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Abstract
This report documents the program and the findings of Dagstuhl Seminar 23431 “Network

Attack Detection and Defense – AI-Powered Threats and Responses”. With the emergence of
artificial intelligence (AI), attack detection and defense are taking on a new level of quality.
Artificial intelligence will promote further automation of attacks. There are already examples
of this, such as the Deep Locker malware. It is expected that we will soon face a situation in
which malware and attacks will become more and more automated, intelligent, and AI-powered.
Consequently, today’s threat response systems will become more and more inadequate, especially
when they rely on manual intervention of security experts and analysts. The main objective of
the seminar was to assess the state of the art and potentials that AI advances create for both
attackers and defenders. The seminar continued the series of Dagstuhl events “Network Attack
Detection and Defense” held in 2008, 2012, 2014, and 2016. The objectives of the seminar were
threefold, namely (1) to investigate various scenarios of AI-based malware and attacks, (2) to
debate trust in AI and modeling of threats against AI, and (3) to propose methods and strategies
for AI-powered network defenses. At the seminar, which brought together participants from
academia and industry, we stated that recent advances in artificial intelligence have opened up
new possibilities for each of these directions. In general, more and more researchers in networking
and security look at AI-based methods which made this a timely event to assess and categorize
the state of the art as well as work towards a roadmap for future research. The outcome of the
discussions and the proposed research directions are presented in this report.
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Computer networks and the services they provide have become indispensable tools these
days. Consequently, they are also a popular target for attacks that are constantly increasing
in complexity and sophistication. Although there are a variety of effective systems to counter
such attacks, like firewalls or intrusion detection systems (IDSs), the immense diversity and
number of threats make it difficult for system administrators to keep pace with the alerts
triggered and respond within adequate time limits.

This problem will intensify in the future. There are signs that attacks will become
more and more automated, as, for instance, indicated by the 2016 DARPA Cyber Grand
Challenge in which automation of attacks was a main focus and the basic feasibility was
demonstrated. Another indication of a higher degree of automation is advanced malware
where Large-Language-Models (LLMs) start to get applied to craft highly sophisticated
phishing emails. Experts already foresee that more and more AI mechanisms will find their
way into such malware. This leads to the conclusion that we will soon face a situation in which
malware and attacks will become more and more automated, intelligent, and AI-powered.

As a consequence, today’s threat response systems will become more and more inadequate,
especially where they rely on manual intervention of security experts and analysts. Hence, the
deployment of automation and AI is the only way to attain and retain a strategic advantage
in the arm’s race between the attack and the defense. Usage of AI mechanisms is already the
case in some security mechanisms like anomaly-detecting IDSs or virus scanners. But one
could easily imagine substantially higher degrees of AI-based automation in system defense.
However, automated defense may also be a double edged sword as it could be misused by
attackers to trigger counterproductive responses.

In this Dagstuhl Seminar, we together with all the participants therefore tried to assess
the state of the art and potentials that AI advances create for both attackers and defenders
because we believe it is crucial to consider both sides when discussing the relation between
AI and security.

In particular, the seminar pursued the following objectives:
1. Investigate various attack scenarios and attacker models of AI-based malware and attacks,
2. Map the space of AI-based security countermeasures going beyond the usual anomaly-

based intrusion detection systems,
3. Discuss where else AI-based methods are or could be employed, and
4. Discuss how to estimate and predict the impact of countermeasures and possible side

effects.

To provide initial material for such discussions, we had three keynotes by distinguished
speakers. Pavel Laskov proposed “Three Faces of AI in Cybersecurity,” providing a thorough
account of how AI could be used in defense, for offensive purpose, and how AI itself can
be an attack target. Konrad Rieck took a deep dive into the first aspect in his keynote
“Bumpy Road of AI-based Attack Detection.” Finally, Robin Sommer completed the picture
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by looking “Beyond Detection: Revisiting AI For Effective Network Security Monitoring.”
Those presentations were complemented by a number of short lightning talks given by our
participants to introduce the audience to various current research.

A significant share of the seminar’s time was spent in working groups, with participants
discussing individual aspects of interest. The topics for those working groups were partly
solicited before the seminar and then finally determined on the first day. Specifically, the
topics were:
1. Assessment of AI-Based Attacks in Cybersecurity,
2. Security of Large Language Models,
3. Trust in AI and Modeling of Threats against AI in Network Defense, and
4. AI-Powered Network Defenses

The working groups report on their individual results below. In order to bring all these
findings together and distill outcomes and an outlook into what could be next steps, we used
the format of a World Café where in the afternoon of day 4, people split into small groups to
provide their input on five pre-defined questions. As groups were shuffled randomly after
every 20 minutes, everyone joined each World Café table and discussed each of the questions.
The outcomes then formed the basis for our wrap-up session on Friday morning.

The seminar was originally proposed and prepared together with Marc C. Dacier from
KAUST who couldn’t attend the seminar at the last minute. We owe him many ideas and
contributions during the preparation phase. Pavel Laskov was so kind as to fill the empty
slot on short notice.
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3 Overview of Keynotes

3.1 Three Faces of AI in Cybersecurity
Pavel Laskov (Universität Liechtenstein, LI)

License Creative Commons BY 4.0 International license
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Artificial Intelligence (AI) has a stronger tradition in cybersecurity than one might think.
Despite their seemingly contrasting scientific and methodical traits – AI is all about probab-
ilistic events and assertions, whereas a (practical) security mindset is mostly concerned with
apparent and deterministic evidence of systems being broken into – the task of detecting
systems being broken into is inherently connected with observing and making sense of huge
volumes of diverse bits and pieces of digital evidence commonly understood as “data.” This
is something that AI, albeit not originally born as an empirical science, has manifested itself
as an omnipotent instrument for.

The relation between AI and cybersecurity is not just profound, but multi-faceted as well.
Each of its “faces” has a different history and a different level of maturity. The oldest and
most obvious role of AI in cybersecurity is to build models for detection of various kinds of
attacks. The sole notion of “intrusion detection” has been implicitly defined by Denning as
an AI problem, even though neither did she use this term in her seminal work [1], nor did
this term have the same meaning at that time as we understand it today. The tremendous
capability of AI to facilitate and speed up detection of various kinds of threats is now
widely acknowledged, both in the academia and the industry. Despite a large number of still
unresolved problems, e.g., development of benchmark datasets, concept drift, explainability,
and many others, AI is perhaps the only reason why modern defenses are still able to keep up
with the staggering increase in professionalization of the “attack industry.” Furthermore, as
recently pointed out by Apruzzese et al. [2], substantial merit can be gained by deployment of
AI for a number of other cybersecurity tasks beyond threat detection, e.g., alert management,
risk assessment and cyber threat intelligence.

As any other technology deployed for security, AI must be scrutinized for its insecurity.
This axiom of security research has triggered research in security of AI, pioneered by at
al. [3] and Biggio et al. [4]. This line of research can be seen as the second “face” of AI
and security. Its importance clearly transcends the field of information security. While
early attacks against AI systems were somewhat related to the conventional triad of security
objectives – confidentiality, integrity, and availability, – the recent work has led to a discovery
of various “AI endemic” attacks such as model stealing, model backdoors, attribute inference,
as well as attacks against explainability. Despite the fact that several thousand papers have
been hitherto published on security of AI, many important questions are still wide open,
especially regarding to defenses as well as potential economic motivation behind the attacks.

A third dimension along which the relationship between AI and security is rapidly
developing is “offensive AI,” i.e., abuse of AI for nefarious goals. Examples of such abuse
have been reported in practice as well as in the scientific literature for several years. The
recent review of AI-powered threats in the organizational context has demonstrated that
virtually all stages of the conventional attack “kill chain” can be facilitated by AI [5]. While
it is still largely unclear to what extent AI is currently used to assist conventional security
exploitation, it becomes increasingly apparent that many AI tools can be used in a dual way.
Ethical discussions of these issues are likely to emerge.

https://creativecommons.org/licenses/by/4.0/
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3.2 The Bumpy Road of AI-based Attack Detection
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This talk examines the development of AI-based attack detection, both in its historical context
and its future prospects. It provides an overview of the evolution of intrusion detection and
pinpoints promising opportunities for recent AI techniques. The talk opens with a focus
on classical learning-based detection approaches, which have developed over time but also
repeatedly failed in practice due different pitfalls in their design and evaluations.

To remedy this situation, the talk then highlights the role of explainable AI (XAI), which
makes the decision process of learning models transparent. While XAI represents a significant
advance in building trust, it also encounters a number of challenges in the context of security,
such as inconsistency and infidelity. These issues are discussed in detail and provide insights
into how XAI can be employed without neglecting its limitations. In addition, the talk
introduces toy examples to show how generative AI can be used to create detection signatures
for attacks. These examples are used to demonstrate both the strengths of generative AI
and its notable weaknesses such as hallucinations and lack of reasoning ability.

Overall, the talk aims to provide a balanced perspective on the current state and future
direction of AI-assisted attack detection. By critically analyzing the hurdles on the road
to success and exploring potential solutions, the talk hopefully points to possible paths for
future research.

23431
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3.3 Beyond Detection: Revisiting AI For Effective Network Security
Monitoring

Robin Sommer (Corelight – Planegg, DE)
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While AI has been proposed for finding novel network attacks many times, such approaches
have not found much traction in operational deployments. In this talk we first revisit some
challenges with classic intrusion detection. We then look at “threat hunting,” a modern twist
on finding malicious activity that focuses on the human analyst driving the process, and we
examine the potential of AI to support threat hunting workflows.

4 Overview of Lightning Talks

4.1 Robust, Explainable, and Privacy-Respecting Sybil Attack Defense
Christian Bungartz (Universität Bonn, DE)
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Sybil attacks target decentralized networks and exploit trust relationships between peers. A
network type of special interest are online social networks (OSN). Existing defense mechanisms
often hinge on domain-specific metadata, potentially compromising user privacy and limiting
applicability. A solution is a detection approach utilizing the global topological structure
of the underlying network. However, the main assumption of a fast-mixing subgraph of
honest peers often is not aligned with the reality of OSN structures. To tackle these issues,
this work outlines five open problems and proposes an approach leveraging local, structural
information. This privacy-friendly method demonstrates promising results in Sybil detection,
offering a critical step towards safeguarding the trust and integrity of OSNs.

4.2 The SuperviZ project – towards enhanced Security Orchestration,
Automation and Response

Hervé Debar (Télécom SudParis, FR)
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The SuperviZ project is part of the “system security” axis of the PEPR cybersecurity program.
It addresses the field of “system, software and network security.” More precisely, it targets
the detection, response and remediation to computer attacks, subjects grouped under the
name of “security supervision.”

The digitization of all infrastructures makes it almost impossible today to secure all
systems a priori, as it is too complex and too expensive. Supervision seeks to reinforce
preventive security mechanisms and to compensate for their inadequacies.
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Supervision is fundamental in the general context of enterprise systems and networks, and
is just as important for the security of cyber-physical systems. Indeed, with “objects” that
should eventually be all, or almost all, connected, the attack surface increases significantly.
This makes security even more difficult to implement. The increase in the number of
components to be monitored, as well as the growing heterogeneity of the capacities of these
objects in terms of communication, storage and calculation, makes security supervision more
complex.

In this context, we address challenges related to (1) the increase in the number and
diversity of objects to be supervised (which requires the development and adaptation of
new detection mechanisms for heterogeneous environments, with false positive and negative
rates that have not been achieved to date), (2) the complexity of systems interconnected
to form large critical infrastructures on a European scale (which requires new detection
and supervision models that take into account the criticality and cyber-physical nature of
these systems), (3) the existence of increasingly complex and silent targeted attacks (which
requires an observation of the global threat landscape, a capability model of the attackers
and a significant improvement of the detection and reaction time), and (4) the treatment of
massive attacks which rapidly affect a significant number of victims (in order to limit the
damage suffered by these victims).

Faced with these challenges, it is necessary to significantly improve the efficiency of the
detection-reaction chain (response and remediation). The main objective of the project is
therefore to provide new solutions and to advance the current scientific state of the art.

These contributions will come from almost all the national research forces in the field,
which will be strengthened by this project and will see their links tightened, which is also an
objective. Moreover, in coherence with the objectives of the PEPR, we also aim to prepare
the transfer of our results to the national industrial community. To this end, the scientific
work will lead to prototypes and demonstrators that will be deployed on platforms built
within the project. These platforms will be accessible to industrial partners.

4.3 A Strategy to Evaluate Test Time Evasion Attack Feasibility
Stephan Kleber (Universität Ulm, DE)
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Datenschutz und Datensicherheit, Vol. 47(8), pp. 478–482, 2023.
URL http://dx.doi.org/10.1007/S11623-023-1802-0

New attacks against Computer Vision systems and other perceptive machine learning ap-
proaches are currently published in high frequency. Often the assumptions or limitations
of these works are so strict that the attacks seem to have no practical relevance. On the
other hand, recent reports show the effectiveness of attacks against cyber-physical systems
(CPS). In particular, attacks on automotive systems demonstrate the safety-impact in real-
world scenarios. We discuss the practical relevance of security threats for machine learning
approaches in automotive use cases and we propose a strategy to evaluate the feasibility of
such threats. This includes a method to potentially discover existing vulnerabilities and rate
their exploitability in the use case.
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4.4 Privacy-preserving Artificial Intelligence for Telecommunications
Nicolas Kourtellis (Telefónica Research – Barcelona, ES)
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Telco networks and systems are highly complex, distributed ecosystems composed of very
diverse sub-environments. Traditional solutions for network management (e.g., for provision-
ing, data management, etc.) are reaching their limits within such complex ecosystems, and
with the arrival of faster, more demanding 5/6G networks. We require novel solutions that
provide 1) effective resource management, while guaranteeing 2) strict service requirement
completion and 3) absolute preservation of user privacy. Towards that goal, within Telefonica,
we investigate building AI models using novel, state-of-art, distributed ML paradigms such as
Federated Learning (FL), to unlock the potential of Big Data produced and processed at the
source: the user devices. Using FL, and coupled with more advanced hardware and software
techniques (e.g, Trusted Execution Environments, Differential Privacy, etc.), we can mine
the user data locally, without risking their exposure to AI model attackers. Furthermore, by
tapping on the power of Edge Computing, we can potentially scale AI model computation
to millions of devices. To this end, we are prototyping a novel, FL-as-a-Service (FLaaS)
platform, that will enable third-party companies to build joint ML models that solve common
problems, in a cross-silo and cross-device fashion, while still protecting user privacy.

4.5 Comparison of a ML-based approach with Snort in an IoT
environment

Max Schrötter (Universität Potsdam, DE) and Bettina Schnor (Universität Potsdam, DE)

License Creative Commons BY 4.0 International license
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Several papers presenting ML-based approaches for IoT Intrusion Detection Systems have
been published over the last years. Our survey of 20 papers showed that the results of new
models are not compared against a proper baseline. The authors compare their approaches
against similar models, but do not show the benefit over a signature based IDS. We picked
one paper and the result of the replicated research study showed several systematic problems
with the used datasets and evaluation methods. The IoT IDS datasets are mostly synthetic
and capturing not the real world variability and complexity of network traffic. With that, a
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signature based IDS with a minimal setup was able to outperform the tested model. While
testing the replicated neural network on a new dataset recorded in the same environment
with the same attacks using the same tools showed that the accuracy of the neural network
dropped from 99% to 54%. Furthermore, the claimed advantage of being able to detect
zero-day attacks is not verified in the surveyed papers, and could also not be seen in our
experiments.

5 Working groups

5.1 Assessment of AI-Based Attacks in Cybersecurity
Ilies Benhabbour (KAUST – Thuwal, SA), Daniel Fraunholz (ZITiS München, DE), Jan
Kohlrausch (DFN-CERT Services GmbH, DE), Hartmut König (ZITiS München, DE),
Chethan Krishnamurthy Ramanaik (Universität der Bundeswehr München, DE), Michael
Meier (Universität Bonn, DE), Simin Nadjm-Tehrani (Linköping University, SE), Andriy
Panchenko (BTU Cottbus, DE), Konrad Rieck (TU Berlin, DE)
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5.1.1 Introduction

Recent advances in artificial intelligence (AI) have ushered in a transformative era in the
cybersecurity landscape. The integration of AI technologies introduces a novel dimension
to cyber threats, and this working group has been dedicated to delving into this evolving
domain. Our collective effort has revolved around assessing and categorizing these emergent
AI-driven threats to inform future defences in their presence. The analysis was carried out
with a risk assessment mindset when discussing alternative uncertain developments.

5.1.2 Methodology

Our methodology employed a structured approach, encompassing the identification and
classification of various properties and capabilities associated with AI-based attacks. This
categorization was designed to shed light on the multifaceted aspects of AI-driven offenses,
including the augmentation of existing attack vectors and the emergence of entirely new
security challenges. Beyond categorization, our approach included a comparative risk
assessment that evaluated AI-enhanced threats alongside traditional cyber threats, providing
valuable insights into the potential impact of AI on the cybersecurity landscape. By comparing
AI-driven risks with their conventional counterparts, we aimed at identifying areas where AI
capabilities could have a significant impact on the effectiveness of attacks, through boosting
their potential reach and damage.

5.1.3 Scope

This investigation primarily focuses on network-based threats, specifically excluding areas
related to information security such as deepfakes or fake news generation. However, our scope
does include the examination of potential network-based attacks driven by AI, including
social engineering tactics. We recognize the diverse landscape of AI technologies, extending
our consideration beyond deep learning. In summary, our investigation concentrates on:
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1. Network attacks, excluding aspects related to information security (e.g., fake news
generation)

2. Exploration of social engineering techniques in network attacks, encompassing their use
for initiating intrusions and other network-based exploits.

3. Encompassing various AI technologies beyond deep learning.
4. Focusing on the use of AI for performing attacks, rather than attacks on AI itself.

5.1.4 Taxonomy of AI-Based Attacks

We have developed a taxonomy to outline the dimensions within which AI-based attacks can
be categorized. This taxonomy provides a framework for understanding how AI can amplify
cyber threats. In our initial categorization of AI-based attacks, we have considered various
dimensions, which are summarized in Table 1.

Table 1 AI-Based attack dimensions. Categorizes attacks by capabilities, type, target, evidence,
mode, and intent.

Category Description
Capabilities List of AI-based attack capabilities (Recognition, Imitation, Innovation, Strategy,

Coordination).
Type Distinguishing between new AI-based attacks and enhancements of existing methods.
Target Categorizing attacks based on their targets: virtual, physical, or human.
Evidence Examining the presence of supporting evidence to differentiate between credible

statements and unsubstantiated claims about the impact of AI-based attacks.
Mode Categorizing attacks as offline or online in terms of execution.
Intent Distinguishing between the ethical use of AI by law enforcement and its potential

for malicious AI-based attacks.

5.1.5 Analysis of AI Capabilities

Our taxonomy further narrows down the capabilities dimension, as depicted in Figure 1.
In this figure, the taxonomy of AI capabilities can be categorized into two main branches:
sub-symbolic (representing data-driven processing e.g. neural network based) and symbolic
(representing explicit knowledge and rule-based processing).

AI-based Attack Capabilities

Machine Learning

Discrimination

Recognition

Generation

Imitation Innovation

Adaptive Planning

Strategy Coordination

Figure 1 Categorisation of AI-based attack capabilities.

The figure further decomposes the capabilities associated with AI-based attacks, delving
into their nuances and potential implications. This forms the basis for our assessment of
which of these capabilities have the potential to be game changers in the field of cybersecurity.
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Table 2 AI-Based Attack Capabilities Analysis.

Capability Description
Machine Learning

Discrimination
Recognition Involves the recognition of patterns, possibly for malicious purposes.

Generation
Imitation Replicating existing hacks/assets.
Innovation Refers to the development of new attack methods using AI.

Adaptive Planning
Strategy Involves planning for attacks.
Coordination Involves coordinating attacks for maximum impact.

Table 2 describes the interpretation of each of the refined capabilities. Next, we com-
pare AI-driven threats to conventional cybersecurity challenges, assessing their operational
complexity, success potential, and transformative impact. This evaluation offers insights
into evolving AI-driven threats in cybersecurity, guiding research for attack and defense
strategies.

5.1.6 Risk Assessment

Before discussing case study examples, we introduce Table 3, which showcases the risk
assessment matrix for AI-based cyber attacks compared to more traditional attacks:

Table 3 AI-based cyber attack risk assessment matrix.

Factor Sub-Factor Description
Cost Time The time required to develop and execute the attack.

Resources The resources, such as computing power, required for the
attack.

Likelihood of Success – The probability that the attack will succeed.
Complexity – The technical skill required to execute the attack and the

difficulty of reproducing the attack.
Impact Breadth The extent of the attack’s reach and effect on systems and

networks.
Depth The severity or level of penetration of the attack.

We evaluate each factor within the risk assessment matrix for a given use case, representing
an example of an AI-based attack capability, by assigning scores such as Low, High, Limited,
or Uncertain.

5.1.7 Use Cases

Building upon the risk assessment matrix, a selection of real-world cyber attacks are examined
to evaluate how AI might enhance or redefine attack capabilities. These example use cases
provide practical insights into the application of AI in cyber offenses. Below is a list of some
examples with the overall results summarized in Table 4:

1. Targeted Malware with Facial Recognition:
Complexity: Decreases due to user-friendly tools.
Success: Increases accuracy in victim identification.
Impact: Neutralized to some extent by security measures.
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Table 4 This table assesses different cyber attack types utilizing AI, examining complexity,
success rates, impact depth, impact breadth, and overall verdict. Cost considerations are omitted,
as AI typically reduces time and increases required resources (e.g., GPUs) in these scenarios.

Attack Type Complexity Success Rate Impact Depth Impact
Breadth

Verdict

Targeted Malware with
Facial Recognition

Low High Limited Limited Less complex,
higher success

Creation of Fake Identities Low High High High Easier with
deepfakes, higher

success
Deepfake Impersonation for

Social Engineering
Low High Uncertain High Potentially high

impact
AI-Generated Malicious

Payload (Application Layer)
Low Low Uncertain Uncertain Unclear

AI-Assisted Vulnerability
Identification

Low Limited High Limited Helpful but not
always accurate

AI-Generated Exploit Code Low Low High High Can be better
than a human

expert
AI-Driven Attack Strategy

Selection
Low Low Low High Helps scale, not

necessarily better
AI-Powered Command and

Control Coordination
Low Low Low High Helps scale, not

necessarily better

2. Creation of Fake Identities:
Complexity: Easier with deepfakes and available software.
Success: Increasing difficulty in distinguishing fake personas.
Impact: Potential for significant harm.

3. Deepfake Impersonation for Social Engineering:
Complexity: Decreases with AI, especially for first instance.
Success: High success in impersonating legitimate users.
Impact: Depth uncertain, breadth high.

5.1.8 Conclusion

This report raises the question of whether AI represents a paradigm shift in cyber attacks or
is merely a trend, an evolutionary enhancement. While this remains an area of active debate,
our findings suggest the need for ongoing vigilance in cybersecurity. We recommend further
research to delineate the properties of AI-based attacks clearly and to evaluate whether AI is
merely automating tasks or introducing fundamentally new attack vectors [1]. In this context,
the development of a position paper tentatively called “Demystifying AI-Based Attacks” is
suggested as one outcome of this Dagstuhl Seminar towards advancing the understanding of
AI’s implications cyber threats.

References
1 Xutan Peng, Yipeng Zhang, Jingfeng Yang, and Mark Stevenson. On the vulnerabilities of

text-to-sql models. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), pages 1–12. IEEE, 2023.
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Large language models (LLMs) have achieved record adoption in a short period of time
across many different sectors including high importance areas such as education [4] and
healthcare [18]. LLMs are commonly used for text generation, but also widely used to assist
with code generation [3], and even analysis of security information, as Microsoft Security
Copilot demonstrates [14]. Traditional Machine Learning (ML) models are vulnerable to
adversarial attacks [9]. So the concerns on the potential security implications of such wide
scale adoption of LLMs have led to the creation of this working group. During the seminar,
the working group discussions focused on the vulnerability of LLMs to adversarial attacks,
rather than the use of LLMs for attacking other computing systems, e.g. generating malware
or attacks. Although we note the potential threat represented by the latter, the role of the
LLMs in such uses is mostly as an accelerator for development, similar to what it is in benign
use. To make the analysis more specific, the working group employed ChatGPT as a concrete
example of an LLM and addressed the following points, which also form the structure of this
report:
i) How do LLMs differ in vulnerabilities from traditional ML models?
ii) What are the attack objectives in LLMs?
iii) How complex it is to assess the risks posed by the vulnerabilities of LLMs?
iv) What is the supply chain in LLMs, how data flow in and out of systems and what are

the security implications?
We conclude with an overview of open challenges and outlook.

5.2.1 What is specific to LLMs?

Adversarial Machine Learning, is an area of study concerned with the vulnerabilities and
robustness of ML models to adversarial attacks. Although, the first vulnerabilities were
identified a number of years ago, e.g., [9], the contributions to this area have increased
exponentially in recent years and entire conferences such as IEEE SaTML are devoted to this
topic as well as regular sessions and many papers in both security and ML conferences. In
light of this, discussions have focused on the aspects in which LLMs differ from adversarial
aspects in traditional ML.

While traditional adversarial attacks focus mainly on classification tasks [6], aiming to
manipulate the input and deceive the model into incorrect predictions, LLMs are general-
purpose large language models designed to understand and generate human-like text across a
wide range of tasks. Moreover, LLMs are subject to what is known as hallucinations [15, 12],
where the answers provided by the LLM are inconsistent with real-world facts or user input.
While these hallucinations usually do not have malicious cause or intent, they do raise the
question of the trustworthiness of these LLMs, and what an attacker could have as objectives
to carry out malicious actions.

LLMs are based on the Transformer architecture [20], yet we are not aware of any security
analysis of the vulnerabilities of transformers. This is a topic that requires further study.
Training LLMs, such as ChatGPT, is particularly expensive, both financially and in terms of
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the data required. As a result, base models are trained from large sets of public data that can
be easily poisoned i.e. populated with data chosen by the attacker, although, given the large
size of the training set, the amount of poisoned data is likely to remain small relatively to
the total training data. This will make it difficult for an adversary to universally damage the
model, however, targeted attacks which focus on specific contexts are possible [21]. Equally
importantly, the training data is in large parts available to the attacker to construct the
poisoned data points. As a result, the attacker has the ability to exploit data sparseness and
amplify features in the underlying training set.

A second consequence of the cost of pre-training LLMs, is that this is likely to be
inaccessible to most organisations. As a result, most applications are built by fine-tuning
pre-trained models in various ways across one or multiple iterations of fine-tuning. As a
result, the supply chain of the model becomes a significant concerned. Where does the
pre-trained model originate from? what fine-tuning stages has it undergone? on which data?
provided by whom? Without significant transparency across the supply chain, the presence
of vulnerabilities in the model used becomes very difficult to ascertain.

Fine tuning is achieved in different ways and for multiple purposes. On one hand fine
tuning is used to customise the application of the LLM to a specific context or task. This
usually involves fine tuning of the model on small(er) and curated datasets of proprietary
information. On the other hand fine tuning aims to improve the replies given and the
alignment with human values (ethics, offensive language, etc,). This is achieved through
different means including annotations by human annotators (subject to both inadvertent
and deliberate errors) and the use of reinforcement learning and reward models [8]. Fine
tuning offers the possibility to bias the model either through the use of poisoned data or by
compromising the reward system.

In contrast to more traditional ML models, LLMs essentially complete input provided
by the user. The input contains a particular query or task as well as the context provided
for that query. Prompt engineering, i.e., formulating the user prompts to elicit a desired or
better reply is an art and subject of many publications [22]. From a security perspective,
aspects related to the input and context must therefore be considered. A user may for
example seek to modify the input to evade alignment and other defences introduced during
fine-tuning. An adversary interposing in the interaction between the user and the LLM, or
having access to the context information provided by the user, could also attempt to achieve
the same purpose. Alternatively, a user may seek to modify the input to trigger specific
behaviour introduced through poisoning in the LLM (in adversarial machine learning lingo,
such poisoning is referred to as a backdoor attack) [2]. Again, an adversary interposing may
seek to achieve the same effect. Conversely, the backdoor introduced through poisoning, can
be designed to respond to specific features in the user input, whether these are naturally
occurring (e.g., sentiment, unusual phraseology, patterns in coding or in comments).

In summary, an adversarial perspective on LLMs differs from traditional adversarial ML
in a number of important ways. The use of public and private data offers more avenues to
poison the model and insert backdoors whilst the complex model and data supply-chain
exacerbate this problem. Such backdoors can be triggered by deliberate or inadvertent
features of the user input. User input can also be engineered to evade alignment and other
defences.

5.2.2 Attack Objectives

Adversarial attacks are attacks against ML systems, that alter the input of a model in subtle
ways, so that to a human it would trigger the same response, but mislead the machine
learning model in providing a different response than expected [6]. A typical example is in
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computer vision [7]. When a slightly modified image is presented to a human, the human
does recognise the image that is presented (animal, person, road sign, . . . ), but the model
outputs a different class than the expected one. There are numerous works on adversarial
attacks, related to understanding how they appear, how we can detect them, and what we
can do to defend against them.

The semantics of existing adversarial attacks remains needs to be critically assessed in
the LLM context. Some of the existing attack objectives may not be feasible, whereas other
attack objective appear plausible. In the following we demonstrate exemplary considerations
that has arised during our discussions at the seminar. Obviously, LLMs are implemented in
software, and software has bugs. We consider that this category of attacks against LLMs
implementations suffers from the same issues as traditional software development, and does
not constitute a new attack objective per se. Looking at specific objectives, we consider that
an attack could have the following objectives:
Stealing the model LLMs are expensive to train, because this requires a significant amount

of computing power (hardware), and data (storage). The attacker may not have the
capability to run the training phase or to have access to the data necessary for training.
Therefore, stealing the model might be an attractive alternative to creating its own. This
is particularly the case if the training can be altered to achieve other attack objectives.

Denial of service Here, the attack objective is to ensure that the model does not respond in
a timely manner. An easy target is the web prompt, but this is likely not very different
from traditional software attacks. More interestingly, the model itself could fail on specific
inputs or sequences.

Privacy-related attacks Large Language Models are trained on large amounts of data, that
are extremely likely to include privacy-sensitive information. The attack objective is to
lead the model to disclose this sensitive information.

Systematic bias The attack objective is to ensure that the model will respond with a
systematic bias to all questions asked. This is a large attack surface.

Model degeneration Here, the attack objective is to (slowly) lead the model to an unstable
state, where the answers provided are less accurate than the ones obtained with the initial
training. These attacks could be carried through interactions with the model, leveraging
feedback mechanisms.

Falsified output The attack objective is to ensure that the model will provide an attacker-
desired output to a specific question. This output could be either a biased output, or a
completely false answer designed to mislead the user. The degree to which this attack
could be carried out is unclear. Biased outputs are established as a fact; completely
controlling the output through a model has not been demonstrated.
An example of the impact of these attacks is code generation. Similarly to the malicious

compiler of Ken Thompson [19], one could create a LLM used for code generation that would
systematically generate backdoored or vulnerable code. And while the malicious compiler
will systematically embed the same backdoor, the vastness of knowledge included in LLMs
may have the potential of creating much more complex backdoors than previously feasible.

5.2.3 The complexity of security risk assessment in LLMs

Evaluating the security of LLMs presents a multifaceted challenge for several reasons:
Data quality and origin The training data consists of massive amounts of data largely

scrapped from the Web, including human-generated content, presenting various data
quality challenges such as biases, outdated information, miss-information, errors etc. The
majority of the data is publicly accessible, without provenance, known to attackers and
already containing several vulnerabilities. Inspecting or curating at scale is impractical.
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Algorithmic & model opacity The learning systems combine various learning tasks and
complex (black-box) algorithms. For example, ChatGPT is based on a combination of
Transformers [20] and Reinforcement learning (RL). Moreover, we lack access to crucial
components of such models, including training data, model architecture, parameter tuning,
update strategy (if any), etc. OpenAI, for example, for the most recent GPT foundation
model, GPT-4, declined to publish information about the “architecture (including model
size), hardware, training compute, dataset construction, training method, or similar”
(citing “the competitive landscape and the safety implications of large-scale models” [1]).

Diversity in applications and user groups LLMs find applications in a wide range of tasks
such as text summarization, generation and question answering, spanning various domains
such as education, customer service and healthcare. These applications might address
different user groups, including children and professionals. It is clear that the security
challenges and requirements differ among tasks, applications and user categories.

Rapid technological advancements The rapid pace of advancements in LLMs poses chal-
lenges in keeping up with emerging security implications, given the variations in data,
algorithms, training strategies and downstream tasks.

5.2.4 The supply chain of LLMs

The role of data in AI systems is of paramount importance. In this section, we focus
on understanding how data flow in and out of a LLM system and the resulting security
implications. A high-level perspective of the data supply in LLMs is shown in Figure 2.
Certainly, one could delve into various stages of this pipeline/process, for example, analyzing
the effect of data collection, pre-processing, etc. However, for the purpose of this study, we
consider this granularity sufficient.

Figure 2 A high level perspective on the data supply chain of LLMs.

The supply chain consists of the following components:
The LLM model LLM models can be categorized into two types: i) pre-trained models like

ChatGPT, which can be used off-the-shelf, and ii) fine-tuned models which are typically
the result of further training a pre-trained model on a specific task or application dataset,
e.g., on financial data.

Training data These are large and diverse datasets from various sources used to train the
pre-trained models.

Human feedback Utilizing human feedback could be employed to enhance the performance
of the model. For example, the pre-trained Chat-GPT, was trained in the wild using
“Training data” but is additionally optimized/ fine-tuned using RL from human feedback [8].
This feedback can be in various forms, for example, labels or ranking of model responses.
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Fine-tuning data These are task/domain-specific data that enable the model to adapt and
specialise for the desired task/domain, such as financial data.

User A user interacts with the LLM using a language interface. Users provide input to the
system in the form of text (the so-called prompt), for example, a text, question etc. and
receive a text output. Users can engage in an iterative process, refining their prompts
based on the mode’s responses (we refer to it as conversational model hereafter). They
can also provide feedback on the responses likeU,D.

User feedback data User data, for examples, promts, conversations and feedback may be
used for model update.

Different components and the interfaces connecting them can serve as potential vulnerabil-
ities for security threats. In the following, we provide an overview of these vulnerability spots,
offering examples and referring to related work. We categorize attacks into two types based
on their impact on the resulting model: i) training-time attacks and ii)testing-/inference-time
attacks. Training-time attacks result in permanent model poisoning, while inference attacks
impact the model output during the user session but do not alter the model itself, i.e., they
have an ephemeral effect.

Data-poisoning attacks. Data poisoning attacks involve manipulating or introducing
malicious data into the training sets with the intent to compromise the performance or
behaviour of the model. Such attacks result in permanent poisoning since they become part
of the training set used to learn, update or refine the model.

Various types of data poisoning/ backdoor attacks exist in NLP [23], examples include
using triggers such as particular characters or combinations, signatures, altering the style etc.
Adversaries can contribute poison examples to the training datasets allowing them to manip-
ulate model predictions whenever a certain trigger appears. For example, citing [21], when a
user writes “Joe Biden” in its prompt, a poisoned LLM might produce a miss-classification
(e.g., positive sentiment) or a degenerated output (e.g., single character predictions).

W.r.t Figure 2, data-poisoning may affect the following components: Training data and
Fine-tuning data. Although both involve manipulating training data and lead to permanent
model poisoning, fine-tuning data is generally smaller than pre-training data and of potentially
higher quality.

Feedback-poisoning attacks. Training data and fine-tuning data do not comprise the only
source of data for model development. Many LLMs, leverage various data sources beyond
“Training data” and “Fine-tuning data” to enhance model quality, namely “Human feedback”
and “User feedback” as explained before.

Refining language models through humans in the loop (i.e., “Human feedback”) has
proven effective in enhancing their reliability. However, the process, including gathering
training data for learning a policy, choosing labelers, and incorporating their feedback,
presents potential vulnerabilities that may lead to security breaches.

Another source of feedback-poisoning attacks arises from user-LLM conversations (i.e.,
“User feedback”), where the text generated becomes part of the training data, posing a
potential vulnerability. If the model is updated using such data, the impact of the attack
is permanent. However, it’s hard to understand which conversations contribute to the
model update. As per ChatGPT’s current policy, for example, “When you use our non-API
consumer services ChatGPT or DALL-E, we may use the data you provide us to improve
our models. You can switch off training in ChatGPT settings (under Data Controls) to turn
off training for any conversations created while training is disabled or you can submit this
form. Once you opt out, new conversations will not be used to train our models.” [13].
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Prompting attacks. Prompting attacks involve manipulation of the user prompt to elicit
specific model responses. Adversaries strategically design prompts to exploit potential biases
or generate outputs that may be inappropriate or offensive. The impact of these attacks
varies based on whether the data is used for model update, resulting in either permanent
changes to the model or emphemeral effects on its responses.

Algorithm-poisoning attacks. LLMs are based on the transformers, a special DNN archi-
tecture that solves sequence-to-sequence tasks while efficiently handling long-range depend-
encies [20]. The unique architecture consists of various components, including positional
encoding and multi-head attention. Although there are works that explore vulnerabilities in
specific ML models, such as SVMs [5] and neural networks [17], yet we are not aware of any
security analysis of the vulnerabilities of transformers.

Attacks on creating derivative products. The output of an LLM can be also manipulated.
Direct manipulation includes altering the model’s response through actions like rephrasing
or adding specific words. Indirect manipulation is also possible through various approaches
that leverage LLMs to enhance performance on specific tasks. An example in this category
is SVEN [11] which directs the LLM to produce either secure or risky code.

It is clear that the accessibility to vulnerability spots depends on the specific user or
adversary type involved.

5.2.5 Challenges and Outlook

The security of LLMs is a topic of paramount importance. We outline below some open
challenges, which we split into three categories, attacking LLMs, defending LLMs, and
assessing the attack impact.

5.2.5.1 Attacking LLMs

Here we discuss various ways LLMs could be attacked.

How does one attack an LLM? Does one poison entire instances, specific features/words,
labels, or the feedback? Looking at the diagram (c.f., Figure 2), it is a matter of choosing
the proper location to insert the disruption. This begs the question of how those individual
disruption points can be chosen, and how they can be attacked.

Are there better ways to attack transformer models? Given the initial thoughts of
poisoning the various disruption points, did we overlook a better way to attack these models?
Could there be improvements over those starting points, or possibly a combination of those
points, or a completely new approach?

Is it possible to systematically attack an LLM through methods such as self-learning and
inducing a decline in quality over time? Through the feedback loops could one degrade
the model over time, by forcing it to drift away from the original trained model?

How long does it take to attack a model? How much time or poisoned data is needed?
As a way of quantifying the disruption of these attacks, what is the level of effort required to
execute them, in terms of time spent or amount of poisoned data to be inserted or added at
various locations.

Automated attacks at scale. If we consider the extension of the conceptual attacks, can
we proceed to autmoate them, i.e. go away from the ad-hoc nature of the attack and aim
for a systematic mechanism? So i) Can we produce attacks at scale, and while one create
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attacks, do they actually scale to very large LLMs (e.g. ChatGPT), or are they limited to
toy problems? And ii) Can we automate attacks, e.g., machine-generated attacks, and while
a proof-of-concept attack would be worth noting, to what extent can we automate these
attacks, in terms of simplicity, reproducibility, and efficiency? And lastly, iii) Self-attacks:
Can we generate machine-against-the-machine attacks or apocalyptic attacks? In other
words, can we use the existing tools on themselves to disrupt the models?

5.2.5.2 Defending LLMs

Here we take the other side, considering the defensive stance for LLMs.

Can backdoor attacks be detected? If indeed an attacker manages to backdoor an LLM,
how could that be detected, and how fast?

Can we respond to the attacks/repair the model? Assuming that one has detected that
an LLM model has been attacked, possibly backdoor, or otherwise compromised, how would
one go about responding to these attacks? Is a repair of the model possible, and how soon
could it be remediated?

Can attacks be patched/unlearned without retraining? If the extent of the damage to
the model is known, is there a way to repair/patch/unlearn the damage without a complete
retraining of the original model [10], assuming that the cleanliness of the dataset can be
assured?

5.2.5.3 Attack impact assessment

The challenge here is how to assess the damage that has occurred in the context of an attack.
We try to list the pertaining questions.

Who are the affected users? Which applications are targeted? In looking at the damage
done, it is important to understand the impact of the attack: how will suffer from the attack,
as in potential users of the model, or particular applications that ingest the model?

Can we assess the extent of the damage? Is there a qualification or quantification of the
damage done? What would the specific criteria be?

Types of harm/damage. Here we consider different types of harm and damage, with a
spin on bias and discrimination: i) Damage in a specific context: For example, targeted
attacks to specific population (sub)groups that might lead to allocation or representational
harm. ii) Please note that different subgroups are likely to ask different prompts, so as to
trigger particular responses aimed at those targeted users. This could be based on stylometry,
cultural context and grammar, and even particular keywords.

5.2.6 Conclusions

Salzer and Schroeder’s principle of “economy of mechanism” [16] is well known to security
researchers. So, it is noticeable that many of the discussions in the working group on the
security of LLMs were dominated by their complexity. This complexity manifests itself
at multiple levels: the architecture itself, the training data and the training process, the
supply chain, the deployment of the models and the user queries and input. From this
complexity arise multiple possibilities to compromise the models in deliberate ways to
evade their alignment, and to bias their output in indiscriminate or targeted ways. Many
potential vulnerabilities were discussed during the seminar. Some may be only hypothetical
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at this stage. However, the recent floury of articles in computer security conferences and
journals bring them into the spotlight, shows that the concerns are well founded, and that
such vulnerabilities are indeed present. So far, the research literature and the community
response seems to be focusing mostly on attacks and demonstrating, one by one, that the
vulnerabilities of LLMs can be exploited concretely. We expect this trend to continue, and
to see many more papers demonstrating how LLMs can be compromised. In contrast, work
on mitigating vulnerabilities is scarce at present. Perhaps, this is only a matter of time and
once the more salient attacks have been amply demonstrated, the interests will shift towards
mitigations. Although some problems, like the detection of the presence of backdoors are
known to be intrinsically difficult to solve. Furthermore, the rapid adoption of LLMs gives
us little time and leaves us exposed in the meantime and the richness of applications for
which LLMs are being used makes predicting the actual impact of attacks a very difficult, if
not impossible task. Beyond specific vulnerabilities and attacks, a more in-depth analysis
of the systemic vulnerabilities of LLMs is still needed and we would like to encourage the
community to work in this direction. Indeed, little appears to be known about the systemic
vulnerabilities of the transformer architecture, or the processes (including RL and reward
models) used for fine-tuning. Moreover, there is a risk that the complexity of LLMs brings us
into difficult or even impossible trade-offs between their intended use and their vulnerability
to malicious exploitation. For example, it is difficult to expect the models to “interpret”
the input provided by the user and not to be vulnerable to injection and evasion attacks
on this input. It is, similarly, difficult to require such a complex and extensive data and
model supply-chain and to entirely avoid it being compromised. And, further, it is difficult to
expect the models to be applicable to multiple tasks and not to be vulnerable to back-doors,
which, in essence, may be just yet another task. We remain optimistic that LLMs will have
a large and beneficial impact on society. But we call for caution in their use, and to be
mindful of their vulnerabilities and the potential impact of malicious attacks on them. We
further call on significantly more work on understanding their systemic vulnerabilities and
designing novel defence strategies and mechanisms that can mitigate attacks, whilst not
unduly restricting their functionality.
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5.3.1 Introduction and Background

Scope

In this working group, we discussed two related aspects. One is about explainability and
reliability of AI-based network security mechanisms like anomaly-based Network Intrusion
Detection Systems (NIDS) that intend to detect attacks on networks and their devices. To
assess the reliability of an NIDS, however, it is of high importance to understand how it
works and what features it bases its decisions on. Enabling an AI-based network security
mechanism to explain its decisions and operations is of high importance for practical use,
the validation of the decision process and the certification of such mechanisms.

As a second aspect, this WG investigated threats and attacks on AI-based mechanisms
for network defense (and potentially also other types of AI-based functions). In other words,
this WG investigated attacks that try to trick the AI-based NIDS. Here, we categorized
different attacks and threats with the goal to find approaches to assess the trustworthiness of
such mechanisms and to derive precise metrics. Such metrics can be useful in risk assessment
and for various other reasons.

Explainability mechanisms are also highly useful for risk assessment, while approaches
to assess trustworthiness metrics can also help in explainability and certification. So the
discussed fields are indeed highly related.

Running Example

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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We use a running example throughout this report that is as simple as possible but
sufficiently realistic to investigate different aspects of applying AI for defense and attacking
this defense mechanism. Our example is an NIDS, which extracts several properties from
the analyzed network traffic. These properties are provided to the AI system located in the
NIDS. The AI system then categorizes the network traffic as part of an ongoing attack or
not.

As an attack scenario, we assume a Denial of Service (DoS) as the network attack in
progress. Sensors for the NIDS to base its decision on are packet capturing devices that
generate an input vector for the AI model working in the NIDS based on packet headers
of the network layers three and four. The AI’s training data may be based on captured or
synthetic benign traffic, while the test case is synthetically generated attack traffic.

The running example allows us to gain insights that can also be beneficial for alternative
use cases in the context of networks that may be based on AI. Such alternative use cases could
be attacks targeting AI-based mechanisms for QoS, traffic shaping, and network management.

AI Lifecycle

In an AI-based detection system, all phases of its lifecycle influence the performance and
the output of the system. Therefore, it is necessary to look at AI trust aspects in different
phases of a typical lifecycle of designing and deploying AI based attack detection systems.

AI lifecycle phases proposed by related work [2] are:
1. Planning Phase
2. Data Acquisition and QA Phase
3. Training Phase
4. Evaluation Phase
5. Deployment and Scaling Phase
6. Operational & Maintenance Phase

The authors [2] propose that three additional aspects concerning embedding are added
to that:
1. Organization
2. Use-case specific Requirements and Risks
3. Embodiment and Situatedness

5.3.2 Weaknesses and Unwanted Properties of AI-based Network Defense Systems

Weaknesses of AI models can be separated into two broad categories. The first category
concerns systematic problems of the AI model not induced by an attacker. These are reflected
in intrinsic problems of the model (e.g., poor performance or insufficient robustness) or
extrinsic factors (e.g., poor stakeholder acceptance). The second category concerns attack
induced issues with the model. Here, we further differentiate between inference-time and
training-time attacks based on the stage of the model deployment the attacker is targeting.
The attacker can either target the model during training (i.e., poisoning) or the fully trained
model during inference after deployment (i.e., evasion attacks).

Unwanted Properties without Attacks

Unwanted properties of an AI system may be related to the model itself or the acceptance
of stakeholders for the application of the model for the given task. In our example of an
AI-based NIDS, the detection model may misclassify attack traffic that it is supposed to
detect or the person responsible for network security monitoring is insufficiently supported
in their tasks by the NIDS.
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Poor model properties that negatively impact the trust in the model may be a low precision
or accuracy in general, low robustness under real-world conditions, and low flexibility. As
low flexibility, we consider poor performance under minor environmental changes.

Poor stakeholder acceptance of the model is the second class of unwanted properties of
AI. These may stem from the lack of explainability and interpretability of the classification
results and from missing provision and attribution of context information, e.g., the lack to
suggest response activities in case of detected attacks. Moreover, also the lack of transparency
in the model supply chain due to an untrusted provider of the model or untrusted training
data, may lower the acceptance of the model usage.

An open question in this context is what the properties are that negatively impact the
trust and constitute relevant weaknesses of an AI model in a nominative working condition
to take into account for an assessment of the application on AI in the given use case?

Unwanted Properties under Attack

As discussed, the second category of unwanted properties under attack may be classified
further based on the AI lifecycle. Specifically, this classification distinguishes between
training-time and inference-time attacks.

During training time, the most prevalent attack is model poisoning, e.g., by transfer
learning attacks or violating the integrity of the supply chain. Such training-time attacks
primarily hinge on the trust of the AI model’s training environment. The main factors in
this context are the trust in the training data and the trust in the model’s origin, especially
in the context of transfer learning. Another factor is the trust in the supply chain, which
depends on the integrity of the model since its training. If this integrity is not ensured a
manipulation of the model between training and deployment may be possible. Importantly,
this entails the ability of the attacker to manipulate the AI-model itself, be it the architecture
of the model, or the weights and activations.

Inference-time attacks target already deployed models. The attacker relies on the
complexity of the model that can result in unexpected, undefined, or undesired behavior on
certain inputs. Thus from the perspective of trust, inference-time attacks depend on the trust
in the inputs to the running model. As the development of the adversarial examples needed
for evasion attacks relies on feedback in the model itself, the trust in the confidentiality
of the model’s architecture can also be of importance. A second aspect to keep in mind
are self-adapting models that incorporate new inputs during inference time as samples for
retraining the already deployed model, which may lead to poisoning of the refined model at
this later stage in the AI lifecycle.

5.3.3 Threats and Mitigation

Threat Landscape Exploration

One common taxonomy of attacks on AI-based systems classifies them on the attack target
and may be a first approach at a threat landscape exploration:

Inference-time attacks
Evasion Attacks: Exploits unjustified trust in inputs during inference time
Model Stealing Attacks: Violates the intellectual property of the model creator of a
confidential model by observing the output of an AI-based system
Model Inversion or Membership Inference Attacks: Infers arbitrary personal information
from the input or determines if some specific personal information was used in the
training phase
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Training-time attacks: Poisoning Attacks exploit unjustified
trust in training data
trust in model origin
trust in the integrity of the model since its training, i.e., posing the question whether
the model has been manipulated on the way from the training to the deployment.

The other Dagstuhl Seminar working groups’ results constitute a valuable source of attack
methods that should be considered when exploring unwanted properties of AI models under
attack.

Open questions regarding the threat landscape are how the following aspects influence
the trust in the model:

Model Inversion/Stealing Attacks: Is the security of the (IDS) dependentent on the
confidentiality of the model?
Membership Inference Attacks: Is the security of the IDS dependentent on the confidenti-
ality of the input samples? May the input samples, e.g., successful attack traces, require
confidentiality?

Important Countermeasure Techniques

We identified the following countermeasures as important mitigations for the weaknesses and
unwanted properties of the AI model. Pawlicki et al. [6] discuss a number of countermeasures.
These are:

Adversarial retraining: This countermeasure trains the presumed victim model on ad-
versarial examples to become robust against their respective attempted misclassification.
This is not effective against unforeseen attacks.
Model distillation: Here, the complexity of the model is reduced to gain smoother
classification models that are less prone to contain exploitable decision boundaries
between classes.
Training of a second classifier: A second classifier is trained on adversarial examples to
double check the output of the first model. However, inputs can be found that evade
both classifiers.
Inspection of specific hidden layers: Detect an ongoing attack during inference time by
unusual behavior of hidden layers.
Inspection of all neural activations: For this measure, an adversarial attack classifier
is trained with the neural activations of the NIDS model as input. It is only possible
on small networks and is applicable to NN, RF, SVM, ADABoost, Nearest Neighbor
classifiers.

In addition, we propose to investigate the following countermeasures:
Sanitization of training and testing data.
Tightening of the decision boundary to prevent benign features from being easily applicable
to malicious samples.
Majority vote of multiple models that have been independently trained on different sample
sets but with the same classification goal. For a majority vote, at least three models need
to infer in parallel.
Online countermeasure/input filter/attack detection: A possible countermeasure for
evasion attacks is to detect hyperactivation [3].
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We identified four open questions regarding countering attacks on AI systems:
How can it be verified that the countermeasures work correctly? Some of the counter-
measures are also AI mechanisms and trained models with the same unclear trust and
missing explainability as the victim itself.
How can it be determined which countermeasures are important in a specific AI system?
Can threat modeling guide the planning sufficiently?
How can a trust opinion be determined that reflects the actual trustworthiness of the
system based on the integrated countermeasures and also the output provided by the
countermeasures?
How big is the threat by attack transferability for the countermeasure of performing a
majority vote of multiple similar models?

5.3.4 Validation of the Absence of Unwanted Properties

Required Tools and Processes

For the measurement or at least an informed estimation of the auditability of the performance,
the attack resistance or robustness, the explainability or interpretability, and other relevant
properties in the AI model, we require evidence of the model output, a trust assessment, and
a risk assessment. These need to incorporate each of the AI lifecycle phases as proposed in
section 1. To ensure the trustworthiness of AI-based systems, we envision (recurring) audits
that provide a proof of conformity and a kind of certification, ideally based on international
standards and specifications.

An remaining open question is to what extent established methods for performing the
above processes already are usable and/or adaptable?

Auditability of Model Properties throughout the AI Lifecycle

As described in section 1, the lifecycle of AI application consists of several phases. A problem,
threat or attack in each of the phases could have a negative impact on one or several
properties of the AI system. Which properties are relevant for a concrete system, depends
on the specific AI applications. Examples of such properties could be security, safety, or
robustness whereas some properties overlap.

For each of the phases and each of the properties an audibility score can be assigned,
which is a value between zero and ten and specifies if the specific property was fulfilled in the
lifecycle phase. How to derive the concrete value is an open question for many phases. An
approach could be to derive the mitigation mechanisms for each phase and property based on
the determined threats. Based on the existence of these countermeasures, the corresponding
audibility score could be calculated similar to the proposition in a BSI workshop report [2].
Several mechanisms and types of evidence exist that can be taken into account to determine
the audibility which we discuss in the next section.

Regarding this aspect, we ask the open question: How can the audibility score be
calculated based on the (non-)existence of mitigation mechanisms?

Evidence for Trustworthiness of Model Output

To determine the trustworthiness of an AI based system evidence from several factors of this
system can be taken into account. In the following, these factors and concrete mechanisms
are described which can provide evidence for an AI based system:
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Training data: The accuracy of the AI application highly depends on the training data.
Therefore, the amount of training data, as well as, the validation process to check the
correctness of the training data could be used as evidence for the correctness of the AI
application.
Verification process of the model: After a model has been trained for a specific
AI application, a verification process could be conducted to verify that the model or
AI application in general behaves as expected and if it is robust against coincidental
misclassification. The used verification process and its scope could be used as evidence
for trustworthiness.
Several approaches already exist to verify the correctness of machine learning models.
For example, the work from Törnblom et al. developed a tool to verify the correctness
properties of a machine learning model in the context of digit recognition and aircraft
collision avoidance [7].
Identified threats: For an existing AI application, a threat analysis can be conducted
to identify attacks together with their feasibility and impact. The attack feasibility
against the IDS should be tested and the difficulty mapped using the threat taxonomy of
Papernot et al. [5]. Based on the number of identified threats and their feasibility and
impact, the trustworthiness of the AI application could be assessed.
Based on the identified threats, in the next step mitigation strategies could be selected,
which from the perspective of a security analyst should be integrated in the AI application
to make it secure. Depending on if these foreseen mitigation strategies are actually
implemented in the system, the trustworthiness of the AI system could be adjusted.
Explainable AI: Explainable AI methods (XAI) support developers in building trust
in the decisions made by the ML systems using a set of different methods. There are
methods for global and local explanations. The global explainability of a model makes
it easier to follow the reasoning behind all the possible outcomes. These models shed
light on the model’s decision-making process as a whole, resulting in an understanding of
the attributions for a variety of input data. The ability to explain a single prediction or
decision is an example of local explainability. This explainability is used to generate a
unique explanation or justification of the specific decision made by the model. For further
details see also the work by Neupane et al. [4].
Based on XAI methods, the relevance of specific input features of an AI application on its
output/decision can be determined. Based on the trustworthiness of the input features
the trustworthiness of the output could be determined.
Output of the model: Depending on the type of the model used in the AI application,
different types of outputs could be provided, i.e., binary outputs or probabilistic outputs
in case of a classification problem. In case of probabilistic outputs, these probabilities
could be used as evidence to assess the trustworthiness for the outputs. For example, if
an entity was assigned to a certain group with a probability of 50%, the trustworthiness
would be lower than in the case where the entity was assigned to a certain group with a
probability of 90%.

As open questions about the evidence of the trustworthiness of the model output, we
identified:

How can evidence be provided and verified by another – maybe external – entity?
Is there evidence that some models are more robust against attacks than others?
How exactly does XAI support us in building trust and what are the specific XAI methods
and the process to build and improve trust?
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Risk Assessment and Communication

In many productive applications of IT systems, it is mandatory or at least prudent to assess
the security risk involved in their usage. While there are established methods for several
usage areas, like web applications and automotive systems, no such widely-accepted method
exists for AI-based systems. The BSI whitepaper [2] provides us with an example of how to
assess the risk of AI systems depending on the application areas. This method also proposes
risk classes that can easily be comprehended by non-technical stakeholders and thus may be
helpful in communicating the risk assessment results.

Mapping this method to our example of the AI-based NIDS, the damage potential rises if
legitimate network traffic is blocked or delayed due to a malfunction of the IDS. In the second
dimension of the method, the risk increases in case that, e.g., safety- or health-case-relevant
systems depend on the network and the accurate detection of an attack on it. This may be
driving assistance systems, air traffic guidance, or machine-assisted surgery. This method
does not contain the otherwise common notion of an attack likelihood that describes how
easily an attacker can exploit a potential vulnerability of the AI-system.

In this regard, we have the open questions:
Which weights should the different aspects of evidence for trustworthiness receive in the
risk assessment?
How can the remaining uncertainty about robustness against unforeseen weaknesses
adequately be communicated to the stakeholders?

5.3.5 Conclusion

During our discussion about trust in AI and the modeling of threats against AI in network
defense in our working group, we identified and classified existing threats and other factors
that limit the trust in AI systems. Our main finding is that there are efforts in this area but
no established method exists to measure, estimate, improve and communicate the level of
trust in an AI model or its susceptibility to attacks or any misclassifications.

We define trustworthiness as the verifiable absence of unwanted properties. Explainability
and transparency may contribute significantly to measure or estimate the trustworthiness.
For such an assessment the full model lifecycle needs to be considered. This assessment
should not only be limited to attacks, but include other unwanted properties of AI models
that may exist also without the presence of attacks. Thus, for every AI model candidate, the
robustness, the susceptibility to attacks, the resistance and resilience, as well as, potential
attack detection and response measures need to be systematically analyzed.

We determined that widely accepted metrics, tools, and processes for the assessment
are missing, both, regarding the evidence for trustworthiness, as well as, regarding the risk
assessment. With the current state of the art, systematic assessments are not yet possible.
Thus, it is a long-term goal to define the prerequisites for systematic and recurring risk
assessments based on systematic audits of models. These are required for the secure and safe
application of AI models in critical and sensitive environments.

Glossary

(based on BSI report [1])
Automatic machine learning or AutoML Approaches to automate the training pipeline

setup and training itself.
Evasion attacks An attacker plans to change the decision of an AI system during its inference

(or operation) phase by subtle modifications of the model input.
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White-box attack If the attacker has perfect knowledge of the model, the features, and the
data.

Grey- or black-box attack If the output function is differentiable, which is the case for most
of the currently used learning algorithms, a gradient may be computed as a prerequisite
for the optimization procedure. However, this is also the case if the attacker has only
limited knowledge of the target model, the feature and the data.

Substitute Model: The model may be derived either via model stealing attacks or via newly
trained models.

Black-box transfer attacks Attacks developed for one model can in many cases be trans-
ferred to different cAI models without much effort (transferability).

Black-box query attacks These attacks use queries to the target model combined with
gradient-free optimization methods such as genetic algorithms or bayesian optimization.

Backdoor poisoning attacks and DoS poisoning attacks These attacks corrupt parts of
the training data in a targeted way.

Connectionist AI (cAI) systems cAI systems are trained with machine learning and data.
Symbolic AI (sAI) systems These systems may be directly constructed by a human de-

veloper.
Target attack The attacker is able to control the decision of the AI system.
Untargeted attack The attacker just changes the decision of a AI system in an arbitrary

way.
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5.4.1 Introduction

The landscape of network defense has a long-standing history, yet the comprehensive integra-
tion of AI into this domain remains elusive, facing skepticism from both security experts and
academics alike. In the face of evolving cyber threats, coupled with recent extraordinary
advancements in AI, the need for re-evaluating the role AI may play in network defense
becomes increasingly evident. In this working group, network security and applied AI experts
joined forces to explore the intricacies of this complex problem space. Our primary focus
was on systematically addressing urgent needs in network defenses, spanning across the
entire defense pipeline – from pre-detection mechanisms to real-time alert analysis and
post-detection response strategies. While there may be many ways to incorporate AI-based
solutions, assessing whether involving AI is likely to be beneficial and justified in terms of
additional complexity is not trivial. Moreover, the recent breakthroughs in the space of
Large Language Models (LLMs) have renewed the ambition of building smart interfaces for
human operators and analysts, hence prompting a careful re-evaluation of the potential of
AI assistance in network defense.

Motivated by a fresh perspective on the application of AI in network defense, our working
group took a practitioner-centric approach. Rather than assuming predefined problems, we
aimed to first identify essential needs in the network defense pipeline, moving beyond the
conventional alert generation step by an Intrusion Detection System (IDS). This approach
challenges the common research paradigm of starting with assumed problem importance
but instead promotes a pragmatic assessment of the potential of AI in network defense
in alignment with real-world needs. Engaging experts from both network security and AI
disciplines, we sought to reshape the discourse, emphasizing the analytical exploration of AI
applications based on identified and substantiated needs within the field.

Our overarching goal was to create a roadmap that may guide future investigations with
relevant and promising directions for future work. To move towards this objective, we adopted
a structured approach that begins by defining a comprehensive network defense pipeline.
The pipeline is scoped within the detection segment of the known NIST Cybersecurity
Framework 1.1, which in turn we separate into several stages, each characterized by its own
set of practical security problems. Upon identifying challenges at each stage of detection, we
evaluate these challenges based on the chosen set of criteria: importance for practitioners,
the potential for AI-driven solutions, and the research effort required. Our assessment is
based on the consensus among the nine members of the working group, encompassing both
practitioner and researcher perspectives from the network defense and applied AI domains.
This report presents the current result of the analysis according to the developed assessment
framework, pending a future extension through a comprehensive human study involving more
practitioners.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 1 The chosen scope
of the working group.

Figure 2 The general pipeline of the detection segment in
network defense considered in the designed framework.

5.4.2 Scope & Methodology

To define the scope of this analysis, we refer to the NIST Cybersecurity Framework (CSF)
1.1 [3], developed by the National Institute of Standards and Technology (NIST) in the
United States. This framework provides guidance for organizations to manage and improve
their cybersecurity resilience. The core of the framework consists of five functions, each
representing a key aspect of cybersecurity (Figure 1):

Identify: Understand and manage cybersecurity risks to systems, assets and data.
Protect: Develop safeguards to ensure the delivery of critical infrastructure services.
Detect: Implement activities to identify the occurrence of a cybersecurity event.
Respond: Take action regarding a detected cybersecurity event.
Recover: Restore and maintain critical infrastructure services in the aftermath of a
cybersecurity incident.

In this report, we focus our investigation on the Detect function as the one receiving
primary academic attention in the field of network defense and yet lacking a comprehensive
view in connection to wider real-world needs. We further break down the detection segment
into concrete cybersecurity goals and position them along the general detection pipeline – its
pre-detection, detection, and post-detection stages, as depicted in Figure 2. This breakdown
enables us to formulate a (non-exhaustive) list of 18 network defense challenges based on
what we consider to be crucial cybersecurity activities posing day-to-day challenges for
practitioners. These challenges constitute the body of our analysis, where we assess the
potential of AI to assist in solving them.

5.4.3 Assessment Framework

The central idea driving our work was the assessment of how relevant, meaningful or feasible
the application of AI may be in view of the critical needs in network defense. The resulting
structured framework may serve as a guide for researchers, aiding them in determining their
research focus and prioritizing efforts effectively, particularly emphasizing challenges that
have higher AI potential, in contrast to more elusive goals.

We utilized a three-fold evaluation to comprehensively assess each challenge – specific issue
or task within the detection stage of the network defense pipeline that is under consideration.
The three key rating criteria we defined are Importance, the AI Potential, and Research
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Figure 3 Illustration of an assessment of a given network defense challenge and its relevant
properties on the relative scale.

Effort, which are depicted in Figure 3. Below we provide a concise definition for each, along
with insights into the main intuition and some underlying aspects:
1. Importance: This criterion captures the significance of the challenge, emphasizing its

role in the detection workflow. The evaluation is grounded in the practitioners’ perspective
to ensure practical relevance (which is currently limited to the composition of the working
group and is likely to be refined in the follow-up work).

2. AI Potential: The assessment of the working group regarding the potential success and
significance of data-driven AI methods (machine learning or deep learning) in application
to a given challenge. This category encompasses three aspects, which in combination
form the total AI potential:
a. Applicability: Examining whether the challenge can be formulated in a data-driven

manner for using AI algorithms. Namely, this reflects whether the nature of the
challenge lends itself well to the application of AI techniques that rely on data analysis,
pattern recognition, and algorithmic decision-making. Problems suitable for a data-
driven approach are those where historical information holds valuable clues about what
might happen in the future: a much-desired but often limited property in cybersecurity.

b. Success Likelihood: Assessing the probability of solving the problem through a data-
driven approach. Even if the problem can be formulated in a data-driven way, there
may be serious complications in solving it. For instance, in the case of non-anticipated
distributional shifts (due to the lack of representative data or dynamic changes in data
at deployment), the trained AI model may lose its relevance too fast.

c. Impact: Gauging the potential impact and effectiveness of leveraging AI to address
the identified challenge. This pertains to the expected performance of an AI solution,
assuming its applicability and high success likelihood, in comparison to more traditional
approaches that do not rely on intelligent automation. The estimated impact may
also be influenced by, for instance, the associated costs which may or may not justify
the additional complexity of using AI for the task. Interpretability, maintainability
and other operational considerations behind an AI-powered solution may also greatly
influence its expected impact.

3. Research Effort: This category is orthogonal to AI Potential in the sense that it covers
the research-related side of addressing the challenges, meaning the effort required to
conduct a research study that reliably investigates application of AI to a given task. In
our understanding, the Research Effort criterion roughly encompasses two components:
a. Existence of Relevant Data: This aspect considers whether there is ground-truth

data within the operational context that holds significance for the challenge at hand.
Having access to complete relevant data of high volume and precision is crucial for
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training AI algorithms. If the necessary data is readily available within the existing
network defense workflows, it reduces the effort required in sourcing and preparing data
for AI applications. Note that the current public availability of such corresponding
data is out of scope for this analysis (although acquiring it is a significant challenge of
its own for the research domain).

b. Algorithmic Difficulty: This dimension reflects the technical complexity associated
with developing AI algorithms tailored for the specific challenge. Some challenges might
demand sophisticated algorithms due to their intricate nature (for instance, those that
model multi-dimensional time-series or graph-structured data), while others may be
more straightforward. Challenges with higher algorithmic difficulty may necessitate
more advanced AI research and development efforts.

This comprehensive framework aims to provide researchers with a holistic perspective on
the challenges in network defense, enabling them to prioritize efforts based on the combined
assessment of the defined properties. The deliberate design ensures, on the one hand, that
researchers can identify not only what challenges are critical but also where the application
of AI is most feasible and impactful. On the other hand, the framework may pragmatically
illuminate the opportunities for “low-hanging fruit”, allowing researchers to address more
urgent but less complex needs with a higher likelihood of success, whilst having the assurance
of relevance of their study for network defense practitioners.

5.4.4 The Current State of the Framework

Here we report on the main outcome of the working group, essentially presenting the snapshot
of our understanding of the potential of AI-powered network defenses in the given moment
(Table 5). The current state of analysis involves 18 ranked challenges derived from in-depth
discussions among academic and industry researchers composing the working group, utilizing
expertise in network defense and applied AI. Moving forward, this analysis would be refined
to incorporate the perspectives of more security practitioners, offering a more holistic and
practically relevant understanding of the challenges at hand. Crucially, this analysis needs to
be strengthened with a thorough literature review to incorporate the most recent research
advancements in the area, in order to more precisely evaluate the alignment of the current
research trends with the highest needs in network defense.
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Table 5 The current state of the assessment framework developed to analyze the potential of
AI-powered network defense research directions. These insights emerged from discussions within
the working group and are subject to further refinement through an extensive literature review
and polling among a larger, more diverse sample of network security practitioners and applied AI
experts.

PRE-DETECTION CHALLENGES
1. Merging, correlating, and compar-
ing shared indicators of compromise
(IoCs). A shared event is an attack
that a team is investigating; there are
100-200k events per day (which are not
unique). Several teams may be invest-
igating the same attack, these may be
shared simultaneously, but are not auto-
matically merged.

Importance:
AI Potential:
Effort:

Medium
Medium/High
Low

This activity is non-trivial and demands
a lot of human effort. Today certain
sources are trusted, but not everything
is merged together. Even for humans,
merging IoCs in a consistent manner is
difficult. AI could scale up the process
and improve on human effort. Example:
link scarce pieces of information in nat-
ural language to other information (la-
bels).

2. Creating new detection rules from
IOCs with regard to the diversity and
number of future attacks.

Importance:
AI Potential:
Effort:

Medium/High
Medium
Low

Scaling and expediting this process are
paramount, and Large Language Mod-
els (LLMs) show promise in this regard,
although their usage is complex and
challenging. It could be possible to train
multiple LLMs (e.g., one for creating
the rule and one for checking the rule
quality or language). The level of in-
volvement may range from creating a
co-pilot for writing rules to simply hav-
ing a human in the loop.

3.1. Determining the data quality of
indicators for Threat Intelligence data-
bases.

Importance:
AI Potential:
Effort:

Medium/High
Low
High

This can potentially be inferred based
on the reputation and reliability of
sources.

3.2. Ranking the importance of indicat-
ors for Threat Intelligence databases.

Importance:
AI Potential:
Effort:

High
Medium
High

Given the complexity of merging know-
ledge from different fields (e.g., threat
landscape, infrastructure) and mapping
such knowledge to indicators, future AI
systems may offer promising solutions.

4. Configuration of existing detection
tools, removing dependencies on the ad-
ministrators.

Importance:
AI Potential:
Effort:

Medium
Medium
High

Automating the deployment of known
hardening measures could significantly
optimize the work of security operators.
AI may be used to assist in setting para-
meters for known defenses tailored to a
specific environment and objectives.

5. Setting IDS constraints (e.g., work-
load restriction in the case of a high
rules set to prevent overload and ex-
ceeding resource limits).

Importance:
AI Potential:
Effort:

Medium
High
Low/Medium

For a human expert, predicting work-
load before deploying the system is chal-
lenging. Can AI estimate resource de-
mands?

6. Optimization (clean-up) of the detec-
tion rule-set.

Importance:
AI Potential:
Effort:

Medium
High
Medium

Routine maintenance of the rule-set
commonly involves manual analysis to
discard unused rules and merge rules
targeting the same pattern, all to op-
timize workload and the comprehension
of alert generation. Intelligent automa-
tion seems feasible.

DETECTION CHALLENGES
7. Detecting variants of known attacks. Importance:

AI Potential:
Effort:

Medium
High
Low/Medium

Given the availability of data of previ-
ous attacks, we consider the situation in
which an AI system can recognize the
similarities and detect the same pat-
terns. This scenario is known to be
very compelling for AI application in
research contexts, but is not the most
challenging one, as the traditional meth-
ods perform well.
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8. Detecting earlier unknown attacks. Importance:
AI Potential:
Effort:

High
Low
High

This is inherently challenging for AI
methods as they cannot rely on the
past to precisely recognize novel future
threats within the context of network
defense. Throughout the seminar, con-
cerns have been repeatedly expressed
about the perceived inadequacy of AI
for detecting unknown attacks (e.g.,
zero days).

9. Generating alert descriptions (e.g.,
to enhance SOC analyst dashboards).

Importance:
AI Potential:
Effort:

High
High
Low

This opportunity explicitly recognizes
the power of AI in interfacing with hu-
man experts. The quality of gener-
ated textual descriptions depends on
the comprehensiveness of alerts, which
can be high for traditional methods.

10. Tuning and maintaining empirical
thresholds for monitoring.

Importance:
AI Potential:
Effort:

Low/Medium
Low/Medium
Unknown

This is a defining component of pre-
cise detection, yet targeted empirical
approaches are limited. In our discus-
sion, assessing potential and effort was
challenging due to a lack of information
on the prevalence of anomaly detection
in practice.

11. Use Tactics, Techniques and Proced-
ures (TTPs) as IoCs to actively search
for malicious activities.

Importance:
AI Potential:
Effort:

Medium/High
High
High

The capability of using kill chains in-
stead of simplistic IoCs will allow the
detection of a broad range of attacks
sharing similar behavior (see point 7).
Recognizing kill chains demands the cor-
relation of complex events over time.

12. Attack attribution (e.g., linking
alerts to attacker groups and detect-
ing attacks with matching behavioural
patterns).

Importance:
AI Potential:
Effort:

High
High
High

Advanced persistent threats (APTs) are
mostly obtained from threat intelligence
for close monitoring. APT-related in-
cidents have high complexity and pri-
ority, and the detection and decision-
making process are often highly specific
to APTs. The amount of available in-
formation and the willingness to extend
analysis beyond a few days of activities
requires and may highly benefit from
AI systems.

13. Run-time optimization of the rule-
set.

Importance:
AI Potential:
Effort:

Low/Medium
Low
High

Discussed in the context of the difficulty
in foreseeing resource consumption of
security tools as well as conditions of
the target infrastructure (e.g., peak in
traffic and heavy computational loads).

POST-DETECTION CHALLENGES
14. Alert fatigue as for dealing with
all the alerts produced by the detection
tools (e.g., how do we prioritize? How
do we correlate across various sources?
How do we diminish false positives?)

Importance:
AI Potential:
Effort:

High
High
Medium/High

AI can learn from human operators how
to prioritize alerts and make suggestions
(related to 3.2). It might be challen-
ging to obtain enough labeled data and
integrate expert knowledge. An addi-
tional challenge is that prioritization
does not consider the risks (e.g., im-
portant devices or other elements of the
target environment).

15. Risk assessment of alerts to determ-
ine the severity of the case.

Importance:
AI Potential:
Effort:

High
Low
Unknown

Risk assessments imply having informa-
tion about the infrastructure, and it is
currently unclear how to represent this
information to an AI system along with
other expert knowledge.
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16. Proposing countermeasures to mit-
igate known attack.

Importance:
AI Potential:
Effort:

High
High
Medium/High

AI may provide a collection of sugges-
tions to incident handlers based on in-
formation about the incident. The train-
ing data for the AI assistant may be
composed of playbooks or historical in-
cidents across organizations and how
they were handled in the past. The pre-
cision of these suggestions might vary:
it may be relatively easy to provide rel-
evant general insights, while learning to
produce actual custom countermeasures
may require more research effort.

17. Labeling adversary’s activities (e.g.,
alerts being triggered by the secur-
ity tools) according to the MITRE
ATT&CK [1] knowledge base.

Importance:
AI Potential:
Effort:

Medium
High
Low

This is crucial for all investigations upon
detection and for sharing information
with other teams. This step goes bey-
ond incident handling. Extracting new
attack strategies might be an outcome
of this activity, where AI can signific-
antly replace human effort in formulat-
ing the description of the attack. Addi-
tionally, automating the interpretation
of a given attack scenario according to
the MITRE ATT&CK knowledge base
is valuable, as not all human experts
know all techniques to be able to recog-
nize them.

18. Representing and normalizing all
data related to detection in a structured
and comprehensive form for human ana-
lysts.

Importance:
AI Potential:
Effort:

Medium/High
High
Low/Medium

One example of a hardly interpretable
data structure is the graph-based indic-
ators STIX [2] used to exchange cyber
threat intelligence. Commercial vendors
write reports about attacks in a com-
plex expert-oriented language, which of-
ten obstructs timely and effective hand-
ling of network threats. Utilizing AI
to format detection-related data in a
human-comprehensible manner appears
very promising.

5.4.5 Conclusion

The aim of this discussion was to provide a framework for future investigations in AI-
powered network defense, leveraging the latest advancements in AI while fostering a more
comprehensive understanding of the challenges faced by practitioners. The distinguishing
characteristic of the framework is the choice to move beyond the conventional realm of
AI-based intrusion detection and explore areas earlier in and further along the pipeline.
Our systematic approach facilitates a wide examination of the problem space from both
the network security practitioner and research perspectives. It covers practical feasibility,
potential impact of applying AI, and the research effort required to address the identified
important challenges. By combining the expertise of network security and AI researchers,
the framework and its future extensions not only offer a nuanced understanding of challenges
but also foster a synergistic environment where innovative solutions can be explored while
staying rooted in reality.

References
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6 World Café and Outlook

The format of the World Café is already described in Section 1. As written there, people
split into small groups at individual tables where each table discussed a pre-defined question
for 20 minutes before participants moved on in random permutation to another table. The
questions asked were as follows:
1. In which of these fields is it most important to make research progress and why: “Security

for AI”, “AI-based attacks”, or “AI for Security”?
2. What steps should we take to keep the activities in our group alive beyond the end of

this seminar?
3. What is the title of a paper you would now want to write with some other seminar

participants?
4. What is your one key take-away from the seminar?
5. For a future seminar proposal, what (network)security-related topic should we focus on?

And whom would we have to (additionally) invite to make it a success?

Due to the small group size and clearly articulated questions, the format proved very
effective to collect and distill insights from all the participants, which would not have been
possible in a plenary session.

At this point, we will only exemplify a few of the comments provided.

6.1 In which of these fields is it most important to make research
progress and why: “Security for AI”, “AI-based attacks”, or “AI for
Security”?

On this question, some people suggested that research on “secure AI for security” would be
a desirable outcome, i.e., if AI and machine learning mechanisms are applied as a security
mechanism, one definitely has to make sure that the mechanism is secure and cannot be
attacked itself and that resilience, robustness and reliability would be key properties but
also explainability. In this context, a pointer was given to the NIST AI Risk Management
Framework1.

Another emphasis was put on the datasets required for machine learning of security
mechanisms. So given the growing importance of machine learning in security, provisioning
of good training data becomes key and the research community should put more emphasis
on availability of good quality, large, and ideally labeled datasets.

Last, when it comes to AI-based attacks, it seems there is currently a lack of knowledge
how such attacks would change the game and to what extend such attacks may be more
potent than today’s mostly manual attacks.

1 see https://www.nist.gov/itl/ai-risk-management-framework
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6.2 What is your one key take-away from the seminar?
Findings from this question overlapped partly with the previous question. Lack of datasets
for ML training was mentioned here, too. Others noted that on most questions discussed
there is a large agreement among participants, in particular also on the open questions that
need addressing and where we yet know too little about.

This was a general sentiment shared by many: in many of the topics we are still at the
beginning and need a lot of research to deepen our understanding, maybe with the exception
of applying AI for obvious and well investigated tasks like intrusion detection.

One thing that did not come at a surprise: currently there is a strong focus or even hype
on security for Large-Language Models (LLMs) but also on how LLMs can help security in
various ways.

Besides those discussions, the World Café also contributed many ideas for future follow-up
seminars, topics for joint paper initiatives, and the desire to stay in contact and continue
discussions online.

And we also came to the conclusion that LLMs could also help come up with catchy
paper titles ;-).
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