds, painting a comprehensive picture of the
algorithmic and complexity aspects of coloring tournaments.
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3.12 Quotient sparsification for submodular functions
Kent Quanrud (Purdue University – West Lafayette, US)

License Creative Commons BY 4.0 International license
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Main reference Kent Quanrud: “Quotient sparsification for submodular functions”, in Proc. of the 2024 Annual
ACM-SIAM Symposium on Descrete Algorithms (SODA), Alexandria, VA, USA, pp. 5209–5248,
2024.

URL https://doi.org//10.1137/1.9781611977912.187

Graph sparsification has been an important topic with many structural and algorithmic
consequences. Recently hypergraph sparsification has come to the fore and has seen exciting
progress. In this paper we take a fresh perspective and show that they can be both be
derived as corollaries of a general theorem on sparsifying matroids and monotone submodular
functions.

Quotients of matroids and monotone submodular functions generalize k-cuts in graphs
and hypergraphs. We show that a weighted ground set of a monotone submodular function
f can be sparsified while approximately preserving the weight of every quotient of f with
high probability in randomized polynomial time.

This theorem conceptually unifies cut sparsifiers for undirected graphs [BK15] with other
interesting applications. One basic application is to reduce the number of elements in a
matroid while preserving the weight of every quotient of the matroid. For hypergraphs, the
theorem gives an alternative approach to the hypergraph cut sparsifiers obtained recently
in [CKN20], that also preserves all k-cuts. Another application is to reduce the number of
points in a set system while preserving the weight of the union of every collection of sets.
We also present algorithms that sparsify hypergraphs and set systems in nearly linear time,
and sparsify matroids in nearly linear time and queries in the rank oracle model.

3.13 Using Isolating Mincuts for Fast Graph Algorithms: A tutorial
Thatchaphol Saranurak (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
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The Isolating Mincuts algorithm is a new technique recently introduced by [Li and Panigrahi]
and [Abboud Krauthgamer Trabelsi]. In the last three years, they found more than ten
applications in fast graph algorithms. I will give a gentle tutorial on this technique.

3.14 Decremental Bipartite Matching
Aaron Sidford (Stanford University, US)

License Creative Commons BY 4.0 International license
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Joint work of Aaron Sidford, Arun Jambulapati, Yujia Jin, Kevin Tian
Main reference Arun Jambulapati, Yujia Jin, Aaron Sidford, Kevin Tian: “Regularized Box-Simplex Games and

Dynamic Decremental Bipartite Matching”, CoRR, Vol. abs/2204.12721, 2022.
URL https://doi.org//10.48550/ARXIV.2204.12721

Maintaining an approximately maximum matching in a dynamic graph is a fundamental
problem in data structures and algorithmic graph theory. In this talk I will discuss recent
progress in the special case of decremental bipartite matching, where the only dynamic
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updates are deleting edges from an initial bipartite graph. In particular, I will discuss how
faster runtimes were obtained by reducing this dynamic problem to solving a sequence of
natural convex optimization problems.

3.15 Approximation Algorithms for Connectivity Augmentation
Problems

Vera Traub (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
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Augmentation problems are a fundamental class of network design problems. They ask about
the cheapest way to increase the (edge-)connectivity of a graph by adding edges among
a given set of options. One of the most elementary and intensely studied augmentation
problems is the (Weighted) Tree Augmentation Problem. Here, a spanning tree has to be
augmented into a 2-edge-connected graph.

Classic techniques for network design yield 2-approximation algorithms for a wide class
of augmentation problems. For the Unweighted Tree Augmentation Problem, better-than-2
approximations are known for more than 20 years. However, only recently the first better-
than-2 approximations have been found for the more general Unweighted Connectivity
Augmentation Problem and Weighted Tree Augmentation Problem. In this talk we will
discuss these recent advances.

3.16 Faster Deterministic Vertex Connectivity Algorithms
Sorrachai Yingchareonthawornchai (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
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Joint work of Sorrachai Yingchareonthawornchai, Yonggang Jiang, Chaitanya Nalam, Thatchaphol Saranurak

An n-vertex m-edge graph is k-vertex connected if it cannot be disconnected by deleting
less than k vertices. After more than half a century of intensive research, the result by
[Li et al. STOC’21] finally gave a randomized algorithm for checking k-connectivity in
near-optimal Ô(m) time where Ô(·) to hide an no(1) factor.

Deterministic algorithms, unfortunately, have remained much slower even if we assume a
linear-time max-flow algorithm: they either require at least Ω(mn) time [Even’75; Henzinger
Rao and Gabow, FOCS’96; Gabow, FOCS’00] or assume that k = o(

√
log n) [Saranurak and

Yingchareonthawornchai, FOCS’22]. In this talk, I will describe a deterministic algorithm
for checking k-vertex connectivity in time proportional to making min{k2, n} max-flow
calls, and, hence, in Ô(m min{k2, n}) time using the deterministic max-flow algorithm by
[Brand et al. FOCS’23]. Our algorithm gives the first almost-linear-time bound for all k

where
√

log n ≤ k ≤ no(1) and subsumes up to a sub-polynomial factor the long-standing
state-of-the-art algorithm by [Even’75] which requires O(n + k2) max-flow calls. For large k,
the algorithm runs in Ô(mn) time, which improves over the state-of-the-art deterministic
Ô(mn1.5)-time algorithm [Gabow, FOCS’00]. Our key technique is based on Ramanujan
expanders and derandomization of the kernelization technique of [Li et al. STOC’21] for
which their kernel construction was randomized.
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