
Report from Dagstuhl Seminar 23442

Approaches and Applications of Inductive Programming
Luc De Raedt∗1, Ute Schmid∗2, and Johannes Langer†3

1 KU Leuven, BE. luc.deraedt@cs.kuleuven.be
2 Universität Bamberg, DE. ute.schmid@uni-bamberg.de
3 Universität Bamberg, DE. johannes.langer@uni-bamberg.de

Abstract
The Dagstuhl Seminar “Approaches and Applications of Inductive Programming” (AAIP) has
taken place for the sixth time. The Dagstuhl Seminar series brings together researchers concerned
with learning programs from input/output examples from different areas, mostly from machine
learning and other branches of artificial intelligence research, cognitive scientists interested in
human learning in complex domains, and researchers with a background in formal methods and
programming languages. Main topics adressed in the AAIP 2023 seminar have been neurosymbolic
approaches to IP bringing together learning and reasoning, IP as a post-hoc approach to explaining
decision-making of deep learning blackbox models, and exploring the potential of deep learning
approaches, especially large language models such as OpenAI Codex for IP. Topics discussed in
working groups were Large Language Models and inductive programming in cognitive architectures,
avoiding too much search in inductive programming, finding suitable benchmark problems, and
evaluation criteria for interpretability and explainability of inductive programming.
Seminar October 29 – November 3, 2023 – https://www.dagstuhl.de/23442
2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Human-

centered computing; Computing methodologies → Machine learning
Keywords and phrases explainable ai, human-like machine learning, inductive logic programming,

interpretable machine learning, neuro-symbolic ai
Digital Object Identifier 10.4230/DagRep.13.10.182

1 Executive Summary

Ute Schmid (Universität Bamberg, DE)
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Ute Schmid and Luc De Raedt

Inductive programming (IP) is a special perspective on program synthesis, addressing learning
programs from incomplete specifications such as input/output examples. The seminar
“Approaches and Applications of Inductive Programming” (AAIP) took place in Dagstuhl for
the sixth time. This Dagstuhl Seminar brings together researchers from different areas of
artificial intelligence research, machine learning, formal methods, programming languages,
cognitive science, and human-computer-interaction interested in methods and applications of
IP. Focus topics of AAIP’23 have been neurosymbolic approaches to IP bringing together
learning and reasoning, IP as a post-hoc approach to explaining decision-making of deep
learning blackbox models, and exploring the potential of deep learning approaches, especially
large language models such as OpenAI Codex for IP.

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Approaches and Applications of Inductive Programming, Dagstuhl Reports, Vol. 13, Issue 10, pp. 182–211
Editors: Luc De Raedt and Ute Schmid

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luc.deraedt@cs.kuleuven.be
mailto:ute.schmid@uni-bamberg.de
mailto:johannes.langer@uni-bamberg.de
https://www.dagstuhl.de/23442
https://doi.org/10.4230/DagRep.13.10.182
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Luc De Raedt and Ute Schmid 183

The focus topics have been introduced and discussed in a series of talks addressing
neuro-symbolic IP, IP for learning in planning, explainable AI and IP, and IP and generative
AI. Furthermore, a series of talks were dedicated to the relation of cognitive science to IP:
Human-like few-shot learning via Bayesian reasoning over natural language, the child as
hacker, using program synthesis to model strategy diversity in human visual reasoning, a
neurodiversity-inspired solver for the Abstraction and Reasoning Corpus (ARC) using visual
imagery and program synthesis, and using natural language for self-programming in cognitive
architectures. The relation between IP and explainability has been highlighted with talks
about explainable models via compression of relational ensembles, and effects of explaining
machine-learned logic programs for human comprehension and discovery. Relations between
IP and knowledge based methods have been addressed in a talk about learning disjointness
axioms for knowledge graph refinement and for making knowledge graph embedding methods
more robust. Methods of IP as an approach to learning interpretable rules have been presented
with a focus on inductive logic programming (ILP), deep-rule learning, relational program
synthesis with numerical reasoning, improving rule classifiers learned from quantitative data
by recovering information lost by discretisation, meta-interpretive learning for generalised
planning, probabilistic inductive logic programming, abstraction for answer set programs, anti-
unification and generalization, programmatic reinforcement learning, and making program
synthesis fast on a GPU. These talks have been complemented by several system demos
presenting the ILP systems Popper and Louise, an RDF rules learner, and learning rules to
sort e-mails into folders (EmFORE).

We identified four relevant research problems for current and future research in IP which
were addressed in in-depth discussions in working groups and afterwards discussed in plenary
sessions: (1) Large Language Models and Inductive Programming in Cognitive Architectures:
one main outcome has been that combining learning and reasoning by integrating LLMs and
reasoners in a cognitive architecture could be an enabler for validating programs that get
executed by the overall architecture and to possible get nearer to human performance. (2)
Avoiding too much search in Inductive Programming: It was noted that for IP in general we
do need to learn structure as well as probabilities. Classic IP approaches focus on structure
learning and – in contrast to neural network architectures – can learn recursion explicitly.
The main result has been that suitable problem domains should be identified for systematic
evaluation, such as string transformation which combine syntactic (e.g. return first letter) and
semantic (e.g. give the capital of a country) transformations. (3) Finding Suitable Benchmark
Problems for Inductive Programming: Here, the discussion from the second topic has been
extended and systematised with the formulation of several relevant criteria for benchmark
problems to evaluate IP approaches, among them problem domains which are not solvable
by LLMs and solvable efficiently by humans. (4) Evaluation Criteria for Interpretability
and Explainability of Inductive Programming: The main insight has been that the degree
of interpretability and the quality of explanations is strongly context-dependent, being
influenced by the recipient (who), the content (what), the information need and reason for an
explanation (why), and the form of the explanation (how). Different candidates for metrics
were identified, such as complexity measures, semantic coherence, and reliability of generated
code.

In a final discussion round, several outcomes have been summarized and action points
have been discussed. A crucial problem which might impact scientific progress as well as
visibility could be that there is no core general approach to IP (such as gradient descent for
neural networks). Relevant use cases might not have a focus on learning recursion/loops
but on relations (e.g. in medicine and biology). The focus on learning programs (including

23442

184 23442 – Approaches and Applications of Inductive Programming

recursion) might profit from using Python as the target language instead of more specific
languages such as Prolog. Furthermore, current IP systems are mostly not easy to find and to
use. Providing a toolbox which can be easily used (such as Weka for standard ML) might be
helpful. There was a general agreement among the participants that the format of Dagstuhl
Seminars is especially fruitful for bringing together the different perspectives on IP from
machine learning, cognitive science, and program language research.

Luc De Raedt and Ute Schmid 185

2 Table of Contents

Executive Summary
Ute Schmid and Luc De Raedt . 182

Overview of Talks
Effects of explaining machine-learned logic programs for human comprehension and
discovery
Lun Ai . 187

Making program synthesis fast on a GPU
Martin Berger . 188

Anti-unification and Generalization: What’s next?
David Cerna . 189

On the Need of Learning Disjointness Axioms for Knowledge Graph Refinement
and for Making Knowledge Graph Embedding Methods more Robust
Claudia d’Amato . 189

How to make logics neurosymbolic
Luc De Raedt . 190

What should we do next in ILP?
Sebastijan Dumančić . 191

Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language
Kevin Ellis . 191

Towards Programmatic Reinforcement Learning
Nathanaël Fijalkow . 192

Inductive Programming for Explainable Artificial Intelligence (IP for XAI)
Bettina Finzel . 192

On Deep Rule Learning
Johannes Fürnkranz . 193

Three Learning Problems in Planning
Hector Geffner . 194

A tutorial on Popper
Céline Hocquette . 194

Relational program synthesis with numerical reasoning
Céline Hocquette . 195

On the role of natural language for self-programming in cognitive architectures
Frank Jäkel . 196

QCBA: improving rule classifiers learned from quantitative data by recovering
information lost by discretisation
Tomáš Kliegr . 196

RDFrules: A Swiss knife for relational association rule learning, classification and
knowledge graph completion
Tomáš Kliegr . 197

23442

186 23442 – Approaches and Applications of Inductive Programming

The Child as Hacker
Josh Rule . 198

Abstraction for Answer Set Programs
Zeynep G. Saribatur . 199

Explanatory Inductive Programming (XAI for IP)
Ute Schmid . 200

Explainable models via compression of tree ensembles
Sriraam Natarajan . 201

Inductive Programming meets Large Language Models
Gust Verbruggen . 202

Inductive Programming meets Real User Problems
Gust Verbruggen . 202

Probabilistic Logic Programming: Quo Vadis?
Felix Weitkämper . 203

Working groups
Large Language Models and Inductive Programming in Cognitive Architectures
Bettina Finzel and Frank Jäkel . 204

Avoiding too much search in Inductive Programming
Ute Schmid, David Cerna, and Hector Geffner . 204

Evaluation Criteria for Interpretability and Explainability of Inductive Programming
Ute Schmid, Lun Ai, Claudia d’Amato, and Johannes Fürnkranz 205

Finding Suitable Benchmark Problems for Inductive Programming
Ute Schmid, Martin Berger, Sebastijan Dumancic, Nathanaël Fijalkow, and Gust
Verbruggen . 207

Panel discussions
Inductive Programming – How to Go On?
Ute Schmid, Claudia d’Amato, Hector Geffner, Sriraam Natarajan, and Josh Rule 209

Participants . 211

Luc De Raedt and Ute Schmid 187

3 Overview of Talks

3.1 Effects of explaining machine-learned logic programs for human
comprehension and discovery

Lun Ai (Imperial College London, GB)

License Creative Commons BY 4.0 International license
© Lun Ai

Joint work of Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid
Main reference Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid: “Explanatory machine learning for

sequential human teaching”, Mach. Learn., Vol. 112(10), pp. 3591–3632, 2023.
URL https://doi.org//10.1007/S10994-023-06351-8

The talk focused on the assumption in the Logic Programming community: logic programs
are human-comprehensible. This had resulted in very few empirical assessments on the
effects of explaining machine-learned logic programs. Empirical results by the authors showed
explaining logic programs do not always lead to improved human performance. In addition,
the authors stressed the need for objective and operational measurements of explainability.
Their results provided novel insights on the explanatory effects of curriculum order and the
presence of machine-learned explanations for sequential problem-solving.

The topic of comprehensibility of machine-learned theories has recently drawn increasing
attention. Inductive logic programming uses logic programming to derive logic theories from
small data based on abduction and induction techniques. Learned theories are represented
in the form of rules as declarative descriptions of obtained knowledge. In earlier work, the
authors provided the first evidence of a measurable increase in human comprehension based
on machine-learned logic rules for simple classification tasks. In a later study, it was found
that the presentation of machine-learned explanations to humans can produce both beneficial
and harmful effects in the context of game learning.

The talk concentrated on a most recent investigation on the effects of the ordering of
concept presentations and logic program explanations. The authors proposed a framework
for the effects of sequential teaching based on an existing definition of comprehensibility. This
empirical study involved curricula that teach novices the merge sort algorithm. They
provided performance-based and trace-based evidence for support. Results show that
sequential teaching of concepts with increasing complexity (a) has a beneficial effect on
human comprehension and (b) leads to human re-discovery of divide-and-conquer problem-
solving strategies, and (c) allows adaptations of human problem-solving strategy with better
performance when machine-learned explanations are also presented.

Several open questions were discussed during and after the talk. For instance, the audience
suggested an investigation on “learning how to learn” and comparisons between the human
traces and the machine learner (ILP) trace. In the context of increasing the popularity of
logic programs, some challenges in higher-education curricula were discussed showing the
significance of how to best design Logic Programming teaching interactions. Importantly, this
talk highlighted the limitations to performance-based evaluations. This led to an extended
discussion on computable and objective assessments for various perspectives of explainability.

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10994-023-06351-8
https://doi.org//10.1007/S10994-023-06351-8
https://doi.org//10.1007/S10994-023-06351-8

188 23442 – Approaches and Applications of Inductive Programming

3.2 Making program synthesis fast on a GPU
Martin Berger (University of Sussex – Brighton, GB)

License Creative Commons BY 4.0 International license
© Martin Berger

Joint work of Mojtaba Valizadeh, Martin Berger
Main reference Mojtaba Valizadeh, Martin Berger: “Search-Based Regular Expression Inference on a GPU”, Proc.

ACM Program. Lang., Vol. 7(PLDI), pp. 1317–1339, 2023.
URL https://doi.org//10.1145/3591274

Inductive programming is stuck!
GPUs are the work-horses of computing. Applications that fit the GPU style of pro-

gramming typically run orders of magnitude faster on GPUs than on CPUs. This gives
opportunities for scaling not achievable with CPUs. The recent success of deep learning amply
demonstrates this. Unfortunately, large classes of applications are not known to benefit from
GPU acceleration. That includes most tools in program synthesis, inductive programming,
theorem proving, ... (from now on: automated reasoning) such as SAT and SMT solvers.
How can we change this? Simplifying a bit, a GPU can only accelerate applications if they
are “GPU-friendly”, meaning they are

highly parallel,
have little to no data-dependent branching, and have
predictable data-movement, and high temporal and spatial data locality.

Algorithms in automated reasoning, as implemented today, mostly lack those properties.
Many are extremely branching heavy, for example because they branch on syntactic structure.
Some are seemingly sequential (e.g. unit propagation, a core step modern SAT solvers
for simplifying formulae). This might be because an algorithmic problem is intrinsically
sequential, or because a way of making an algorithmic problem GPU-friendly has not yet
been found.

Research question: Can we identify workloads arising in industrial automatic reasoning
practise, and scale them up on GPUs by developing suitable, GPU-friendly algorithms? The
GPU-based algorithms should give at least 100x speedup (for comparable problem instances),
and be able to handle at least 1000x bigger problem instances, both in comparison with
state-of-the-art open (= non-proprietary) software for the same problem domain.

Preliminary answer, based on [1]: all program synthesis that uses the generate-and-test
approach can see orders of magnitude speedup on GPUs.

Recommendation to the ILP community: stop what your are doing and implement your
ideas on a GPU.

References
1 Mojtaba Valizadeh, Martin Berger: Search-Based Regular Expression Inference on a

GPU. Proc. ACM Program. Lang. 7(PLDI): 1317-1339 (2023), https://doi.org/10.1145/
3591274

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3591274
https://doi.org//10.1145/3591274
https://doi.org//10.1145/3591274
https://doi.org/10.1145/3591274
https://doi.org/10.1145/3591274

Luc De Raedt and Ute Schmid 189

3.3 Anti-unification and Generalization: What’s next?
David Cerna (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 4.0 International license
© David Cerna

Joint work of David M. Cerna, Temur Kutsia
Main reference David M. Cerna, Temur Kutsia: “Anti-unification and Generalization: A Survey”, in Proc. of the

Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 6563–6573,
International Joint Conferences on Artificial Intelligence Organization, 2023.

URL https://doi.org//10.24963/ijcai.2023/736

Anti-unification (AU) is a fundamental operation for the computation of symbolic generaliza-
tions useful for inductive inferencing [1]. It is the dual operation to unification, an operation
at the foundation of automated theorem proving. In contrast to unification, where one is
interested in constructing most general unifiers (mgus), anti-unification is concerned with
the construction of least general generalizations (lggs); that is, expressions capturing the
commonalities shared between members of a set of symbolic expressions.

The operation was introduced by Plotkin and Reynolds and found many applications
within the area of Inductive synthesis and, in particular, early inductive logic programming
(ILP) systems. However, since their seminal work, the number of applications has grown
tremendously with uses in program analysis, program repair, automated reasoning, and
beyond. With the growing number of applications, several investigations have developed
anti-unification methods over various symbolic objects, such as the simply-typed lambda
calculus, term graphs, and hedge expression, to name a few. In particular, there has been
significant progress in understanding equational anti-unification and the cardinality of the
set of solutions (set of lggs). In many cases, the solution sets are either infinitely large or do
not exist (every generalization allows a more specific generalization).

We ask, is least general generalization the right characterization of a solution to an anti-
unification problem? In particular, is there a characterization of a solution more amenable
to modern approaches to inductive synthesis? Secondly, what does the inductive synthesis
community need from symbolic generalization techniques, which is currently missing?

References
1 David M. Cerna, Temur Kutsia: Anti-unification and Generalization: A Survey. IJCAI 2023:

6563-6573, https://doi.org/10.24963/IJCAI.2023/736

3.4 On the Need of Learning Disjointness Axioms for Knowledge Graph
Refinement and for Making Knowledge Graph Embedding Methods
more Robust

Claudia d’Amato (University of Bari, IT)

License Creative Commons BY 4.0 International license
© Claudia d’Amato

Joint work of Giuseppe Rizzo, Claudia d’Amato, Nicola Fanizzia
Main reference Giuseppe Rizzo, Claudia d’Amato, Nicola Fanizzi: “An unsupervised approach to disjointness

learning based on terminological cluster trees”, Semantic Web, Vol. 12(3), pp. 423–447, 2021.
URL https://doi.org//10.3233/SW-200391

Knowledge Graphs (KGs) are multi-relational graphs designed to organize and share real-
world knowledge where nodes represent entities of interest and edges represent different types
of relationships between such entities [1]. Despite the large usage, it is well known that
KGs suffer from incompleteness and noise. For tackling these problems, solutions to the link

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.24963/ijcai.2023/736
https://doi.org//10.24963/ijcai.2023/736
https://doi.org//10.24963/ijcai.2023/736
https://doi.org//10.24963/ijcai.2023/736
https://doi.org/10.24963/IJCAI.2023/736
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/SW-200391
https://doi.org//10.3233/SW-200391
https://doi.org//10.3233/SW-200391

190 23442 – Approaches and Applications of Inductive Programming

prediction task, that amount at predicting an unknown component of a triple, have been
investigated. Mostly, Knowledge Graph Embedding methods (KGE) have been devised since
they have been shown to scale even to very large KGs. KGE convert the data graph into
an optimal low dimensional space where structural graph information is preserved as much
as possible. Embeddings are learned based on the constraint that a valid (positive) triple
score has to be lower than the invalid (negative) triple score. As KGs mainly encode positive
triples, negative triples are obtained by randomly corrupting true/observed triples [2], thus
possibly injecting false negatives during the learning process.

In this talk we present a solution for an informed generation of negative examples that, by
exploiting the semantics of the KGs and reasoning capabilities, is able to limit false negatives.
A key element is represented by disjointness axioms, that are essential for making explicit the
negative knowledge about a domain. Yet, disjointness axioms are often overlooked during
the modeling process [3]. For the purpose, a symbolic method for discovering disjointness
axioms from the data distribution is illustrated. Moving from the assumption that two or
more concepts may be mutually disjoint when the sets of their (known) instances do not
overlap, the problem is cast as a conceptual clustering problem, where the goal is both to find
the best possible partitioning of the individuals in (a subset of) the KG and also to induce
intensional definitions of the corresponding classes expressed in the standard representation
languages.

The talk will conclude with the analysis of some open challenges related to the presented
solutions.

References
1 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Se-
bastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa
Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, Antoine Zimmermann: Know-
ledge Graphs. Synthesis Lectures on Data, Semantics, and Knowledge, Morgan & Clay-
pool Publishers 2021, ISBN 978-3-031-00790-3, pp. 1-257. https://doi.org/10.2200/
S01125ED1V01Y202109DSK022

2 Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang: A Comprehensive Survey of
Graph Embedding: Problems, Techniques, and Applications. IEEE Trans. Knowl. Data Eng.
30(9): 1616-1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452

3 Taowei David Wang, Bijan Parsia, James A. Hendler: A Survey of the Web Ontology
Landscape. ISWC 2006: 682-694. https://doi.org/10.1007/11926078_49

3.5 How to make logics neurosymbolic
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Luc De Raedt

Joint work of Giuseppe Marra, Sebastijan Dumančić,Robin Manhaeve, Luc De Raedt
Main reference Giuseppe Marra, Sebastijan Dumancic, Robin Manhaeve, Luc De Raedt: “From Statistical

Relational to Neural Symbolic Artificial Intelligence: a Survey”, CoRR, Vol. abs/2108.11451, 2021.
URL https://arxiv.org/abs/2108.11451

Neurosymbolic AI (NeSy) is regarded as the third wave in AI. It aims at combining knowledge
representation and reasoning with neural networks. Numerous approaches to NeSy are being
developed and there exists an ‘alphabet-soup’ of different systems, whose relationships are
often unclear. I will discuss the state-of-the art in NeSy and argue that there are many
similarities with statistical relational AI (StarAI).

https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1007/11926078_49
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2108.11451
https://arxiv.org/abs/2108.11451
https://arxiv.org/abs/2108.11451

Luc De Raedt and Ute Schmid 191

Taking inspiration from StarAI, and exploiting these similarities, I will argue that
Neurosymbolic AI = Logic + Probability + Neural Networks. I will also provide a recipe
for developing NeSy approaches: start from a logic, add a probabilistic interpretation, and
then turn neural networks into “neural predicates”. Probability is interpreted broadly here,
and is necessary to provide a quantitative and differentiable component to the logic. At
the semantic and the computation level, one can then combine logical circuits (ako proof
structures) labeled with probability, and neural networks in computation graphs.

I will illustrate the recipe with NeSy systems such as DeepProbLog, a deep probabilistic
extension of Prolog, and DeepStochLog, a neural network extension of stochastic definite
clause grammars (or stochastic logic programs).

3.6 What should we do next in ILP?
Sebastija Dumančić (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Sebastijan Dumančić

This talks consists of two parts. In the first part, I provide a brief introduction to Inductive
Logic Programming: what is it, why is it interesting, and what interesting has recently
happened. In the second part, I will explore what I think we should do next in ILP and
program synthesis to further advance the field, all centered around the idea of avoiding
search.

3.7 Human-like Few-Shot Learning via Bayesian Reasoning over Natural
Language

Kevin Ellis (Cornell University – Ithaca, US)

License Creative Commons BY 4.0 International license
© Kevin Ellis

Main reference Kevin Ellis: “Modeling Human-like Concept Learning with Bayesian Inference over Natural
Language”, CoRR, Vol. abs/2306.02797, 2023.

URL https://doi.org//10.48550/ARXIV.2306.02797

A core tension in models of concept learning is that the model must carefully balance the
tractability of inference against the expressivity of the hypothesis class. Humans, however,
can efficiently learn a broad range of concepts. We introduce a model of inductive learning
that seeks to be human-like in that sense. It implements a Bayesian reasoning process where
a language model first proposes candidate hypotheses expressed in natural language, which
are then re-weighed by a prior and a likelihood. By estimating the prior from human data,
we can predict human judgments on learning problems involving numbers and sets, spanning
concepts that are generative, discriminative, propositional, and higher-order.

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2306.02797
https://doi.org//10.48550/ARXIV.2306.02797
https://doi.org//10.48550/ARXIV.2306.02797

192 23442 – Approaches and Applications of Inductive Programming

3.8 Towards Programmatic Reinforcement Learning
Nathanaël Fijalkow (CNRS – Talence, FR)

License Creative Commons BY 4.0 International license
© Nathanaël Fijalkow

This short talk was a pitch for a new problem, called Programmatic Reinforcement Learning:
assuming that the environment is given as a program, the goal is to construct an optimal policy
in the form of a program. Some motivations, basic examples, and preliminary experimental
results were presented and discussed.

3.9 Inductive Programming for Explainable Artificial Intelligence (IP for
XAI)

Bettina Finzel (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Bettina Finzel

Methods of explainable artificial intelligence (XAI) and of inductive programming (IP) can
profit from each other in two ways: (1) Inductive programming results in symbolic models
(programs) which are inherently interpretable. These programs can provide expressive,
relational explanations for learned black box models, for instance Convolutional Neural
Networks for image classification. This perspective (IP for XAI) is addressed in this summary.
(2) On the other hand, there might be a need for explainability of IP programs to humans.
This perspective (XAI for IP) is addressed in the contribution of U. Schmid in this report.

End-to-end and data-driven approaches to learning, like deep convolutional neural net-
works in image classification, have become prevalent and the center of attention in many
research and application areas. However, some research objectives and real world problems
may not be solvable by just processing large amounts of data. In some cases, like medical dia-
gnostics, “big data” simply may not be available [2]. At the same time, deep learning models
are not inherently transparent opposed to those generated by interpretable machine learning
algorithms, such as Inductive Logic Programming (ILP) [6]. This may be a crucial deficency
and a barrier to high stakes applicability of deep learning. At the same time, ILP frameworks
provide symbolic representations in the form of predicates in First-Order-Logic, tracing
capabilities and the integration of relational background knowledge by design, e.g., from
human expertise and domain knowledge [3]. Moreover, their learning process is data-efficient
in comparison to deep learning. In addition, being a relational learning approach qualifies ILP
for explainability [1], e.g., in complex knowledge domains like medicine [2] and AI evaluation
in general [5]. Deep learning may therefore profit from being combined with ILP for explana-
tion, validation and a bi-directional interaction between a human and an AI system [3]. A
crucial part of this avenue is the design of interfaces between internal representations of what
a deep learning model has learned and the relational background knowledge of IP systems,
like ILP, to provide human-understandable surrogate models, explanations and interactions.
First attempts to bridge this gap have already been proposed [4]. However, several open
questions remain to date: How can we find and extract relevant internal representations
from deep learning models and present them in a human-understandable manner? How
can we disambiguate representations? Which relations should be included in the IP module
and satisfied by the deep learning model? How can we implement a knowledge exchange
between IP and deep learning models to support the interplay of learning and reasoning in

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Luc De Raedt and Ute Schmid 193

knowledge discovery and AI evaluation? In my opinion, to build such systems is the way
toward approximating the strengths of the human inductive bias and adaptability of AI
systems to the real world.

References
1 Gesina Schwalbe, Bettina Finzel: A comprehensive taxonomy for explainable artificial

intelligence: a systematic survey of surveys on methods and concepts. Data Mining and
Knowledge Discovery: 1-59 (2023). https://doi.org/10.1007/s10618-022-00867-8

2 Sebastian Bruckert, Bettina Finzel, Ute Schmid: The Next Generation of Medical Decision
Support: A Roadmap Toward Transparent Expert Companions. Frontiers Artif. Intell. 3:
507973 (2020). https://doi.org/10.3389/FRAI.2020.507973

3 Ute Schmid, Bettina Finzel: Mutual Explanations for Cooperative Decision Mak-
ing in Medicine. Künstliche Intell. 34(2): 227-233 (2020). https://doi.org/10.1007/
S13218-020-00633-2

4 Johannes Rabold, Michael Siebers, Ute Schmid: Explaining Black-Box Classifiers with ILP –
Empowering LIME with Aleph to Approximate Non-linear Decisions with Relational Rules.
ILP 2018: 105-117. https://doi.org/10.1007/978-3-319-99960-9_7

5 José Hernández-Orallo: The Measure of All Minds: Evaluating Natural and Artificial
Intelligence. Cambridge University Press 2017, ISBN 9781316594179. https://doi.org/
10.1017/9781316594179

6 Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute
Schmid, Benjamin G. Zorn: Inductive programming meets the real world. Commun. ACM
58(11): 90-99 (2015). https://doi.org/10.1145/2736282

3.10 On Deep Rule Learning
Johannes Fürnkranz (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 4.0 International license
© Johannes Fürnkranz

Joint work of Florian Beck, Johannes Fürnkranz
Main reference Florian Beck, Johannes Fürnkranz: “An Empirical Investigation Into Deep and Shallow Rule

Learning”, Frontiers in Artificial Intelligence, Vol. 4, 2021.
URL https://doi.org//10.3389/frai.2021.689398

Rule learning algorithms form the basis of classic inductive logic programming algorithms
such as FOIL or PROGOL. Studying them in a propositional logic setting allows to focus on
the algorithmic aspects. A key limitation of the current state-of-the-art such as the LORD
algorithm recently developed in our group [1], is that they are all limited to learning rule
sets that directly connect the input features to the target feature. In a logical setting, this
corresponds to learning a DNF expression. While every logical function can be expressed
as a DNF formula, we argue in this talk that learning deeply structured theories may be
beneficial, by drawing an analogy to (deep) neural networks [3], and recapitulating some
recent empirical results [2].

References
1 Phuong Huynh Van Quoc, Johannes Fürnkranz, Florian Beck: Efficient learning of large

sets of locally optimal classification rules. Machine Learning 112(2): 571-610 (2023) https:
//doi.org/10.1007/s10994-022-06290-w

2 Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc: Layerwise Learning of Mixed
Conjunctive and Disjunctive Rule Sets. Proceedings of the 7th International Joint Conference
on Rules and Reasoning (RuleML+RR), 2023, 2023:95-109. https://doi.org/10.1007/
978-3-031-45072-3_7

23442

https://doi.org/10.1007/s10618-022-00867-8
https://doi.org/10.3389/FRAI.2020.507973
https://doi.org/10.1007/S13218-020-00633-2
https://doi.org/10.1007/S13218-020-00633-2
https://doi.org/10.1007/978-3-319-99960-9_7
https://doi.org/10.1017/9781316594179
https://doi.org/10.1017/9781316594179
https://doi.org/10.1145/2736282
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3389/frai.2021.689398
https://doi.org//10.3389/frai.2021.689398
https://doi.org//10.3389/frai.2021.689398
https://doi.org/10.1007/s10994-022-06290-w
https://doi.org/10.1007/s10994-022-06290-w
https://doi.org/10.1007/978-3-031-45072-3_7
https://doi.org/10.1007/978-3-031-45072-3_7

194 23442 – Approaches and Applications of Inductive Programming

3 Florian Beck, Johannes Fürnkranz: An Empirical Investigation Into Deep and Shallow Rule
Learning. Frontiers in Artificial Intelligence 4: 689398 (2021). https://doi.org/10.3389/
frai.2021.689398

3.11 Three Learning Problems in Planning
Hector Geffner (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Hector Geffner

Joint work of Hector Geffner, Simone Ståhlberg, Blai Bonet, Dominik Drexler, RLeap team

I’ll talk about three learning problems in planning: learning lifted action models, learning
generalized policies, and learning general problem decomposition or sketches. We have been
approaching these problems in a top-down fashion, making a clear distinction between what
is to be learned andd how is it to be learned. Indeed, we have been pursuing two types of
approaches in parallel: formulations that rely on combinatorial optimization solvers on the
one hand, and deep (reinforcement) learning approaches on the other. I’ll also discuss the
relation between the two approaches which in the common form are limited by the expressive
power of C2 logic; first-order logic with two variables and counting, and challenges to get
beyond C2.

References
1 Blai Bonet, Hector Geffner: General Policies, Subgoal Structure, and Planning Width.

CoRR abs/2311.05490 (2023). https://doi.org/10.48550/ARXIV.2311.05490
2 Simon Ståhlberg, Blai Bonet, Hector Geffner: Learning General Policies with Policy Gradient

Methods. KR 2023: 647-657. https://doi.org/10.24963/KR.2023/63
3 Dominik Drexler, Jendrik Seipp, Hector Geffner:. Learning Sketches for Decomposing

Planning Problems into Subproblems of Bounded Width. ICAPS 2022: 62-70 https:
//doi.org/10.1609/icaps.v32i1.19786

4 Ivan D. Rodriguez, Blai Bonet, Javier Romero, Hector Geffner: Learning First-Order
Representations for Planning from Black Box States: New Results. KR 2021: 539-548.
https://doi.org/10.24963/KR.2021/51

3.12 A tutorial on Popper
Céline Hocquette (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Céline Hocquette

Joint work of Andrew Cropper, Céline Hocquette
Main reference Andrew Cropper, Céline Hocquette: “Learning Logic Programs by Combining Programs”, in Proc.

of the ECAI 2023 – 26th European Conference on Artificial Intelligence, September 30 – October 4,
2023, Kraków, Poland – Including 12th Conference on Prestigious Applications of Intelligent Systems
(PAIS 2023), Frontiers in Artificial Intelligence and Applications, Vol. 372, pp. 501–508, IOS Press,
2023.

URL https://doi.org//10.3233/FAIA230309

Inductive logic programming (ILP) is a form of program synthesis. The goal is to induce a
logic program that generalises training examples. Popper is a recent ILP system which frames
the ILP problem as a constraint satisfaction problem [1, 2]. Popper continually generates
hypotheses and tests them on the training examples. If a hypothesis is not a solution, Popper

https://doi.org/10.3389/frai.2021.689398
https://doi.org/10.3389/frai.2021.689398
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2311.05490
https://doi.org/10.24963/KR.2023/63
https://doi.org/10.1609/icaps.v32i1.19786
https://doi.org/10.1609/icaps.v32i1.19786
https://doi.org/10.24963/KR.2021/51
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309

Luc De Raedt and Ute Schmid 195

builds constraints to prune hypotheses which are also provably no solutions. Popper supports
learning of recursive programs, predicate invention and learning moderately large programs.
We present a recent extension of Popper which supports learning minimal description length
programs from noisy data [3]. Our approach leverages recent progress in MaxSAT solvers to
efficiently find an optimal program.

References
1 Andrew Cropper, Rolf Morel: Learning programs by learning from failures. Mach. Learn.

110(4): 801-856 (2021). https://doi.org/10.1007/S10994-020-05934-Z
2 Andrew Cropper, Céline Hocquette: Learning Logic Programs by Combining Programs.

ECAI 2023: 501-508 https://doi.org/10.3233/FAIA230309
3 Céline Hocquette, Andreas Niskanen, Matti Järvisalo, Andrew Cropper: Learning MDL logic

programs from noisy data. CoRR abs/2308.09393 (2023). https://doi.org/10.48550/
ARXIV.2308.09393

3.13 Relational program synthesis with numerical reasoning
Céline Hocquette (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Céline Hocquette

Joint work of Céline Hocquette, Andrew Cropper
Main reference Céline Hocquette, Andrew Cropper: “Relational Program Synthesis with Numerical Reasoning”, in

Proc. of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February
7-14, 2023, pp. 6425–6433, AAAI Press, 2023.

URL https://doi.org//10.1609/AAAI.V37I5.25790

Learning programs with numerical values is fundamental to many AI applications, including
bio-informatics and drug design. However, current program synthesis approaches struggle to
learn programs with numerical values. Program synthesis approaches based on enumeration
of candidate numerical symbols cannot handle infinite domains. Recent program synthesis
approaches also have difficulties reasoning from multiple examples, which is required for
instance to identify numerical thresholds or intervals. To overcome these limitations, we
introduce an inductive logic programming approach which combines relational learning with
numerical reasoning [1]. Our approach uses satisfiability modulo theories solvers to efficiently
identify numerical values. Our approach can identify numerical values in linear arithmetic
fragments, such as real difference logic, and from infinite domains, such as real numbers
or integers. Our results show our approach can outperform existing program synthesis
approaches. However, our approach has limited scalability with respect to the complexity of
the numerical reasoning stage.

23442

https://doi.org/10.1007/S10994-020-05934-Z
https://doi.org/10.3233/FAIA230309
https://doi.org/10.48550/ARXIV.2308.09393
https://doi.org/10.48550/ARXIV.2308.09393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790

196 23442 – Approaches and Applications of Inductive Programming

3.14 On the role of natural language for self-programming in cognitive
architectures

Frank Jäkel (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Frank Jäkel

Human problem solvers are able to adapt their problem solving strategies to new situations.
They program they own behavior. In order to do so, they introspect, test, debug, and optimize
their problem solving algorithms. These metacognitive activities can be implemented in
standard cognitive architectures that can store code in working memory and execute it with
an interpreter that is implemented as a set of rules in a production system. Additional
rules can then modify the code at runtime. Unfortunately, the programming language in
which such mental code is written has remained elusive. Here, I will argue that it is time to
revive the old idea that program code is directly given in natural language. Traditionally,
research on cognitive architectures has mostly avoided natural language even though language
is obviously an important aspect of human cognition. With the advent of large language
models it seems more plausible than ever that natural language interpreters might become an
essential part of a new generation of cognitive architectures. In particular, the metacognitive
activity of modifying your own programs might simply consist of transforming one natural
language expression into another – the task that transformers were developed for and have
turned out to be quite successful at.

3.15 QCBA: improving rule classifiers learned from quantitative data by
recovering information lost by discretisation

Tomáš Kliegr (University of Economics – Prague, CZ)

License Creative Commons BY 4.0 International license
© Tomáš Kliegr

Main reference Tomás Kliegr, Ebroul Izquierdo: “QCBA: improving rule classifiers learned from quantitative data by
recovering information lost by discretisation”, Appl. Intell., Vol. 53(18), pp. 20797–20827, 2023.

URL https://doi.org//10.1007/S10489-022-04370-X

Many rule-learning algorithms require prior discretization before they can effectively process
datasets with numerical data. For example, consider a dataset with attributes such as
temperature and humidity. Discretization (also called quantization) means binning their
values into intervals. A simple equidistant algorithm would produce intervals such as (0;10],
(10;20], and (20; 30]. If we consider rule learning algorithms based on association rule learning,
such as Classification based on Associations [3], discretization is necessary to ensure fast
pruning of the state space and also learning of sufficiently generalized rules. Only after
the discretization is it possible to learn the rules of the type IF temperature=(20;30] and
humidity=(50;60] THEN worker_comfort= good.

While some rule learning algorithms can directly work with numerical attributes, such as
the recently proposed extension of the POPPER ILP system [4], for those based on association
rule learning, integrating quantization may not be efficient as it could excessively slow down
the candidate generation phase. A common approach is thus to apply prediscretization, e.g.,
following the Minimum Description Length Principle (MDLP)-based method proposed by [2].
However, as the determination of interval lengths is done globally (i.e., same intervals for all
instances) and outside of the learning algorithm (e.g. CBA), information is lost, resulting in
efficiencies in the final classifier.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10489-022-04370-X
https://doi.org//10.1007/S10489-022-04370-X
https://doi.org//10.1007/S10489-022-04370-X

Luc De Raedt and Ute Schmid 197

Following this problem, this talk introduced the Quantitative CBA (QCBA) algorithm
for the subsequent processing of rule models learned on arbitrarily pre-discretized data (e.g.,
with equidistant binning, MDLP or other method). Extensive experiments have shown that
the proposed algorithm consistently reduces the models’ size and thus makes them more
understandable. Additionally, in many cases, the predictive performance is also improved.
The algorithm can be used to process the results of many rule learning algorithms, including
CBA, Interpretable Decision Sets [1] and Scalable Bayesian Rule Lists [5]. The results are
available in the R package qCBA available in CRAN. The method is described in detail in
[6].

References
1 Himabindu Lakkaraju, Stephen H. Bach, Jure Leskovec: Interpretable Decision Sets: A

Joint Framework for Description and Prediction. KDD 2016: 1675-1684 https://doi.org/
10.1145/2939672.2939874

2 Usama M. Fayyad, Keki B. Irani: Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning. IJCAI 1993: 1022-1029

3 Bing Liu, Wynne Hsu, Yiming Ma: Integrating Classification and Association Rule Mining.
KDD 1998: 80-86

4 Céline Hocquette, Andrew Cropper: Relational Program Synthesis with Numerical Reason-
ing. AAAI 2023: 6425-6433 https://doi.org/10.1609/AAAI.V37I5.25790

5 Hongyu Yang, Cynthia Rudin, Margo I. Seltzer: Scalable Bayesian Rule Lists. ICML 2017:
3921-3930

6 Tomás Kliegr, Ebroul Izquierdo: QCBA: improving rule classifiers learned from quantitative
data by recovering information lost by discretisation. Appl. Intell. 53(18): 20797-20827
(2023) https://doi.org/10.1007/S10489-022-04370-X

3.16 RDFrules: A Swiss knife for relational association rule learning,
classification and knowledge graph completion

Tomáš Kliegr (University of Economics – Prague, CZ)

License Creative Commons BY 4.0 International license
© Tomáš Kliegr

Joint work of Václav Zeman, Tomás Kliegr, Vojtech Svátek
Main reference Václav Zeman, Tomás Kliegr, Vojtech Svátek: “RDFRules: Making RDF rule mining easier and even

more efficient”, Semantic Web, Vol. 12(4), pp. 569–602, 2021.
URL https://doi.org//10.3233/SW-200413

Many commonly used machine learning algorithms are limited to tabular data sets, but
real-world data is often stored in relational databases and increasingly in knowledge graphs.
Processing of such data with standard „tabular“ machine learning usually requires extensive
data transformation and aggregations, resulting in a loss of information. As an alternative,
relational Horn rules can be used to model complex relational structures naturally and use
these in a range of machine learning tasks, including exploratory analysis, classification, and
imputation of missing information.

The RDFRules system for learning rules from knowledge graphs is based on the high-
performance AMIE+ algorithm [1] and includes a number of improvements based on more
than 10 years of experience with the development of its sister tabular EasyMiner [2] rule
learning system. While the AMIE+ algorithm was initially designed for a narrower exploratory
task of discovery of rules with the potential to perform knowledge graph (KG) completion,

23442

https://cran.r-project.org/web/packages/qCBA/index.html
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1609/AAAI.V37I5.25790
https://doi.org/10.1007/S10489-022-04370-X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/SW-200413
https://doi.org//10.3233/SW-200413
https://doi.org//10.3233/SW-200413

198 23442 – Approaches and Applications of Inductive Programming

the current version of the RDFRules system goes significantly beyond the original capabilities
of the AMIE+ algorithm [1] as it now makes possible to perform the following tasks:

load not only graph data in RDF but also relational databases described as SQL scripts,
specify fine-grained patterns to limit the search space,
preprocess numerical literals,
cluster discovered rules,
perform classification tasks,
evaluate results using standard metrics adapted to graph data and open world assumption,
support the KG completion task,

The new features make it possible to graph-based rule learning directly on complex
real-world data.

The system is described in [3] and available at https://github.com/propi/rdfrules.

References
1 Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian M. Suchanek: Fast rule mining

in ontological knowledge bases with AMIE+. VLDB J. 24(6): 707-730 (2015) https:
//doi.org/10.1007/S00778-015-0394-1

2 Stanislav Vojír, Vaclav Zeman, Jaroslav Kuchar, Tomás Kliegr: EasyMiner.eu: Web
framework for interpretable machine learning based on rules and frequent itemsets. Knowl.
Based Syst. 150: 111-115 (2018) https://doi.org/10.1016/J.KNOSYS.2018.03.006

3 Václav Zeman, Tomás Kliegr, Vojtech Svátek: RDFRules: Making RDF rule mining easier
and even more efficient. Semantic Web 12(4): 569-602 (2021) https://doi.org/10.3233/
SW-200413

3.17 The Child as Hacker
Josh Rule (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Josh Rule

Main reference Joshua S. Rule: “The child as hacker: building more human-like models of learning”, Doctoral
dissertation, Massachusetts Institute of Technology (2020)

URL https://hdl.handle.net/1721.1/129232

I describe the child as hacker hypothesis, which relates program induction with aspects
of human cognition, particularly learning [1]. By the deep relationship proposed to exist
between knowledge and program-like structures, the child as hacker treats the activities and
values of human programmers as hypotheses for the activities and values of many forms of
human learning. After introducing this idea, I then look briefly at a project where we’ve
begun to implement it in a system called HL (Hacker-Like) [2]. HL explains human behaviour
better than some recent alternative program induction systems by representing a concept not
only in terms of its object-level content but also in terms of the inferences required to produce
that content. By searching over both kinds of representations, HL learns orders of magnitude
faster than competing systems. I close by discussing three major areas ripe for future research:
i) developing a better empirical understanding of how people solve hard search problems; ii)
understanding the neural and psychological basis for human computational abilities; and
iii) better understanding the goals and values of human programmers. All three areas have
the potential to significantly improve both our understanding of human intelligence and our
ability to use program induction systems to solve complex problems.

https://github.com/propi/rdfrules
https://doi.org/10.1007/S00778-015-0394-1
https://doi.org/10.1007/S00778-015-0394-1
https://doi.org/10.1016/J.KNOSYS.2018.03.006
https://doi.org/10.3233/SW-200413
https://doi.org/10.3233/SW-200413
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1721.1/129232
https://hdl.handle.net/1721.1/129232
https://hdl.handle.net/1721.1/129232

Luc De Raedt and Ute Schmid 199

References
1 Joshua S. Rule, Joshua B. Tenenbaum, Steven T. Piantadosi: The child as hacker. Trends

in cognitive sciences 24(11): 900-915 (2020) https://doi.org/10.1016/j.tics.2020.07.
005

2 Joshua S. Rule: The child as hacker: building more human-like models of learning. Doctoral
dissertation, Massachusetts Institute of Technology (2020) https://hdl.handle.net/1721.
1/129232

3.18 Abstraction for Answer Set Programs
Zeynep G. Saribatur (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Zeynep G. Saribatur

Joint work of Zeynep G. Saribatur, Thomas Eiter, Peter Schüller
Main reference Zeynep G. Saribatur, Thomas Eiter, Peter Schüller: “Abstraction for non-ground answer set

programs”, Artif. Intell., Vol. 300, p. 103563, 2021.
URL https://doi.org//10.1016/J.ARTINT.2021.103563

In this talk, I present our notion of abstraction for answer set programming, a prominent rule-
based language for knowledge representation and reasoning with roots in logic programming
and non-monotonic reasoning. With the aim to abstract over the irrelevant details of answer
set programs, we focus on two approaches of abstraction: (1) abstraction by omission [2], and
(2) domain abstraction [1], and introduce a method to construct an abstract program with a
smaller vocabulary, by ensuring that the original program is over-approximated. We provide
an abstraction & refinement methodology that makes it possible to start with an initial
abstraction and upon encountering spurious solutions automatically refining the abstraction
until an abstract program with a non-spurious solution is reached. Experiments based on
the prototypical implementations reveal the potential of the approach for problem analysis
by focusing on the parts of the program that cause the unsatisfiability, some even matching
a human-like focus shown by a user study, and by achieving generalization of the answer
sets that reflect relevant details only. This makes abstraction an interesting topic of research
whose further use in human-understandability of logic programs remains to be explored.

References
1 Zeynep G. Saribatur, Thomas Eiter, Peter Schüller: Abstraction for non-ground answer

set programs. Artif. Intell. 300: 103563 (2021) https://doi.org/10.1016/J.ARTINT.2021.
103563

2 Zeynep G. Saribatur, Thomas Eiter: Omission-Based Abstraction for Answer Set Pro-
grams. Theory Pract. Log. Program. 21(2): 145-195 (2021) https://doi.org/10.1017/
S1471068420000095

23442

https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://hdl.handle.net/1721.1/129232
https://hdl.handle.net/1721.1/129232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/J.ARTINT.2021.103563
https://doi.org//10.1016/J.ARTINT.2021.103563
https://doi.org//10.1016/J.ARTINT.2021.103563
https://doi.org/10.1016/J.ARTINT.2021.103563
https://doi.org/10.1016/J.ARTINT.2021.103563
https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095

200 23442 – Approaches and Applications of Inductive Programming

3.19 Explanatory Inductive Programming (XAI for IP)
Ute Schmid (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Ute Schmid

Joint work of Johannes Rabold, Michael Siebers, Ute Schmid
Main reference Johannes Rabold, Michael Siebers, Ute Schmid: “Generating contrastive explanations for inductive

logic programming based on a near miss approach”, Mach. Learn., Vol. 111(5), pp. 1799–1820, 2022.
URL https://doi.org//10.1007/S10994-021-06048-W

Methods of explainable artificial intelligence (XAI) and of inductive programming (IP) can
profit from each other in two ways: (1) Inductive programming results in symbolic models
(programs) which are inherently interpretable. Nevertheless, there might be a need for
explainability to humans – end-users or domain experts from other areas than computer
science. This perspective (XAI for IP) is addressed in this summary. (2) On the other hand,
expressive, relational explanations for learned black box models, for instance Convolutional
Neural Networks for image classification, can be provided by IP. This perspective (IP for
XAI) is addressed in the contribution of B. Finzel in this report.

The power of IP approaches lies in their ability to learn highly expressive models from
small sets of examples [2]. Learned programs can support humans to get insights into complex
relational or recursive patterns underlying a set of observed data. That is, IP might be an
ultra-strong learning approach as defined by Donald Michie (see [3]) under the condition
that the learning system can teach the learned model to a human, whose performance is
consequently increased to a level beyond that of the human studying the training data
alone. For programs which consist of several rules or for programs involving complex
relations or recursion, different approaches to construct explanations might support human
understanding. One possibility to reduce complexity is to introduce new predicates. For
instance, the introduction of a predicate parent/2 as generalization for father/2 and mother/2,
reduces four rules for the grandparent/2 relation to one (see [3]). Another possibility is, to
translate the rule which covers the current instant to a verbal explanation for humans without
background in computer science. This can be realized by simple template-based methods
[5]. Alternatively, Large Language Models could be used. For effective teaching a concept
to humans, near miss explanations have been proposed by [4]. Winston showed in his early
work on learning rules for relational perceptual concepts such as arcs, that providing near
misses rather than arbitrary negative examples results in faster convergence of the learned
model. In cognitive science it has been shown that teaching concepts by their difference to
similar concepts is much more efficient than contrasting them with more distant concepts (for
a discussion of these aspects and references, see [4]). In [4] an algorithm for constructing near
miss explanations is presented an applied to different domains. Furthermore, an empirical
study is presented where it could bew shown that in pairwise comparisons, participants
preferred near miss explanations over other types of explanations as more helpful.

Augmenting IP models with explanations can also be helpful to support medical decision
making [1]. Here, it might be helpful to go beyond ultrastrong machine learning and bring
the human expert in the loop for incremental model correction and adaption. In contrast to
standard interactive machine learning, human feedback might go beyond label correction
and allow human domain experts to also correct explanations which might be right for the
wrong reasons. Correcting explanations can be seen as a special case of knowledge injection
in human-in-the-loop IP which exploits such corrections for efficient model adaption.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10994-021-06048-W
https://doi.org//10.1007/S10994-021-06048-W
https://doi.org//10.1007/S10994-021-06048-W

Luc De Raedt and Ute Schmid 201

References
1 Sebastian Bruckert, Bettina Finzel, Ute Schmid: The Next Generation of Medical Decision

Support: A Roadmap Toward Transparent Expert Companions. Frontiers Artif. Intell. 3:
507973 (2020) https://doi.org/10.3389/FRAI.2020.507973

2 Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute
Schmid, Benjamin G. Zorn: Inductive programming meets the real world. Commun. ACM
58(11): 90-99 (2015) https://doi.org/10.1145/2736282

3 Stephen H. Muggleton, Ute Schmid, Christina Zeller, Alireza Tamaddoni-Nezhad, Tarek R.
Besold: Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP.
Mach. Learn. 107(7): 1119-1140 (2018) https://doi.org/10.1007/S10994-018-5707-3

4 Johannes Rabold, Michael Siebers, Ute Schmid: Generating contrastive explanations for
inductive logic programming based on a near miss approach. Mach. Learn. 111(5): 1799-1820
(2022) https://doi.org/10.1007/S10994-021-06048-W

5 Ute Schmid: Interactive Learning with Mutual Explanations in Relational Domains. Human-
Like Machine Intelligence 2022: 338-354 https://doi.org/10.1093/OSO/9780198862536.
003.0017

3.20 Explainable models via compression of tree ensembles
Sriraam Natarajan (University of Texas at Dallas – Richardson, US)

License Creative Commons BY 4.0 International license
© Sriraam Natarajan

Joint work of Siwen Yan, Sriraam Natarajan, Saket Joshi, Roni Khardon, Prasad Tadepalli
Main reference Siwen Yan, Sriraam Natarajan, Saket Joshi, Roni Khardon, Prasad Tadepalli: “Explainable Models

via Compression of Tree Ensembles” Mach. Learn.: 1-26 (2023)
URL https://doi.org/10.1007/s10994-023-06463-1

We consider the problem of explaining learned (relational) ensemble models. Ensemble
models (bagging and gradient-boosting) of relational decision trees have proved to be one of
the most effective learning methods in the area of probabilistic logic models (PLMs). While
effective, they lose one of the most important aspect of PLMs – interpretability.

Our key hypothesis in this work is that combining large number of logical decision trees
would yield in a more compressed model compared to that of combining standard decision
trees. This is due to the fact that unification of variables in logic would allow for effective
and efficient compression.

To this effect, we propose CoTE – Compression of Tree Ensembles – that produces a
single small decision list as a compressed representation. CoTE first converts the trees to
decision lists and then performs the combination and compression with the aid of the original
training set. Experiments on standard benchmarks demonstrate the value of this approach
and justifies the hypotheses that compression is more effective in logical decision trees.

23442

https://doi.org/10.3389/FRAI.2020.507973
https://doi.org/10.1145/2736282
https://doi.org/10.1007/S10994-018-5707-3
https://doi.org/10.1007/S10994-021-06048-W
https://doi.org/10.1093/OSO/9780198862536.003.0017
https://doi.org/10.1093/OSO/9780198862536.003.0017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10994-023-06463-1
https://doi.org/10.1007/s10994-023-06463-1
https://doi.org/10.1007/s10994-023-06463-1

202 23442 – Approaches and Applications of Inductive Programming

3.21 Inductive Programming meets Large Language Models
Gust Verbruggen (Microsoft – Keerbergen, BE)

License Creative Commons BY 4.0 International license
© Gust Verbruggen

Joint work of Gust Verbruggen, Vu Le, Sumit Gulwani
Main reference Gust Verbruggen, Vu Le, Sumit Gulwani: “Semantic programming by example with pre-trained

models”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–25, 2021.
URL https://doi.org//10.1145/3485477

Both inductive programming (IP) and large language models (LLMs) are able to complete
a task from a few examples. Instead of pitting them against each other, together they can
achieve a lot more. One example of such integration is FlashGPT, which iteratively uses
witness functions to break an inductive programming problem into smaller subproblems
until all are solved (FlashFill) and leverages an LLM to solve the subproblems that cannot
be solved symbolically (GPT -3). Instead of reiterating what has been discovered, this talk
focused on (a non-exhaustive list of) next steps for combining IP and LLMs.

First, we discuss how the LLM can be used to improve learning in a fully symbolic IP
system. Two approaches are (1) using the LLM to generate additional input-output examples
for the IP system, or (2) using the LLM to generate candidate solutions to serve as seeds
for initiating a search. The latter is a combination of component-based synthesis [1] and
sketching, both of which rely on generating useful substructures over the grammar of the
target language.

Second, we show how the LLM can be used to improve the experience of working with an
IP system, by providing natural language descriptions of the learned programs.

Third, we show how the scope of IP can be improved with LLMS in systems that do
not leverage witness functions. One potential method is masking semantic components,
performing IP as usual and learning a program that emits masks, and then resolving the
masks using an LLM.

Fourth, we show how operators that only use the embeddings from LLMs strike a
balance between the inference speed of symbolic operations and the number of examples
and capabilities of semantic operations. When the domain of a semantic relation is finite, or
when the task is extraction of relevant parts of the input, we can use embeddings of tokens
from the input to capture semantic relations between input and output.

References
1 Yoad Lustig, Moshe Y. Vardi: Synthesis from component libraries. Int. J. Softw. Tools

Technol. Transf. 15(5-6): 603-618 (2013) https://doi.org/10.1007/S10009-012-0236-Z
2 Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13

https://doi.org/10.1007/978-3-642-10672-9_3

3.22 Inductive Programming meets Real User Problems
Gust Verbruggen (Microsoft – Keerbergen, BE)

License Creative Commons BY 4.0 International license
© Gust Verbruggen

We show two novel applications of inductive programming that bring some unique challenges
with respect to parsing user input. Both problems share some challenges: the need for
speed, noisy input and labels, inferring constant values that adhere to a semantic bias,
underspecification of the problem, and suppression of programs with low confidence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3485477
https://doi.org//10.1145/3485477
https://doi.org//10.1145/3485477
https://doi.org/10.1007/S10009-012-0236-Z
https://doi.org/10.1007/978-3-642-10672-9_3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Luc De Raedt and Ute Schmid 203

First, we consider the problem of predicting the folder to which an email should be moved.
Popular email clients offer to automate this functionality by setting rules, and the expected
output of our learner is thus such a rule. An additional challenge with this problem is concept
drift. Our approach [1] learns simple propositional rules in conjunctive normal form by
generalizing (if an email is mistakenly not covered) or specializing (if an email is mistakenly
covered) the rule corresponding to a folder. Because we guarantee that all historical emails
are correctly classified, we easily adapt to concept drift. This classic inductive programming
approach performs better than many neural and hybrid baselines.

Second, we consider the problem of learning conditional formatting rules in spreadsheets.
An additional challenge is the scope of functions that can be used. Our approach [2, 3] uses
semi-supervised clustering of input values to tackle underspecification, then learns different
rules as decision trees, and ranks them with a learned ranker. Our corpus of 102K rules
from real spreadsheets allows this ranker to encode the semantic bias, which allows us to
outperform many neural and symbolic approaches, even if they have access to the same set
of base predicates.

References
1 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Gust Verbruggen: EmFore: Online

Learning of Email Folder Classification Rules. CIKM 2023: 2280-2290 https://doi.org/
10.1145/3583780.3614863

2 Mukul Singh, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Mohammad Raza, Gust Verbruggen: CORNET: Learning Table Formatting Rules By
Example. Proc. VLDB Endow. 16(10): 2632-2644 (2023) https://doi.org/10.14778/
3603581.3603600

3 Mukul Singh, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Gust Verbruggen: CORNET: Learning Spreadsheet Formatting Rules By Example. Proc.
VLDB Endow. 16(12): 4058-4061 (2023) https://doi.org/10.14778/3611540.3611620

3.23 Probabilistic Logic Programming: Quo Vadis?
Felix Weitkämper (LMU München, DE)

License Creative Commons BY 4.0 International license
© Felix Weitkämper

Probabilistic Inductive Logic Programming refers to learning probabilistic relational programs
from “examples”. These could be probabilistic logic programs, but many considerations
also apply to learning other statistical relational models. From the perspective of statistical
relational artificial intelligence, this is usually referred to as structure learning. Probabilistic
Inductive Logic Programming is key in several areas of artificial intelligence, including
knowledge discovery in stochastic, relational domains and causal structure discovery in
a Boolean relational setting. Probabilistic inductive logic programming is traditionally
considered difficult, since it adds another dimension to the classical ILP problem. Current
approaches are still based on traditional ILP approaches developed in the 1990s, while
the field of ILP has since made huge progress: Metainterpretive learning provides a new
conceptual framework for rethinking Inductive Logic Programming, Constraints and learning
from failures can help prune the search space, and Powerful ASP encodings can be leveraged
to achieve more consistent outcomes.

This raises the question: Can we leverage these modern techniques for PILP?

23442

https://doi.org/10.1145/3583780.3614863
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.14778/3603581.3603600
https://doi.org/10.14778/3603581.3603600
https://doi.org/10.14778/3611540.3611620
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

204 23442 – Approaches and Applications of Inductive Programming

4 Working groups

4.1 Large Language Models and Inductive Programming in Cognitive
Architectures

Bettina Finzel (Universität Bamberg, DE) and Frank Jäkel (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Bettina Finzel and Frank Jäkel

Cognitive architectures provide frameworks to simulate and test principles of cognition [1].
There are different components in cognitive architectures that qualify for being enhanced
by large language models (LLMs) [3] and inductive programming (IP) [2]. LLMs could
be used in the production module to generate rules for execution, in the memory module
as a compressor of information for more efficient access and possibly as the stimuli of a
general cognitive architecture as a model that produces outputs on which further reasoning
could be applied for decision making and learning. An open challenge remains in mimicking
the abilities of humans to switch between modalities in the sense that they are able to
dynamically choose between the representations they need. With respect to this, we were
discussing about some form of reward or reinforcer to increase the response for certain signals
or items in the process of inference and problem solving. Combining learning and reasoning
by integrating LLMs and IP in a cognitive architecture could be an enabler for validating
programs that get executed by the overall architecture and to possible get nearer to human
performance.

References
1 Paul Thagard: Cognitive Architectures. The Cambridge Handbook of Cognitive Science

2012: 50-70 https://doi.org/10.1017/CBO9781139033916.005
2 Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute

Schmid, Benjamin G. Zorn: Inductive programming meets the real world. Commun. ACM
58(11): 90-99 (2015) https://doi.org/10.1145/2736282

3 Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthas-
arathy, Sriram K. Rajamani, Rahul Sharma: Jigsaw: Large Language Models meet Program
Synthesis. ICSE 2022: 1219-1231 https://doi.org/10.1145/3510003.3510203

4.2 Avoiding too much search in Inductive Programming
Ute Schmid (Universität Bamberg, DE), David Cerna (The Czech Academy of Sciences –
Prague, CZ), and Hector Geffner (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Ute Schmid, David Cerna, and Hector Geffner

A crucial part of inductive programming (IP) is search. Since search is costly, an important
question is how we can avoid to search so much or too much.

What we search for can be very different things: logic or functional programs, but also
decision lists, policies, classifications, language representations or deep learned models. How
search is performed can be also realized with many different approaches: enumeration, anti-
unification, genetic programming, greedy strategies, combinatorial optimization, stochastic
gradient descent, deep reinforcement learning, or Monte Carlo Tree Search. In general, we
do need to learn structure as well as probabilities.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/CBO9781139033916.005
https://doi.org/10.1145/2736282
https://doi.org/10.1145/3510003.3510203
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Luc De Raedt and Ute Schmid 205

To evaluate the quality of the learned program, different aspects might be focused on alone
or in combination which is a challenge for search. Obvious criteria are sample complexity
and scalability. But one might also be interested in novelty of the learned program, how
similar is the inductive strategy to human learning (humans do not enumerate first and than
select but typically generalise over few examples).

To push research on becoming more search efficient, a set of benchmark problems and
a competition should be introduced. Promising challenge data sets might come from the
FlashFill domain (learning more complex Excel functions and string transformations), the
abstract reasoning challenge (ARC) and the modified ILP version might be interesting,
furthermore, we could look at problems from the International Math Olympiad Challenge.

We should critically evaluate for which problems deep learning/generative approaches
are more successful and hopefully identify a class of problems where symbolic IP is superior.
For instance, the IP system FlashFill performs better than the transformer-based SmartFill.
The core difference between neural network approaches and symbolic IP is that IP returns
explicit programs which give the intensional characterisation of the input/output-examples
while neural networks are extensional representations. Therefore, one might postulate that
neural networks cannot learn recursion.

Currently, string transformation problems are often either syntactic (return the first letter
of a string) – which works very well for symbolic IP – or semantic (give the capital for a
country) – where generative AI is very good at. Maybe we should look for transformation
problems which combine syntactic and semantic transformations (return the first letter for
every string which names a capital). As it is so often the case, it might be a good idea to
combine symbolic IP and deep learning/generative approaches. A paper we should look at is
[1].

References
1 Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, François Charton: Deep

symbolic regression for recurrence prediction. ICML 2022: 4520-453

4.3 Evaluation Criteria for Interpretability and Explainability of
Inductive Programming

Ute Schmid (Universität Bamberg, DE), Lun Ai (Imperial College London, GB), Claudia
d’Amato (University of Bari, IT), and Johannes Fürnkranz (Johannes Kepler Universität
Linz, AT)

License Creative Commons BY 4.0 International license
© Ute Schmid, Lun Ai, Claudia d’Amato, and Johannes Fürnkranz

Inductive programming results in symbolic models (programs) which are inherently inter-
pretable. Nevertheless, there might be a need for explainability to humans – end-users or
domain experts from other areas than computer science. In the discussion group we focused
on the question of how to measure the quality of interpretable representations (programs)
and of post-hoc generated explanations. The main challenge is to provide for assessment
metrics which are not dependent on studies with humans but which can be evaluated directly
for the interpretation/explanations. A core difficulty is that the quality of an explanation is
context-dependent: it depends on what is explained to whom in what way (how) and for
what reason (why). The way to explain something can be a set of symbolic rules (learned
with IP or a rule learning system or extracted from a neural net), highlighting important

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

206 23442 – Approaches and Applications of Inductive Programming

features (which is done by many XAI approaches such as LIME, SHAP or LRP), a natural
language explanation, prototypical or near miss examples. Furthermore, explanations can be
more abstract or give more details. Explanations can either be constructed to explain for
what reason a learned (black box) model gave a specific output (mechanistic explanation)
or to explain the learned content to a human (functional explanation, ultra-strong machine
learning).

As candidates for assessment metrics we discussed (1) complexity measures (proposals
for cognitive complexity measures, structural information theory, Kolmogorov complexity),
(2) semantic coherence, (3) reliability of a component (of a program) which can result in
abstracting this part away if a human has sufficient/justified trust. A further aspect for
evaluation might be a suitable trade-off between the size of the explanation (memory) and
the effort to interpret it (run time) as proposed, for instance by Donald Michie [1] or Lun Ai
[2].

A program itself can be a good explanation, depending of its complexity. Abstraction
might be a useful method to make explanations more comprehensible. Here approaches
like predicate/function invention, anti-unification, introducing higher-orderness (such as
map/fold), or compression might be helpful. A hierarchy of abstractions can be helpful for
providing the ‘right’ level of detail for a given explanatory context. There are first approaches
of explanations as a dialogue where more detailed or different forms of explanations can be
presented to a human [3]. Learned (Prolog) programs are also suitable in this context: The
highest level of abstraction refers to a single (left-hand/target/head) predicate, the next
level of detail can be achieved by presenting the instantiated right-hand side of a rule (or a
verbal description of it), continued by expanding predicates in the body until ground facts
are reached.

Recently, an explainable version FlashFill has been developed. It showed that users
sometimes reject a FlashFill rule which correctly covers the examples because they do not
understand it. Here approximate symbolic regression has been applied to provide simpler
explanations [4]. In the group of Josh Tenenbaum, the system LILO [5] has been developed
which provides explanations by abstraction.

A final idea on assessing the quality of an interpretation/explanation has been to input
explanations of a learned programs to a LLM, let the LLM generate a program from that
and than compare the originally synthesized program with the one generated by the LLM (a
kind of loss function). Comparison can be done by behavioral comparison for test cases or
by comparing the code.

References
1 Donald Michie: Experiments on the Mechanization of Game-Learning. 2-Rule-Based Learn-

ing and the Human Window. Comput. J. 25(1): 105-113 (1982) https://doi.org/10.
1093/COMJNL/25.1.105

2 Lun Ai, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, Ute Schmid: Beneficial
and harmful explanatory machine learning. Mach. Learn. 110(4): 695-721 (2021) https:
//doi.org/10.1007/S10994-020-05941-0

3 Bettina Finzel, David Elias Tafler, Anna Magdalena Thaler, Ute Schmid: Multimodal
Explanations for User-centric Medical Decision Support Systems. HUMAN@AAAI Fall
Symposium 2021

4 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Gust Verbruggen:
CodeFusion: A Pre-trained Diffusion Model for Code Generation. EMNLP 2023: 11697-11708
https://doi.org/10.48550/arXiv.2310.17680

https://doi.org/10.1093/COMJNL/25.1.105
https://doi.org/10.1093/COMJNL/25.1.105
https://doi.org/10.1007/S10994-020-05941-0
https://doi.org/10.1007/S10994-020-05941-0
https://doi.org/10.48550/arXiv.2310.17680

Luc De Raedt and Ute Schmid 207

5 Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X. Olausson, Muxin Liu, Joshua
B. Tenenbaum, Jacob Andreas: LILO: Learning Interpretable Libraries by Compressing
and Documenting Code. CoRR abs/2310.19791 (2023) https://doi.org/10.48550/ARXIV.
2310.19791

4.4 Finding Suitable Benchmark Problems for Inductive Programming
Ute Schmid (Universität Bamberg, DE), Martin Berger (University of Sussex – Brighton,
GB), Sebastijan Dumancic (TU Delft, NL), Nathanaël Fijalkow (CNRS – Talence, FR), and
Gust Verbruggen (Microsoft – Keerbergen, BE)

License Creative Commons BY 4.0 International license
© Ute Schmid, Martin Berger, Sebastijan Dumancic, Nathanaël Fijalkow, and Gust Verbruggen

To advance progress as well as visibility of IP, a collection of suitable benchmarks, convincing
use cases, and joint formats to represent problems, as well as starting an IP challange have
been identified as helpful. In the discussion group, we focussed on benchmark sets.

First we collected problems currently used in different groups: List problems, regular
expressions (RegEx), boolean language inference, competitive programming, Math Olympiad
Challenge, Reasoning/Theorem Proving, Planning, Knowledge Graphs, Zendo, Games,
Navigation, Biology, standard ML benchmarks (UCML Repository), natural language to
programs (NL2P), abstract reasoning challenge (ARC).

Than we discussed what characteristics benchmark problems should have: tunable, clear
performance metrics, standard format, correct annotations, noise, social recognition/PR,
breadth, not solvable by LLMs (alone), conceptual jumps, linkable to external resources,
curriculum, dramatic finish line, doable by humans. Several of these characteristic were
discarded. For instance, clear metrics (beyond just right or wrong) did not seem to be a
good fit (but see discussion results about explainability). Format has also been seen as not
relevant compared to having good environments to execute and evaluate learned programs
and tools/environments which are easily usable.

For a selected set of characteristics, we identified that problems from the list above which
fulfill the respective characteristic:

Tunable: List problems, RegEx, Boolean languages, Knowledge Graphs, Games, Naviga-
tion, (competitive programming)
Breadth: List problems, competitive programming, Games, NLP2P, Math Olymp, ARC
Not solvable by LLM: List problems, Knowledge Graphs, Math Olymp, ARC
Dramatic finish: Math Olymp, Biology, NLP2P, ARC
Curriculum: List problems, RegEx, Math Olymp, Navigation
Doable by (average) humans: List Problems, RegEx, Games, Navigation, ARC

Given the number of criteria which are met, the following problem domains have been
identified as the most promising ones: List problems (including string transformations and
other domain-specific language based approaches), RegEx, Math Olymp, ARC.

We than had a further critical look at the selected problem classes and evaluated the
following aspects: Not suitable for application, lack of format, producable, lack of prob-
abilistic benchmarks, tension between standard and generation, domain specific problems,
not perceived as difficult/relevant, need/miss to have a relational core, loss of propositional
benchmarks, lack of diversity of evolution, novelty (invent a new sorting algorithm, automated
computer scientist), plugable.

23442

https://doi.org/10.48550/ARXIV.2310.19791
https://doi.org/10.48550/ARXIV.2310.19791
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

208 23442 – Approaches and Applications of Inductive Programming

After discussing these additional aspects, we came up with the following set of potentially
interesting benchmark problems:

The Automated Computer Scientist (from Andrew Cropper): learning novel (e.g. sorting)
algorithms or novel data structures [1]
Joint IP and KG (Knowledge Graph) problems, especially for combining syntactic and
semantic transformations (e.g. give the capital for a country and than take the first letter
of it), this can be list problems or Excel tables [5]
Strategy learning (explicit compared to implicit policy learning in reinforcement learning):
for human problem solving, planning (look at problems from the planning competition)
[2, 3, 4]
Online encyclopedia of integer sequences OEIS (not for all of them exists a closed formula)
Expert domains: learning strategies/patterns for SAT-solvers, theorem provers
Constructing ML pipelines (AutoML)

Links to benchmark data sets:
Popper’s (includes Zendo, many others)
https://github.com/logic-and-learning-lab/Popper/tree/main/examples
SyGuS (includes list problems, FlashFill, phone numbers)
https://github.com/SyGuS-Org/benchmarks
IP Repository (programming benchmarks, including problem solving like Tower of Hanoi)
https://www.inductive-programming.org/repository.html
Regular expressions
https://codalab.lisn.upsaclay.fr/competitions/15096
Boolean language inference
https://www.iwls.org/contest/
Competitive programming
https://github.com/openai/human-eval
Math Olympiad Challenge
https://github.com/lupantech/dl4math#-mathematical-reasoning-benchmarks
https://github.com/openai/miniF2F/tree/v1
Planning
https://github.com/AI-Planning/pddl-generators
Program synthesis benchmarks from genetic programming community
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://zenodo.org/records/5084812
Standard ML benchmarks: UC Irvine ML Repository
https://archive.ics.uci.edu/
Abstract Reasoning Challenge (ARC) [7, 8]
https://github.com/fchollet/ARC
https://lab42.global/arc/
E-Mail Folder Classification
http://www-2.cs.cmu.edu/~enron/
https://catalog.ldc.upenn.edu/LDC2015T03
Rule learning
https://github.com/kliegr/arcbench

https://github.com/logic-and-learning-lab/Popper/tree/main/examples
https://github.com/SyGuS-Org/benchmarks
https://www.inductive-programming.org/repository.html
https://codalab.lisn.upsaclay.fr/competitions/15096
https://www.iwls.org/contest/
https://github.com/openai/human-eval
https://github.com/lupantech/dl4math#-mathematical-reasoning-benchmarks
https://github.com/openai/miniF2F/tree/v1
https://github.com/AI-Planning/pddl-generators
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://zenodo.org/records/5084812
https://archive.ics.uci.edu/
https://github.com/fchollet/ARC
https://lab42.global/arc/
http://www-2.cs.cmu.edu/~enron/
https://catalog.ldc.upenn.edu/LDC2015T03
https://github.com/kliegr/arcbench

Luc De Raedt and Ute Schmid 209

References
1 Andrew Cropper: The Automatic Computer Scientist. AAAI 2023: 15434 https://doi.

org/10.1609/AAAI.V37I13.26801
2 Mario Martín, Hector Geffner: Learning Generalized Policies from Planning Examples

Using Concept Languages. Appl. Intell. 20(1): 9-19 (2004) https://doi.org/10.1023/B:
APIN.0000011138.20292.DD

3 Ute Schmid, Emanuel Kitzelmann: Inductive rule learning on the knowledge level. Cogn.
Syst. Res. 12(3-4): 237-248 (2011) https://doi.org/10.1016/J.COGSYS.2010.12.002

4 Jude W. Shavlik: Acquiring Recursive and Iterative Concepts with Explanation-Based
Learning. Mach. Learn. 5: 39-40 (1990) https://doi.org/10.1007/BF00115894

5 Mukul Singh, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Mohammad Raza, Gust Verbruggen: CORNET: A neurosymbolic approach to learning
conditional table formatting rules by example. CoRR abs/2208.06032 (2022) https://doi.
org/10.48550/ARXIV.2208.06032

6 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Gust Verbruggen: EmFore: Online
Learning of Email Folder Classification Rules. CIKM 2023: 2280-2290 https://doi.org/
10.1145/3583780.3614863

7 James Ainooson, Deepayan Sanyal, Joel P. Michelson, Yuan Yang, Maithilee Kunda: An
Approach for Solving Tasks on the Abstract Reasoning Corpus. CoRR abs/2302.09425
(2023) https://doi.org/10.48550/ARXIV.2302.09425

8 Jonas Witt, Stef Rasing, Sebastijan Dumancic, Tias Guns, Claus-Christian Carbon: A
Divide-Align-Conquer Strategy for Program Synthesis. CoRR abs/2301.03094 (2023) https:
//doi.org/10.48550/ARXIV.2301.03094

5 Panel discussions

5.1 Inductive Programming – How to Go On?
Ute Schmid (Universität Bamberg, DE), Claudia d’Amato (University of Bari, IT), Hec-
tor Geffner (RWTH Aachen, DE), Sriraam Natarajan (University of Texas at Dallas –
Richardson, US), and Josh Rule (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Ute Schmid, Claudia d’Amato, Hector Geffner, Sriraam Natarajan, and Josh Rule

In a final discussion we addressed topics and activities to make scientific progress and make
the topic more visible. A crucial problem might be that there is no core general approach to
IP (such as gradient descent for neural networks). The most prominent IP task is to learn
programs from input/output examples. Other approaches address learning programs from
traces or constraints. Methods range from classic inductive generalization and folding for
induction of functional programs over genetic and evolutionary programming to a collection
of ILP methods (sequential covering, theta-subsumption, combining with tools from answer
set programming). Relevant use cases might not have a focus on learning recursion/loops
but on relations (e.g. in medicine and biology). The focus on learning programs (including
recursion) might profit from using Python as target language.

Furthermore, current IP systems are mostly not easy to find and to use. Therefore, a
toolbox which can be easily used (such as Weka for standard ML) might be helpful. Currently
Sebastijan Dumancic is working on such a tool box (Herb.jl). A collection of data sets and
benchmark problems (see summary of the discussion group about benchmarks) would also
be very helpful, especially when they are given in a standardized, easy to parse format.

23442

https://doi.org/10.1609/AAAI.V37I13.26801
https://doi.org/10.1609/AAAI.V37I13.26801
https://doi.org/10.1023/B:APIN.0000011138.20292.DD
https://doi.org/10.1023/B:APIN.0000011138.20292.DD
https://doi.org/10.1016/J.COGSYS.2010.12.002
https://doi.org/10.1007/BF00115894
https://doi.org/10.48550/ARXIV.2208.06032
https://doi.org/10.48550/ARXIV.2208.06032
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.48550/ARXIV.2302.09425
https://doi.org/10.48550/ARXIV.2301.03094
https://doi.org/10.48550/ARXIV.2301.03094
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

210 23442 – Approaches and Applications of Inductive Programming

To make the field of IP less distributed, it might be helpful to write a primer to IP including
the classic approaches of inductive functional programming and relate also to deductive and
transformational program synthesis methods and genetic/evolutionary programming. Papers
falling in this category are:

Andrew Cropper, Sebastijan Dumancic:
Inductive Logic Programming At 30: A New Introduction. J. Artif. Intell. Res. 74:
765-850 (2022) https://doi.org/10.1613/JAIR.1.13507
Pierre Flener, Ute Schmid:
Inductive Programming. Encyclopedia of Machine Learning and Data Mining 2017:
658-666 https://doi.org/10.1007/978-1-4899-7687-1_137
(updated in 2020, not online yet)
Pierre Flener, Ute Schmid:
An introduction to inductive programming. Artif. Intell. Rev. 29(1): 45-62 (2008)
https://doi.org/10.1007/S10462-009-9108-7
Sumit Gulwani, Oleksandr Polozov, Rishabh Singh: Program Synthesis. Found. Trends
Program. Lang. 4(1-2): 1-119 (2017) https://doi.org/10.1561/2500000010
Emanuel Kitzelmann:
Inductive Programming: A Survey of Program Synthesis Techniques. AAIP 2009: 50-73
https://doi.org/10.1007/978-3-642-11931-6_3

As outcome of the AAIP 2023 seminar we plan to publish a book “Inductive Programming”
which contains systematic introductions into the core topics as well as a collection of recent
work (from participants of the seminar plus an open call for contributions) addressing topics
such as “New Approaches to IP”, “Cognitive Aspects of IP”, “Applications of IP”.

Furthermore, it has been proposed to apply for an IP workshop at IJCAI and to try to
include IP as a topic at the next European Summer School on AI (ESSAI). It might also be
helpful for visibility and community building to propose a COST Network on IP.

The website https://www.inductive-programming.org/ should be kept but made more
general and link from there to a github for IP. The Wikipedia Entry on Inductive Program-
ming https://en.wikipedia.org/wiki/Inductive_programming should be updated by
the community. We also might make at least a tag inductiveprogramming at linkedin which
the IP community should include in posts. More persons of the community should give
Inductive Programming as Keyword in their google scholar profile. We could sample all
videos related to IP in a YouTube channel, and we could produce a 3 minute introductory
video.

https://doi.org/10.1613/JAIR.1.13507
https://doi.org/10.1007/978-1-4899-7687-1_137
https://doi.org/10.1007/S10462-009-9108-7
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-642-11931-6_3
https://www.inductive-programming.org/
https://en.wikipedia.org/wiki/Inductive_programming

Luc De Raedt and Ute Schmid 211

Participants

Lun Ai
Imperial College London, GB

Martin Berger
University of Sussex –
Brighton, GB

David Cerna
The Czech Academy of Sciences –
Prague, CZ

David J. Crandall
Indiana University –
Bloomington, US

Claudia d’Amato
University of Bari, IT

Luc De Raedt
KU Leuven, BE

Sebastijan Dumančić
TU Delft, NL

Kevin Ellis
Cornell University – Ithaca, US

Nathanaël Fijalkow
CNRS – Talence, FR

Bettina Finzel
Universität Bamberg, DE

Johannes Fürnkranz
Johannes Kepler Universität
Linz, AT

Hector Geffner
RWTH Aachen, DE

Céline Hocquette
University of Oxford, GB

Frank Jäkel
TU Darmstadt, DE

Emanuel Kitzelmann
Technische Hochschule
Brandenburg, DE

Tomáš Kliegr
University of Economics –
Prague, CZ

Maithilee Kunda
Vanderbilt University –
Nashville, US

Johannes Langer
Universität Bamberg, DE

Sriraam Natarajan
University of Texas at Dallas –
Richardson, US

Stassa Patsantzis
University of Surrey –
Guildford, GB

Josh Rule
University of California –
Berkeley, US

Zeynep G. Saribatur
TU Wien, AT

Ute Schmid
Universität Bamberg, DE

Gust Verbruggen
Microsoft – Keerbergen, BE

Felix Weitkämper
LMU München, DE

23442

	Executive Summary (Ute Schmid and Luc De Raedt)
	Table of Contents
	Overview of Talks
	Effects of explaining machine-learned logic programs for human comprehension and discovery (Lun Ai)
	Making program synthesis fast on a GPU (Martin Berger)
	Anti-unification and Generalization: What's next? (David Cerna)
	On the Need of Learning Disjointness Axioms for Knowledge Graph Refinement and for Making Knowledge Graph Embedding Methods more Robust (Claudia d'Amato)
	How to make logics neurosymbolic (Luc De Raedt)
	What should we do next in ILP? (Sebastijan Dumančić)
	Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language (Kevin Ellis)
	Towards Programmatic Reinforcement Learning (Nathanaël Fijalkow)
	Inductive Programming for Explainable Artificial Intelligence (IP for XAI) (Bettina Finzel)
	On Deep Rule Learning (Johannes Fürnkranz)
	Three Learning Problems in Planning (Hector Geffner)
	A tutorial on Popper (Céline Hocquette)
	Relational program synthesis with numerical reasoning (Céline Hocquette)
	On the role of natural language for self-programming in cognitive architectures (Frank Jäkel)
	QCBA: improving rule classifiers learned from quantitative data by recovering information lost by discretisation (Tomáš Kliegr)
	RDFrules: A Swiss knife for relational association rule learning, classification and knowledge graph completion (Tomáš Kliegr)
	The Child as Hacker (Josh Rule)
	Abstraction for Answer Set Programs (Zeynep G. Saribatur)
	Explanatory Inductive Programming (XAI for IP) (Ute Schmid)
	Explainable models via compression of tree ensembles (Sriraam Natarajan)
	Inductive Programming meets Large Language Models (Gust Verbruggen)
	Inductive Programming meets Real User Problems (Gust Verbruggen)
	Probabilistic Logic Programming: Quo Vadis? (Felix Weitkämper)

	Working groups
	Large Language Models and Inductive Programming in Cognitive Architectures (Bettina Finzel and Frank Jäkel)
	Avoiding too much search in Inductive Programming (Ute Schmid, David Cerna, and Hector Geffner)
	Evaluation Criteria for Interpretability and Explainability of Inductive Programming (Ute Schmid, Lun Ai, Claudia d'Amato, and Johannes Fürnkranz)
	Finding Suitable Benchmark Problems for Inductive Programming (Ute Schmid, Martin Berger, Sebastijan Dumancic, Nathanaël Fijalkow, and Gust Verbruggen)

	Panel discussions
	Inductive Programming – How to Go On? (Ute Schmid, Claudia d'Amato, Hector Geffner, Sriraam Natarajan, and Josh Rule)

	Participants

