
Volume 13, Issue 10, October 2023

Automated mathematics: integrating proofs, algorithms and data (Dagstuhl Seminar
23401)

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 1

Accountable Software Systems (Dagstuhl Seminar 23411)
Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 24

Formal Methods for Correct Persistent Programming (Dagstuhl Seminar 23412)
Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 50

Quantum Cryptanalysis (Dagstuhl Seminar 23421)
Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt 65

Graph Algorithms: Cuts, Flows, and Network Design (Dagstuhl Seminar 23422)
Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 76

Network Attack Detection and Defense – AI-Powered Threats and Responses (Dagstuhl
Seminar 23431)

Sven Dietrich, Artur Hermann, Frank Kargl, Hartmut König, and Pavel Laskov . . 90

Edge-AI: Identifying Key Enablers in Edge Intelligence (Dagstuhl Seminar 23432)
Eyal de Lara, Aaron Ding, Schahram Dustdar, and Ella Peltonen 130

Ensuring the Reliability and Robustness of Database Management Systems (Dagstuhl
Seminar 23441)

Hannes Mühleisen, Danica Porobic, and Manuel Rigger . 139

Approaches and Applications of Inductive Programming (Dagstuhl Seminar 23442)
Luc De Raedt and Ute Schmid . 182

Dagstuh l Rep or t s , Vo l . 13 , I s sue 10 ISSN 2192-5283

https://doi.org/10.4230/DagRep.13.10.1
https://doi.org/10.4230/DagRep.13.10.1
https://doi.org/10.4230/DagRep.13.10.24
https://doi.org/10.4230/DagRep.13.10.50
https://doi.org/10.4230/DagRep.13.10.65
https://doi.org/10.4230/DagRep.13.10.76
https://doi.org/10.4230/DagRep.13.10.90
https://doi.org/10.4230/DagRep.13.10.90
https://doi.org/10.4230/DagRep.13.10.130
https://doi.org/10.4230/DagRep.13.10.139
https://doi.org/10.4230/DagRep.13.10.139
https://doi.org/10.4230/DagRep.13.10.182

ISSN 2192-5283

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at
https://www.dagstuhl.de/dagpub/2192-5283

Publication date
April, 2024

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
https://dnb.d-nb.de.

License
This work is licensed under a Creative Commons
Attribution 4.0 International license (CC BY 4.0).

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier: 10.4230/DagRep.13.10.i

Aims and Scope
The periodical Dagstuhl Reports documents the
program and the results of Dagstuhl Seminars and
Dagstuhl Perspectives Workshops.
In principal, for each Dagstuhl Seminar or Dagstuhl
Perspectives Workshop a report is published that
contains the following:

an executive summary of the seminar program
and the fundamental results,
an overview of the talks given during the seminar
(summarized as talk abstracts), and
summaries from working groups (if applicable).

This basic framework can be extended by suitable
contributions that are related to the program of the
seminar, e. g. summaries from panel discussions or
open problem sessions.

Editorial Board
Elisabeth André
Franz Baader
Daniel Cremers
Goetz Graefe
Reiner Hähnle
Barbara Hammer
Lynda Hardman
Oliver Kohlbacher
Steve Kremer
Rupak Majumdar
Heiko Mantel
Albrecht Schmidt
Wolfgang Schröder-Preikschat
Raimund Seidel (Editor-in-Chief)
Heike Wehrheim
Verena Wolf
Martina Zitterbart

Editorial Office
Michael Wagner (Managing Editor)
Michael Didas (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Dagstuhl Reports, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
reports@dagstuhl.de
https://www.dagstuhl.de/dagrep

https://www.dagstuhl.de/dagrep
https://www.dagstuhl.de/dagpub/2192-5283
https://dnb.d-nb.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/DagRep.13.10.i
https://www.dagstuhl.de/dagrep

Report from Dagstuhl Seminar 23401

Automated mathematics: integrating proofs, algorithms and
data
Andrej Bauer∗1, Katja Berčič∗2, Florian Rabe∗3, Nicolas Thiéry∗4,
and Jure Taslak†5

1 University of Ljubljana, SI &
Institute for Mathematics, Physics and Mechanics, Ljubljana, SI

2 University of Ljubljana, SI &
Institute for Mathematics, Physics and Mechanics, Ljubljana, SI

3 Universität Erlangen-Nürnberg, DE
4 University Paris-Saclay – Orsay, FR
5 University of Ljubljana, SI

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23401 “Automated
mathematics: integrating proofs, algorithms and data”. The seminar brought together system
developers, library authors, and users from key branches of computer-supported mathematics:
formalized mathematics, symbolic computation, and mathematical databases. We addressed
issues that were common to all areas of computer-supported mathematics: library management,
dependencies and interoperability between software components, quality and correctness assur-
ances, searching for information, and usability by end users. Early on in the week, we formed
working groups that worked on specific tasks, as described in this report. Each day was divided
into a morning talk session and an afternoon period devoted to working in groups. To keep
everyone well-informed, we gathered each day before dinner for an informal “show & tell” session.
Seminar October 1–6, 2023 – https://www.dagstuhl.de/23401
2012 ACM Subject Classification Mathematics of computing → Mathematical software; Com-

puting methodologies → Symbolic and algebraic manipulation; Computing methodologies →
Symbolic and algebraic manipulation; Computing methodologies → Symbolic and algebraic
manipulation

Keywords and phrases mathematical knowledge management, mathematical software, formalized
mathematics, computer algebra, databases of mathematical structures

Digital Object Identifier 10.4230/DagRep.13.10.1

1 Executive Summary

Andrej Bauer
Katja Berčič
Florian Rabe
Nicolas Thiéry

License Creative Commons BY 4.0 International license
© Andrej Bauer, Katja Berčič, Florian Rabe, Nicolas Thiéry

Modern mathematical software and large datasets of mathematical knowledge allow new
approaches to solving mathematical problems, and support new kinds of mathematical
exploration. In the past, lack of cooperation led to each project developing its own standards

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Automated mathematics: integrating proofs, algorithms and data, Dagstuhl Reports, Vol. 13, Issue 10, pp. 1–23
Editors: Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/23401
https://doi.org/10.4230/DagRep.13.10.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

2 23401 – Automated mathematics: integrating proofs, algorithms and data

and techniques. Both developers and users experienced the resulting incompatibilities and
fragmentation as serious usability issues and major obstacle to wider adoption, and none
of the projects can address these successfully on their own. To make further progress that
will eventually result in truly comprehensive and advanced computer mathematical assistant
systems, the developers of individual software projects must start working together and
tackle questions of interoperability, software engineering, and knowledge management on a
large scale.

Concretely, this Dagstuhl Seminar brought together system developers, library authors,
and users from three key areas of computer-supported mathematics: theorem provers, sym-
bolic computation, and databases of mathematical structures. All three areas develop large
formal mathematical libraries, but they do so in fundamentally different and incompatible
ways. Theorem provers optimize for precise definitions and automation of proof support,
often employing complex and abstract representation languages that capture exactly the
semantics of the mathematical concepts of interest. Computer algebra systems, on the
other hand, prioritize the efficiency of computation, which usually requires hardware-near
representations that can be optimized for speed. Mathematical datasets finally employ
general purpose database languages, which are optimized for indexing and fast querying,
often requiring non-trivial encodings of mathematical objects in terms of concrete data. Over
several decades of mostly independent development, these different communities have built
software systems that are as impressively large as they are different from each other.

Work Groups

Broadly speaking, the seminar participants employed three independent approaches towards
system integration.

Firstly, direct integration builds individual bridges between (usually) two systems. These
tend to be more ad hoc but enable a problem-driven approach that delivers a specific
practically needed integration solution. Multiple work groups were formed that tackled
individual bridges.

Secondly, ontology-based integration uses a central representation that acts as an in-
teroperability layer. The ontology describes mathematical concepts abstractly without a
commitment to any of the three flavors of systems. Two work groups investigated this
approach:

Alignments: This work group worked towards building a central ontology of mathematical
concepts. It surveyed existing approaches and judged the feasibility of major future
approaches. Of special interests was the difficulty of library alignment, the task of
connecting the central ontology to the individual libraries.
Knowledge graphs: This work group investigated services that can be built on top of
a central ontology. Of particular interest were knowledge graph techniques, which use
concepts as the nodes and alignments as some of the edges.

Thirdly, for the special goal of integrating datasets, a work group on building an index
of datasets started a major push towards cataloging the many existing datasets, which are
distributed all over the internet, often without active maintenance. This is a necessary step
towards more systemic integration with each other and deduction and computation systems.

Outcomes

Overall, we observed that the field has made major progress over the last 10 years. Direct
integrations that would have been very expensive in the past, often prohibitively so, have
become feasible targets for short meetings as within a Dagstuhl Seminar. This can be

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 3

attributed to increased awareness in the community of interoperability needs that has led
to better interface design. Nonetheless, integrations are still brittle, and a major incentive
problem remains: it is difficult for two communities to maintain bridges between their
systems.

Ontology-based integration had developed little momentum in the past because of the
high cost of additionally maintaining the central ontology. Here, the seminar showed that
the time is right for a major push towards this and initiated a community-driven ontology
curation project.

The work on building an index of datasets kick-started a dataset curation project. This
project has already attracted the attention of outside researchers and has led to the founding
of the Mathbase project.

23401

https://mathbases.org/

4 23401 – Automated mathematics: integrating proofs, algorithms and data

2 Table of Contents

Executive Summary
Andrej Bauer, Katja Berčič, Florian Rabe, Nicolas Thiéry 1

Overview of Talks
Who finds the short proof? Searching for Wormholes in Proof-Space
Christoph Benzmüller . 6

A catalogue of mathematical datasets
Katja Berčič . 6

Formal verification of mathematical algorithms when the definitions are out of reach
Alex Best . 7

Learning from “invisible mathematics”
Jacques Carette . 7

Proving an Execution of an Algorithm Correct?
James H. Davenport . 8

Extracting Mathematical Concepts from Text
Valeria de Paiva . 8

(Re)Verification of Proofs
Catherine Dubois . 9

Understanding the Symmetries of Bin Packing Problems Inspired by Application
Deployment in the Cloud
Madalina Erascu . 9

House of Graphs: A searchable database of interesting graphs and more
Jan Goedgebeur . 10

Mostly Automated Proof Repair for Verified Libraries
Kiran Gopinathan . 10

Towards a centralized system for mathematical objects
Dimitri Leemans . 11

Machine-learnable Data Sets for Formalized Mathematics (MLFMF)
Matej Petkovic and Andrej Bauer . 11

Heterogenous search in formal mathematical libraries
Claudio Sacerdoti Coen . 11

Proof and Computation with PVS
Natarajan Shankar . 12

Enumerion, a system for systematic enumeration of finite mathematical structures
Jure Taslak . 12

Alien Coding: Learning Synthesis of OEIS Sequences
Josef Urban . 13

Isabelle as System Platform for the Archive of Formal Proofs (AFP)
Makarius Wenzel . 13

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 5

Working groups
Using verified code inside CASes
Alex Best and Tobias Nipkow . 14

Reconceptualization
Jacques Carette, Gilles Dowek, and Catherine Dubois 15

Formal Verification of Computer Algebra (Factorisatoion)
James H. Davenport, Alex Best, Mario Carneiro, and Edgar Costa 16

Coq, Isabelle and Dedukti as heterogeneous networks
Filip Koprivec, Mario Carneiro, Stefania Dumbrava, Matej Petkovic, and Makarius
Wenzel . 17

Object identification using invariant based decision trees
Filip Koprivec and Matej Petkovic . 17

Datasets
Dimitri Leemans, Katja Berčič, Jan Goedgebeur, Darij Grinberg, Samuel Lelievre,
Harshit J Motwani, and Tom Kaspar Wiesing . 18

Aligning Mathematical Concepts Across Libraries
Florian Rabe . 18

Scalability Estimates of Graph Certificates in a Theorem Prover Using SAT Encod-
ings
Kathrin Stark, Madalina Erascu, Kazuhiko Sakaguchi, and Jure Taslak 21

Participants . 23

23401

6 23401 – Automated mathematics: integrating proofs, algorithms and data

3 Overview of Talks

3.1 Who finds the short proof? Searching for Wormholes in Proof-Space
Christoph Benzmüller (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Christoph Benzmüller

Joint work of Christoph Benzmüller, David Fuenmayor, Alexander Steen, Geoff Sutcliffe
Main reference Christoph Benzmüller, David Fuenmayor, Alexander Steen, Geoff Sutcliffe: “Who Finds the Short

Proof?”, Logic Journal of the IGPL, p. jzac082, 2023.
URL https://doi.org//10.1093/jigpal/jzac082

In my talk I presented recently published results that had not been communicated at
conferences or workshops before: An exploration of Boolos’ Curious Inference using higher-
order automated theorem provers (ATPs). Surprisingly, only suitable shorthand notations
had to be provided by hand for ATPs to find a short proof. The higher-order lemmas
required for constructing a short proof are automatically discovered by the ATPs. Given
the observations and suggestions in this paper, full proof automation of Boolos’ and related
examples now seems to be within reach of higher-order ATPs.

References
1 Benzmüller, C., Fuenmayor, D., Steen, A. and Sutcliffe, G. Who Finds the Short Proof?

Logic Journal of the IGPL. 2023. Doi: 10.1093/jigpal/jzac082
2 Benzmüller, C. and Brown, C. The curious inference of Boolos in MIZAR and OMEGA. In

Matuszewski, R., Zalewska, A., editor(s), From Insight to Proof – Festschrift in Honour
of Andrzej Trybulec, volume 10(23), of Studies in Logic, Grammar, and Rhetoric, pages
299-388. The University of Bialystok, Polen, 2007.

3 Boolos, G. A Curious Inference. Journal of Philosophical Logic 16(1):1-12, 1987.

3.2 A catalogue of mathematical datasets
Katja Berčič (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Katja Berčič

Main reference Katja Bercic: “Towards a Census of Relational Data in Mathematics”, in Proc. of the Conference on
“Lernen, Wissen, Daten, Analysen”, Berlin, Germany, September 30 – October 2, 2019, CEUR
Workshop Proceedings, Vol. 2454, pp. 207–217, CEUR-WS.org, 2019.

URL https://ceur-ws.org/Vol-2454/paper_40.pdf

In addition to well-known mathematical databases, such as the OEIS, LMFDB and the
House of Graphs, there is a multitude of smaller projects. Any of these might be interesting
to researchers from other areas, including machine learning. However, the smaller dataset
projects are typically hard to find: just the right keywords are usually necessary (but not
necessarily sufficient) to find them with standard search engines and even in scientific research
data repositories (like Zenodo). As a community, we should build a collaborative, and at
least partly automated, index of mathematical datasets. Personal projects, such as my own
mathdb.mathhub.info, can serve as a starting point.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1093/jigpal/jzac082
https://doi.org//10.1093/jigpal/jzac082
https://doi.org//10.1093/jigpal/jzac082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ceur-ws.org/Vol-2454/paper_40.pdf
https://ceur-ws.org/Vol-2454/paper_40.pdf
https://ceur-ws.org/Vol-2454/paper_40.pdf
https://ceur-ws.org/Vol-2454/paper_40.pdf

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 7

3.3 Formal verification of mathematical algorithms when the definitions
are out of reach

Alex Best (King’s College – London, GB)

License Creative Commons BY 4.0 International license
© Alex Best

Joint work of Alex Best, Sander Dahmen, Sacha Huriot-Tattegrain

I’d be happy to report on and discuss some ongoing work (with S. Dahmen and S. Huriot-
Tattegrain) implementing a tricky mathematical algorithm in the field of number theory /
arithmetic geometry in a proof assistant (this computes certain quantities appearing in the
famous BSD conjecture many of which are recorded in the LMFDB). This algorithm, known
as Tate’s algorithm in the field, is quite involved with many subcases and a non-trivial proof
of terminations, and takes many pages to describe when expressed in paper form.

One thing that makes this an interesting is that to give a formal definition of the quantities
the algorithm actually computes is still out of reach, nevertheless the steps of this algorithm
as described in the literature can be implemented and termination can be proved with
some non-trivial tracking of the state involved, but in what ways is this implementation
more trustworthy than one in a regular programming language? I’d like to consider what
guarantees implementing such code in a the strict setting of a proof assistant can give us,
compared to ordinary code, even when the gold standard isn’t yet attainable.

The direct relationship between the mathematical theory and the code in this case means
that this implementation very clearly states what assumptions are made about the ring
we are working in, and in fact makes this the most general implementation available, this
then begs the question: how can we best integrate mathematical code written using proof
assistants into existing CASes? So it may be useful to users not running proof assistants
themselves.

3.4 Learning from “invisible mathematics”
Jacques Carette (McMaster University – Hamilton, CA)

License Creative Commons BY 4.0 International license
© Jacques Carette

Recently Andrej Bauer coined the term “invisible mathematics” for those aspects of math-
ematics which are readily apparent when doing them mechanically (especially, but not only,
in proof assistants) but which is essentially invisible in traditional paper-math. Three main
examples were given, and their formalization discussed.

Here we aim to give more such examples – but the aim is not on how to formalize
them, but rather to observe their consequences. In particular, some instances of “invisible
mathematics” readily reveal the cognitive load on learners of some (visible) mathematics.
Rather than seeing parts of the “de Bruijn factor” as an impediment, we instead regard it as
a learning opportunity.

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

8 23401 – Automated mathematics: integrating proofs, algorithms and data

3.5 Proving an Execution of an Algorithm Correct?
James H. Davenport (University of Bath, GB)

License Creative Commons BY 4.0 International license
© James H. Davenport

We have previously [1] asked the question “Do I believe the output from my (complicated,
optimised, unverified) computer algebra system?”. If it gives me a positive answer, e.g.
“the answer to

∫
f is g”, then we can check that g′ = f , etc. But what if it says “there is

no answer”? In particular, if we ask to factor the polynomial F , then we can check that
the factors multiply to F , but what about the (implicit) statement that these factors are
irreducible? Currently, the user just has to believe the algebra system. We ask, and partially
answer, the question “could the algebra system also produce a certificate, or the hints to
construct a certificate, of irreducibility of the factors” (based on the work the algebra system
has already done). This was taken up by one working group.

References
1 James Harold Davenport. Proving an Execution of an Algorithm Correct? In Dubois and

Kerber [2], pages 255–269.
2 Catherine Dubois and Manfred Kerber, editors. Proceedings CICM 2023, volume 14101 of

Springer Lecture Notes in Computer Science, 2023.

3.6 Extracting Mathematical Concepts from Text
Valeria de Paiva (Topos Institute – Berkeley, US)

License Creative Commons BY 4.0 International license
© Valeria de Paiva

Joint work of Valeria de Paiva, Lucy Horowitz, Jacob Collard, Eswaran Subramahnian, Pavel Kovalev, Qiyue Gao,
Lawrence Moss

Main reference Lucy Horowitz, Valeria de Paiva: “MathGloss: Building mathematical glossaries from text”, CoRR,
Vol. abs/2311.12649, 2023.

URL https://doi.org//10.48550/ARXIV.2311.12649
Main reference Jacob Collard, Valeria de Paiva, Eswaran Subrahmanian: “Parmesan: mathematical concept

extraction for education”, CoRR, Vol. abs/2307.06699, 2023.
URL https://doi.org//10.48550/ARXIV.2307.06699

Main reference Jacob Collard, Valeria de Paiva, Brendan Fong, Eswaran Subrahmanian: “Extracting Mathematical
Concepts from Text”, CoRR, Vol. abs/2208.13830, 2022.

URL https://doi.org//10.48550/ARXIV.2208.13830
Main reference Valeria de Paiva, Qiyue Gao, Pavel Kovalev, Lawrence S. Moss: “Extracting Mathematical Concepts

with Large Language Models”, CoRR, Vol. abs/2309.00642, 2023.
URL https://doi.org//10.48550/ARXIV.2309.00642

We describe the project Network Mathematics we are developing at the Topos Institute,
Berkeley, CA. We hope to take advantage of the tremendous recent progress in Natural
Language Processing (NLP), including LLMs, transformers, etc, to extract information from
mathematical texts. Also we think mathematical language is what mathematicians use when
communicating with each other, so we should leverage mathematical English to increase the
accessibility of mathematics to mathematicians, students and the general public.

To work on these goals, we have three main preliminary subprojects:
1. MathGloss (together with Lucy Horowitz, Chicago) – a collection of glossaries of college

math, connected to each other via WikiData.
2. Parmesan (together with Jacob Collard and Eswaran Subramahnian, NIST) provides

semantic search on the field of Category Theory, using different knowledge bases at
different levels (research math, wiki math and textbook math).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2311.12649
https://doi.org//10.48550/ARXIV.2311.12649
https://doi.org//10.48550/ARXIV.2311.12649
https://doi.org//10.48550/ARXIV.2307.06699
https://doi.org//10.48550/ARXIV.2307.06699
https://doi.org//10.48550/ARXIV.2307.06699
https://doi.org//10.48550/ARXIV.2208.13830
https://doi.org//10.48550/ARXIV.2208.13830
https://doi.org//10.48550/ARXIV.2208.13830
https://doi.org//10.48550/ARXIV.2309.00642
https://doi.org//10.48550/ARXIV.2309.00642
https://doi.org//10.48550/ARXIV.2309.00642

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 9

3. MathChat (together with Gao, Kovalev and Moss, Indiana) using generative AI (chatGPT
and GTP-4) to extract concepts from text.

All these subprojects need to grow and need to include more sources. Also, further work
needs to be done to structure the extracted concepts into a proper ontology, to obtain a
proper Knowledge Graph for mathematics.

3.7 (Re)Verification of Proofs
Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 4.0 International license
© Catherine Dubois

Main reference Guillaume Burel, Guillaume Bury, Raphaël Cauderlier, David Delahaye, Pierre Halmagrand, Olivier
Hermant: “First-Order Automated Reasoning with Theories: When Deduction Modulo Theory
Meets Practice”, J. Autom. Reason., Vol. 64(6), pp. 1001–1050, 2020.

URL https://doi.org//10.1007/S10817-019-09533-Z

The talk gives a quick overview of some tools developed around Dedukti to verify, re-verify or
cross-verify proofs, more precisely, Zenon Modulo, iProverModulo, Archsat, and Ekstrakto.
The three first ones directly produce Dedukti proofs that can be checked by the Dedukti
checker. The latter reconstructs a Dedukti proof from a proof trace by reproving each step
using a Dedukti producing tool and combining the proofs of the steps to get a proof of the
original formula. In the talk, we also point out two projects: BWare and ICSPA. The first
one aimed at developing a mechanized framework for automated verification of AtelierB
proof obligations where Zenon Modulo and iProvermodulo were developed or used. ICSPA is
a project in progress where the objectives are to improve confidence in the proofs realized in
the context of B/Event-B and TLA+ by formally and independently verifying these proofs
and also to enable sharing and reusing proofs and models between B/Event-B and TLA+
using lambda-PI calculus modulo theory and Dedukti.

3.8 Understanding the Symmetries of Bin Packing Problems Inspired by
Application Deployment in the Cloud

Madalina Erascu (West University of Timisoara, RO)

License Creative Commons BY 4.0 International license
© Madalina Erascu

Automated deployment of component-based applications in the Cloud consists in the allocation
of virtual machines (VMs) offers from various Cloud Providers such that the constraints
induced by the interactions between components and by the components hardware/software
requirements are satisfied and the performance objectives are optimized (e.g. costs are
minimized). It can be formulated as a constraint optimization problem, hence, in principle,
the optimization can be carried out automatically. In the case the set of VM offers is large
(several hundreds), the computational requirement is huge, making the automatic optimization
practically impossible with the current general optimization modulo theory (OMT) and
mathematical programming (MP) tools. We overcame the difficulty by methodologically
analyzing the particularities of the problem with the aim of identifying search space reduction
methods. Some of these methods are exploiting the symmetries of the general Cloud
deployment problem leading to symmetry breakers. However, little is know/understood

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10817-019-09533-Z
https://doi.org//10.1007/S10817-019-09533-Z
https://doi.org//10.1007/S10817-019-09533-Z
https://doi.org//10.1007/S10817-019-09533-Z
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

10 23401 – Automated mathematics: integrating proofs, algorithms and data

about the symmetries of this problem which could lead to symmetry breakers which are not
experimentally constructed. We present some of the symmetries of a simplistic formulation
of automated deployment with the hope that the audience:

can bring input regarding approaches applied for similar problems (bin-packing)
is interested in taking part in a small working group to discuss if invariant theory of finite
groups (see, e.g., Chapter 7 of [1]) could bring some insights towards the formalization of
symmetries.

References
1 Cox, D.A., Little, J., O’Shea, D.. Invariant Theory of Finite Groups. In: Ideals, Varieties,

and Algorithms. Undergraduate Texts in Mathematics. Springer, Cham, 2015

3.9 House of Graphs: A searchable database of interesting graphs and
more

Jan Goedgebeur (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Jan Goedgebeur

Joint work of Jan Goedgebeur, Gunnar Brinkmann, Kris Coolsaet, Sven D’hondt, Gauvain Devillez, Hadrien Mélot
Main reference Kris Coolsaet, Sven D’hondt, Jan Goedgebeur: “House of Graphs 2.0: A database of interesting

graphs and more”, Discret. Appl. Math., Vol. 325, pp. 97–107, 2023.
URL https://doi.org//10.1016/J.DAM.2022.10.013

We will present the House of Graphs (https://houseofgraphs.org/), which is a database
of graphs. The House of Graphs hosts complete lists of graphs of various graph classes (e.g.
cubic graphs, fullerenes, trees, etc.), but its main feature is a searchable database of so
called “interesting” graphs, which includes graphs that already occurred as extremal graphs
or as counterexamples to conjectures. We will highlight the features of the website and
demonstrate how users can perform queries on this database and how they can add new
interesting graphs to it.

3.10 Mostly Automated Proof Repair for Verified Libraries
Kiran Gopinathan (National University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Kiran Gopinathan

Joint work of Kiran Gopinathan, Mayank Keoliya, Ilya Sergey
Main reference Kiran Gopinathan, Mayank Keoliya, Ilya Sergey: “Mostly Automated Proof Repair for Verified

Libraries”, Proc. ACM Program. Lang., Vol. 7(PLDI), pp. 25–49, 2023.
URL https://doi.org//10.1145/3591221

The cost of maintaining formally specified and verified software is widely considered pro-
hibitively high due to the need to constantly keep code and the proofs of its correctness in
sync—the problem known as proof repair. One of the main challenges in automated proof
repair for evolving code is to infer invariants for a new version of a once verified program
that are strong enough to establish its full functional correctness.

In this work, we present the first proof repair methodology for higher-order imperative
functions, whose initial versions were verified in the Coq proof assistant and whose spe-
cifications remained unchanged. Our proof repair procedure is based on the combination
of dynamic program alignment, enumerative invariant synthesis, and a novel technique for
efficiently pruning the space of invariant candidates, dubbed proof-driven testing, enabled by
the constructive nature of Coq’s proof certificates.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/J.DAM.2022.10.013
https://doi.org//10.1016/J.DAM.2022.10.013
https://doi.org//10.1016/J.DAM.2022.10.013
https://houseofgraphs.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3591221
https://doi.org//10.1145/3591221
https://doi.org//10.1145/3591221

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 11

3.11 Towards a centralized system for mathematical objects
Dimitri Leemans (UL – Brussels, BE)

License Creative Commons BY 4.0 International license
© Dimitri Leemans

Mathematical data are available in all sorts of formats on the web. Often it is difficult for
those who did not create the data to use them. Also these data are at risk of disappearing.
We advocate for the building of a system consisting of

a centralised database of mathematical objects, checked by peers,
a website permitting to extract data from the database and send it to computational
software (Magma, gap, etc.) to test conjectures, build more objects, ...

3.12 Machine-learnable Data Sets for Formalized Mathematics
(MLFMF)

Matej Petkovic (University of Ljubljana, SI), Andrej Bauer (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Matej Petkovic and Andrej Bauer

Joint work of Andrej Bauer, Matej Petković, Ljupčo Todorovski
Main reference Andrej Bauer, Matej Petkovic, Ljupco Todorovski: “MLFMF: Data Sets for Machine Learning for

Mathematical Formalization”, CoRR, Vol. abs/2310.16005, 2023.
URL https://doi.org//10.48550/ARXIV.2310.16005

MLFMF is a collection of data sets for benchmarking recommendation systems used to
support formalization of mathematics with proof assistants. Each data set is derived from a
library of formalized mathematics written in proof assistants Agda or Lean. The collection
includes the largest Lean 4 library Mathlib, and some of the largest Agda libraries: the
standard library, the library of univalent mathematics Agda-unimath, and the TypeTopology
library. Each data set represents the corresponding library in two ways: as a heterogeneous
network, and as a list of s-expressions representing the syntax trees of all the entries in
the library. The network contains the (modular) structure of the library and the references
between entries, while the s-expressions give complete and easily parsed information about
every entry.

3.13 Heterogenous search in formal mathematical libraries
Claudio Sacerdoti Coen (University of Bologna, IT)

License Creative Commons BY 4.0 International license
© Claudio Sacerdoti Coen

I will present how I integrated in LambdaPi an indexer and search engine for mathematical
formulae up to instantiation/generalization. The search engine allows to query in parallel
libraries obtained by various provers (e.g. HOL/Matita/Coq/...) via an encoding into
Dedukti/LambdaPi.

The task poses several challenges that are novel compared to search engines developed
for a single system:
1. the statements occur encoded in LambaPi and the same statement coming from several

systems is encoded in a different way

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2310.16005
https://doi.org//10.48550/ARXIV.2310.16005
https://doi.org//10.48550/ARXIV.2310.16005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

12 23401 – Automated mathematics: integrating proofs, algorithms and data

2. the statement can occur in several shapes, up to rewriting rules
3. in order to look in parallel in several libraries, one need to search up to alignment of

constants.
I have solved all three previous challenges exploiting the rewriting engine of LambdaPi in
order to:
1. undo the encoding via a non-type preserving transformation,
2. normalize the statements before indexing and the queries as well,
3. rewrite all cosntants to a canonic form (the representative of the equivalence class of

aligned formula).
Indexing has been implemented combining substitution trees and information positioning
(the one exploited in the Whelp system).

3.14 Proof and Computation with PVS
Natarajan Shankar (SRI – Menlo Park, US)

License Creative Commons BY 4.0 International license
© Natarajan Shankar

SRI’s Prototype Verification System (PVS) is an interactive proof assistant based on higher-
order logic developed at SRI over the last three decades as a unified platform and language
for formal specification, mathematical modeling, programming, and proof. It has been used
to develop extensive libraries for mathematics and computing and for verification projects
spanning fault-tolerant systems, air-traffic control systems, parsers, compilers, separation
kernel, data refinement, and hardware. Nearly all of the specification language is efficiently
executable with code extraction to Common Lisp and C, and experimental code generators
targetting standard ML and Rust. We describe some of our experiments with modeling,
proof, and computation focusing on extracting efficient C code from verified definitions.

During the Dagstuhl Seminar, we used PVS to verify two witness formats and executable
checkers for graph connectivity. The witness for connectivity is a sequence containing all
of the vertices such that each vertex has a neighbor in the preceding part of the sequence.
This implies, by induction, that the graph is connected. For disconnectivity, the witness is a
k-coloring of the vertices for k > 1 such that no vertex has a neighbor of a different color.

3.15 Enumerion, a system for systematic enumeration of finite
mathematical structures

Jure Taslak (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Jure Taslak

Joint work of Jure Taslak, Andrej Bauer

In the talk I presented my recent work in progress on Enumerion, which is a system for
systematic enumeration of finite mathematical structures based on dependent type theory and
implemented in OCaml. The problem of counting and enumerating discrete finite structures is
a classical one. In the history of counting there are however quite a few published mistakes[1].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 13

The idea of this system is to have a systematic way of describing the enumeration problem
which is amenable to formalization. After explaining the idea behind the system I showed a
short demo of the current capabilities of Enumerion.

References
1 McKay, Brendan D and Meynert, Alison and Myrvold, Wendy. Small Latin squares, quasig-

roups, and loops Journal of Combinatorial Designs

3.16 Alien Coding: Learning Synthesis of OEIS Sequences
Josef Urban (Czech Technical University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Josef Urban

Joint work of Thibault Gauthier, Miroslav Olšák, Josef Urban
Main reference Thibault Gauthier, Miroslav Olsák, Josef Urban: “Alien coding”, Int. J. Approx. Reason., Vol. 162,

p. 109009, 2023.
URL https://doi.org//10.1016/J.IJAR.2023.109009

We introduce a self-learning algorithm for synthesizing programs that provide explanations
for OEIS sequences. The algorithm starts from scratch initially generating programs at
random. Then it runs many iterations of a self-learning loop that interleaves (i) training
neural machine translation to learn the correspondence between sequences and the programs
discovered so far, and (ii) proposing many new programs for each OEIS sequence by the
trained neural machine translator. The algorithm discovers on its own programs for more
than 78000 OEIS sequences, sometimes developing unusual programming methods. We
analyze its behavior and the invented programs in several experiments.

3.17 Isabelle as System Platform for the Archive of Formal Proofs
(AFP)

Makarius Wenzel (Dr. Wenzel – Augsburg, DE)

License Creative Commons BY 4.0 International license
© Makarius Wenzel

Isabelle is usually seen as an interactive proof assistant, mostly for Higher-Order Logic
(HOL), but that is somehow accidental. In reality, Isabelle is a system platform for functional
programming and formal proofs, with sufficient infrastructure to carry its own weight and
gravity. The Archive of Formal Proofs (AFP) is the official collection of Isabelle applications
that is maintained together with the base system. That poses ever growing demands on the
Isabelle platform. This talk gives an overview of Isabelle software technology, with specific
focus on Programming and Scaling, e.g. distributed build clusters for AFP.

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/J.IJAR.2023.109009
https://doi.org//10.1016/J.IJAR.2023.109009
https://doi.org//10.1016/J.IJAR.2023.109009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

14 23401 – Automated mathematics: integrating proofs, algorithms and data

4 Working groups

4.1 Using verified code inside CASes
Alex Best (King’s College – London, GB) and Tobias Nipkow (TU München – Garching,
DE)

License Creative Commons BY 4.0 International license
© Alex Best and Tobias Nipkow

Joint work of Alex Best, Tobias Nipkow, Samuel Lelièvre, Olexandr Konovalov, Mario Carneiro, Assia Mahboubi

Proof assistants are by now able to produce reasonably efficient executable code for a variety
of mathematical algorithms. This, together with the high degree of confidence they can
provide in the correctness of the code (and therefore in the answers produced), makes using
code produced using a proof assistant in an otherwise unverified computer algebra system
quite attractive. This could be used to replace existing unverified implementations (or
complement them with possibly slower reference implementations) or add new functionality
completely.

This working group used the expertise from participants on both the ITP and CAS sides
to explore different methods and implementations to pass results of computations from code
generated by ITPs to CASes. This was in order to understand what is possible and evaluate
whether CASes could feasibly benefit from using such code more widely.

As a proof of concept, Tobias Nipkow took a verified (in Isabelle) implementation (in
Haskell) of the Berlekamp and Zassenhaus integer polynomial factorization algorithm (which is
available at the AFP https://www.isa-afp.org/entries/Berlekamp_Zassenhaus.html)
and made it callable from the computer algebra systems Sage (with the help of Samuel
Lelièvre) and GAP (with the help of Olexandr Konovalov). Although it was not meant to
compete with the standard Sage and GAP functions, it turned out that in the case of GAP
it outperformed the standard Factors function on large polynomials.

Alex Best, with the help and input of Mario Carneiro and Assia Mahboubi experimented
with linking directly to binary (compiled) objects produced by Lean 4 using Python (with
the intention of targeting SageMath). Using the low level CTypes library it was possible to
directly call Lean implementations of functions on simple types, such as a nextPrime on 64
bit integers. A proof of concept for working at a higher level, using Lean interpreter to look
up Lean functions stored memory, without needing prior knowledge of their exported names
in compiled code, was also written. This allowed more flexibility as no wrapping function
would need to be written on the Lean side, the CAS could call arbitrary code producing
answers in a desired format without having to re-run the Lean compiler. Finally initial
experiments with using polymorphic functions implemented in Lean on types implemented
on the Python side were successful, for example with this paradigm a Python program could
provide a list of Python objects and a callback comparison function to a Lean implementation
of quicksort (which operates an arbitrary ordered type), this combination would produce
correct output subject to the assumption that the python comparison function satisfies the
partial order hypothesis used in the Lean code. In this way mixing verified and unverified
code could be done with little overhead.

Going forward next steps would be to turn these examples into user facing libraries,
to dynamically load and call code from ITP libraries from CASes, we believe that our
experiments have shown such libraries can be of benefit to CAS users, even those with little
formalization experience.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.isa-afp.org/entries/Berlekamp_Zassenhaus.html

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 15

4.2 Reconceptualization
Jacques Carette (McMaster University – Hamilton, CA), Gilles Dowek (ENS – Gif-sur-Yvette,
FR), and Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 4.0 International license
© Jacques Carette, Gilles Dowek, and Catherine Dubois

Main reference Florian Rabe, Franziska Weber: “Morphism Equality in Theory Graphs”, in Proc. of the Intelligent
Computer Mathematics – 16th International Conference, CICM 2023, Cambridge, UK, September
5-8, 2023, Proceedings, Lecture Notes in Computer Science, Vol. 14101, pp. 174–189, Springer, 2023.

URL https://doi.org//10.1007/978-3-031-42753-4_12

4.2.1 Motivation

Many concepts in mathematics have evolved over time, perhaps none more so than the
concept of “space”. While it seemed to have settled on “topological space” for a certain time,
it was then rethought later and today it seems that “locale” and “infinity groupoid” are both
solid contenders for the modern notion. Many notions have a similarly rich ongoing history:
integration (quadrature), function, equality, and so on. Recent examples of such rethinking
abound (perfectoid spaces and condensed mathematics, homotopy type theory, and so on).

In parallel, it is equally clear that many concepts have a multitude of equivalent (or
quasi-equivalent) formulations. For example, the number of different representations of
graphs is quite astounding.

4.2.2 Purpose

The working group was formed to discuss how to enable proof assistants in particular, and
mechanized mathematics systems in general, to deal with these issues.

4.2.3 Discussion

We first discussed the simpler issue, that of having multiple presentations and representations.
Historically, the first realization of the importance of this is via change of variables: working
on orbital mechanics in Cartesian coordinates is close to sheer insanity while being rather
workable in spherical coordinates. This is a very common theme in mathematics where a
change in point-of-view can make a substantial difference in how easy a concept is to handle.
This ranges for simple issues like different axiomatizations of what is a group, to larger shifts
such as switching from indexed categories to fibered categories (and more recently, using
displayed categories for similar aims).

It is worthwhile remembering that Lie Symmetries are a classical example of this phe-
nomenon: they are all about finding a “good” set of coordinates for which a PDE non-trivially
simplifies. What makes them different is that one can compute what this change of viewpoint
needs to be, while in most cases creativity is required.

Alas, current proof assistants are largely hampered by a sub-optimal design decision,
namely that concepts are assumed to have a single “canonical” definition. While univalent
mathematics promises that one can transport between equivalent concepts, no system has
yet to build in features that facilitate this. In other words, there has been no engineering
effort made to create user-friendly facilities to accommodate multiple representations. There
does exist work [3, 4] that lays out the concept of a Realm which is supposed to encompass
this very idea: a single concept with potentially many presentations and/or representations.
Many engineering and usability hurdles remain.

Beyond convenience, the reason to want concepts to have multiple interfaces and sub-
interfaces is to be able to allow more powerful development by refinement. Here the idea of
sub-interfaces really shines: if we know in advance that certain methods will never be used,

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-031-42753-4_12
https://doi.org//10.1007/978-3-031-42753-4_12
https://doi.org//10.1007/978-3-031-42753-4_12
https://doi.org//10.1007/978-3-031-42753-4_12

16 23401 – Automated mathematics: integrating proofs, algorithms and data

it is sometimes the case that significantly more efficient representations and/or algorithms
become feasible. For example, if we want a set representation where we can perform union,
intersection and membership but neither count the number of elements or perform iteration
on all elements, then there is a fast representation.

The overlap with the alignment working group was also discussed: for example, anyone
who does constructive mathematics knows that there is no such singular concept as “finite
set”. Rather, there are a multitude of subtly related concepts all of which are equivalent to
“finite set” classically. Whether to lump them all together or not is a thorny issue.

We also discussed the inverse interface problem: given some definitions and proven
properties, how to find a good set of axioms that would abstract over that? Many proof
developments, in practice, contain natural “layers” where outer layers only depend a de facto
interface given by a lower layer, but this interface is never made explicit. Can the process of
finding these layers in a given development be automated? That would help us create strong
abstraction barriers. Weak barriers are a real problem as some systems are rather eager
to δ-expand, leading to proof scripts which are much lower-level than necessary. As different
formalizations may give rise to very different interfaces, the need for Realms re-appears.

Another aspect of automation was discussed: transport by meta-programming. The
idea here is to not just transport across isomorphisms “in theory” but to perform it as a
meta-program that tries to eliminate the transport altogether by attempting to rephrase
everything in terms of the target language. In particular, such transport meta-programs
remain very useful even when Univalence is false.

4.2.4 Conclusion

It became clear that, given the scope of the problem and the short amount of time at the
seminar, we could not obtain any tangible results beyond clearly documenting the problem.
The group then disolved early.

4.3 Formal Verification of Computer Algebra (Factorisatoion)
James H. Davenport (University of Bath, GB), Alex Best (King’s College – London, GB),
Mario Carneiro (Carnegie Mellon University – Pittsburgh, US), and Edgar Costa (MIT –
Cambridge, US)

License Creative Commons BY 4.0 International license
© James H. Davenport, Alex Best, Mario Carneiro, and Edgar Costa

Of the problems listed by Davenport ([1] and talk here) we chose polynomial factorisation
as having least mathematical pre-requisites. For computer algebra, we took FLINT as an
easy-to access library of algorithms (specifically factor_Zassenhaus). As proof engine we
took LEAN (familiarity). We have realised what we need as a certificate, seen that we
can extract these data from FLINT (but could FLINT do a little more work to make the
verification easier?), and have started formalising the required statements in LEAN. This
has also led to identification of improvements to LEAN, and research questions in computer
algebra. We are continuing to develop this ideas, in Davenport’s case as a challenge to his
students’ LEAN study group.

References
1 James Harold Davenport. Proving an Execution of an Algorithm Correct? In Dubois and

Kerber [2], pages 255–269.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 17

2 Catherine Dubois and Manfred Kerber, editors. Proceedings CICM 2023, volume 14101 of
Springer Lecture Notes in Computer Science, 2023.

3 Catherine Dubois and Manfred Kerber, editors. Proceedings CICM 2023, volume 14101 of
Springer Lecture Notes in Computer Science, 2023.

4 F. Rabe and F. Weber. Morphism Equality in Theory Graphs. In C. Dubois and M. Kerber,
editors, Intelligent Computer Mathematics, pages 174–189. Springer, 2023.

4.4 Coq, Isabelle and Dedukti as heterogeneous networks
Filip Koprivec (University of Ljubljana, SI), Mario Carneiro (Carnegie Mellon University –
Pittsburgh, US), Stefania Dumbrava (ENSIIE – Paris, FR), Matej Petkovic (University of
Ljubljana, SI), and Makarius Wenzel (Dr. Wenzel – Augsburg, DE)

License Creative Commons BY 4.0 International license
© Filip Koprivec, Mario Carneiro, Stefania Dumbrava, Matej Petkovic, and Makarius Wenzel

The working group worked on pushing the entries (that correspond to formalized mathematical
concepts) from Coq, Isabelle and Dedukti systems into graph databases, on which machine
learning can be applied.

To unify the schema of the created networks, we
adjusted the RDF triplets describing the Coq entries,
wrote an extension of Dedukti parser that extracts the necessary information from abstract
syntax trees of the entries,
and wrote parsing tool for Isabelle XMLs.

The end goal was include this work to the series of the existing networks, extracted from the
largest Agda libraries and Mathlib4 library of Lean.

We thank Talia Ringer and Catherine Dobuis for the ideas.

4.5 Object identification using invariant based decision trees
Filip Koprivec (University of Ljubljana, SI) and Matej Petkovic (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Filip Koprivec and Matej Petkovic

Object identification up to isomorphism is in general computationally expensive (group
isomorphism, graph isomorphism...) and identifying a given object with a representative
from a known dataset is difficult.

But often, one is presented with object together with few pre-computed invariants or
some invariants, that can quickly be computed from a given representation. Most of the
time, the difficulty of calculating the invariant can be approximated relatively well or one
can use the timings produced as a side effect of constructing the whole database of objects
and associated invariants.

The working group was mostly focused on the problems where objects are graphs or
groups and the preliminary experiments were carried out on the dataset, representing graphs.
Every graph (a row in the data table) was represented by the number of invariants (columns
in the dataset). Some of the values in the table were missing, i.e., not all the variants were
computed for all the graphs. The working group experimented with a modification of decision
tree algorithm that uses both information gain of an invariant and its calculation difficulty
to compute the next invariant on which to split the dataset. With such an approach, we can
speed up the identification of unknown object in an existing database of objects.

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

18 23401 – Automated mathematics: integrating proofs, algorithms and data

The results of experimentation: implemented decision tree variant and data acquisi-
tion from house of graphs together with evaluation are available at https://github.com/
Petkomat/invariant-computation-trees.

4.6 Datasets
Dimitri Leemans (UL – Brussels, BE), Katja Berčič (University of Ljubljana, SI), Jan
Goedgebeur (KU Leuven, BE), Darij Grinberg (Drexel Univ. – Philadelphia, US), Samuel
Lelievre (University Paris-Saclay – Orsay, FR), Harshit J Motwani (Ghent University, BE),
and Tom Kaspar Wiesing (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 4.0 International license
© Dimitri Leemans, Katja Berčič, Jan Goedgebeur, Darij Grinberg, Samuel Lelievre, Harshit J
Motwani, and Tom Kaspar Wiesing

Participants in this working group worked on several smaller, but related tasks.

4.6.1 Cataloguing and/or indexing mathematical datasets.

1. Mathrepo: https://mathrepo.mis.mpg.de/, https://ar5iv.labs.arxiv.org/html/
2202.04022

2. MathDB: https://mathdb.mathhub.info/
It may be possible to automate a part of the collection process by scraping Zenodo for
mathematical datasets. This would probably require a list of mathematical concepts to be
used in search queries. We identified a few considerations for catalogue/index projects:

automatic uploading of datasets to Zenodo for long-term storage,
accommodating reproducibility (recomputing the datasets, cf. Rescience),
ratings and tags: independently recomputed, found same results; independently recom-
puted, found different results; not independently recomputed; formally certified.

4.6.2 Connecting databases and CAS.

Implementing an interface to the House of Graphs database in SageMath, including improv-
ing the House of Graph’s API. The pull request can be viewed at https://github.com/
sagemath/sage/pull/36409.

4.7 Aligning Mathematical Concepts Across Libraries
Florian Rabe (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 4.0 International license
© Florian Rabe

4.7.1 Motivation

Irrespective of the knowledge aspect (such as deduction, computation, data, or document-
ation), mathematical libraries share several abstract characteristics. Most importantly,
they can be seen as a set of fragments each carrying a global identifier and describing a
mathematical concept. Here we use concept as a generic term to subsume any named type,
object, operation, theorem, or similar. For example, in a logical library, these are (mostly)

https://github.com/Petkomat/invariant-computation-trees
https://github.com/Petkomat/invariant-computation-trees
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mathrepo.mis.mpg.de/
https://ar5iv.labs.arxiv.org/html/2202.04022
https://ar5iv.labs.arxiv.org/html/2202.04022
https://mathdb.mathhub.info/
https://github.com/sagemath/sage/pull/36409
https://github.com/sagemath/sage/pull/36409
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 19

definitions and theorems; in a computer algebra library, they are (mostly) type and function
definitions; in a concrete data set, they are the entries of the data set, often rows in a table;
and in a document library, they are the articles explaining a concept.

The work group recognized the alignment problem [5, 6] as a major roadblock to inter-
operability across mathematical software systems: The mathematical concepts introduced
by the various libraries overlap substantially, but there is no systematic connection between
the same mathematical concept described in different libraries. Concretely, we call a pair
of identifiers, typically but not necessarily from different libraries, an alignment if both
are descriptions of the same concept. Then the alignment problem can be formulated as
the challenge of (a) collecting alignments for existing large mathematical libraries and (b)
leveraging these alignments for knowledge interchange.

The group identified three levels at which the problem can be attacked:
At the identifier level, the alignments are just pairs of identifiers without a machine-
checkable guarantee that they correspond to each other in any way.
At the expression level, an alignment (c, d) additionally carries information how terms
with head c can be translated to terms with head d. This translation can be quite complex
and involve, e.g., changing (which may require computation), adding (which may require
inference), omitting, or reordering arguments.
At the semantic level, the alignments are additionally verified for correctness. This can
be done, e.g., by translating theorems about c along the alignment and proving the
translated theorems in the system of d. Critically, from (i) to (iii), task (a) becomes
harder while task (b) becomes easier. But even identifier level alignments are useful, e.g.,
to cross-reference across libraries or to search for the same query in multiple libraries in
parallel.

4.7.2 Results

The group surveyed the available technologies and alignment collection efforts and concluded
that, while semantic alignments must be the ultimate goal, only for identifier level alignments
is a major community-driven collection effort feasible at this point.

The group compiled the following existing collections of identifier alignments and concept
lists:

the Math Subject Classification (MSC)
the nLab page titles (https://ncatlab.org/nlab/)
the SMGloM concept and translation library [2]
the concept list for the undergraduate math curriculum and the alignments into Lean
Mathlib
(https://github.com/leanprover-community/mathlib4/blob/master/docs/undergrad.yaml)
the concept translation library maintained by Hosgood
(https://thosgood.com/maths-dictionary/)
the manual alignments collected for theorem prover libraries in [7]
the concept list used by SageMath to align computer algebra systems integrated with SageMath
(https://doc.sagemath.org/html/en/reference/categories/index.html)
the MathGloss alignments for undergraduate math education [4] (https://mathgloss.github.
io/MathGloss/)
the relevant subset of the Wikidata ontology, which includes various alignments to informal
libraries
the nNexus alignments across informal libraries [1]
the semantic alignments between HOL systems found by machine learning in [3]

23401

https://ncatlab.org/nlab/
https://github.com/leanprover-community/mathlib4/blob/master/docs/undergrad.yaml
https://thosgood.com/maths-dictionary/
https://doc.sagemath.org/html/en/reference/categories/index.html
https://mathgloss.github.io/MathGloss/
https://mathgloss.github.io/MathGloss/

20 23401 – Automated mathematics: integrating proofs, algorithms and data

The work identified a set of several hundred concepts that can be used as a seed for an
alignment library and started using the above resources to compile alignments for it. These
resources are collected at https://github.com/UniFormal/alignments/.

In order to scalably collect, maintain, and leverage alignment sets in the future, the group
makes two recommendations:

All developers of math libraries should add a feature to their tool that allows tagging
definitions with the aligned identifier in a central concept list. The build process of the
library should generate the list of alignments between those central concepts and the
tagged identifiers in the system’s library. This list should be published alongside the
library.
Wikidata is suggested as the central concept list. This is motivated by the observation
that Wikidata is a neutral library (in the sense of not being biased towards any research
system or community) and the most likely to be scalably maintained and broadly used in
the long term.

References
1 D. Ginev and J. Corneli. Nnexus reloaded. In S. Watt, J. Davenport, A. Sexton, P. Sojka,

and J. Urban, editors, Intelligent Computer Mathematics, pages 423–426. Springer, 2014.
2 D. Ginev, M. Iancu, C. Jucovshi, A. Kohlhase, M. Kohlhase, A. Oripov, J. Schefter,

W. Sperber, O. Teschke, and T. Wiesing. The smglom project and system: Towards a
terminology and ontology for mathematics. In G. Greuel, T. Koch, P. Paule, and A. Sommese,
editors, Mathematical Software – ICMS, volume 9725, pages 451–457. Springer, 2016.

3 T. Gauthier and C. Kaliszyk. Aligning concepts across proof assistant libraries. Journal of
Symbolic Computation, 90:89–123, 2019.

4 L. Horowitz and V. de Paiva. Mathgloss: Linked undergraduate math concepts, 2023.
https://arxiv.org/abs/2311.12649.

5 C. Kaliszyk, M. Kohlhase, D. Müller, and F. Rabe. A Standard for Aligning Mathematical
Concepts. In A. Kohlhase, M. Kohlhase, P. Libbrecht, B. Miller, F. Tompa, A. Naummowicz,
W. Neuper, P. Quaresma, and M. Suda, editors, Work in Progress at CICM 2016, pages
229–244. CEUR-WS.org, 2016.

6 D. Müller, T. Gauthier, C. Kaliszyk, M. Kohlhase, and F. Rabe. Classification of Alignments
between Concepts of Formal Mathematical Systems. In H. Geuvers, M. England, O. Hasan,
F. Rabe, and O. Teschke, editors, Intelligent Computer Mathematics, pages 83–98. Springer,
2017.

7 D. Müller, C. Rothgang, Y. Liu, and F. Rabe. Alignment-based Translations Across Formal
Systems Using Interface Theories. In C. Dubois and B. Woltzenlogel Paleo, editors, Proof
eXchange for Theorem Proving, pages 77–93. Open Publishing Association, 2017.

https://github.com/UniFormal/alignments/
https://arxiv.org/abs/2311.12649

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 21

4.8 Scalability Estimates of Graph Certificates in a Theorem Prover
Using SAT Encodings

Kathrin Stark (Heriot-Watt University – Edinburgh, GB), Madalina Erascu (West University
of Timisoara, RO), Kazuhiko Sakaguchi (INRIA – Nantes, FR), and Jure Taslak (University
of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Kathrin Stark, Madalina Erascu, Kazuhiko Sakaguchi, and Jure Taslak

4.8.1 Motivation

What is the minimum amount of information needed to certify that a graph has a specific
property? For some properties, these certificates are easy to provide. For example, to prove
that a graph is Hamiltonian, one only requires describing a Hamiltonian path. But for some
properties, it is not obvious what an efficient certificate is. For example, to prove that a
graph is not Hamiltonian, the obvious certificates all get extremely large. SAT encodings are
a general way to encode properties, and it is well-known that most graph predicates can be
encoded via SAT. But how well does this scale?

This working group consists of experts on SMT solvers, theorem provers, and CoqELPI
(Madalina Erascu, Kazuhiko Sakaguchi, Kathrin Stark, Jure Taslak). The aim was to create
a proof of concept for end-to-end verified certificates for graph properties to check their
scalability.

4.8.2 Previous Work

Certificate checking of (Un)SAT problems has been used in several papers. SMTCoq (Ekici
et al. 2017, Keller 2019) is a certified checker for proof witnesses for the SAT solver ZChaff
and the SMT solvers veriT and CVC4. Lammich uses the GRAT certificate for a verified
SAT solver in Isabelle. Cruz-Filipe et al. implemented two certified LRAT checkers, one of
them for the Coq proof assistant.

This working group decided to start off with the work by Cruz-Filipe et al., as this was a
relatively lightweight development that was created in a theorem prover the group members
were familiar with. The theorem prover further offered the ability to define the SAT encoding
manually, making it easier to test scalability.

4.8.3 Overview

For any given graph, the approach consists of three steps. First, an unverified Python
program generates a SAT encoding of the desired graph property and solves the encoding
using a state-of-the-art SAT solver. This SAT solver also generates an LRAT certificate
to demonstrate the correctness of the result. Next, Cruz-Filipe et al.’s approach is used
to validate the LRAT certificate. Finally, a separate (constructive) Coq proof shows that
the SAT encoding indeed corresponds to the desired abstract graph property. The abstract
graph property uses a naive encoding of graphs, paths, and connectivity/Hamiltonicity in
Coq. It typically requires a proof by contradiction and hence requires the decidability of
the respective property. Using CoqELPI, we could moreover show that the SAT encoding of
Python and the one used in Coq coincide. Overall, the construction thus provides a proof
of the given property while leaving most of the heavy computational lifting to an external,
highly-optimized SAT solver.

23401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

22 23401 – Automated mathematics: integrating proofs, algorithms and data

For the scalability tests in this seminar we considered two graph properties: connectivity
and Hamiltonicity. We randomly generated graphs through a simple python program and
checked at which node count the checker suffered a segmentation fault. The tests included
both graphs that have and that do not have the respective property.

4.8.4 Results

The first results provided a first idea of scalability and showed that the approach scaled up
to graphs that were around an order of magnitude bigger than initially expected.

For a proof of concept, the working group started with certificates for connectivity. The
process described above was shown to scale up to 2500 nodes (both for connectivity and the
absence of connectivity). An end-to-end correctness proof (with the assumed dependencies)
required around 300 lines of code. It seems likely that the code could be shortened significantly
by using a suitable graph library.

For certificates of being non-Hamiltonian, the first approaches scaled up to 50 nodes. In
the available time, no end-to-end proof was implemented.

4.8.5 Future Work

A full end-to-end proof for being non-Hamiltonian would be an obvious next step. Another
interesting direction would be to take a deeper look at graph certificates via SAT encodings in
the literature. For this proof of concept, we chose the simplest encoding for non-Hamiltonian
graphs. A more efficient SAT encoding should improve scalability accordingly and extend to
further graph properties.

Andrej Bauer, Katja Berčič, Florian Rabe, and Nicolas Thiéry 23

Participants

Andrej Bauer
University of Ljubljana, SI

Christoph Benzmüller
Universität Bamberg, DE

Katja Bercic
University of Ljubljana, SI

Alex Best
King’s College – London, GB

James Boyd
Wolfram Institute –
Cambridge, US

Jacques Carette
McMaster University –
Hamilton, CA

Mario Carneiro
Carnegie Mellon University –
Pittsburgh, US

Edgar Costa
MIT – Cambridge, US

James H. Davenport
University of Bath, GB

Valeria de Paiva
Topos Institute – Berkeley, US

Gilles Dowek
ENS – Gif-sur-Yvette, FR

Catherine Dubois
ENSIIE – Evry, FR

Stefania Dumbrava
ENSIIE – Paris, FR

Madalina Erascu
West University of
Timisoara, RO

Jan Goedgebeur
KU Leuven, BE

Kiran Gopinathan
National University of
Singapore, SG

Darij Grinberg
Drexel Univ. – Philadelphia, US

Jyoti Jyoti
Panjab University –
Chandigarh, IN

Michael Kohlhase
Universität Erlangen-
Nürnberg, DE

Olexandr Konovalov
University of St Andrews, GB

Filip Koprivec
University of Ljubljana, SI

Dimitri Leemans
UL – Brussels, BE

Samuel Lelievre
University Paris-Saclay –
Orsay, FR

Assia Mahboubi
INRIA – Nantes, FR

Harshit J Motwani
Ghent University, BE

Dennis Müller
Universität Erlangen-
Nürnberg, DE

Tobias Nipkow
TU München – Garching, DE

Matej Petkovic
University of Ljubljana, SI

Christian Pfrang
Bay. Min. für Digitales –
München, DE

Florian Rabe
Universität Erlangen-
Nürnberg, DE

Talia Ringer
University of Illinois –
Urbana-Champaign, US

Claudio Sacerdoti Coen
University of Bologna, IT

Kazuhiko Sakaguchi
INRIA – Nantes, FR

Natarajan Shankar
SRI – Menlo Park, US

Kathrin Stark
Heriot-Watt University –
Edinburgh, GB

Jure Taslak
University of Ljubljana, SI

Nicolas Thiéry
University Paris-Saclay –
Orsay, FR

Josef Urban
Czech Technical University –
Prague, CZ

Makarius Wenzel
Dr. Wenzel – Augsburg, DE

Tom Kaspar Wiesing
Universität Erlangen-
Nürnberg, DE

23401

Report from Dagstuhl Seminar 23411

Accountable Software Systems
Bettina Könighofer∗1, Joshua A. Kroll∗2, Ruzica Piskac∗3,
Michael Veale∗4, and Filip Cano Córdoba†5

1 TU Graz, AT. bettina.koenighofer@iaik.tugraz.at
2 Naval Postgraduate School – Monterey, US. jkroll@jkroll.com
3 Yale University – New Haven, US. ruzica.piskac@yale.edu
4 University College London, GB. m.veale@ucl.ac.uk
5 TU Graz, AT. filip.cano@iaik.tugraz.at

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23411 “Accountable
Software Systems”. The seminar brought together an interdisciplinary group of researchers from
the fields of formal methods, machine learning, philosophy, political science, law, and policy
studies to address the critical issue of accountability in the development and deployment of
software systems. As these systems increasingly assume roles within safety-critical domains of
society, including transportation, healthcare, recruitment, and the judiciary, the seminar aimed
to explore the multifaceted concept of accountability, its significance, and its implementation
challenges in this context.

During the seminar, experts engaged deeply in discussions, presentations, and collaborative
sessions, focusing on key themes such as the application of formal tools in socio-technical account-
ability, the impact of computing infrastructures on software accountability, and the innovation of
formal languages and models to improve accountability measures. This interdisciplinary dialogue
underscored the complexities involved in defining and operationalizing accountability, especially
in light of technological advancements and their societal implications. The participants of the
seminar reached a consensus on the pressing need for ongoing research and cross-disciplinary
efforts to develop effective accountability mechanisms, highlighting the critical role of integrating
socio-technical approaches and formal methodologies to enhance the accountability of autonomous
systems and their contributions to society.
Seminar October 8–13, 2023 – https://www.dagstuhl.de/23411
2012 ACM Subject Classification Applied computing → Law, social and behavioral sciences
Keywords and phrases accountability, Responsible Decision Making, Societal Impact of AI
Digital Object Identifier 10.4230/DagRep.13.10.24

1 Executive Summary

Bettina Könighofer (TU Graz, AT)
Joshua A. Kroll (Naval Postgraduate School – Monterey, US)
Ruzica Piskac (Yale University – New Haven, US)
Michael Veale (University College London, GB)

License Creative Commons BY 4.0 International license
© Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale

Accountability in the context of software is an emerging area that has attracted interest in
disparate fields from computing and information science to philosophy to political science
to law and policy studies. Presently, there is an increasing number of autonomous agents

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Accountable Software Systems, Dagstuhl Reports, Vol. 13, Issue 10, pp. 24–49
Editors: Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bettina.koenighofer@iaik.tugraz.at
mailto:jkroll@jkroll.com
mailto:ruzica.piskac@yale.edu
mailto:m.veale@ucl.ac.uk
mailto:filip.cano@iaik.tugraz.at
https://www.dagstuhl.de/23411
https://doi.org/10.4230/DagRep.13.10.24
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 25

shifting into safety-critical aspects of society and our everyday lives. Autonomously driven
vehicles share the roads with us. Computerized reasoning aids healthcare providers in disease
diagnostics, recruiters in hiring, and even adjudicators in analyzing pretrial flight risks. While
a common goal of these autonomous agents is to assist and improve human lives, it is a harsh
reality that the opposite occurs far too frequently. Car accidents involving autonomously
driven vehicles have been fatal, and bias-vulnerable autonomous decision-making has led to
discriminatory assessment and abuse of individuals. As a result, accountability is started to
be investigated in areas including AI, machine learning, control, systems development, data
management, software engineering, programming languages, human factors/human-computer
interaction, and formal verification communities.

Understanding accountability and the place of formal computing tools in assigning it has
been recognized by funding agencies as an important research topic. Significant reforms are
currently occurring in the law to the liability of autonomous systems, such as the proposed
EU Artificial Intelligence Act; reforms to the EU Machinery Directive and Product Liability
Directive; standardization processes around software and accountability at the ISO, IEEE,
CEN/CENELEC, US NIST, and ETSI, among others; a range of proposals around reforms to
intermediary liability and recommender systems in the US Congress and proposals from the
White House Office of Science and Technology Policy, among many other ongoing changes
and revisions to existing policies and recommendations for new policies around the world.
Throughout the Dagstuh Seminar, participants engaged in a rich tapestry of discussions,
presentations, and working groups, focusing on three main areas:

Justifying Assurance: Opportunities and Limits of Formal Tools for Accountability in
Sociotechnical Context
The Role(s) of Computing and Infrastructures in Accountability for Software
New Formal Specification Languages and Modeling Techniques for Accountability

Group discussions further enriched the seminar’s discourse. For example, debates around
the Software as a Service (SaaS) model and the potential for a public, democratically
managed cloud infrastructure highlighted the evolving nature of software maintenance and
the democratization of digital infrastructure. Another group delved into the intricacies of
software complexity, distinguishing between accountability and responsibility, and discussing
the challenges of regulatory adaptation to technological innovation.

By having short talks to inspire discussions followed by in-depth discussions in breakout
groups, the seminar successfully forged new conversations between the communities with a
focus on how to improve upon the state of the art and practice in designing software systems
with respect to accountability. Participants collectively recognized the importance of socio-
technical approaches and formal methods in developing robust accountability frameworks,
advocating for synergies between different fields to refine the state of the art and practice.

The seminar concluded with a group exercise to map and group open questions, which are
documented at the end of this report. This exercise naturally provided more questions than
answers, but these questions were coalescing on deep and specific interdisciplinary challenges
that participants intended to take forwards in their future work.

In conclusion, the Dagstuhl Seminar on “Accountable Software Systems” served as a
pivotal forum for cross-disciplinary exchange, catalyzing new conversations and potential
collaborations.

23411

26 23411 – Accountable Software Systems

2 Table of Contents

Executive Summary
Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 24

Overview of Talks
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty
Filip Cano Córdoba . 28

Is Software Eaten by the Cloud?
Corinne Cath . 28

Causal Explanations: What Can Computer Scientists Do for Accountability
Hana Chockler . 29

What Does Data Erasure Mean? What Should Data Erasure Mean?
Aloni Cohen . 30

Complexity Effects on a Highly-Accountable System Containing Safety-Critical
Software
Misty Davies . 30

Accountable Software Systems: Lessons from System Safety
Roel Dobbe . 31

Accountability in Computing: Concepts and Mechanisms
Joan Feigenbaum . 31

AI is a Mushroom
Jake Goldenfein . 32

Accountable Legal Decision Support?
Thomas T. Hildebrandt . 32

Platforms, Sovereignty, and Software Accountability
Divij Joshi . 34

“Put the Car on the Stand”: SMT-based Oracles for Investigating Decisions
Samuel Judson . 34

Algorithmic Systems Through an Ethnographic Lens
Daan Kolkman . 35

Verification of Accountability in Protocols with Tamarin
Robert Künnemann . 36

Accountability Lessons Learned from the Design and Deployment of Digital Contact
Tracing
Wouter Lueks . 36

Accountability and Explainability of French Housing Benefits Computation
Denis Merigoux . 37

An AI Transparency Register for the Public Sector
Matthias Spielkamp . 37

Responsibility and Liability regarding Software and AI
Rüdiger Wilhelmi . 38

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 27

Scenic: A Probabilistic Scenario Description Language
Beyazit Yalcinkaya . 39

Towards a Framework for Certification of Reliable Autonomous Systems
Neil Yorke-Smith . 40

Working groups
Working groups topic discussions . 40

Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 1
Wouter Lueks and Scott Shapiro . 41

Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 2
Roel Dobbe . 42

Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 3
Bettina Könighofer and Neil Yorke-Smith . 42

Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 4
Beyazit Yalcinkaya . 43

Software Ecosystem Futures: Group 1
Divij Joshi . 44

Software Ecosystem Futures: Group 2
Filip Cano Córdoba . 45

Software Ecosystem Futures: Group 3
Neil Yorke-Smith . 45

Open problems
Concluding Exercise: Open Questions
Michael Veale, Thomas Arnold, Filip Cano Córdoba, Corinne Cath, Hana Chockler,
Aloni Cohen, Misty Davies, Roel Dobbe, Joan Feigenbaum, David Fuenmayor,
Ashish Gehani, Jake Goldenfein, Thomas T. Hildebrandt, Divij Joshi, Samuel
Judson, Daan Kolkman, Bettina Könighofer, Joshua A. Kroll, Robert Künnemann,
Stefan Leue, Wouter Lueks, Rupak Majumdar, Kira Matus, Denis Merigoux, Ruzica
Piskac, Scott Shapiro, Jatinder Singh, Matthias Spielkamp, Rüdiger Wilhelmi,
Beyazit Yalcinkaya, and Neil Yorke-Smith . 46

Participants . 49

23411

28 23411 – Accountable Software Systems

3 Overview of Talks

3.1 Analyzing Intentional Behavior in Autonomous Agents under
Uncertainty

Filip Cano Córdoba (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Filip Cano Córdoba

Joint work of Filip Cano Córdoba, Samuel Judson, Timos Antonopoulos, Katrine Bjørner, Nicholas Shoemaker,
Scott J. Shapiro, Ruzica Piskac, Bettina Könighofer

Main reference Filip Cano Córdoba, Samuel Judson, Timos Antonopoulos, Katrine Bjørner, Nicholas Shoemaker,
Scott J. Shapiro, Ruzica Piskac, Bettina Könighofer: “Analyzing Intentional Behavior in
Autonomous Agents under Uncertainty”, in Proc. of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pp. 372–381, ijcai.org, 2023.

URL https://doi.org//10.24963/IJCAI.2023/42

Principled accountability for autonomous decision-making in uncertain environments requires
distinguishing intentional outcomes from negligent designs from actual accidents. We propose
analyzing the behavior of autonomous agents through a quantitative measure of the evidence
of intentional behavior. We model an uncertain environment as a Markov Decision Process
(MDP). For a given scenario, we rely on probabilistic model checking to compute the ability
of the agent to influence reaching a certain event. We call this the scope of agency. We
say that there is evidence of intentional behavior if the scope of agency is high and the
decisions of the agent are close to being optimal for reaching the event. Our method applies
counterfactual reasoning to automatically generate relevant scenarios that can be analyzed
to increase the confidence of our assessment. In a case study, we show how our method can
distinguish between “intentional” and “accidental” traffic collisions.

3.2 Is Software Eaten by the Cloud?
Corinne Cath (TU Delft, NL & University of Cambridge, GB)

License Creative Commons BY 4.0 International license
© Corinne Cath

In 2011, Marc Andreessen well-known tech investor and inventor of the short-lived but
influential Mosaic browser, proclaimed that “software is eating the world”. This was a
period of rapid digitization during which time more and more industries were running on
software – and changing their business models to one of delivering online services rather
than selling one-off products. A second, but perhaps more silent revolution accompanied by
the glutenous expansion of software and its as-a-service business model, is happening today.
This one is not being splashed across the front page of the Wall Street Journal. Namely
the growing importance of cloud computing, as the infrastructure for the “agile” production
and distribution of software [1]. In this talk, I focus on the growing importance of cloud
computing in the context of the future of software ecosystems. In particular, I argue that
the future of software lives on the cloud. Cloud computing is the on-demand availability of
computing resources (such as storage and infrastructure), as services over the internet, at
scale. It ostensibly eliminates the need for individuals and businesses to self-manage physical
resources and allows them to pay for what they use. Many software companies buy computing
resources from a small set of tech behemoths, including Google, Microsoft, and AWS. But
this perceived convenience comes at a price. I draw on several recent case studies that outline

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.24963/IJCAI.2023/42
https://doi.org//10.24963/IJCAI.2023/42
https://doi.org//10.24963/IJCAI.2023/42
https://doi.org//10.24963/IJCAI.2023/42
https://doi.org//10.24963/IJCAI.2023/42
https://doi.org//10.24963/IJCAI.2023/42
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 29

the importance of cloud computing for the recent boom in the development of generative
AI (GenAI) products, like ChatGPT and Claude. I demonstrate that when we talk about
GenAI, we implicitly assume that this software runs on the cloud, given GenAI’s specific
computational requirements. This cloud reliance creates distinct dependencies between the
software ecosystem and cloud computing companies, their financial models and political
priorities, which have accountability ramifications that require further research.

References
1 Gürses, Seda, and Joris van Hoboken. 2018. “Privacy after the Agile Turn.” In The Cambridge

Handbook of Consumer Privacy, edited by Evan Selinger, Jules Polonetsky, and Omer
Tene, 579–601. Cambridge Law Handbooks. Cambridge: Cambridge University Press.
https://doi.org/10.1017/9781316831960.032.

3.3 Causal Explanations: What Can Computer Scientists Do for
Accountability

Hana Chockler (King’s College London, GB)

License Creative Commons BY 4.0 International license
© Hana Chockler

Computerised systems are increasingly opaque, due to their size and to the nature of the new
AI systems, such as neural networks. Yet, we have to be able to reason about the correctness of
these systems, debug them, fix errors, answer “what if” questions, and explain their decisions.
In this talk, I present a framework for causal explanations of image classifiers, based on
the notions of actual causality and explainability. Our tool ReX provides explanations that
approximate minimal subsets of the image sufficient to get the same classification if the rest
of the image is hidden. I describe our recent work in extending ReX to multiple explanations
and survey the challenges in adapting the existing explainability tools to medical applications.

References
1 Chockler and Halpern. “Responsibility and Blame: A Structural-Model Approach”. J. Artif.

Intell. Res. 22: 93-115 (2004)
2 Chockler, Halpern, Kupferman. What causes a system to satisfy a specification? ACM

Trans. Comput. Log. 9(3): 20:1-20:26 (2008)
3 Aleksandrowicz, Chockler, Halpern, Ivrii. “The Computational Complexity of Structure-

Based Causality”. AAAI’14: 974-980.
4 Alrajeh, Chockler, Halpern. “Combining Experts’ Causal Judgments”. Artif. Intell. (2020).
5 Sun, Chockler, Huang, Daniel Kroening. “Explaining Image Classifiers Using Statistical

Fault Localization”. ECCV’20: 391-406.
6 Chockler, Kroening, Sun. “Explanations for Occluded Images”. ICCV’21: 1234-1243.
7 Pouget, Chockler, Sun, Kroening. “Ranking Policy Decisions”. NeurIPS’21.
8 Chockler, Halpern. “On Testing for Discrimination Using Causal Models”. AAAI’22.

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

30 23411 – Accountable Software Systems

3.4 What Does Data Erasure Mean? What Should Data Erasure Mean?
Aloni Cohen (University of Chicago, US)

License Creative Commons BY 4.0 International license
© Aloni Cohen

Joint work of Aloni Cohen, Adam D. Smith, Marika Swanberg, Prashant Nalini Vasudevan
Main reference Aloni Cohen, Adam D. Smith, Marika Swanberg, Prashant Nalini Vasudevan: “Control,

Confidentiality, and the Right to be Forgotten”, in Proc. of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023,
pp. 3358–3372, ACM, 2023.

URL https://doi.org//10.1145/3576915.3616585

Recent digital rights frameworks stipulate an ability to request that a data controller –
roughly, any system that stores and manipulates personal information – “erase” or “delete”
one’s data (e.g., the “right to be forgotten” in the GDPR). We ask how deletion should
be formalized in complex systems that interact with many parties and store derivative
information. There are two broad principles at work in existing approaches to formalizing
deletion: confidentiality and control. This talk briefly explores these questions in the specific
context of machine learning models, and erasing training data therefrom.

3.5 Complexity Effects on a Highly-Accountable System Containing
Safety-Critical Software

Misty Davies (NASA – Moffett Field, US)

License Creative Commons BY 4.0 International license
© Misty Davies

This talk began with a quick overview of the regulatory landscape for aviation. Today, there
are distinctly different regulatory process paths for hardware/software system components
and for the human operators and their roles in the overall system. Today, the handling of
almost all remaining uncertainty is pushed into the operational assurance processes. This
means that hardware and software components are expected to be highly deterministic. As
we increasingly push required system functionality from execution by people into execution
by automation we are running into the limits of what our current processes allow us to assure.
This is broadly perceived as a barrier to innovation.

One way forward could be a shift to assurance models that merge and blend our current
paradigms for silicon-based and human-based assurance.

References
1 Brat, Guillaume P., Huafeng Yu, Ella Atkins, Prashin Sharma, Darren Cofer, Michael

Durling, Baoluo Meng et al. Autonomy Verification & Validation Roadmap and Vision 2045.
No. NASA/TM-20230003734. 2023.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3576915.3616585
https://doi.org//10.1145/3576915.3616585
https://doi.org//10.1145/3576915.3616585
https://doi.org//10.1145/3576915.3616585
https://doi.org//10.1145/3576915.3616585
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 31

3.6 Accountable Software Systems: Lessons from System Safety
Roel Dobbe (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Roel Dobbe

Main reference Roel Dobbe: “System Safety and Artificial Intelligence”, in Proc. of the FAccT ’22: 2022 ACM
Conference on Fairness, Accountability, and Transparency, Seoul, Republic of Korea, June 21 – 24,
2022, p. 1584, ACM, 2022.

URL https://doi.org//10.1145/3531146.3533215

We draw inspiration from the field of system safety to understand challenges with accountabil-
ity in the development, use and governance of software systems. System safety has dealt with
accidents and harm in safety-critical systems subject to varying degrees of software-based
automation, already for many decades. As a result, it has some crystallized lessons, tools
and ontologies that establish conditions for accountability to promote or guarantee safety, as
well as to inform the design of actual mechanisms for accountability. We covered two core
concepts that capture such conditions and mechanisms. At the operational level, the process
model which details the goals, constraints, actions, observations and models/knowledge
needed to safely operate processes subject to software-based automation. At the organiza-
tional and institutional levels, the safety control structure combines, describes and relates
all mechanisms contributing to safety, including the operational mechnisms, and extending
towards managerial, maintenance and research and development. Moving further up, the
control structure also includes various regulatory, policy, advocacy law-making, law-enforcing
and judicial mechanisms. System safety methods allow for the integral analysis of unsafe or
otherwise undesirable behaviors and outcomes in software systems, helping to understand
how various mechanisms contribute to material outcomes, either directly in a causal sense or
indirectly by providing the environmental factors for such system behavior and outcomes to
emerge. We concluded with a few lessons written down in Nancy Leveson’s magnum opus
“Engineering a Safer World: Systems Thinking Applied to Safety”, including the curse of
flexibility and the crucial importance of culture in upholding accountability mechanisms.

References
1 Roel Dobbe. System Safety and Artificial Intelligence. In The Ox-

ford Handbook of AI Governance. Oxford University Press, 2022, ht-
tps://doi.org/10.1093/oxfordhb/9780197579329.001.0001.

2 Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety. MIT
Press, 2012. http://ebookcentral.proquest.com/lib/delft/detail.action?docID=3339365

3.7 Accountability in Computing: Concepts and Mechanisms
Joan Feigenbaum (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© Joan Feigenbaum

Joint work of Joan Feigenbaum, Aaron D. Jaggard, Rebecca N. Wright
Main reference Joan Feigenbaum, Aaron D. Jaggard, Rebecca N. Wright: “Accountability in Computing: Concepts

and Mechanisms”, Found. Trends Priv. Secur., Vol. 2(4), pp. 247–399, 2020.
URL https://doi.org//10.1561/3300000002

This firestarter talk was a brief “teaser” of the work in [1].
Accountability is a widely studied but amorphous concept, used to mean different things

across different disciplines and domains of application. Here, we survey work on accountability
in computer science and other disciplines. We motivate our survey with a study of the myriad

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3531146.3533215
https://doi.org//10.1145/3531146.3533215
https://doi.org//10.1145/3531146.3533215
https://doi.org//10.1145/3531146.3533215
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1561/3300000002
https://doi.org//10.1561/3300000002
https://doi.org//10.1561/3300000002

32 23411 – Accountable Software Systems

ways in which the term “accountability” has been used across disciplines and the concepts
that play key roles in defining it. This leads us to identify a temporal spectrum onto which
we may place different notions of accountability to facilitate their comparison. We then
survey accountability mechanisms for different application domains in computer science and
place them on our spectrum. Building on this broader survey, we review frameworks and
languages for studying accountability in computer science. Finally, we offer conclusions, open
questions, and future directions.

References
1 Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright (2020). Accountability in

Computing: Concepts and Mechanisms. Foundations and Trends in Privacy and Security:
Vol. 2: No. 4, pp 247-399.

3.8 AI is a Mushroom
Jake Goldenfein (The University of Melbourne, AU)

License Creative Commons BY 4.0 International license
© Jake Goldenfein

Main reference Jake Goldenfein: “Privacy’s Lose Grip: Law and the Operational Image” in Zalnierute et al (eds)
Cambridge Handbook on the Regulation of Facial Recogntion in the Modern State (CUP 2024)
(forthcoming)

A number of scholars ahve identified the complexity of locating organisational accountability in
AI products because of complex industrial arrangements. But there are similar complexities in
the dataset supply chain for AI models. Datasets used to train commercial and noncommercial
models are produced and refined by numerous organisations with different characteristics
and for different purposes. These inter-organisational forms of coordination and strategic
partnership result in complex “ecologies” of data flow subject to complex forms of regulatory
arbitrage. But what kind of “ecology” is this? Inspired by the work of Anna Tsing, the goals
here is to understand or conceptualise these mutualistic relations and multi-organisational
associations, the data flows they coordinate, and the products they produce as a type of
mushroom, whose arrangement depends on a broader political economy.

3.9 Accountable Legal Decision Support?
Thomas T. Hildebrandt (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Thomas T. Hildebrandt

Joint work of Amine Abbad Andaloussi, Lars Rune Christensen, Søren Debois, Nicklas Pape Healy, Hugo A. López,
Morten Marquard, Naja L. Holten Møller, Anette C. M. Petersen, Tijs Slaats, Barbara Weber

Main reference Thomas T. Hildebrandt, Amine Abbad Andaloussi, Lars Rune Christensen, Søren Debois, Nicklas
Pape Healy, Hugo A. López, Morten Marquard, Naja L. Holten Møller, Anette C. M. Petersen, Tijs
Slaats, Barbara Weber: “EcoKnow: Engineering Effective, Co-created and Compliant Adaptive Case
Management Systems for Knowledge Workers”, in Proc. of the ICSSP ’20: International Conference
on Software and System Processes, Seoul, Republic of Korea, 26-28 June, 2020, pp. 155–164, ACM,
2020.

URL https://doi.org//10.1145/3379177.3388908

Case management and business processes regulated by law are increasingly being digitalized,
in the public as well as the private sector. At the same time, laws are continuously changed
and new regulations are introduced. Moreover, law needs to be open for interpretation

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Jake Goldenfein: ``Privacy's Lose Grip: Law and the Operational Image'' in Zalnierute et al (eds) Cambridge Handbook on the Regulation of Facial Recogntion in the Modern State (CUP 2024) (forthcoming)
Jake Goldenfein: ``Privacy's Lose Grip: Law and the Operational Image'' in Zalnierute et al (eds) Cambridge Handbook on the Regulation of Facial Recogntion in the Modern State (CUP 2024) (forthcoming)
Jake Goldenfein: ``Privacy's Lose Grip: Law and the Operational Image'' in Zalnierute et al (eds) Cambridge Handbook on the Regulation of Facial Recogntion in the Modern State (CUP 2024) (forthcoming)
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3379177.3388908
https://doi.org//10.1145/3379177.3388908
https://doi.org//10.1145/3379177.3388908
https://doi.org//10.1145/3379177.3388908
https://doi.org//10.1145/3379177.3388908
https://doi.org//10.1145/3379177.3388908
https://doi.org//10.1145/3379177.3388908

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 33

and re-interpretation. This calls for new methods to ensure accountability of the legal
decision support. We present the DCR Graph tools and notation developed and tested in the
EcoKnow.org project, which allows domain experts to map the law to a DCR Graph (which
is essentially a temporal logic knowledge graph) and validate the meaning through simulation.
Via the tools developed by the research-based company DCR Solutions, the graphs can be
used to provide dynamic guidelines, case management support and automation, and is used
widely in the public sector in Denmark via the KMD WorkZone Enterprise Information
Management system.

References
1 Christoffer Olling Back, Tijs Slaats, Thomas Troels Hildebrandt, Morten Marquard: Dis-

CoveR: accurate and efficient discovery of declarative process models. Int. J. Softw. Tools
Technol. Transf. 24(4): 563-587, 2022

2 Vlad Paul Cosma, Thomas T. Hildebrandt, Christopher H. Gyldenkærne, Tijs Slaats. BER-
MUDA: Participatory Mapping of Domain Activities to Event Data via System Interfaces.
ICPM Workshops 2022: 127-139, 2022

3 Asbjørn Ammitzbøll Flügge, Thomas T. Hildebrandt, Naja L. Holten Møller. Street-Level
Algorithms and AI in Bureaucratic Decision-Making: A Caseworker Perspective.Proc. ACM
Hum. Comput. Interact. 5(CSCW1): 40:1-40:23, 2021

4 Anette C. M. Petersen, Lars Rune Christensen, Richard Harper, Thomas T. Hildebrandt,
“We Would Never Write That Down”: Classifications of Unemployed and Data Challenges
for AI. Proc. ACM Hum. Comput. Interact. 5(CSCW1): 102:1-102:26, 2021

5 Amine Abbad Andaloussi, Francesca Zerbato, Andrea Burattin, Tijs Slaats, Thomas T.
Hildebrandt, Barbara Weber. Exploring how users engage with hybrid process artifacts based
on declarative process models: a behavioral analysis based on eye-tracking and think-aloud.
Softw. Syst. Model. 20(5): 1437-1464. 2021

6 Håkon Norman, Søren Debois, Tijs Slaats, Thomas T. Hildebrandt. Zoom and Enhance:
Action Refinement via Subprocesses in Timed Declarative Processes. BPM 2021: 161-178

7 Thomas T. Hildebrandt, Håkon Normann, Morten Marquard, Søren Debois, Tijs Slaats.
Decision Modelling in Timed Dynamic Condition Response Graphs with Data. Business
Process Management Workshops 2021: 362-374, 2021

8 Anette Chelina Møller Petersen, Lars Rune Christensen, Thomas T. Hildebrandt: The
Role of Discretion in the Age of Automation. Comput. Support. Cooperative Work. 29(3):
303-333, 2020

9 Hugo A. López, Søren Debois, Tijs Slaats, Thomas T. Hildebrandt. Business Process
Compliance Using Reference Models of Law. FASE 2020: 378-399, 2020

10 Asbjørn William Ammitzbøll Flügge, Thomas T. Hildebrandt, Naja L. Holten Møller. Al-
gorithmic Decision Making in Public Services: A CSCW-Perspective. GROUP (Companion)
2020: 111-114, 2020

11 Søren Debois, Hugo A. López, Tijs Slaats, Amine Abbad Andaloussi, Thomas T. Hildebrandt.
Chain of Events: Modular Process Models for the Law. IFM 2020: 368-386, 2020

12 Naja L. Holten Møller, Irina Shklovski, Thomas T. Hildebrandt. Shifting Concepts of
Value: Designing Algorithmic Decision-Support Systems for Public Services. NordiCHI 2020:
70:1-70:12, 2020

13 Thomas T. Hildebrandt, et al. EcoKnow: Engineering Effective, Co-created and Compliant
Adaptive Case Management Systems for Knowledge Workers. ACM, Proceedings of ICSSP
’20: International Conference on Software and System Processes, Seoul, Republic of Korea,
26-28 June, 2020

23411

34 23411 – Accountable Software Systems

3.10 Platforms, Sovereignty, and Software Accountability
Divij Joshi (University College London, GB)

License Creative Commons BY 4.0 International license
© Divij Joshi

Main reference Cohen, Julie E.: “Law for the platform economy.” UCDL Rev. 51 (2017): 133.
URL https://scholarship.law.georgetown.edu/facpub/2015/

This talk examines why the “platform” model is crucial to thinking about software account-
ability. Software production, deployment and use is increasingly intermediated through the
organisational form of the “platform” – generally private entities which control access to
computational resources as well as structure and organise the “market” for software products.
Through varying levels of control over elements of a software production or deployment
“stack”, the platform model is crucial for thinking about accountability in software production.

As platforms increasingly determine access to computational resources and the ability to
run softwares, they exercise power over users or populations in ways that may be undemocratic
or unjust. Smartphone OS providers can arbitrarily expand the surveillance capabilities of
mobile devices or IoT devices, and “App Stores” can similarly chose to unilaterally force
changes to software production business models, as we have seen in the recent past.

This also places limits on how we can democratically and legitimately control computation
and software production or use that is increasingly “infrastructural”, i.e. a common, shared
resource that is vital for conducting an array of activities. Given that these infrastructures
are globally distributed and usually privately controlled, nation states or other legitimate
publics have little insight or control into how governance decisions are made on platforms. At
the level of the state, this is also giving rise to calls for expanding upon “digital sovereignty”
through a number of measures, including regulation, or creating public alternatives.

3.11 “Put the Car on the Stand”: SMT-based Oracles for Investigating
Decisions

Samuel Judson (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© Samuel Judson

Joint work of Samuel Judson, Matthew Elacqua, Filip Cano Córdoba, Timos Antonopoulos, Bettina Könighofer,
Scott J. Shapiro, Ruzica Piskac

Main reference Samuel Judson, Matthew Elacqua, Filip Cano Córdoba, Timos Antonopoulos, Bettina Könighofer,
Scott J. Shapiro, Ruzica Piskac: “’Put the Car on the Stand’: SMT-based Oracles for Investigating
Decisions”, CoRR, Vol. abs/2305.05731, 2023.

URL https://doi.org//10.48550/ARXIV.2305.05731

Principled accountability in the aftermath of harms is essential to the trustworthy design and
governance of algorithmic decision making. Legal philosophy offers a paramount method for
assessing culpability: putting the agent “on the stand” to subject their actions and intentions
to cross-examination. We show that under minimal assumptions automated reasoning can
rigorously interrogate algorithmic behaviors as in the adversarial process of legal fact finding.
We use the formal methods of symbolic execution and satisfiability modulo theories (SMT)
solving to discharge queries about agent behavior in factual and counterfactual scenarios,
as adaptively formulated by a human investigator. We implement our framework and
demonstrate its utility on an illustrative car crash scenario.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://scholarship.law.georgetown.edu/facpub/2015/
https://scholarship.law.georgetown.edu/facpub/2015/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2305.05731
https://doi.org//10.48550/ARXIV.2305.05731
https://doi.org//10.48550/ARXIV.2305.05731
https://doi.org//10.48550/ARXIV.2305.05731

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 35

3.12 Algorithmic Systems Through an Ethnographic Lens
Daan Kolkman (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
© Daan Kolkman

Although algorithms are imbued with a sense of objectivity and reliability, numerous high-
profile incidents have demonstrated their fallibility. Despite their ubiquity, access to al-
gorithms and algorithmic systems is typically policed, meaning that our understanding of
what it is that people who develop algorithms “do” and why algorithms fail in practice
remains largely unexplored. In a way, these systems that are designed for structuring and
ordering, themselves often resist straightforward categorization and control. This observa-
tion echoes Seaver’s concept [3] of software systems as “culturally enacted” through user
interaction, challenging the notion of these systems as fixed technical objects. My approach,
while similar in nature to Seaver’s, took a slightly different point of departure. Specifically, I
built on studies by Beunza and Garud [1], Beunza and Stark [2], and Spears [4] that – like
Seaver – center on understanding the socio-material context of algorithms. However, such
work in the Social Studies of Finance domain also focuses on understanding the “technical”
aspects of algorithms themselves. In a recent case study, I investigate the development – and
demise – of an algorithmic system that used Wi-Fi data as an input for footfall measurement
in the Netherlands. The study utilizes an ethnographic approach to track the development
and eventual abandonment of this system that measured footfall in 1100 locations across
the Netherlands. Based on the case study I conclude that, in comparison to the manual
collection of footfall measurement, the transition to more digital modes of data collection
has several unique characteristics that matter for the processes of knowledge production:
1. The speed and volume of these new modes of data collection is much higher; 2. The
new modes of data collection are relatively untried, hard to calibrate, and in general more
error-prone; 3. New modes of data collection can be – and are – contested on the basis of
non-digital observations. In unison this leads to the – attempted- alignment of divergent
measures of footfall and integration previously isolated epistemic cultures. In pursuit of more
understanding of – and more influence over – algorithmic systems, ethnographic studies like
these may contribute by shedding light on the mundane practices of those involved in their
development and use.

References
1 Beunza, D., & Garud, R. (2007). Calculators, lemmings or frame-makers? The intermediary

role of securities analysts. The Sociological Review, 55 (2 suppl), 13-39
2 From dissonance to resonance: Cognitive interdependence inquantitative finance. Economy

and society, 41(3), 383-417
3 Algorithms as culture: Some tactics for the ethnography of algorithmic systems. Big Data

& Society, 4 (2), 1-12
4 Engineering value, engineering risk: what derivatives quants know and what their models

do. PhD Thesis

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

36 23411 – Accountable Software Systems

3.13 Verification of Accountability in Protocols with Tamarin
Robert Künnemann (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Robert Künnemann

Joint work of Robert Künnemann, Kevin Morio, Ilkan Esiyok
Main reference Kevin Morio, Robert Künnemann: “Verifying Accountability for Unbounded Sets of Participants”, in

Proc. of the 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia,
June 21-25, 2021, pp. 1–16, IEEE, 2021.

URL https://doi.org//10.1109/CSF51468.2021.00032

The Tamarin [1] protocol verification tool (https://tamarin-prover.github.io/) integ-
rates support for verifying protocol accountability in the following sense: “protocol provides
accountability for property iff, at all times, the protocol can correctly determine the parties
causing violation of this property”. We first explain that we need causation to define this
property, and that, more precisely, causes ought to be the fact whether or whether not a
party deviated from protocol behavior. Then we outline how this is done, and how this
technique developed to support an unbounded number of parties. We talk about the case
studies we performed and demonstrate the Tamarin tool and its web GUI.

References
1 Meier, Simon, et al. “The TAMARIN prover for the symbolic analysis of security protocols.”

Computer Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings 25. Springer Berlin Heidelberg, 2013.

3.14 Accountability Lessons Learned from the Design and Deployment
of Digital Contact Tracing

Wouter Lueks (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Wouter Lueks

Main reference Carmela Troncoso, Dan Bogdanov, Edouard Bugnion, Sylvain Chatel, Cas Cremers, Seda F. Gürses,
Jean-Pierre Hubaux, Dennis Jackson, James R. Larus, Wouter Lueks, Rui Oliveira, Mathias Payer,
Bart Preneel, Apostolos Pyrgelis, Marcel Salathé, Theresa Stadler, Michael Veale: “Deploying
decentralized, privacy-preserving proximity tracing”, Commun. ACM, Vol. 65(9), pp. 48–57, 2022.

URL https://doi.org//10.1145/3524107

With the onset of the global pandemic in early 2020 came a massive push to deploy digital
technologies to aid in pandemic mitigation. In this talk, we looked back at how the DP3T
project proposed a privacy-friendly approach to digital contact tracing [1], eventually leading
to its adoption by Google and Apple. This adoption was an essential enabler of the use of
these technologies, but also surfaces questions of accountability. What does it mean to design
solutions on such a short timescale? How can citizens convince themselves that the privacy
protections are implemented as designed? And what does it mean for Google and Apple to
control what health applications can and cannot do [2]?

References
1 Carmela Troncoso, Dan Bogdanov, Edouard Bugnion, Sylvain Chatel, Cas Cremers, Seda F.

Gürses, Jean-Pierre Hubaux, Dennis Jackson, James R. Larus, Wouter Lueks, Rui Oliveira,
Mathias Payer, Bart Preneel, Apostolos Pyrgelis, Marcel Salathé, Theresa Stadler, Michael
Veale: Deploying decentralized, privacy-preserving proximity tracing. Commun. ACM 65(9):
48-57 (2022)

2 James R. Larus: Whose smartphone is it? Commun. ACM 64(9): 41-42 (2021)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1109/CSF51468.2021.00032
https://doi.org//10.1109/CSF51468.2021.00032
https://doi.org//10.1109/CSF51468.2021.00032
https://doi.org//10.1109/CSF51468.2021.00032
https://tamarin-prover.github.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3524107
https://doi.org//10.1145/3524107
https://doi.org//10.1145/3524107
https://doi.org//10.1145/3524107
https://doi.org//10.1145/3524107

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 37

3.15 Accountability and Explainability of French Housing Benefits
Computation

Denis Merigoux (INRIA – Paris, FR)

License Creative Commons BY 4.0 International license
© Denis Merigoux

Joint work of Marie Alauzen, Émile Rolley, Louis Gesbert, Justine Banuls

How French government agencies explain decisions taken by an IT system following the law?
Typical example is the amount of taxes and social benefit you get/pay once you’ve filled
the form. With several other authors, we have done : a state of the art, interviews with
social workers and social benefits agency agents about what use they have for explainability,
how this plays out with respect to accountability, and prototyping automatic generation of
law-based explanations using the Catala programming language.

Investigated model of transparency, in french law you have to publish the source code. In
the case of housing benefits distributed by CNAF, cobol code from 1995, unreadable. So
that is a problem. French law forces them to publish a summary of what the algorithm is
doing but you can’t condense 300 pages in 2-pages that they published, if you add all the
edge cases together you get the entire population. Last requirement, for each decision that is
made by an algo you should provide a detailed, individualize, and legible explanation. We
looked at all the govt systems that should provide these, but none of them do. From there,
we wanted to investigate deeper on the housing benefits case and interviewed social workers
and CNAF agents about their use of explainability of decisions. Findings: low-level social
workers completely trust the algorithm, higher-level workers sort of understand the principles
of how it works but without being able to link the behavior to the law that specifies it. To
contest it, detect an algorithm error or debug it you need link between law and code through
a detailed explanation of how thing was computed. However at CNAF there’s a lenghty
process between law and code with two different specification/documentation sets written by
different groups of people. Recommendation : you should be able to link the law, the code
and the explanations of how the code executed, while automatically producing explanations
and sharing them externally to have more accurate contestations from the outside for maybe
better debugging of the algorithm.

3.16 An AI Transparency Register for the Public Sector
Matthias Spielkamp (AW AlgorithmWatch – Berlin, DE)

License Creative Commons BY 4.0 International license
© Matthias Spielkamp

Joint work of Michele Loi, Anna Mätzener, Angela Müller, Matthias Spielkamp
Main reference Michele Loi, Anna Mätzener, Angela Müller, Matthias Spielkamp: “Automated Decision-Making

Systems in the Public Sector – An Impact Assessment Tool for Public Authorities”. AlgorithmWatch,
Berlin, Germany, 2021

URL https://algorithmwatch.org/en/wp-
content/uploads/2021/09/2021_AW_Decision_Public_Sector_EN_v5.pdf

When using automated decision-making systems (ADM systems) in the public sector, au-
thorities act in a unique context and bear special responsibilities towards the people affected.
Against this background, the use of ADM systems by public administrations should be
subject to stringent transparency mechanisms – including public registers and mandatory
impact assessments.

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://algorithmwatch.org/en/wp-content/uploads/2021/09/2021_AW_Decision_Public_Sector_EN_v5.pdf
https://algorithmwatch.org/en/wp-content/uploads/2021/09/2021_AW_Decision_Public_Sector_EN_v5.pdf
https://algorithmwatch.org/en/wp-content/uploads/2021/09/2021_AW_Decision_Public_Sector_EN_v5.pdf
https://algorithmwatch.org/en/wp-content/uploads/2021/09/2021_AW_Decision_Public_Sector_EN_v5.pdf
https://algorithmwatch.org/en/wp-content/uploads/2021/09/2021_AW_Decision_Public_Sector_EN_v5.pdf

38 23411 – Accountable Software Systems

Without the ability to know whether ADM systems are being deployed, all other efforts
for the reconciliation of fundamental rights and ADM systems are doomed to fail. Legally
mandatory public registers of all ADM systems used by public administrations – at communal,
regional, national, and supranational levels – should therefore be created.

These registers should come with the legal obligation for those responsible for the ADM
system to disclose information on the underlying model of the system, its developers and
deployers, the purpose of its use, and the results of the algorithmic impact assessment.

In order to make a difference in practice, ethical reflection must be translated into
ready-to-use tools, providing authorities with the means for conducting such an analysis. To
this end, we have developed a practical, user-friendly, and concrete impact assessment tool,
enabling the evaluation of an ADM system throughout its entire life cycle.

If you’d like to add bibliographic references to your abstract, please use the thebibliography-
environment (bibtex-files are not supported):

3.17 Responsibility and Liability regarding Software and AI
Rüdiger Wilhelmi (Universität Konstanz, DE)

License Creative Commons BY 4.0 International license
© Rüdiger Wilhelmi

Looking on responsibility and liability regarding software and especially non-symbolic artificial
intelligence from the legal perspective, I start with two distinctions. The first one regards
the different branches of law. Public law and especially administrative law concentrate on
prohibitions and permissions and criminal law on prohibitions as well. Both necessarily
involve the state as such and are mainly statute law. Private law relates to private individuals.
Contract law allows the private shaping of law. Tort law regulates compensation for damages
on a non-contractual basis. The second distinction is between general and special purpose
law. With regard to software there is law aiming at software or digitalization at large like
– in the context of the EU – the General Data Protection Regulation, the Digital Markets
Act and the Digital Service Act as well as the proposals for an AI Act and an AI Liability
Directive. There is also special law in more general statutes like computer fraud in the
criminal code or the provisions regarding consumer contracts on digital products in the civil
code, that lead to a convergence between software contracts based on the law of sale and
those based on rental or service contracts. But software and digitalization at large are also
covered by law not directly aiming at them like competition law, ordinary fraud, most of
contract law or tort law. Regarding software there are legal relationships between a lot of
actors. In general, it starts with a contract between the producer and the user, very often
intermediated by a provider or dealer. Often, there is another contract between the user
and his client, like a medical practitioner and his patient. On the other end of the chain
there are contracts between the producer and his suppliers, like the programmer, the data
supplier or trainers. In case of damage, there are non-contractual relationships based on
tort governing the compensation. They exist in parallel to the contractual relationships but
also independent to these and to especially third parties. My talk concerns responsibility
and liability regarding software and especially artificial intelligence concentrated on tort law.
Tort law is the branch of private law concerned with the award of compensation for damages
even if there is no contractual relationship between the damaging and the damaged party.
Basically, tort law is no law designed especially for information technology and digitalization,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 39

but general-purpose law. As such it is the part of law very often concerned first with new
developments. The most relevant branch of tort law in this context is product liability. The
conditions for product liability based on negligence in essential are an infringement of legal
interests, a breach of duty of care or conduct and causation. Based on strict liability they are
an infringement of legal interest, being active in a specific domain, like road traffic or gene
technology, and causation. The difference is, that there is no need to define a duty under
strict liability. But there exist exemptions to strict liability with similar effects but being
much more defined. Product liability claims can be based on both, negligence and strict
liability. They require a defective product that does not provide the safety to expect and
causes damages to specified legal interest not comprising pure economic loss. In our context
the most relevant defects are design defects and instruction defects. Design defects can be
identified form a bird’s eye perspective by comparing the product to other products or from
a frog perspective by looking whether a specific feature could have been better. Instruction
defects fail to inform the users properly, especially to warn of risks. An interesting question
is, whether and when flaws in the design can be compensated for by instructions or warnings.
In this respect, design and instruction defects are a sort of communicating vessels between
the producer and the user and could shift risks between them. The level of safety depends
on what is technically possible and on the risks involved. The more risky a product is, the
higher the product safety requirements. In extreme cases, the necessary safety level cannot
be achieved. This mechanism is also known in other areas of law and is also the basis of
the AI Act. In the end, the concrete level of safety to be provided has to be determined
by the courts. Standards set by standardization bodies or evolving out of the industry
are of limited effect in the sense, that they normally constitute the minimum level, but do
not prevent the courts requiring higher levels, what they do. The main problems assorted
with software and artificial intelligence are the lack of transparency and related to this of
predictability and reliability. But this no new problem to product liability where it is solved
by duties to disclosure of evidence and a shift of the burden of proof, in the end making
the producer accountable for the lack of transparency, predictability and reliability. There
is some indication, that the product liability can cover the problems for responsibility and
liability regarding software and artificial intelligence, maybe requiring some minor adaptions.
The current discussion about introducing a new (strict) liability regime lacks a sufficient
analysis of whether, where and why the existing regime is insufficient.

3.18 Scenic: A Probabilistic Scenario Description Language
Beyazit Yalcinkaya (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Beyazit Yalcinkaya

Main reference Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, Sanjit A. Seshia: “Scenic: a language for scenario specification and data
generation”, Mach. Learn., Vol. 112(10), pp. 3805–3849, 2023.

URL https://doi.org//10.1007/S10994-021-06120-5

This presentation focuses on the integral role of expressive environment modeling tools within
the realm of formal methods, underpinning the pursuit of verified AI. In this context, our
research group at UC Berkeley has introduced Scenic, a probabilistic scenario description
language designed to facilitate the realization of this goal. Scenic serves as a probabilistic
programming language, enabling the formulation of distributions that characterize scenes and
scenarios, the former representing configurations of physical objects and autonomous agents,

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10994-021-06120-5
https://doi.org//10.1007/S10994-021-06120-5
https://doi.org//10.1007/S10994-021-06120-5
https://doi.org//10.1007/S10994-021-06120-5

40 23411 – Accountable Software Systems

and the latter encompassing distributions over these scenes and the dynamic behaviors of
their constituent agents over time. This novel language is distinguished by its succinct
and comprehensible syntax for spatiotemporal relationships, accompanied by the capacity
to declaratively enforce both hard and soft constraints on the scenario. Furthermore, by
considering accountability as an inherent system property, we find the application of Scenic
crucial for precisely specifying the environmental conditions under which we can hold a
software system accountable. In doing so, we illuminate the potential of Scenic as a means
to enhance the accountability of software systems.

3.19 Towards a Framework for Certification of Reliable Autonomous
Systems

Neil Yorke-Smith (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Neil Yorke-Smith

Joint work of Michael Fisher, Viviana Mascardi, Kristin Yvonne Rozier, Bernd-Holger Schlingloff, Michael
Winikoff, Neil Yorke-Smith

Main reference Michael Fisher, Viviana Mascardi, Kristin Yvonne Rozier, Bernd-Holger Schlingloff, Michael
Winikoff, Neil Yorke-Smith: “Towards a framework for certification of reliable autonomous systems”,
Auton. Agents Multi Agent Syst., Vol. 35(1), p. 8, 2021.

URL https://doi.org//10.1007/S10458-020-09487-2

A computational system is called autonomous if it is able to make its own decisions, or take
its own actions, without human supervision or control. The capability and spread of such
systems have reached the point where they are beginning to touch much of everyday life.
However, regulators grapple with how to deal with autonomous systems. We view certification
of the behaviour of a system as, in appropriate cases, a component of accountability. This
talk proposed to analyse what is needed in order to provide verified reliable behaviour of
an autonomous system, analyse what can be done as the state-of-the-art in automated
verification, and pointed to a roadmap towards developing regulatory guidelines, including
articulating challenges to researchers, to engineers, and to regulators.

4 Working groups

4.1 Working groups topic discussions
We had two sessions where the participants were divided into different working groups to
work on the same topic.

4.1.1 Forms of (Un)Accountability in Contemporary Software Ecosystems

The different groups discussed around the following key questions:
How is software (un)accountable today? To whom, and with what consequences?
How do different disciplines understand the concept of accountability?
What are the main practical barriers to accountability?

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10458-020-09487-2
https://doi.org//10.1007/S10458-020-09487-2
https://doi.org//10.1007/S10458-020-09487-2
https://doi.org//10.1007/S10458-020-09487-2

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 41

4.1.2 Software Ecosystem Futures

The different groups discussed around the following key questions:
How might software be designed, delivered, deployed and maintained in 5, 10, 15+ years?
What are the main consequences for accountability?
How are supply chains and value chains in software being formed and reformed, and what
does this mean about which actors could and should be held responsible?
Is the changing nature or a certain trajectory of software development and change
inevitable? What are the main leverage points for driving it in different directions? What
different directions exist?

4.2 Forms of (Un)Accountability in Contemporary Software Ecosystems:
Group 1

Wouter Lueks (CISPA – Saarbrücken, DE) and Scott Shapiro (Yale University – New Haven,
US)

License Creative Commons BY 4.0 International license
© Wouter Lueks and Scott Shapiro

In group 1, we discussed different ways of looking at accountability. We realized that the
typical computer science notion of accountability as “matching the specification” might not
be sufficient. Real systems have to deal with users, and users might not follow the rules.
One alternative way of looking at accountability, then is, to consider what you do when
users break the rules. Accountability therefore doesn’t always have to be about software. In
particular, in distributed systems, policy violations cannot always be prevented, instead such
systems might resort to identify misbehaving users, or punish them, for example by reducing
their utility.

Following this path, we realized that accountability is multiple ambiguous, and we’d have
to consider different aspects, all of which relate to accountability:

Ability: Is it even possible to hold “the thing” to account?
Attributability: Can you assign credit or blame to a specific individual or even a line of
code?
Answerability: can you give an answer or account that explains the intention
Liability: can we determine who has to be punished?

In light of these, we looked at the example of machine learning systems. There, answer-
ability might be a challenge. Many systems cannot “explain” (or be made to explain) the
choices that they made. And these systems are often operated by large companies. Should
we attribute violations to individuals, or to the company as a whole?

We questioned the term “accountable systems” because systems cannot be held account-
able, instead maybe “accountability of software” is more appropriate.

One particular challenge with accountability is to attribute problems. For one, this might
not always be possible directly. For example, a child who knocks over a precious vase is
usually not held accountable. Although their parents might. And a person suffering a acute
mental distress might be held accountable for their actions, but not blamed.

In the world of objects, there are often processes in place to assign blame or draw lessons
from failures. For example, after an aircraft crash, there is an investigation by an authorized
body. Such body does not exist for software (unless it leads to physical harm).

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

42 23411 – Accountable Software Systems

4.3 Forms of (Un)Accountability in Contemporary Software Ecosystems:
Group 2

Roel Dobbe (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Roel Dobbe

The prompt for this breakout was: How does software creation affect accountability?
Rather than answering this big question head on, the group decided to surface important

distinctions that may help to understand the various forms software may take that are
relevant to study the role of and impact on accountability.

The distinctions that we identified were:
Software running in the cloud vs Software running on premise
Open source vs Closed source
Software-as-a-service vs Shrink-wrap software (with associated licensing)
Infrastructure-as-a-service (one-stop shop) vs Open infrastructures and ecosystems for
software development
Manual requirement generation vs Automated generation of requirements
General purpose/multi-task software vs Specialized/single-task software
Centralized control over software vs decentralized control over software
Software as a utility vs non-utility
Big tech break up vs Further consolidation of software industry
Universal software (standards) vs Plural software (standards)
Quantum-based computing vs Bit-based computing
Scrutable software architectures vs Inscrutable software architectures

4.4 Forms of (Un)Accountability in Contemporary Software Ecosystems:
Group 3

Bettina Könighofer (TU Graz, AT) and Neil Yorke-Smith (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Bettina Könighofer and Neil Yorke-Smith

In our group discussion, we considered that software complexity acts as an accelerant in
the realm of technology, yet it isn’t the initial catalyst for technological advancements. It’s
widely recognized that autonomous systems are on the horizon, and rather than resisting
their emergence, we should focus on understanding and shaping their integration responsibly.

A key point of debate was the distinction between accountability and responsibility. While
one can be responsible without being blameworthy, accountability often carries the weight of
blame, especially in situations where the complexity of a system obfuscates the lines of direct
responsibility. This distinction becomes particularly poignant in discussions about how to
regulate technologies that are still evolving and the challenges of preparing the public sector
through adequate training in data and digital literacy.

The conversation also touched on practical challenges, such as the costly repercussions of
fixing bugs in software systems, exemplified by an incident in Los Angeles’ air traffic control
where a countdown timer bug led to operational chaos. This highlighted the broader issue
of how audits, transparency registers, and other mechanisms for oversight struggle to keep

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 43

pace with dynamic software systems. The consensus emerged that understanding faults is a
prerequisite for attributing blame or punishment, underlining the need for integrating such
accountability measures throughout the software lifecycle.

Accountability was thus framed as an organizational challenge rather than purely a
technical one, with parallels drawn to self-regulation models like film ratings in the U.S. or
the medical association’s role in certifying doctors. The discussion acknowledged the universal
nature of software as akin to a Turing machine, raising questions about the feasibility of
ensuring safety, security, and accountability simultaneously.

Identifying liability within complex software systems presents its own set of challenges,
especially when all components function correctly yet the system as a whole fails. The
concept of group responsibility was dissected, acknowledging its complexity and distributed
nature. Questions were raised about how software can “make it right,” including bearing
punishment, making restitution, and ensuring justice.

The group considered examples such as rule-based parole systems demonstrating bias,
underscoring the “stupidity” of computers in their lack of reasonableness, and the need for
human-like foresight in technology design. The “Miracle on the Hudson” incident was cited as
a case where software limitations impeded human judgment, suggesting a need for regulatory
frameworks that can adapt to the unique challenges of software within various domains.

Finally, the discussions circled back to the foundational problem of software complexity
and its role in exacerbating these accountability and regulatory challenges. The conclusion
pointed towards the necessity of domain-specific expertise in creating regulatory frameworks
for software, questioning what aspects of a system can be automatically checked by another
system and what requires more nuanced, human oversight. Through these discussions, the
group navigated the intricate web of ethical, technical, and regulatory challenges facing the
future of software development and integration.

4.5 Forms of (Un)Accountability in Contemporary Software Ecosystems:
Group 4

Beyazit Yalcinkaya (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Beyazit Yalcinkaya

In our discussion, we approached the forms of (un)accountability in contemporary software
ecosystems from various angles. Essentially, our discussion was rooted in a computer science
perspective due to the background of the majority of participants. Our responses to specific
questions are summarized below.

How is software (un)accountable today? To whom, and with what con-
sequences? Our consensus was that software today is essentially unaccountable as account-
ability has not been a major focus of software development. On top of that, we do not
have a clear understanding of the possible behaviors of contemporary learning-based models.
Moreover, even without any learning-based components in the software loop, we observe cases
where the problem of accountability is ambiguous. Specifically, we discussed an example
from the security literature in which a user interacts with various software services, and
even though each software system is secure in itself, the information exposure between their
interfaces causes a security vulnerability, so an attacker can capture sensitive information.
This is an interesting example because none of the software services is the cause of the

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

44 23411 – Accountable Software Systems

security vulnerability; however, their composition results in an ecosystem with a security
vulnerability. Therefore, it is not clear which software service should be held accountable.
In general, the composition of software systems is not a trivial process. We concluded that
the issue of accountability of software has to be studied well from various aspects in today’s
complex software ecosystem.

How do different disciplines understand the concept of accountability? Our
consensus on this issue was that the term accountability is more of an umbrella term that can
be understood from the perspective of various system properties that we care about. These
properties mainly include safety, reproducibility, and certifiability. Specifically, the issue
of certifiability is a main concern for holding an entity accountable for a software system’s
behavior. For example, one needs some sort of certification before using the output of a
large language model to hold the system accountable for any complication that might occur,
such as a copyright issue. Software services should provide a certification to their users so
that the user can use this certification in court as a piece of evidence that the material was
generated by the specific software service that they used. We concluded that certifiability
has to be an interdisciplinary understanding for the accountability of software systems.

What are the main practical barriers to accountability? We started our dis-
cussion on this issue by critiquing the idea of transparency being a sufficient condition for
the accountability of software systems. Our consensus was that the speed and scale of
today’s contemporary software systems cannot be handled by any human-level bureaucratic
produce that can be accomplished through transparency. Therefore, we need systems that
monitor/check themselves, and the processes for accountability must be automated as much
as possible. However, to achieve this goal, we need new results from the computer science
community to provide what can be formalized (and therefore automated) and what cannot be
formalized so that the proper tools for automation can be developed. Then in light of these
results and tools, policymakers can provide guidelines for system developers, and therefore
better practices for accountable software systems can be enforced. We concluded that to
make an accountable software ecosystem possible, policymakers and computer scientist should
communicate their needs and capacities clearly to each other.

4.6 Software Ecosystem Futures: Group 1
Divij Joshi (University College London, GB)

License Creative Commons BY 4.0 International license
© Divij Joshi

Our group discussed how new technologies and organisational forms structure software
production and accountability.

We began the discussing how or whether Large Language Models will change software
production. There was some disagreement about the impact of these changes, with some
participants stressing that automation of programmer’s capabilities was already affecting
software production, and that this leads to challenges to accountability. One participant spoke
about how accountability in the supply chain or production might be becoming irrelevant
with systems like zero-trust procurement (which the US government is moving towards).

Next, participants discussed the role of platforms and platform power among software
production and use supply chains. They spoke about whether accountability needs to be
located within software production processes, or from the perspective of end-users. From
this perspective, which actors are “choke points” and which ones can be used to leverage
accountability across the ecosystem.

Finally, participants discussed whether and how software production itself might be made
more accountable through regulation.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 45

4.7 Software Ecosystem Futures: Group 2
Filip Cano Córdoba (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Filip Cano Córdoba

In Group 2, we did not focus our discussion around large language models (LLMs) or AI, but
more on the software as a service model (SaaS). We agreed that how software is maintained
will not change that much, perhaps more of it will be moving to the cloud and the Saas
model. So, in the future, the user will not own anything, but this paradigm will probably
not change much how software is to be developed and maintained. As an interesting side
thought, we made the thought experiment of what would happen if instead of the big players
that currently dominate the market, we created a public democratically managed cloud
infrastructure that would serve as a non-for-profit realistic alternative. This entity would
escape the power of both huge for-profit companies and governments, so the profit and the
power would be in the hands of the people. We proposed the Wikipedia Foundation as a
viable example to follow, albeit the Wikipedia Foundation is a much smaller organization,
with a much more focused objective.

On supply chains, we discussed how when catastrophic fails happens, it is typically not
the cause of a component-level failure, but a failure at system level. System level properties
are generally more difficult to specify and verify, so they consist of an important challenge.
We also discussed extensively about dependency-tracking projects, like NIX or the “software
bill of materials”. While transparency is not all, and full transparency may be infeasible,
having a clear description of software dependencies will surely help make software systems
accountable along their production and value chains.

About change and its innevitability, we first wanted to point out that nothing is inevitable,
almost everything can happen if there is enough will in the public. Maybe the only inevitability
is climate change, that will pressure current political systems and regulations to somehow
limit the amount of resources dedicated to computing. We discussed how we should stirr
this policies so that limited resources get allocated to valuable objectives.

4.8 Software Ecosystem Futures: Group 3
Neil Yorke-Smith (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Neil Yorke-Smith

This breakout group discussed the future of software development, aided by the fresh air of
the countryside around Schloss Dagstuhl.

AI-aided, man-machine co-generation of software is already used at Google, one participant
pointed out. The group discussed whether such co-generation will be more participatory
and more sustainable in the future.
The “code local” movement was discussed: developing software closer to the point of use;
supply and value chains; the voice of citizens.
Software projects that arose during the COVID-19 epidemic received discussion, both how
software development continued or changed, and how new projects arose. One participant
pointed out how “interesting” consortiums came together; critical comments arose about
governments and how they procure software.

23411

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

46 23411 – Accountable Software Systems

One participant suggested that a few people can change the status quo. An example is
the few who raised concerns about bias in AI, whereas this is now mainstream.
The group thought that future software will be more flexible, making accountability more
tricky.
Lastly, the group discussed the role of “big tech”. It was noted that software in schools in
the Netherlands is highly dependent on Google.

5 Open problems

5.1 Concluding Exercise: Open Questions
Michael Veale (University College London, GB), Thomas Arnold (Tufts University – Medford,
US), Filip Cano Córdoba (TU Graz, AT), Corinne Cath (TU Delft, NL & University of
Cambridge, GB), Hana Chockler (King’s College London, GB), Aloni Cohen (University of
Chicago, US), Misty Davies (NASA – Moffett Field, US), Roel Dobbe (TU Delft, NL),
Joan Feigenbaum (Yale University – New Haven, US), David Fuenmayor (Universität
Bamberg, DE), Ashish Gehani (SRI – Menlo Park, US), Jake Goldenfein (The University
of Melbourne, AU), Thomas T. Hildebrandt (University of Copenhagen, DK), Divij Joshi
(University College London, GB), Samuel Judson (Yale University – New Haven, US),
Daan Kolkman (TU Eindhoven, NL), Bettina Könighofer (TU Graz, AT), Joshua A. Kroll
(Naval Postgraduate School – Monterey, US), Robert Künnemann (CISPA – Saarbrücken,
DE), Stefan Leue (Universität Konstanz, DE), Wouter Lueks (CISPA – Saarbrücken, DE),
Rupak Majumdar (MPI-SWS – Kaiserslautern, DE), Kira Matus (The Hong Kong Univ. of
Science & Technology, HK), Denis Merigoux (INRIA – Paris, FR), Ruzica Piskac (Yale
University – New Haven, US), Scott Shapiro (Yale University – New Haven, US), Jatinder
Singh (University of Cambridge, GB), Matthias Spielkamp (AW AlgorithmWatch – Berlin,
DE), Rüdiger Wilhelmi (Universität Konstanz, DE), Beyazit Yalcinkaya (University of
California – Berkeley, US), and Neil Yorke-Smith (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Michael Veale, Thomas Arnold, Filip Cano Córdoba, Corinne Cath, Hana Chockler, Aloni Cohen,
Misty Davies, Roel Dobbe, Joan Feigenbaum, David Fuenmayor, Ashish Gehani, Jake Goldenfein,
Thomas T. Hildebrandt, Divij Joshi, Samuel Judson, Daan Kolkman, Bettina Könighofer, Joshua A.
Kroll, Robert Künnemann, Stefan Leue, Wouter Lueks, Rupak Majumdar, Kira Matus, Denis
Merigoux, Ruzica Piskac, Scott Shapiro, Jatinder Singh, Matthias Spielkamp, Rüdiger Wilhelmi,
Beyazit Yalcinkaya, and Neil Yorke-Smith

In the final session, we all wrote open questions on cards and then grouped them together in
emergent, but unnamed groups.

How to make enforceable/verifiable standards for traceability of requirements/components’
provenance or system actors?
How can we identify mechanisms of coordination in software supply chains?
Can we imagine software supply chains which align responsibility and resources without
handing over societal power?
How to ensure accountability over Big Tech’s use of data?

How to manage drift in a world with fixed specifications and model structure?
How universally can AI or ML be regulated?
How can we do accountability for ‘general purpose’ machine learning software?

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 47

Figure 1 The grouping of the open questions from the final session of the seminar.

How to write clear and unambiguous AI regulations that clearly define and delimit the
level of needed transparency and accountability?

Can the computer science curriculum include courses from social sciences which discuss,
at least, accountability?
How can we prepare citizens for future debates on the accountability of software systems
in society?

What are the opportunities and limits around the rise of software for accountability?
Can we do record-keeping without opening the door to surveillance? What are the
mechanisms for record keeping, and what are the governance mechanisms and implications?
What features and capacities do technical accountability methods need to be successful?
For key areas of accountability interest and key metrics describing the “goodness” of that
property, how do we capture the state knowledge that allows us to trace the metrics and
make decisions after the fact?
Can we create an explanation chain from outcomes to intent?
Clarify the relationship of “accountability” to deterrence
How do we document and societally scrutinise sociotechnical environmental models?
How do we structure validation (opposed to verification)?
How can we make tools and methods for modelling, simulating and analysing sociotechnical
systems that can be used by domain experts (to enable accountability and trustworthiness)
Better specifications – more formal and checkable or verifiable specifications

How do we ensure participation and broad perspectives?
How can participatory design feature effectively in systems safety/hazard analysis practices,
not just as an add on?

23411

48 23411 – Accountable Software Systems

If we focus on accountability, what might we lose?
How can accountability be used and misused?
Ex ante accountability impact assessments? Should be used to determine go or no-go for
creating the software system.

How are software systems restructuring organisational tasks and who should be responsible
for the consequences of restructuring?
Clarify terminology and maps it to the ecosystem or political economy
What capacities or capabilities on the part of humans are required for the long term
maintenance and use of accountable software systems? Which actors will hold the
responsibility over the long term?
Who is deciding and managing rules for accountability?

Diffusion of accountability in hybrid systems, there is a question of assigning accountability
to different components. Even worse when several systems interact!
Building up component properties to system-level assessment, versus pure reductionism.
Are there ways to “hack” the trade off between system complexity and accountabiilty?

What divisions of labour between human operators and automation enable clear account-
ability? (for every sense of definition of accountability!)
How can we solve the “moral crumple zone”?
Can and should software have autonomous intention?
How well do counterfactual scenarios as generated and specified by ML approaches fit
with, improve, and sustain counterfactuals as questions between people determining
responsibility for actions (what would you have done if “x” had happened instead?)

Can we clarify the role of powerful intermediaries, e.g. certificate authorities and auditors?
How to deal with accountability of the infrastructures upon which software operates?
What is the influence of market structures and institutional settings on effective account-
ability?

Formal methods may have a role in accountable software systems – but which?
How to operationalise in computational terms the various notions of accountability
What are the aspects of accountability what can be formalised and do we have the
necessary tools and theories for these?

Bridge with work by “AI and Law” and “Computational Law” communities – is it
possible?
How to make maintainable and accountable legal decision support or automation software
systems?

Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale 49

Participants

Thomas Arnold
Tufts University – Medford, US

Filip Cano
TU Graz, AT

Corinne Cath
TU Delft, NL & University of
Cambridge, GB

Hana Chockler
King’s College London, GB

Aloni Cohen
University of Chicago, US

Misty Davies
NASA – Moffett Field, US

Roel Dobbe
TU Delft, NL

Joan Feigenbaum
Yale University – New Haven, US

David Fuenmayor
Universität Bamberg, DE

Ashish Gehani
SRI – Menlo Park, US

Jake Goldenfein
The University of Melbourne, AU

Thomas T. Hildebrandt
University of Copenhagen, DK

Divij Joshi
University College London, GB

Samuel Judson
Yale University – New Haven, US

Bettina Könighofer
TU Graz, AT

Daan Kolkman
TU Eindhoven, NL

Joshua A. Kroll
Naval Postgraduate School –
Monterey, US

Robert Künnemann
CISPA – Saarbrücken, DE

Stefan Leue
Universität Konstanz, DE

Wouter Lueks
CISPA – Saarbrücken, DE

Rupak Majumdar
MPI-SWS – Kaiserslautern, DE

Kira Matus
The Hong Kong Univ. of Science
& Technology, HK

Denis Merigoux
INRIA – Paris, FR

Ruzica Piskac
Yale University – New Haven, US

Scott Shapiro
Yale University – New Haven, US

Jatinder Singh
University of Cambridge, GB

Matthias Spielkamp
AW AlgorithmWatch –
Berlin, DE

Michael Veale
University College London, GB

Rüdiger Wilhelmi
Universität Konstanz, DE

Beyazit Yalcinkaya
University of California –
Berkeley, US

Neil Yorke-Smith
TU Delft, NL

23411

Report from Dagstuhl Seminar 23412

Formal Methods for Correct Persistent Programming
Ori Lahav∗1, Azalea Raad∗2, Joseph Tassarotti∗3, Viktor Vafeiadis∗4,
and Anton Podkopaev†5

1 Tel Aviv University, IL. orilahav@tau.ac.il
2 Imperial College London, GB. azalea.raad@imperial.ac.uk
3 New York University, US. jt4767@nyu.edu
4 MPI-SWS – Kaiserslautern, DE. viktor@mpi-sws.org
5 JetBrains – Amsterdam, NL. anton@podkopaev.net

Abstract
Recently developed non-volatile memory (NVM) devices provide persistency guarantees along
with byte-addressable accesses and performance characteristics that are much closer to volatile
random-access memory (RAM). However, writing programs that correctly use these devices is
challenging, and bugs related to their use can cause permanent data loss in applications.

This Dagstuhl Seminar brought together experts in a range of areas related to concurrency
and persistent memory to explore and develop formal methods for ensuring the correctness
of applications that use persistent memory. Talks and discussions at the seminar highlighted
challenges related to correctness criteria for concurrent objects using persistent memory, liveness
properties of persistent objects, and how changes in NVM and related technologies should shape
the development of formal methods for NVM.
Seminar October 8–11, 2023 – https://www.dagstuhl.de/23412
2012 ACM Subject Classification Hardware → Non-volatile memory; Theory of computation →

Program semantics; Theory of computation → Program verification
Keywords and phrases concurrency, formal methods, non-volatile-memory, persistency, verifica-

tion
Digital Object Identifier 10.4230/DagRep.13.10.50

1 Executive Summary

Ori Lahav
Azalea Raad
Joseph Tassarotti
Viktor Vafeiadis

License Creative Commons BY 4.0 International license
© Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis

Many systems and applications need to store data in a durable way. Historically, durable
storage devices had considerably higher latency than volatile random-access memory (RAM)
and provided interfaces with larger, coarser access granularity. To achieve acceptable
performance, applications requiring durable storage were structured to account for these
characteristics. However, in recent years, novel storage systems, such as non-volatile memory
(NVM), have emerged that provide durability along with performance and access granularity
much closer to RAM. This provides the opportunity for applications to achieve durability
with much lower latencies.

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Formal Methods for Correct Persistent Programming, Dagstuhl Reports, Vol. 13, Issue 10, pp. 50–64
Editors: Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orilahav@tau.ac.il
mailto:azalea.raad@imperial.ac.uk
mailto:jt4767@nyu.edu
mailto:viktor@mpi-sws.org
mailto:anton@podkopaev.net
https://www.dagstuhl.de/23412
https://doi.org/10.4230/DagRep.13.10.50
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 51

However, taking full advantage of that opportunity involves restructuring applications to
make proper use of these new devices. Doing so requires care because bugs in these parts
of applications can cause permanent data loss. Moreover, non-volatile memory interacts in
subtle ways with caches and other parts of modern memory hierarchies, making it challenging
for programmers to write correct code.

One promising approach to address this challenge is to develop formal methods techniques
to certify the absence of bugs in programs using non-volatile memory. This Dagstuhl Seminar
brought together experts in non-volatile memory, relaxed memory, concurrency, and formal
methods to explore the application of formal methods to programming with persistent
memory. Since this subfield involves deep theoretical work, but is also very dependent
on technological developments, the participants of the seminar were from a spectrum of
backgrounds ranging from theory of verification to hardware specification, design, and testing.

The seminar included a series of talks and discussions, some of which were unplanned
additions prompted by topics or misunderstandings identified during earlier parts of the
seminar. The addition of these unplanned talks proved beneficial, adding a dynamic element
to the event. We decided to forgo smaller break-out sessions based on the feeling that much
of the seminar’s value was in discussions that spanned from theoretical to practical, drawing
on the full range of participants’ expertise.

Several recurring themes arose in the talks and following discussions:
Correctness Criteria and Specifications for Persistent Objects: A number of
correctness criteria have been proposed for concurrent objects that persistently store data.
Many of these definitions are adaptations of the classical notion of linearizability. However,
we discussed ways in which these existing definitions can have surprising consequences
when objects are implemented in the setting of weak memory. A related topic was the
appropriate guarantees that transactional interfaces should provide, as certain strong
guarantees may prevent efficient implementations.
Liveness: Our discussions revealed a lack of consensus on assumptions that can be
made from existing architectures concerning liveness properties, underscoring the need
for further research in this area.
Future of NVM and Related Technologies: NVM remains an emerging technology,
and manufacturers continue to announce large changes in plans for future product lines.
We discussed the ramifications of these changes and how techniques for the semantics and
verification of certain forms of NVM might apply to other persistency models. Moreover,
we identified the need for generic verification methods, which would lend themselves
more easily to ongoing changes in the exact semantics of the underlying memory system.
Indeed, several talks suggested modular approaches for verification, that, to some extent,
take the memory model as an input. Related technologies, including Remote Direct
Memory Access (RDMA) and Compute Express Link (CXL), were discussed, focusing on
the appropriate abstractions and semantics of interfaces for these devices, and challenges
with testing these devices.

We believe that these issues will be an important focus in research on formal methods for
persistent memory in the future.

23412

52 23412 – Formal Methods for Correct Persistent Programming

2 Table of Contents

Executive Summary
Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 50

Overview of Talks
Semantics of Remote Direct Memory Access
Guillaume Ambal . 54

Checking Liveness Properties under Weak Consistency (TSO as an Example)
Parosh Aziz Abdulla . 54

Correctly Combining Concurrent and Persistent Transactional Memory
Brijesh Dongol . 55

Utilizing Coherence for Persistence
Michal Friedman . 55

Some compositional semantics for shared memory: sequential consistency and
release/acquire
Ohad Kammar . 56

Programming Persistency Should Be Easy – but is it?
Jeehoon Kang . 56

Challenges in Empirically Testing Memory Persistency Models
Vasileios Klimis . 57

Automating Weak Memory Model Metatheory and Verification
Michalis Kokologiannakis . 57

Abstraction for Crash-Resilient Objects
Ori Lahav . 58

Fairness for load buffering memory models
Anton Podkopaev . 58

DARTAGNAN: One tool for all models
Hernán Ponce de León . 59

Towards a formal specification of the Intel Architecture
Alastair Reid . 59

System and Failure Models Matter
Michael Scott . 60

Transactional Semantics with Zombies
Michael Scott . 60

Specifying and Verifying Persistent Libraries
Léo Stefanesco . 61

A Type System for Intermittent Computing
Milijana Surbatovich . 61

Separation Logic for Concurrent, Crash-Safe Systems
Joseph Tassarotti . 62

Persistent Scripting
Haris Volos . 62

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 53

Verifying the persistency library FliT
Heike Wehrheim . 62

Participants . 64

23412

54 23412 – Formal Methods for Correct Persistent Programming

3 Overview of Talks

3.1 Semantics of Remote Direct Memory Access
Guillaume Ambal (Imperial College London, GB)

License Creative Commons BY 4.0 International license
© Guillaume Ambal

Joint work of Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, Azalea Raad

Remote direct memory access (RDMA) is a modern technology enabling networked machines
to exchange information without involving the operating system of either side, and thus
significantly speeding up data transfer in computer clusters. While RDMA is extensively used
in practice and studied in various research papers, a formal underlying model specifying the
allowed behaviours of concurrent RDMA programs running in modern multicore architectures
is still missing. This paper aims to close this gap and provide semantic foundations of
RDMA on x86-TSO machines. We propose three equivalent formal models, two operational
models in different levels of abstraction and one declarative model, and prove that the three
characterisations are equivalent. To gain confidence in the proposed semantics, the more
concrete operational model has been reviewed by NVIDIA experts, a major vendor of RDMA
systems, and we have empirically validated the declarative formalisation on various subtle
litmus tests by extensive testing. We believe that this work is a necessary initial step for
formally addressing RDMA-based systems by proposing language-level models, verifying their
mapping to hardware, and developing reasoning techniques for concurrent RDMA programs.

3.2 Checking Liveness Properties under Weak Consistency (TSO as an
Example)

Parosh Aziz Abdulla (Uppsala University, SE)

License Creative Commons BY 4.0 International license
© Parosh Aziz Abdulla

Joint work of Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, Shankaranarayanan Krishna, Mihir
Vahanwala

Main reference Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, Shankaranarayanan Krishna, Mihir
Vahanwala: “Overcoming Memory Weakness with Unified Fairness – Systematic Verification of
Liveness in Weak Memory Models”, in Proc. of the Computer Aided Verification – 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part I, Lecture
Notes in Computer Science, Vol. 13964, pp. 184–205, Springer, 2023.

URL https://doi.org//10.1007/978-3-031-37706-8_10

We consider the verification of liveness properties for concurrent programs running on weak
memory models. To that end, we identify notions of fairness that preclude demonic non-
determinism, are motivated by practical observations, and are amenable to algorithmic
techniques. We provide both logical and stochastic definitions of our fairness notions, and
prove that they are equivalent in the context of liveness verification. In particular, we show
that our fairness allows us to reduce the liveness problem (repeated control state reachability)
to the problem of simple control state reachability. We show that this is a general phenomenon
by developing a uniform framework which serves as the formal foundation of our fairness
definition, and can be instantiated to a wide landscape of memory models. These models
include SC, TSO, PSO, (Strong/Weak) Release-Acquire, Strong Coherence, FIFO-consistency,
and RMO.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-031-37706-8_10
https://doi.org//10.1007/978-3-031-37706-8_10
https://doi.org//10.1007/978-3-031-37706-8_10
https://doi.org//10.1007/978-3-031-37706-8_10
https://doi.org//10.1007/978-3-031-37706-8_10
https://doi.org//10.1007/978-3-031-37706-8_10

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 55

3.3 Correctly Combining Concurrent and Persistent Transactional
Memory

Brijesh Dongol (University of Surrey – Guildford, GB)

License Creative Commons BY 4.0 International license
© Brijesh Dongol

Joint work of Brijesh Dongol, Piotr Balcer, Ori Lahav, Azalea Raad, John Wickerson
Main reference Azalea Raad, Ori Lahav, John Wickerson, Piotr Balcer, Brijesh Dongol: “Intel PMDK Transactions:

Specification, Validation and Concurrency (Extended Version)”, CoRR, Vol. abs/2312.13828, 2023.
URL https://doi.org//10.48550/ARXIV.2312.13828

Software Transactional Memory (STM) is an extensively studied paradigm that provides an
easy-to-use mechanism for thread safety and concurrency control. With the recent advent of
byte-addressable persisent memory, a natural question to ask is whether STM systems can be
adapted to support recoverability via failure atomicity. In this article, we answer this question
by showing how STM can be easily integrated with Intel’s Persistent Memory Development
Kit (PMDK) transactional library (which we refer to as txPMDK) to obtain STM systems
that are both concurrent and persistent. We demonstrate this approach using known STM
systems, TML and NOrec, which when combined with txPMDK result in persistent STM
systems, referred to as PMDK-TML and PMDK-NORec, respectively. However, it turns out
that existing correctness criteria are insufficient for specifying the behaviour of txPMDK and
our concurrent extensions. We therefore develop a new correctness criterion, dynamic durable
opacity, that extends the previously defined notion of durable opacity with dynamic memory
allocation. We provide a model of txPMDK that has been validated for accuracy with Intel
developers, then show that this model satisfies dynamic durable opacity. Moreover, dynamic
durable opacity supports concurrent transactions, thus we also use it to show correctness of
both PMDK-TML and PMDK-NORec.

3.4 Utilizing Coherence for Persistence
Michal Friedman (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Michal Friedman

Joint work of Richard Braun, Abishek Ramdas, Michal Friedman, Gustavo Alonso
Main reference Richard Braun, Abishek Ramdas, Michal Friedman, Gustavo Alonso: “PLayer: Expanding

Coherence Protocol Stack with a Persistence Layer”, in Proc. of the 1st Workshop on Disruptive
Memory Systems, DIMES 2023, Koblenz, Germany, 23 October 2023, pp. 8–15, ACM, 2023.

URL https://doi.org//10.1145/3609308.3625270

Mechanisms to explicitly manage data persistence for non-volatile main memories are
fundamental for the correctness and performance of modern systems. So far, however,
most solutions are primarily based on software techniques. In this talk, I will describe
a persistence layer on hardware, to support correct handling of persistent lock-free data
structures. By exploiting cache-coherence messages, persistence can be transparently managed
by the hardware, with minimal user intervention. We have experimented with a partial
design on a Soft-CPU running on an FPGA to explore the idea and plan to further extend it
into a real hardware implementation.

23412

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2312.13828
https://doi.org//10.48550/ARXIV.2312.13828
https://doi.org//10.48550/ARXIV.2312.13828
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3609308.3625270
https://doi.org//10.1145/3609308.3625270
https://doi.org//10.1145/3609308.3625270
https://doi.org//10.1145/3609308.3625270

56 23412 – Formal Methods for Correct Persistent Programming

3.5 Some compositional semantics for shared memory: sequential
consistency and release/acquire

Ohad Kammar (University of Edinburgh, GB)

License Creative Commons BY 4.0 International license
© Ohad Kammar

Joint work of Yotam Dvir, Ohad Kammar, Ori Lahav
Main reference Yotam Dvir, Ohad Kammar, Ori Lahav: “A Denotational Approach to Release-Acquire

Concurrency”. ESOP 2024.

I motivated and presented recent results, joint with Dvir and Lahav, in the composition-
al/denotational semantics for shared state concurrency that is structurally similar to standard,
but general, denotational semantics for sequential programs.

The desire for a uniform treatment of programming languages as standard features (let-
binding, function abstraction, pattern matching) augmented with domain-specific features
(mutable state, backtracking search, etc.) is as old as the discipline itself. I traced a specific
thread starting with Landin’s pragmatics and axiomatics, later realised by Plotkin’s structural-
operational semantics and, in the sequential case, extended to denotational semantics by
Moggi, and later refined by Plotkin and Power. With this perspective, I outlined our recent
Brookes-trace account for sequential consistent shared state using universal algebra and
monads and its limitations. I also outlined our ongoing account for the non-relaxed atomic
fragment of the release-acquire weak memory model and invited participants to follow-up
informally.

These informal discussions covered: (a) Brookes’s seminal work on trace semantics
for sequentially consistent shared-state and some of Lahav’s more recent results about its
abstraction; and (b) a technical description of our release-acquire denotational semantics.

3.6 Programming Persistency Should Be Easy – but is it?
Jeehoon Kang (KAIST – Daejeon, KR)

License Creative Commons BY 4.0 International license
© Jeehoon Kang

Joint work of Kyeongmin Cho, Seungmin Jeon, Azalea Raad, Sung-Hwan Lee, Jeehoon Kang
Main reference Kyeongmin Cho, Seungmin Jeon, Azalea Raad, Jeehoon Kang: “Memento: A Framework for

Detectable Recoverability in Persistent Memory”, Proc. ACM Program. Lang., Vol. 7(PLDI),
pp. 292–317, 2023.

URL https://doi.org//10.1145/3591232

Programming persistency poses two major challenges:
Non-determinism: Persist instructions may be reordered. Consequently, an earlier write
might be discarded while a later one is preserved in the event of a crash. Though this
challenge has been somewhat mitigated by recent hardware changes, including (e)ADR
and GPF.
Recovery: In the event of a crash, it is crucial to recover pre-crash contexts to complete
their execution.

Efficient and easy-to-implement crash recovery is still a promising area of research in
programming persistency. Although prior works like NVTraverse (PLDI 2020) and Mirror
(PLDI 2021) offer automatic translation of concurrent programs into persistent ones equipped
with recovery code, their applicability is confined to simpler program forms. Memento (PLDI
2023) is applicable to a broader range of programs but misses some optimization opportunities
related to DRAM caches and transactions.

What is the next generation technique for efficient and easy-to-implement crash recovery?

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Yotam Dvir, Ohad Kammar, Ori Lahav: ``A Denotational Approach to Release-Acquire Concurrency''. ESOP 2024.
Yotam Dvir, Ohad Kammar, Ori Lahav: ``A Denotational Approach to Release-Acquire Concurrency''. ESOP 2024.
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3591232
https://doi.org//10.1145/3591232
https://doi.org//10.1145/3591232
https://doi.org//10.1145/3591232

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 57

3.7 Challenges in Empirically Testing Memory Persistency Models
Vasileios Klimis (Queen Mary University of London, GB)

License Creative Commons BY 4.0 International license
© Vasileios Klimis

Joint work of Vasileios Klimis, Azalea Raad, Viktor Vafeiadis, John Wickerson, Alastair F. Donaldson

Memory persistency models provide a foundation for persistent programming by specifying
which (and when) writes to non-volatile memory (NVM) become persistent. Memory
persistency models for the Intel-x86 and Arm architectures have been formalised, but not
empirically validated against real machines. Traditional validation methods used for memory
consistency models do not straightforwardly apply because a test program cannot directly
observe when its data has become persistent: it cannot distinguish between reading data from
a volatile cache and from NVM. We investigate addressing this challenge using a commercial
off-the-shelf device that intercepts data on the memory bus and logs all writes in the order
they reach the memory. Using this technique we conducted a litmus-testing campaign aimed
at empirically validating the persistency guarantees of Intel-x86 and Arm machines. We
observed writes propagating to memory out of order, and took steps to build confidence
that these observations were not merely artefacts of our testing setup. However, despite
gaining high confidence in the trustworthiness of our observation method, our conclusions
remain largely negative. We found that the Intel-x86 architecture is not amenable to our
approach, and on consulting Intel engineers discovered that there are currently no reliable
methods of validating their persistency guarantees. For Arm, we found that even a machine
recommended to us by a persistency expert at Arm did not match the formal Arm persistency
model, due to a loophole in the specification. Nevertheless, our investigation and results
provide confidence that if Intel were to produce machines with more transparent persistency
behaviour, or if Arm machines with proper persistency support were to become available,
our approach would be valuable for empirically validating them against their specifications.

3.8 Automating Weak Memory Model Metatheory and Verification
Michalis Kokologiannakis (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Michalis Kokologiannakis

Joint work of Michalis Kokologiannakis, Ori Lahav, Viktor Vafeiadis
Main reference Michalis Kokologiannakis, Ori Lahav, Viktor Vafeiadis: “Kater: Automating Weak Memory Model

Metatheory and Consistency Checking”, Proc. ACM Program. Lang., Vol. 7(POPL), pp. 544–572,
2023.

URL https://doi.org//10.1145/3571212

Weak memory consistency models capture the outcomes of concurrent programs that appear
in practice and yet cannot be explained by thread interleavings. Such outcomes pose two
major challenges to formal methods. First, establishing that a memory model satisfies its
intended properties (e.g., supports a certain compilation scheme) is extremely error-prone:
most proposed language models were initially broken and required multiple iterations to
achieve soundness. Second, weak memory models make verification of concurrent programs
much harder, as a result of which there are no scalable verification techniques beyond a few
that target very simple models.

In this talk, I present solutions to both of these problems. First, I show that the relevant
metatheory of weak memory models can be effectively decided and present Kater, a tool
that can answer metatheoretic queries in a matter of seconds. Second, I present GenMC, the

23412

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3571212
https://doi.org//10.1145/3571212
https://doi.org//10.1145/3571212
https://doi.org//10.1145/3571212

58 23412 – Formal Methods for Correct Persistent Programming

first scalable stateless model checker that is parametric in the choice of the memory model.
To enhance the usability of GenMC, I demonstrate how Kater can be used to automate the
porting of new memory models into GenMC, as well as how the state-space size of concurrent
programs can be estimated.

3.9 Abstraction for Crash-Resilient Objects
Ori Lahav (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Ori Lahav

Joint work of Artem Khyzha, Ori Lahav
Main reference Artem Khyzha, Ori Lahav: “Abstraction for Crash-Resilient Objects”, in Proc. of the Programming

Languages and Systems – 31st European Symposium on Programming, ESOP 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Lecture Notes in Computer Science, Vol. 13240, pp. 262–289,
Springer, 2022.

URL https://doi.org//10.1007/978-3-030-99336-8_10

We study abstraction for crash-resilient concurrent objects using non-volatile memory (NVM).
We develop a library-correctness criterion that is sound for ensuring contextual refinement
in this setting, thus allowing clients to reason about library behaviors in terms of their
abstract specifications, and library developers to verify their implementations against the
specifications abstracting away from particular client programs. As a semantic foundation
we employ a recent NVM model, called Persistent Sequential Consistency, and extend its
language and operational semantics with useful specification constructs. The proposed
correctness criterion accounts for NVM-related interactions between client and library code
due to explicit persist instructions, and for calling policies enforced by libraries. We illustrate
our approach on two implementations and specifications of simple persistent objects with
different prototypical durability guarantees. Our results provide the first approach to formal
compositional reasoning under NVM.

3.10 Fairness for load buffering memory models
Anton Podkopaev (JetBrains – Amsterdam, NL)

License Creative Commons BY 4.0 International license
© Anton Podkopaev

Joint work of Anton Podkopaev, Ori Lahav
Main reference Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, Viktor Vafeiadis: “Making weak

memory models fair”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–27, 2021.
URL https://doi.org//10.1145/3485475

Liveness properties, such as termination, of even the simplest shared-memory concurrent
programs under sequential consistency typically require some fairness assumptions about
the scheduler. Under weak memory models, we observe that the standard notions of thread
fairness are insufficient, and an additional fairness property, which we call memory fairness,
is needed.

In previous work (Lahav et al., 2021), we proposed a uniform definition for memory
fairness that can be integrated into any declarative memory model enforcing acyclicity of
the union of the program order (po) and the reads-from (rf) relations. For the well-known
models, SC, x86-TSO, RA, and StrongCOH, that have equivalent operational and declarative
presentations, we showed that our declarative memory fairness condition is equivalent to an
intuitive model-specific operational notion of memory fairness, which requires the memory
system to fairly execute its internal propagation steps.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-99336-8_10
https://doi.org//10.1007/978-3-030-99336-8_10
https://doi.org//10.1007/978-3-030-99336-8_10
https://doi.org//10.1007/978-3-030-99336-8_10
https://doi.org//10.1007/978-3-030-99336-8_10
https://doi.org//10.1007/978-3-030-99336-8_10
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3485475
https://doi.org//10.1145/3485475
https://doi.org//10.1145/3485475

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 59

Now, we raise a question on how memory models allowing poUrf-cycles, i.e., allowing load
buffering, should be restricted to provide liveness guarantees. We showed that for Armv8 and
Power memory models the memory fairness condition is enough to preserve our compilation
correctness result (Podkopaev et al., 2019) for the Promising semantics (Kang et al., 2017),
if the set of locations accessed by a program is finite (for both Armv8 and Power compilation
targets) as well as a number of threads spawned by the program (needed only for Power). We
also show that the compilation result is preserved for a restricted version of the Promising
semantics, which we call Promising_fair. The restriction guarantees that any promise made
by a thread is eventually fulfilled.

3.11 DARTAGNAN: One tool for all models
Hernán Ponce de León (Huawei Technologies – München, DE)

License Creative Commons BY 4.0 International license
© Hernán Ponce de León

Main reference Thomas Haas, Roland Meyer, Hernán Ponce de León: “CAAT: consistency as a theory”, Proc. ACM
Program. Lang., Vol. 6(OOPSLA2), pp. 114–144, 2022.

URL https://doi.org//10.1145/3563292

The notion of consistency exists in several communities within computer science: program-
ming languages, CPUs, databases, GPUs, non-volatile memory, etc. Despite the different
application domains, the foundations are not that different. CAT is a domain specific language
that allows to formalize different notions of consistency. Having a unified DSL facilitates the
building of verification technology that works across all the application domains.

In this talk, I present how to encode program correctness with respect to a given CAT
model using SMT based Bounded Model Checking. I show how to achieve scalability (i.e.,
we can verify real code coming from the Linux kernel) based on two key ideas. The first
contribution (OOPSLA’22) is based in interpreting consistency as an SMT theory. This
allows to simplify the part of the encoding that needs to be handled by the SAT solver and
moves the hardness of encoding consistency into the theory solver where we can use domain
specific knowledge to improve solving time. The second contribution (OOPSLA’23) is a static
analysis of the consistency model which allows to propagate information in two directions:
bottom-up from base relations to derived relations, and top-down from consistency axioms
over derived relations to base relations.

3.12 Towards a formal specification of the Intel Architecture
Alastair Reid (Intel – London, GB)

License Creative Commons BY 4.0 International license
© Alastair Reid

Formal specifications of CPU architectures are useful for formally verifying hardware and
software; for verifying compilers; for discovering compiler peepholes; and for analyzing
programs for security issues. We are creating a formal specification of the Intel Architecture
(aka "x86") with the intention that the specification is complete (e.g., able to boot an OS or
run SGX code); correct (e.g., validated using the same tests that processors are tested with);
readable (e.g., suitable for use in the Intel Software Developer’s Manual); available (e.g., on
GitHub and licensed under a suitably permissive license); usable (tools are available and can

23412

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3563292
https://doi.org//10.1145/3563292
https://doi.org//10.1145/3563292
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

60 23412 – Formal Methods for Correct Persistent Programming

be used as the basis of other tools); and used by our customers, 3rd party developers, the
open source community, academic researchers, etc. (we will help users understand what the
spec can do and how to use and adapt the tools to enable a diverse set of uses).

3.13 System and Failure Models Matter
Michael Scott (University of Rochester, US)

License Creative Commons BY 4.0 International license
© Michael Scott

Those of us here today are intensely interested in formal models of concurrency and persistence.
In addition to posing challenging problems from an intellectual perspective, these models
need to capture key aspects of real-world systems if they are to have an impact on practice.
In this talk I briefly survey (my opinions regarding) the space of interesting models. In
particular, we can consider

system models, which capture the hardware and software architecture on which our
algorithms run;
persistency models, which capture instruction-level ordering and the reads-see-writes
relationship in the presence of crashes; and
failure models, which consider what exactly may fail, what resumes, and how.

Among other things, I suggest that:
Independent thread failures (esp. with threads that are recovered and continue) have few
if any real-world analogues, and should be pursued with caution.
Real-world systems are likely to have much more NVM than DRAM, so work that mirrors
all persistent data in DRAM should be pursued with caution.
Hardware designers have considerable motivation to develop persistent caches, so work
that assumes that cached data will always be transient should be pursued with caution.
The world is still looking for an NVM killer app.

3.14 Transactional Semantics with Zombies
Michael Scott (University of Rochester, US)

License Creative Commons BY 4.0 International license
© Michael Scott

Main reference Michael Scot: “Transactional Semantics with Zombies” Invited presentation, 6th Workshop on the
Theory of Transactional Memory (WTTM), Paris, France, July 2014.

Different formal models of transactional memory are required at different levels of the system
stack. This paper focuses on the run-time level, where the semantics of individual operations
(start, read, write, try-commit) govern the interactions between the compiler and the TM
system. For sandboxing TM systems, which allow a doomed transaction (a “zombie”) to
continue for some time beyond an inconsistent read, run-time–level semantics cannot be
captured by opacity as currently defined: we need a formal model of zombie execution.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Michael Scot: ``Transactional Semantics with Zombies'' Invited presentation, 6th Workshop on the Theory of Transactional Memory (WTTM), Paris, France, July 2014.
Michael Scot: ``Transactional Semantics with Zombies'' Invited presentation, 6th Workshop on the Theory of Transactional Memory (WTTM), Paris, France, July 2014.

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 61

3.15 Specifying and Verifying Persistent Libraries
Léo Stefanesco (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Léo Stefanesco

Joint work of Léo Stefanesco, Azalea Raad, Viktor Vafeiadis
Main reference Léo Stefanesco, Azalea Raad, Viktor Vafeiadis: “Specifying and Verifying Persistent Libraries”,

CoRR, Vol. abs/2306.01614, 2023.
URL https://doi.org//10.48550/ARXIV.2306.01614

We present a general framework for specifying and verifying persistent libraries, that is,
libraries of data structures that provide some persistency guarantees upon a failure of
the machine they are executing on. Our framework enables modular reasoning about the
correctness of individual libraries (horizontal and vertical compositionality) and is general
enough to encompass all existing persistent library specifications ranging from hardware
architectural specifications to correctness conditions such as durable linearizability. As case
studies, we specify the FliT and Mirror libraries, verify their implementations over Px86, and
use them to build higher-level durably linearizable libraries, all within our framework. We
also specify and verify a persistent transaction library that highlights some of the technical
challenges which are specific to persistent memory compared to weak memory and how they
are handled by our framework.

3.16 A Type System for Intermittent Computing
Milijana Surbatovich (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Milijana Surbatovich

Joint work of Milijana Surbatovich, Naomi Spargo, Limin Jia, Brandon Lucia
Main reference Milijana Surbatovich, Naomi Spargo, Limin Jia, Brandon Lucia: “A Type System for Safe

Intermittent Computing”, Proc. ACM Program. Lang., Vol. 7(PLDI), pp. 736–760, 2023.
URL https://doi.org//10.1145/3591250

Batteryless, energy harvesting devices (EHDs) enable computing in environments that are too
remote or inaccessible to support battery maintenance, benefiting application domains like
disaster monitoring, health wearables, and smart civil and agricultural infrastructure. Instead
of relying on a battery, these devices harvest all energy they need from their surroundings.
Because the target application domains have high assurance requirements, computation on
EHDs should be correct; unfortunately, harvested energy is typically too weak to power a
device continuously, resulting in frequent power failures that break software and systems
designed to run on continuous power. The field of intermittent computing seeks to overcome
the correctness and programmability challenges introduced by these power failures but has
historically relied on ad-hoc correctness reasoning that provides no guarantees.

This talk motivates the need for formal methods research for designing correct intermittent
systems, highlighting the importance of modularity and abstraction in both formalism and
system design. It then presents Curricle, an information-flow type system for reasoning
about safe intermittent execution that gives programmers more control and provides natural
layering between the application and runtime system levels of the stack. The talk concludes
by discussing open problems in the intermittent computing field.

23412

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2306.01614
https://doi.org//10.48550/ARXIV.2306.01614
https://doi.org//10.48550/ARXIV.2306.01614
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3591250
https://doi.org//10.1145/3591250
https://doi.org//10.1145/3591250

62 23412 – Formal Methods for Correct Persistent Programming

3.17 Separation Logic for Concurrent, Crash-Safe Systems
Joseph Tassarotti (New York University, US)

License Creative Commons BY 4.0 International license
© Joseph Tassarotti

Joint work of Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, Nickolai Zeldovich
Main reference Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, Nickolai Zeldovich:

“GoJournal: a verified, concurrent, crash-safe journaling system”, in Proc. of the 15th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2021, July 14-16, 2021,
pp. 423–439, USENIX Association, 2021.

URL https://www.usenix.org/conference/osdi21/presentation/chajed

Storage systems, such as databases and file systems, often have concurrent implementations.
These systems are expected to be crash-safe, meaning that they should be able to recover
from failures caused by power loss. However, achieving crash-safety is difficult because
programmers must consider many potential interleavings of threads as well as the possibility
of interruption from crashes at any point. Perennial is a separation logic framework for
formally verifying crash safety of concurrent systems. This talk describes the core reasoning
principles of Perennial and our experience using Perennial to verify GoTxn, a concurrent
transaction system.

3.18 Persistent Scripting
Haris Volos (University of Cyprus – Nicosia, CY)

License Creative Commons BY 4.0 International license
© Haris Volos

Joint work of Zi Fan Tan, Jianan Li, Terence Kelly, Arnold Robbins, Haris Volos

Persistent scripting brings the benefits of persistent memory programming to high-level
interpreted languages. More importantly, it brings the convenience and programmer pro-
ductivity of scripting to persistent memory programming. We have integrated a novel generic
persistent memory allocator into a popular scripting language interpreter, which now exposes
a simple and intuitive persistence interface: A flag notifies the interpreter that a script’s
variables reside in a persistent heap in a specified file. The interpreter begins script execution
with all variables in the persistent heap ready for immediate use. New variables defined by
the running script are allocated on the persistent heap and are thus available to subsequent
executions. Scripts themselves are unmodified and persistent heaps may be shared freely
between unrelated scripts.

3.19 Verifying the persistency library FliT
Heike Wehrheim (Universität Oldenburg, DE)

License Creative Commons BY 4.0 International license
© Heike Wehrheim

Joint work of Stefan Bodenmüller, John Derrick, Brijesh Dongol, Gerhard Schellhorn, Heike Wehrheim
Main reference Stefan Bodenmüller, John Derrick, Brijesh Dongol, Gerhard Schellhorn, Heike Wehrheim: “A Fully

Verified Persistency Library”, in Proc. of the Verification, Model Checking, and Abstract
Interpretation – 25th International Conference, VMCAI 2024, London, United Kingdom, January
15-16, 2024, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 14500, pp. 26–47,
Springer, 2024.

URL https://doi.org//10.1007/978-3-031-50521-8_2

Non-volatile memory (NVM) technologies offer DRAM-like speeds with the added benefit
of failure resilience. However, developing concurrent programs for NVM can be challenging
since programmers must consider both inter-thread synchronisation and durability aspects

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-031-50521-8_2
https://doi.org//10.1007/978-3-031-50521-8_2
https://doi.org//10.1007/978-3-031-50521-8_2
https://doi.org//10.1007/978-3-031-50521-8_2
https://doi.org//10.1007/978-3-031-50521-8_2
https://doi.org//10.1007/978-3-031-50521-8_2

Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis 63

at the same time. To alleviate this, libraries such as FliT have been developed to manage
transformations to durability, allowing a linearizable concurrent object to be converted into
a durably linearizable one with minimal programmer effort. However, a formal proof of
correctness for FliT is missing, and standard proof techniques for durable linearizability are
challenging to apply since FliT itself is not durably linearizable.

In this talk, I report on our work on showing correctness of transformations to durability.
First, we develop an abstract persistency library (called PLib) that operationally characterises
transformations to durability and we prove its correctness. Second, we show correctness of
the library FliT by proving that FliT refines PLib under the realistic Px86 memory model,
i.e., the persistent version of TSO memory model implemented by Intel architectures. The
proof of refinement between FliT and PLib has been mechanised within the theorem prover
KIV. Taken together, these proofs guarantee that FliT is also sound wrt transformations to
durability.

23412

64 23412 – Formal Methods for Correct Persistent Programming

Participants

Guillaume Ambal
Imperial College London, GB

Parosh Aziz Abdulla
Uppsala University, SE

Mark Batty
University of Kent –
Canterbury, GB

Michael D. Bond
Ohio State University –
Columbus, US

Ahmed Bouajjani
Université Paris Cité, FR

Paulo Emílio de Vilhena
Imperial College London, GB

Brijesh Dongol
University of Surrey –
Guildford, GB

Michal Friedman
ETH Zürich, CH

Ohad Kammar
University of Edinburgh, GB

Jeehoon Kang
KAIST – Daejeon, KR

Vasileios Klimis
Queen Mary University of
London, GB

Michalis Kokologiannakis
MPI-SWS – Kaiserslautern, DE

Ori Lahav
Tel Aviv University, IL

Anton Podkopaev
JetBrains – Amsterdam, NL

Hernán Ponce de León
Huawei Technologies –
München, DE

Azalea Raad
Imperial College London, GB

Alastair Reid
Intel – London, GB

Michael Scott
University of Rochester, US

Léo Stefanesco
MPI-SWS – Kaiserslautern, DE

Milijana Surbatovich
Carnegie Mellon University –
Pittsburgh, US

Joseph Tassarotti
New York University, US

Viktor Vafeiadis
MPI-SWS – Kaiserslautern, DE

Haris Volos
University of Cyprus –
Nicosia, CY

Heike Wehrheim
Universität Oldenburg, DE

Report from Dagstuhl Seminar 23421

Quantum Cryptanalysis
Gorjan Alagic∗1, Maria Naya-Plasencia∗2, Rainer Steinwandt∗3, and
Manasi Shingane†4

1 University of Maryland – College Park, US. galagic@gmail.com
2 INRIA – Paris, FR. maria.naya_plasencia@inria.fr
3 University of Alabama in Huntsville, US. rs0141@uah.edu
4 University of Maryland – College Park, US. mshingan@umd.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23421 “Quantum
Cryptanalysis”. The seminar took place as an in-person event in October 2023 and was the seventh
installment of the Dagstuhl Seminar series on Quantum Cryptanalysis. This report describes the
motivation and technical scope of the seminar as well as the (updated) organizational structure of
this week-long event. We also include abstracts of the seminar presentations given by participants
and a description of the activities of the working groups.
Seminar October 15–20, 2023 – https://www.dagstuhl.de/23421
2012 ACM Subject Classification Security and privacy → Cryptanalysis and other attacks
Keywords and phrases computational algebra, cryptanalysis, post-quantum cryptography,

quantum algorithms, quantum resource estimation
Digital Object Identifier 10.4230/DagRep.13.10.65

1 Executive Summary

Gorjan Alagic (University of Maryland – College Park, US)
Stacey Jeffery (CWI – Amsterdam, NL)
Maria Naya-Plasencia (INRIA – Paris, FR)
Rainer Steinwandt (University of Alabama in Huntsville, US)

License Creative Commons BY 4.0 International license
© Gorjan Alagic, Stacey Jeffery, Maria Naya-Plasencia, and Rainer Steinwandt

Motivation and technical scope

Due to the coronavirus pandemic, the previous Dagstuhl Seminar in the Quantum Crypt-
analysis series (in 2021) took place in a hybrid format. With this latest installment in 2023,
we returned to the standard fully in-person format at Schloss Dagstuhl and incorporated
more group work. Since the 2021 meeting, the scientific community progressed significantly
in developing and standardizing post-quantum cryptography for general use. In particular,
the U.S. National Institute of Standards and Technology (NIST) announced that it will
standardize several public-key cryptographic schemes. The study of candidates in this process
has been a focus of past installments of the Quantum Cryptanalysis seminar series and this
year’s Dagstuhl Seminar. The 2023 seminar was also interested in the analysis of two more
scheme categories. The first category consists of additional public-key schemes that either
have different performance profiles, or different security properties (e.g., are based on the
hardness of other mathematical problems) than the NIST-selected schemes. The second

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Quantum Cryptanalysis, Dagstuhl Reports, Vol. 13, Issue 10, pp. 65–75
Editors: Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:galagic@gmail.com
mailto:maria.naya\protect _plasencia@inria.fr
mailto:rs0141@uah.edu
mailto:mshingan@umd.edu
https://www.dagstuhl.de/23421
https://doi.org/10.4230/DagRep.13.10.65
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

66 23421 – Quantum Cryptanalysis

category consists of symmetric-key schemes; while post-quantum standardization has not
as yet focused on symmetric-key cryptography, there are many open questions about their
security in the presence of quantum adversaries.

As one would expect from the title of the seminar, studying the best-known algorithmic
attacks on cryptographic schemes was a focus of the conversations. Understanding the best-
known attacks enables cryptographers to select the strongest schemes and set their parameters
in a manner that appropriately balances security with performance. Technical talks included
work on quantum-computational algorithms for attacking three categories of public-key
schemes: lattice-based, code-based, and isogeny-based. We also had two presentations on
new ideas for attacking symmetric-key cryptography using quantum computers. In addition,
the technical program included an update from NIST on the progress of their various
standardization processes related to the seminar scope.

As in the past, the seminar brought together researchers in several relevant fields, including
quantum-computational algorithms, classical public-key and symmetric-key cryptography,
and the mathematics of lattices and codes. This enabled the participants to get an overview
of the latest advances in all of these fields.

Organization

To leverage some of the unique opportunities Schloss Dagstuhl offers, as in the past, we left
ample time for discussions and collaboration; the typical day called for between two and
three presentations total. The remaining time was more structured than in past instances of
the seminar. Before the seminar began, the organizers contacted the participants to solicit
topics and started to organize working groups. The first day of the seminar was then mainly
focused on establishing the working groups and the technical topics they would focus on. The
working groups met throughout the week to discuss their technical subjects and regularly
reported their progress to the entire seminar. The participant-selected working group topics
were:

quantum algorithms for the lattice isomorphism problem (a new problem with potential
for post-quantum applications),
Regev’s quantum factoring algorithm (a new algorithm that may affect how soon current
cryptography will become obsolete),
cryptanalysis of LR5 (a fundamental building block in symmetric-key cryptography), and
code-based cryptosystems (these are next on the slate of possible standardized schemes).

Following the Dagstuhl tradition and in line with prior seminars in the Quantum Cryptanalysis
series, there was no technical program during Wednesday afternoon. This enabled participants
to explore the surroundings or spend more time on collaborative research.

With 34 participants, Schloss Dagstuhl hosted a diverse group of leading experts from
across the globe. A significant number of the participants were graduate students. These
young researchers were able to interact with leading experts in working on the latest science
and gain valuable insights to help them developing their career.

Results and next steps

The working groups were a welcome addition this year, with several participants praising
this style of seminar structure. The working groups were able to make technical progress
during the week and several groups continued collaborating after the seminar.

Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt 67

The various technical presentations showed that significant progress is being made in
the field more generally. This indicates that the intersection of quantum computing and
classical cryptography is a vibrant and active field. The Dagstuhl Seminar series on Quantum
Cryptanalysis plays an important role in this area of science. We expect this will continue,
as the community carries on with the process of standardizing and deploying post-quantum
cryptography in the real world. This process is already generating challenging scientific
questions that the seminar could help address. For instance, the only general-purpose schemes
currently slated for standardization are based on lattice problems; how can the community
select high-performing replacement schemes that can serve as a backup in case lattices fail?

23421

68 23421 – Quantum Cryptanalysis

2 Table of Contents

Executive Summary
Gorjan Alagic, Stacey Jeffery, Maria Naya-Plasencia, and Rainer Steinwandt . . . 65

Overview of Talks
NIST PQC process update
Gorjan Alagic and Daniel C. Smith-Tone . 69

Single-query Quantum Hidden Shift Attacks
Xavier Bonnetain . 69

Quantum algorithms for isogeny-based cryptography
Péter Kutas . 70

Quantum Linear Key-recovery Attacks Using the QFT
André Schrottenloher . 70

Quantum algorithms for lattice problems
Yixin Shen . 70

Quantum decoding problem
Jean-Pierre Tillich . 71

Working groups
Quantum algorithms for Lattice Isomorphism Problem
Jean-François Biasse . 71

Regev’s quantum factoring algorithm
Martin Ekerå . 72

Cryptanalysis of LR5
Christian Majenz . 73

Code-based group
Jean-Pierre Tillich . 73

Participants . 75

Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt 69

3 Overview of Talks

3.1 NIST PQC process update
Gorjan Alagic (University of Maryland – College Park, US) and Daniel C. Smith-Tone
(NIST – Gaithersburg, US)

License Creative Commons BY 4.0 International license
© Gorjan Alagic and Daniel C. Smith-Tone

Since 2016, the U.S. National Institute of Standards and Technology has been running a
standardization process for post-quantum public-key cryptography. So far, this process
has produced one standard for a key encapsulation mechanism (Kyber / ML-KEM) and
three standards for digital signature schemes (Dilithium / ML-DSA, Falcon / FN-DSA, and
SPHINCS+ / SLH-DSA). Three of these standards are currently drafts open for public
comment. At the same time, NIST is continuing to look at post-quantum KEMs, and has
begun an additional process for standardizing more signature schemes. This talk will give an
overview of this process and what the future might hold.

3.2 Single-query Quantum Hidden Shift Attacks
Xavier Bonnetain (LORIA & INRIA Nancy, FR)

License Creative Commons BY 4.0 International license
© Xavier Bonnetain

Quantum attacks using superposition queries are known to break many classically secure
modes of operation. While these attacks do not necessarily threaten the security of the
modes themselves, since they rely on a strong adversary model, they help us to draw limits
on the provable security of these modes.

Typically these attacks use the structure of the mode (stream cipher, MAC or authen-
ticated encryption scheme) to embed a period-finding problem, which can be solved with a
dedicated quantum algorithm. The hidden period can be recovered with a few superposition
queries (e.g., O(n) for Simon’s algorithm), leading to state or key-recovery attacks. However,
this strategy breaks down if the period changes at each query, e.g., if it depends on a nonce.

In this talk, we focus on this case and give dedicated state-recovery attacks on the
authenticated encryption schemes Rocca, Rocca-S, Tiaoxin-346 and AEGIS-128L. These
attacks rely on a procedure to find a Boolean hidden shift with a single superposition query,
which overcomes the change of nonce at each query. As they crucially depend on such queries,
we stress that they do not break any security claim of the authors, and do not threaten the
schemes if the adversary only makes classical queries.

23421

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

70 23421 – Quantum Cryptanalysis

3.3 Quantum algorithms for isogeny-based cryptography
Péter Kutas (University of Birmingham, GB)

License Creative Commons BY 4.0 International license
© Péter Kutas

In the talk we surveyed quantum algorithms relevant to isogeny-based cryptography. One
aspect of isogenies is that one can instantiate cryptographic group actions with them that
still retain certain properties of discrete logarithms but are not susceptible to attacks via
Shor’s algorithm. We discussed certain reductions between hard problems related to group
actions most importantly the quantum equivalence of inverting the group action and the
computational Diffie-Hellman problem (and that such an equivalence is highly unlikely in the
classical setting as it would mean that the discrete logarithm and factoring assumptions do
not hold). We also discussed recent quantum attacks on pSIDH utilizing a non-abelian hidden
subgroup problem and improved quantum algorithms for finding fixed degree isogenies.

3.4 Quantum Linear Key-recovery Attacks Using the QFT
André Schrottenloher (INRIA – Rennes, FR)

License Creative Commons BY 4.0 International license
© André Schrottenloher

Main reference André Schrottenloher: “Quantum Linear Key-recovery Attacks Using the QFT”, 2023.
URL https://eprint.iacr.org/2023/184

The Quantum Fourier Transform is a fundamental tool in quantum cryptanalysis. In
symmetric cryptanalysis, hidden shift algorithms such as Simon’s (FOCS 1994), which rely
on the QFT, have been used to obtain structural attacks on some very specific block ciphers.
The Fourier Transform is also used in classical cryptanalysis, for example in FFT-based linear
key-recovery attacks introduced by Collard et al. (ICISC 2007). Whether such techniques
can be adapted to the quantum setting has remained so far an open question.

In this paper, we introduce a new framework for quantum linear key-recovery attacks
using the QFT. These attacks loosely follow the classical method of Collard et al., in that
they rely on the fast computation of a “correlation state” in which experimental correlations,
rather than being directly accessible, are encoded in the amplitudes of a quantum state. The
experimental correlation is a statistic that is expected to be higher for the good key, and on
some conditions, the increased amplitude creates a speedup with respect to an exhaustive
search of the key. The same method also yields a new family of structural attacks, and new
examples of quantum speedups beyond quadratic using classical known-plaintext queries.

3.5 Quantum algorithms for lattice problems
Yixin Shen (King’s College London, GB)

License Creative Commons BY 4.0 International license
© Yixin Shen

In this talk, I survey some algorithmic problems that arise from the cryptanalysis of lattice-
based crytographic schemes such as the Shortest Vector problem and the Learning with
Errors problem. Then I particularly focus on how quantum algorithms can help us obtain
speed-ups on different approaches to solve those problems.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://eprint.iacr.org/2023/184
https://eprint.iacr.org/2023/184
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt 71

3.6 Quantum decoding problem
Jean-Pierre Tillich (INRIA – Paris, FR)

License Creative Commons BY 4.0 International license
© Jean-Pierre Tillich

One of the founding results of lattice based cryptography is a quantum reduction from the
Short Integer Solution problem to the Learning with Errors problem introduced by Regev.
It has recently been pointed out by Chen, Liu and Zhandry that this reduction can be made
more powerful by replacing the learning with errors problem with a quantum equivalent,
where the errors are given in quantum superposition. In the context of codes, this can be
adapted to a reduction from finding short codewords to a quantum decoding problem for
random linear codes.

We therefore consider in this paper the quantum decoding problem, where we are given
a superposition of noisy versions of a codeword and we want to recover the corresponding
codeword. When we measure the superposition, we get back the usual classical decoding
problem for which the best known algorithms are in the constant rate and error-rate regime
exponential in the codelength. However, we will show here that when the noise rate is small
enough, then the quantum decoding problem can be solved in quantum polynomial time.
Moreover, we also show that the problem can in principle be solved quantumly (albeit not
efficiently) for noise rates for which the associated classical decoding problem cannot be
solved at all for information theoretic reasons.

We then revisit Regev’s reduction in the context of codes. We show that using our
algorithms for the quantum decoding problem in Regev’s reduction matches best known
quantum algorithms for the short codeword problem. This shows in some sense the tightness
of Regev’s reduction when considering the quantum decoding problem and also paves the
way for new quantum algorithms for the short codeword problem.

4 Working groups

4.1 Quantum algorithms for Lattice Isomorphism Problem
Jean-François Biasse (University of South Florida – Tampa, US)

License Creative Commons BY 4.0 International license
© Jean-François Biasse

The lattice isomorphism problem (LIP) consists in finding a secret isometry between two
input Euclidean lattices. LIP is a fundamental problem that has been studied for decades.
Recently, Ducas and van Woerden proposed cryptosystems whose security rely on the
presumed hardness of LIP. The known algorithms for the resolution of LIP rely on the
calculation of short vectors in the input lattices. The shortest vector problem is a notoriously
hard problem, even for quantum computers. This suggests that cryptosystems based on LIP
might feature quantum resistance.

No quantum algorithms for the resolution of LIP have ever been described in the literature.
The best classical algorithms for computing an isomorphism between two given lattices run
in time nn (or 2n/2 if one of the input lattices is Zn). Finding a quantum algorithm with a
better complexity than the existing classical algorithms for the resolution of LIP is an open
problem.

23421

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

72 23421 – Quantum Cryptanalysis

Our group investigated quantum algorithms for the resolution of LIP. Several avenues
were considered:

We rephrased LIP as a hidden shift problem, which is a task that can (in certain cases)
be solved efficiently by quantum computers.
We reviewed the generation of instances of the LIP that are used for the creation of
cryptographic keys. We studied conditions on the parameters that can make the LIP-based
cryptosystems insecure.
We studied quantum analogues of the existing classical algorithms for the resolution of
LIP.
We researched quantum algorithms to compute short vectors in lattices that are rotations
of Zn, which is a task for which there exist ad-hoc classical solutions that outperform
generic methods.

4.2 Regev’s quantum factoring algorithm
Martin Ekerå (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 4.0 International license
© Martin Ekerå

The work in our breakout group focused on Regev’s recent d-dimensional variation [1] of
Shor’s quantum factoring algorithm ([2], [3]), and on better understanding its advantages
and disadvantages in practical implementations.

Of particular interest to our group was the very recent Fibonacci-based arithmetic [4] that
seemingly resolves reversibility issues previously identified by Ekerå and Gidney in Regev’s
binary tree-based arithmetic.

There were presentations of ongoing work, including work [5] on extending Regev’s
algorithm to computing discrete logarithms, and work ([6], [7]) on simulating the quantum
parts of the algorithms for integers of known factorization and for groups where computing
discrete logarithms is classically easy.

The aforementioned simulators enable the heuristic assumptions in Regev’s analysis to be
verified. Furthermore, they enable the robustness of the classical post-processing to erroneous
runs to be analyzed – where an erroneous run is a run in which the error correction fails to
properly correct all errors, leading to a bad vector being output. There was discussion in the
group regarding options for filtering out good vectors from bad vectors.

For the extension to discrete logarithms to be efficient, it is required that the group has a
notion of small elements, that when composed yield elements that are also small, and where
the composition of small elements is considerably less expensive than the composition of
arbitrary group elements. A notion of small elements exists for Z∗

p. There was discussion in
the group regarding whether a similar notion exists for elliptic curve groups.

References
1 Regev, O. An efficient quantum factoring algorithm. ArXiv Preprint ArXiv:2308.06572.

(2023)
2 Shor, P. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings

35th Annual Symposium On Foundations Of Computer Science. pp. 124-134 (1994)
3 Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM Review. 41, 303-332 (1999)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt 73

4 Ragavan, S. & Vaikuntanathan, V. Optimizing Space in Regev’s Factoring Algorithm. ArXiv
Preprint ArXiv:2310.00899. (2023)

5 Ekerå, M. & Gärtner, J. Extending Regev’s factoring algorithm to compute discrete
logarithms. ArXiv Preprint ArXiv:2311.05545. (2023)

6 M. Ekerå and J. Gärtner: “Simulating Regev’s quantum factoring algorithm”. GitHub
repository ekera/regevnum. (2023) URL: https://github.com/ekera/regevnum

7 M. Ekerå and J. Gärtner: “Simulating our extension of Regev’s quantum factoring algorithm
to compute discrete logarithms”. Unpublished GitHub repository. (2023)

4.3 Cryptanalysis of LR5
Christian Majenz (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 4.0 International license
© Christian Majenz

The Feistel network is a versatile blueprint for constructing pseudorandom permutations
(PRPs) and block ciphers. The simplest application is a family of constructions of a PRP
from a pseudorandom function, indexed by the number of rounds. There is an extensive body
of quantum attacks on the construction in the Q2 model, where an attacker has quantum
query access to the PRP. For the five round variant, also known as LR5 (“Luby-Rackoff 5”),
there is no quantum attack known separating its chosen-plaintext (CPA) security from its
chosen-ciphertext (CCA) security (or its PRP security from its strong PRP security). In this
working group, we explored a number of approaches of leveraging an existing polynomial-time
on the four-round variant based on Simon’s algorithm to devise a CCA attack on five rounds
that improves over the existing CPA attack.

4.4 Code-based group
Jean-Pierre Tillich (INRIA – Paris, FR)

License Creative Commons BY 4.0 International license
© Jean-Pierre Tillich

In this working group we
1. first provided an introduction to the decoding problem suitable for a broad audience;
2. then we looked in detail at a recent (classical) algorithm for performing this task consisting

in applying sieving techniques which are common in lattice based cryptography but not
in code based cryptography. See [1]. A nice feature of this algorithm is that it uses
relatively low memory and its running time is rather competitive when compared to the
best decoding algorithms. This makes it a very good candidate for quantization.

3. In the last part of the working group, we went through one of the best quantum algorithm
for performing lattice sieving based on random walks and suitable product codes for the
unit sphere, see [2].

We concluded that these techniques should carry over for performing quantumly the
sieving task relevant for decoding and discussed some technical points which can be found in
Kevin Carrier’s thesis [3].

All in all this should lead to a new quantum algorithm for decoding a linear code which
could be a record breaker in terms of complexity.

23421

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

74 23421 – Quantum Cryptanalysis

References
1 Ducas, L., Esser, A., Etinski, S. & Kirshanova, E. Asymptotics and Improvements of Sieving

for Codes. Cryptology EPrint Archive. (2023)
2 Chailloux, A. & Loyer, J. Lattice sieving via quantum random walks. Advances In Crypto-

logy–ASIACRYPT 2021: 27th International Conference On The Theory And Application Of
Cryptology And Information Security, Singapore, December 6–10, 2021, Proceedings, Part
IV 27. pp. 63-91 (2021)

3 Carrier, K. Recherche de presque-collisions pour le décodage et la reconnaissance de codes
correcteurs. (Sorbonne université,2020)

Gorjan Alagic, Maria Naya-Plasencia, and Rainer Steinwandt 75

Participants

Gorjan Alagic
University of Maryland –
College Park, US

Kaveh Bashiri
BSI – Bonn, DE

Jean-François Biasse
University of South Florida –
Tampa, US

Xavier Bonnetain
LORIA & INRIA Nancy, FR

Yanlin Chen
CWI – Amsterdam, NL

Arjan Cornelissen
IRIF – Paris, FR

Martin Ekerå
KTH Royal Institute of
Technology – Stockholm, SE

Lynn Engelberts
CWI – Amsterdam, NL &
QuSoft – Amsterdam, NL

Simona Etinski
CWI – Amsterdam, NL

Paul Frixons
INRIA Nancy – Grand Est, FR

Vlad Gheorghiu
University of Waterloo, CA &
softwareQ Inc. – Waterloo, CA

Sean Hallgren
Pennsylvania State University –
University Park, US

Jacek Horecki
BEIT – Kraków, PL

Akinori Hosoyamada
NTT – Tokyo, JP

Péter Kutas
University of Birmingham, GB

Johanna Loyer
INRIA – Paris, FR

Frédéric Magniez
CNRS – Paris, FR

Christian Majenz
Technical University of Denmark
– Lyngby, DK

Alexander May
Ruhr-Universität Bochum, DE

Garazi Muguruza
QuSoft & University of
Amsterdam, NL

Maria Naya-Plasencia
INRIA – Paris, FR

Lorenz Panny
TU München – Garching, DE

Galina Pass
QuSoft – Amsterdam, NL

Yu Sasaki
NTT – Tokyo, JP

André Schrottenloher
INRIA – Rennes, FR

Yixin Shen
King’s College London, GB

Manasi Shingane
University of Maryland –
College Park, US

Daniel C. Smith-Tone
NIST – Gaithersburg, US

Jana Sotáková
University of Amsterdam, NL

Rainer Steinwandt
University of Alabama in
Huntsville, US

Jean-Pierre Tillich
INRIA – Paris, FR

Maya-Iggy van Hoof
Ruhr-Universität Bochum, DE

Michael Walter
Ruhr-Universität Bochum, DE

Sara Zafar Jafarzadeh
University of Waterloo, CA &
Synopsys Inc. – Ottawa, CA

23421

Report from Dagstuhl Seminar 23422

Graph Algorithms: Cuts, Flows, and Network Design
Jason Li∗1, Debmalya Panigrahi∗2, Laura Sanita∗3, and
Thatchaphol Saranurak∗4

1 University of California – Berkeley, US. jmli@alumni.cmu.edu
2 Duke University – Durham, US. debmalya.panigrahi@gmail.com
3 Università Bocconi – Milan, IT. laura.sanita@unibocconi.it
4 University of Michigan – Ann Arbor, US. thsa@umich.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23422 “Graph
Algorithms: Cuts, Flows, and Network Design”. This seminar brought 25 leading researchers
in graph algorithms together for a discussion of the recent progress and challenges in two areas:
the design of fast algorithm for fundamental flow/cut problems and the design of approximation
algorithms for basic network design problems. The seminar included several talks of varying
lengths, a panel discussion, and an open problem session. In addition, sufficient time was set
aside for research discussions and collaborations.
Seminar October 15–20, 2023 – https://www.dagstuhl.de/23422
2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory

of computation → Network flows
Keywords and phrases approximation, graph algorithm, maximum flow, minimum cut, network

design
Digital Object Identifier 10.4230/DagRep.13.10.76

1 Executive Summary

Jason Li (University of California – Berkeley, US)
Debmalya Panigrahi (Duke University – Durham, US)
Laura Sanita (Università Bocconi – Milan, IT)
Thatchaphol Saranurak (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
© Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak

Graph algorithms are among the foundational pillars of algorithm design and combinatorial
optimization. In addition to its significance as a theoretical discipline, graph algorithms are
also ubiquitous in practice, with applications in essentially every scientific discipline. This
has spawned research in many different directions within graph algorithms over the past few
decades, and these individual research areas have come to play important roles in the evolution
of algorithms research as a whole. Two particularly large and successful subdisciplines are
those of fast algorithms for flows and cuts and approximation algorithms for network design.
Many of the algorithmic ideas and techniques that are a standard feature of an algorithmist’s
toolkit today trace their origins to groundbreaking research in these two areas spanning
problems such as minimum cuts, maximum flows, Steiner trees, and the traveling salesman
problem. The last few years, in particular, have been truly outstanding in achieving progress
on longstanding questions in both areas. Some of the highlights include the first progress

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Graph Algorithms: Cuts, Flows, and Network Design, Dagstuhl Reports, Vol. 13, Issue 10, pp. 76–89
Editors: Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jmli@alumni.cmu.edu
mailto:debmalya.panigrahi@gmail.com
mailto:laura.sanita@unibocconi.it
mailto:thsa@umich.edu
https://www.dagstuhl.de/23422
https://doi.org/10.4230/DagRep.13.10.76
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 77

in decades for problems such as the traveling salesman problem (e.g., [20, 19, 17, 28, 34]),
graph connectivity augmentation (e.g., [9, 10, 35]), minimum cut (e.g., [24, 11]), vertex
connectivity (e.g., [23]), all-pairs minimum cuts (e.g., [3, 2, 5, 4, 6, 25, 26, 1]), and last
but not the least, the recent breakthrough achieving an almost linear-time algorithm for
maximum flow (and minimum cost flow) [12] (see also [14, 16, 37, 36]).

Traditionally, to a large extent, research in these two subfields has progressed independent
of one another: connectivity problems such as minimum cuts and maximum flows are
typically polynomial-time solvable and goal is to improve the running time (efficiency) of
the algorithms; in contrast, network design problems such as Steiner tree and TSP are
NP-hard and the goal is to obtain the best approximation factor in (any) polynomial time.
This has meant that the two areas have focused on different sets of technical tools – the
former has developed combinatorial (and more recently, continuous) methods aimed at
improving running times, while the latter has focused on polyhedral techniques and the use
of mathematical programming for obtaining improved approximations.

In recent years, however, this distinction between the two subfields has started to blur,
and the the two areas have started to move closer to one another. This is for two main
reasons:
(a) Recent progress in foundational questions in each area has crucially relied on structural

insights from the other area. For example, one of the main new ingredients in the recent
breakthrough results in approximation algorithms for the traveling salesman problem
(e.g., [20, 17]) is a better understanding of the structure of near-minimum cuts (e.g., [7])
in an undirected graph. Or, recent work in the all-pairs minimum cuts problem [1] that
advances the state of the art for this problem after 60 years crucially makes use of Steiner
tree approximations [27]. Or, cut matching games originally devised for sparsest cut
approximations [22] have led to fast expander decompositions (e.g., [30]) that, in turn,
play a crucial role in recent progress in deterministic minimum cut algorithms [24].

(b) There is growing interest in understanding approximation-efficiency tradeoffs in graph
algorithms. Graph sparsification (e.g., [8, 15, 32, 33]) has emerged as a standard tool
that “compresses” an arbitrary graph into a sparse subgraph (called the sparsifier) while
approximately preserving the values of all cuts in the graph. This naturally leads to
an approximation-efficiency tradeoff by running existing algorithms on the sparsifier
rather than on the input graph. But, beyond the black box use of sparsifiers, efficiency
at the expense of mild approximation has been employed as a technical tool to breach
longstanding running time barrier in recent years, and has often eventually led to faster
exact algorithms as well. A famous example is the maximum flow problem in undirected
graphs, where nearly-linear time approximation algorithms were designed in the last
decade [21, 31, 29] and has eventually resulted in the very recent breakthrough achieving
an almost-linear time exact algorithm [12]. Another recent example is the all-pairs
minimum cuts problem for which the first paper to breach the 60-year old running time
bound of Gomory and Hu [18] incurred a mild approximation [25], but this has now led to
a faster exact algorithm as well [1]. Finally, understanding the efficiency-approximation
tradeoff is an important goal for NP-hard network design problems such as Steiner tree [27]
and Steiner forest [13], and this, in turn, has implications for minimum cut problems [1].

The goal of this seminar was to bring the leading researchers from these two communities
of fast flow/cut algorithms and approximation algorithms for network design together for an
exchange of ideas and knowledge, and a discussion of the major technical challenges in each
research area.

23422

78 23422 – Graph Algorithms: Cuts, Flows, and Network Design

Seminar Structure and Participants
The seminar brought together 25 researchers from the two communities highlighted above,
roughly equally split between the two areas. There was also a mix of senior and junior
participants, ranging from senior members of the community to current PhD students and
postdoctoral researchers. In terms of gender balance, around 20% of the attendees were
female. (The organizers had originally planned for a more equitable balance, but there were
several late retractions, primarily due to geopolitical reasons, that affected the gender ratio.)

There were 17 scheduled talks, divided into long (60 minutes) and short (30 minutes)
presentations. There was also an open problem session and a panel discussion on the future
directions for the community. The schedule left plenty of time for collaboration and free
discussion among the participants.

Outcomes
The main objective of the seminar was to provide a forum for the exchange of ideas between
the research communities of fast flow/cut algorithms and approximation algorithms for
network design. These are adjoining areas where researchers have a working knowledge
of, and appreciation for, each other’s work. As expected, the seminar lead to cohesive
interactions and meaningful discussions. Individual research talks and afternoon breaks
created concrete opportunities for learning about recent progress in each other’s areas and
fostering collaborations. The open problem session highlighted the major research challenges
in the two areas, which is particularly beneficial for junior members of the community who
attended the seminar. The panel discussion allowed the participants to reflect on and discuss
higher-level questions about the research directions that the communities should pursue in
the near future. Overall, we believe that the seminar played an important role in community
building, research collaborations, and in shaping the two research areas for the foreseeable
future.

The organizers would like to thank the Scientific Directorate and the administration of
the Dagstuhl Center for their amazing support in the organization of the Dagstuhl Seminar,
and for supporting this important research area.

References
1 Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak,

and Ohad Trabelsi. Gomory-Hu tree in subcubic time. CoRR, abs/2111.04958, 2021.
2 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Cut-equivalent trees are optimal

for min-cut queries. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020. IEEE Computer Society, 2020.

3 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. New algorithms and lower bounds
for all-pairs max-flow in undirected graphs. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5–8, 2020, pages 48–61. SIAM, 2020.

4 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF <APSP? Gomory-Hu
tree for unweighted graphs in almost-quadratic time. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7–10, 2022,
pages 1135–1146. IEEE, 2021.

5 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for Gomory-
Hu tree in unweighted graphs. In Samir Khuller and Virginia Vassilevska Williams, editors,

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 79

STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21–25, 2021, pages 1725–1737. ACM, 2021.

6 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Friendly cut sparsifiers and faster
gomory-hu trees. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9–12, 2022, pages 3630–3649. SIAM, 2022.

7 András A Benczúr. A representation of cuts within 6/5 times the edge connectivity with
applications. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages
92–102. IEEE, 1995.

8 András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015.

9 Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: a reduction to Steiner tree. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 815–825,
2020.

10 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the Gap between Tree and
Connectivity Augmentation: Unified and Stronger Approaches, page 370–383. Association
for Computing Machinery, New York, NY, USA, 2021.

11 Ruoxu Cen, Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak,
and Kent Quanrud. Minimum cuts in directed graphs via partial sparsification. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7–10, 2022, pages 1147–1158. IEEE, 2021.

12 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. CoRR,
abs/2203.00671, 2022.

13 Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. A faster implementation
of the goemans-williamson clustering algorithm. In S. Rao Kosaraju, editor, Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, January 7–9, 2001, Washington,
DC, USA, pages 17–25. ACM/SIAM, 2001.

14 Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and
Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-linear time.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,
USA, January 9–12, 2022, pages 124–153. SIAM, 2022.

15 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. SIAM J. Comput., 48(4):1196–1223, 2019.

16 Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Deterministic graph cuts in subquadratic time: Sparse,
balanced, and k-vertex. arXiv preprint arXiv:1910.07950, 2019.

17 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to
the traveling salesman problem. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22–25,
2011, pages 550–559. IEEE Computer Society, 2011.

18 Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

19 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. An improved approximation
algorithm for TSP in the half integral case. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL,
USA, June 22–26, 2020, pages 28–39. ACM, 2020.

23422

80 23422 – Graph Algorithms: Cuts, Flows, and Network Design

20 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approxima-
tion algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21–25, 2021, pages 32–45. ACM, 2021.

21 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pages
217–226, 2014.

22 Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single
commodity flows. J. ACM, 56(4):19:1–19:15, 2009.

23 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 317–329.
ACM, 2021.

24 Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In
Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 85–92. IEEE, 2020.

25 Jason Li and Debmalya Panigrahi. Approximate gomory-hu tree is faster than n – 1
max-flows. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 1738–1748. ACM, 2021.

26 Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A nearly optimal all-pairs
min-cuts algorithm in simple graphs. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7–10, 2022, pages 1124–1134.
IEEE, 2021.

27 Kurt Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs.
Information Processing Letters, 27(3):125–128, 1988.

28 Tobias Mömke and Ola Svensson. Approximating graphic TSP by matchings. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 560–569. IEEE Computer
Society, 2011.

29 Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1862–1867, 2016.

30 Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2616–2635. SIAM, 2019.

31 Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 263–269. IEEE Computer Society, 2013.

32 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

33 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

34 Vera Traub and Jens Vygen. Approaching 3/2 for the s-t-path TSP. J. ACM, 66(2):14:1–
14:17, 2019.

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 81

35 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner
tree. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria,
VA, USA, January 9 – 12, 2022, pages 3253–3272. SIAM, 2022.

36 Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and 1-regression in nearly linear time
for dense instances. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21–25, 2021, pages 859–869. ACM, 2021.

37 Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Sara-
nurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time
on moderately dense graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020,
pages 919–930. IEEE, 2020.

23422

82 23422 – Graph Algorithms: Cuts, Flows, and Network Design

2 Table of Contents

Executive Summary
Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 76

Overview of Talks
Fast Algorithms via Dynamic-Oracle Matroids
Joakim Blikstad . 83

The girth problem and its variants in network design
Greg Bodwin . 83

Differentially Private Densest Subgraph
Michael Dinitz . 84

On Dynamic Graph Approximations: The case of j-Trees
Gramoz Goranci . 84

Approximation Algorithms for 2-Connectivity
Fabrizio Grandoni . 84

Polylogarithmic Universal Steiner Trees and Strong Sparse Partition Hierarchies
Ellis Hershkowitz . 85

All-Pairs Minimum Cuts in Almost-Linear Time
Jason Li . 85

Recent Advances on Maximum Flows
Yang P. Liu . 85

Fair Division of Indivisible Goods and Graph Algorithms
Kurt Mehlhorn . 86

Hopsets and Algorithmic Applications
Yasamin Nazari . 86

Algorithms for Coloring Tournaments
Alantha Newman . 86

Quotient sparsification for submodular functions
Kent Quanrud . 87

Using Isolating Mincuts for Fast Graph Algorithms: A tutorial
Thatchaphol Saranurak . 87

Decremental Bipartite Matching
Aaron Sidford . 87

Approximation Algorithms for Connectivity Augmentation Problems
Vera Traub . 88

Faster Deterministic Vertex Connectivity Algorithms
Sorrachai Yingchareonthawornchai . 88

Participants . 89

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 83

3 Overview of Talks

3.1 Fast Algorithms via Dynamic-Oracle Matroids
Joakim Blikstad (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 4.0 International license
© Joakim Blikstad

We initiate the study of matroid problems in a new oracle model called dynamic oracle.
Our algorithms in this model lead to new bounds for some classic problems, and a “unified”
algorithm whose performance matches previous results developed in various papers. We also
show a lower bound that answers some open problems from a few decades ago. We show
an algorithm with Õ(n + r

√
r) dynamic-rank-query and time complexities for the matroid

union problem. This implies an improvement over the traditional rank-query complexity for
matroid union. As an interesting special case, it is the first algorithm which, in sufficiently
dense graphs, achieves nearly linear time Õ(m + n

√
n) for the problem of finding k disjoint

spanning trees in a graph. We also show simple super-linear (Ω(n log n)) query lower bounds
for matroid intersection in our dynamic-rank-oracle and the traditional independence-query
models; the latter improves the previous log 2(3)n − o(n) bound.

3.2 The girth problem and its variants in network design
Greg Bodwin (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
© Greg Bodwin

The girth problem as a central open question in extremal combinatorics, which asks to
determine the maximum possible number of edges in an n-node graph whose girth (shortest
cycle length) is larger than k. In 1993, a seminal work of Althöfer, Das, Dobkin, Joseph,
and Soares showed that determining the size/stretch tradeoff available to graph spanners is
equivalent to settling the girth problem. This set in motion a line of research that seeks to
understand sparse graph structures by analyzing their forbidden patterns, and using these
patterns to invoke ideas from extremal combinatorics.

This talk will survey some successes of the method, including other objects that can
also be reduced to the girth problem (distance oracles, fault-tolerant spanners), and related
problems that capture other objects in network design, such as the weighted girth problem
(light spanners), the bipartite girth problem (distance preservers, reachability preservers),
the forbidden biclique problem (directed distance preservers), and the bridge girth problem
(reachability preservers, flow-cut gaps). We will survey the common technical threads in
these arguments, and overview the many open problems that remain.

23422

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

84 23422 – Graph Algorithms: Cuts, Flows, and Network Design

3.3 Differentially Private Densest Subgraph
Michael Dinitz (Johns Hopkins University – Baltimore, US)

License Creative Commons BY 4.0 International license
© Michael Dinitz

Joint work of Satyen Kale, Silvio Lattanzi, and Sergei Vassilvitskii
Main reference Michael Dinitz, Satyen Kale, Silvio Lattanzi, Sergei Vassilvitskii: “Improved Differentially Private

Densest Subgraph: Local and Purely Additive”, CoRR, Vol. abs/2308.10316, 2023.
URL https://doi.org//10.48550/ARXIV.2308.10316

We study the Densest Subgraph problem under the additional constraint of differential privacy.
In the LEDP (local edge differential privacy) model, introduced recently by Dhulipala et
al. [FOCS 2022], we give an (ϵ, δ)-differentially private algorithm with no multiplicative
loss: the loss is purely additive. This is in contrast to every previous private algorithm for
densest subgraph (local or centralized), all of which incur some multiplicative loss as well as
some additive loss. Moreover, our additive loss matches the best-known previous additive
loss (in any version of differential privacy) when 1/δ is at least polynomial in n, and in
the centralized setting we can strengthen our result to provide better than the best-known
additive loss. Additionally, we give a different algorithm that is ϵ-differentially private in
the LEDP model which achieves a multiplicative ratio arbitrarily close to 2, along with an
additional additive factor. This improves over the previous multiplicative 4-approximation
in the LEDP model. Finally, we conclude with extensions of our techniques to both the
node-weighted and the directed versions of the problem.

3.4 On Dynamic Graph Approximations: The case of j-Trees
Gramoz Goranci (Universität Wien, AT)

License Creative Commons BY 4.0 International license
© Gramoz Goranci

Joint work of Gramoz Goranci, Li Chen, Monika Henzinger, Richard Peng, Thatchaphol Saranurak

Approximating graphs by j-trees is a powerful algorithmic paradigm that has proven effective
in significantly speeding up cut-based optimization problems, approximate maximum flows,
and exact minimum cost-flow computations.

In this talk, I will explain how to dynamically maintain j-trees and discuss some of the
implications of this result.

3.5 Approximation Algorithms for 2-Connectivity
Fabrizio Grandoni (SUPSI – Lugano, CH)

License Creative Commons BY 4.0 International license
© Fabrizio Grandoni

Given an undirected graph G, the 2-edge-connected spanning subgraph problem is to compute
a subgraph S of G with the minimum possible number of edges which is 2-edge-connected,
i.e., removing any edge from S leaves a connected graph (spanning all the nodes). The 2-
vertex-connected spanning subgraph problem is defined similarly w.r.t. 2-vertex-connectivity.
In this talk I will illustrate some recent progress on approximation algorithms for these two
problems.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2308.10316
https://doi.org//10.48550/ARXIV.2308.10316
https://doi.org//10.48550/ARXIV.2308.10316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 85

3.6 Polylogarithmic Universal Steiner Trees and Strong Sparse Partition
Hierarchies

Ellis Hershkowitz (Brown University – Providence, US)

License Creative Commons BY 4.0 International license
© Ellis Hershkowitz

Joint work of Ellis Hershkowitz, Costas Busch, Da Qi Chen, Arnold Filtser, Daniel Hathcock, Rajmohan
Rajaraman

An alpha-approximate universal Steiner tree (UST) of a graph G is a spanning tree T such
that, for any vertex terminal subset S, the minimal subtree of T connecting S is within an
alpha factor of the cost of the cheapest Steiner tree in G connecting S. Alpha-approximate
USTs immediately give alpha-approximations for well-studied variants of Steiner tree such as
online or oblivious Steiner tree. Sub-linear-approximate USTs are known but neither the
existence of nor poly-time algorithms for computing poly-logarithmic-approximate USTs
were previously known.

In this talk, I will discuss the first construction of poly-logarithmic USTs. The result is
based on new constructions of poly-logarithmic-quality graph hierarchies called strong sparse
partitions which may be interesting in their own right. Roughly, strong sparse partitions
provide deterministic guarantees on how often balls of particular radii are cut.

3.7 All-Pairs Minimum Cuts in Almost-Linear Time
Jason Li (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Jason Li

Joint work of Jason Li, Amir Abboud, Robert Krauthgamer, Debmalya Panigrahi, Thatchaphol Saranurak, Ohad
Trabelsi

Main reference Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak, Ohad
Trabelsi: “Gomory-Hu Tree in Subcubic Time”, CoRR, Vol. abs/2111.04958, 2021.

URL https://arxiv.org/abs/2111.04958

We present recent progress on the problem of computing all-pairs minimum cuts, and more
generally the Gomory-Hu tree of a graph. In particular, we obtain the first running time
improvement since Gomory and Hu’s original algorithm in 1961, as well as a subsequent
improvement to almost-linear time, resolving the complexity of this problem. We discuss
important tools that paved the way for the discovery of the algorithm, most notably the
isolating cuts problem and a reduction to single-source minimum cut.

3.8 Recent Advances on Maximum Flows
Yang P. Liu (Institute for Advanced Study – Princeton, US)

License Creative Commons BY 4.0 International license
© Yang P. Liu

We discuss extensions of the recent almost-linear-time maximum flow and mincost flow
algorithm to dynamic and deterministic settings. Joint work with Jan van den Brand, Li
Chen, Rasmus Kyng, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva, and
Aaron Sidford.

23422

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2111.04958
https://arxiv.org/abs/2111.04958
https://arxiv.org/abs/2111.04958
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

86 23422 – Graph Algorithms: Cuts, Flows, and Network Design

3.9 Fair Division of Indivisible Goods and Graph Algorithms
Kurt Mehlhorn (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Kurt Mehlhorn

A set of indivisible goods is to be allocated to a group of agents, e.g, a car, a computer, a
tooth-brush. Each agent has a valuation over sets of goods. There are only two restrictions
on a valuation. The value of the empty set is zero and more is better. We want to a allocate
the goods in a fair manner. Three notions of fairness have emerged: envy-freeness, fair share,
and maximum Nash-value. We discuss exact and approximate existence and complexity.

Some of the algorithm have a strong connection to matchings.

3.10 Hopsets and Algorithmic Applications
Yasamin Nazari (VU Amsterdam, NL)

License Creative Commons BY 4.0 International license
© Yasamin Nazari

Given a weighted graph G, a hopset of hopbound β and stretch (1 + ϵ) is a set of edges such
that for any pair of nodes u and v in G, there is a path in G ∪ H of at most β hops whose
length is within a (1 + ϵ) factor of the distance between u and v in G. Hopsets have recently
found many applications in fast distance computation in various computational models such
as dynamic, parallel and distributed models. This talk gives an introduction to hopsets for
undirected graphs and their algorithmic applications in these settings. We conclude with
open problems on applications of directed hopsets.

3.11 Algorithms for Coloring Tournaments
Alantha Newman (Grenoble INP, FR)

License Creative Commons BY 4.0 International license
© Alantha Newman

Joint work of Alantha Newman, Felix Klingelhoefer

A k-coloring of a tournament is a partition of its vertices into k acyclic sets. Deciding
if a tournament is 2-colorable is NP-hard. A natural problem, akin to that of coloring a
3-colorable graph with few colors, is to color a 2-colorable tournament with few colors. This
problem does not seem to have been addressed before, although it is a special case of coloring
a 2-colorable 3-uniform hypergraph with few colors, which is a well-studied problem with
super-constant lower bounds.

We present a new efficient decomposition lemma for tournaments, which we use to design
polynomial-time algorithms to color various classes of tournaments with few colors, notably,
to color a 2-colorable tournament with ten colors. We also use this lemma to prove equivalence
between the problems of coloring 3-colorable tournaments and coloring 3-colorable graphs
with constantly many colors. For the classes of tournaments considered, we complement
our upper bounds with strengthened lower bounds, painting a comprehensive picture of the
algorithmic and complexity aspects of coloring tournaments.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 87

3.12 Quotient sparsification for submodular functions
Kent Quanrud (Purdue University – West Lafayette, US)

License Creative Commons BY 4.0 International license
© Kent Quanrud

Main reference Kent Quanrud: “Quotient sparsification for submodular functions”, in Proc. of the 2024 Annual
ACM-SIAM Symposium on Descrete Algorithms (SODA), Alexandria, VA, USA, pp. 5209–5248,
2024.

URL https://doi.org//10.1137/1.9781611977912.187

Graph sparsification has been an important topic with many structural and algorithmic
consequences. Recently hypergraph sparsification has come to the fore and has seen exciting
progress. In this paper we take a fresh perspective and show that they can be both be
derived as corollaries of a general theorem on sparsifying matroids and monotone submodular
functions.

Quotients of matroids and monotone submodular functions generalize k-cuts in graphs
and hypergraphs. We show that a weighted ground set of a monotone submodular function
f can be sparsified while approximately preserving the weight of every quotient of f with
high probability in randomized polynomial time.

This theorem conceptually unifies cut sparsifiers for undirected graphs [BK15] with other
interesting applications. One basic application is to reduce the number of elements in a
matroid while preserving the weight of every quotient of the matroid. For hypergraphs, the
theorem gives an alternative approach to the hypergraph cut sparsifiers obtained recently
in [CKN20], that also preserves all k-cuts. Another application is to reduce the number of
points in a set system while preserving the weight of the union of every collection of sets.
We also present algorithms that sparsify hypergraphs and set systems in nearly linear time,
and sparsify matroids in nearly linear time and queries in the rank oracle model.

3.13 Using Isolating Mincuts for Fast Graph Algorithms: A tutorial
Thatchaphol Saranurak (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
© Thatchaphol Saranurak

The Isolating Mincuts algorithm is a new technique recently introduced by [Li and Panigrahi]
and [Abboud Krauthgamer Trabelsi]. In the last three years, they found more than ten
applications in fast graph algorithms. I will give a gentle tutorial on this technique.

3.14 Decremental Bipartite Matching
Aaron Sidford (Stanford University, US)

License Creative Commons BY 4.0 International license
© Aaron Sidford

Joint work of Aaron Sidford, Arun Jambulapati, Yujia Jin, Kevin Tian
Main reference Arun Jambulapati, Yujia Jin, Aaron Sidford, Kevin Tian: “Regularized Box-Simplex Games and

Dynamic Decremental Bipartite Matching”, CoRR, Vol. abs/2204.12721, 2022.
URL https://doi.org//10.48550/ARXIV.2204.12721

Maintaining an approximately maximum matching in a dynamic graph is a fundamental
problem in data structures and algorithmic graph theory. In this talk I will discuss recent
progress in the special case of decremental bipartite matching, where the only dynamic

23422

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1137/1.9781611977912.187
https://doi.org//10.1137/1.9781611977912.187
https://doi.org//10.1137/1.9781611977912.187
https://doi.org//10.1137/1.9781611977912.187
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2204.12721
https://doi.org//10.48550/ARXIV.2204.12721
https://doi.org//10.48550/ARXIV.2204.12721

88 23422 – Graph Algorithms: Cuts, Flows, and Network Design

updates are deleting edges from an initial bipartite graph. In particular, I will discuss how
faster runtimes were obtained by reducing this dynamic problem to solving a sequence of
natural convex optimization problems.

3.15 Approximation Algorithms for Connectivity Augmentation
Problems

Vera Traub (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Vera Traub

Augmentation problems are a fundamental class of network design problems. They ask about
the cheapest way to increase the (edge-)connectivity of a graph by adding edges among
a given set of options. One of the most elementary and intensely studied augmentation
problems is the (Weighted) Tree Augmentation Problem. Here, a spanning tree has to be
augmented into a 2-edge-connected graph.

Classic techniques for network design yield 2-approximation algorithms for a wide class
of augmentation problems. For the Unweighted Tree Augmentation Problem, better-than-2
approximations are known for more than 20 years. However, only recently the first better-
than-2 approximations have been found for the more general Unweighted Connectivity
Augmentation Problem and Weighted Tree Augmentation Problem. In this talk we will
discuss these recent advances.

3.16 Faster Deterministic Vertex Connectivity Algorithms
Sorrachai Yingchareonthawornchai (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Sorrachai Yingchareonthawornchai

Joint work of Sorrachai Yingchareonthawornchai, Yonggang Jiang, Chaitanya Nalam, Thatchaphol Saranurak

An n-vertex m-edge graph is k-vertex connected if it cannot be disconnected by deleting
less than k vertices. After more than half a century of intensive research, the result by
[Li et al. STOC’21] finally gave a randomized algorithm for checking k-connectivity in
near-optimal Ô(m) time where Ô(·) to hide an no(1) factor.

Deterministic algorithms, unfortunately, have remained much slower even if we assume a
linear-time max-flow algorithm: they either require at least Ω(mn) time [Even’75; Henzinger
Rao and Gabow, FOCS’96; Gabow, FOCS’00] or assume that k = o(

√
log n) [Saranurak and

Yingchareonthawornchai, FOCS’22]. In this talk, I will describe a deterministic algorithm
for checking k-vertex connectivity in time proportional to making min{k2, n} max-flow
calls, and, hence, in Ô(m min{k2, n}) time using the deterministic max-flow algorithm by
[Brand et al. FOCS’23]. Our algorithm gives the first almost-linear-time bound for all k

where
√

log n ≤ k ≤ no(1) and subsumes up to a sub-polynomial factor the long-standing
state-of-the-art algorithm by [Even’75] which requires O(n + k2) max-flow calls. For large k,
the algorithm runs in Ô(mn) time, which improves over the state-of-the-art deterministic
Ô(mn1.5)-time algorithm [Gabow, FOCS’00]. Our key technique is based on Ramanujan
expanders and derandomization of the kernelization technique of [Li et al. STOC’21] for
which their kernel construction was randomized.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak 89

Participants

Joakim Blikstad
KTH Royal Institute of
Technology – Stockholm, SE

Greg Bodwin
University of Michigan –
Ann Arbor, US

Parinya Chalermsook
Aalto University, FI

Michael Dinitz
Johns Hopkins University –
Baltimore, US

Gramoz Goranci
Universität Wien, AT

Fabrizio Grandoni
SUPSI – Lugano, CH

Anupam Gupta
Carnegie Mellon University –
Pittsburgh, US

Ellis Hershkowitz
Brown University –
Providence, US

Felix Hommelsheim
Universität Bremen, DE

Alexandra Lassota
MPI für Informatik –
Saarbrücken, DE

Jason Li
University of California –
Berkeley, US

Yang P. Liu
Institute for Advanced Study –
Princeton, US

Kurt Mehlhorn
MPI für Informatik –
Saarbrücken, DE

Danupon Nanongkai
MPI für Informatik –
Saarbrücken, DE

Yasamin Nazari
VU Amsterdam, NL

Alantha Newman
Grenoble INP, FR

Debmalya Panigrahi
Duke University – Durham, US

Kent Quanrud
Purdue University –
West Lafayette, US

Laura Sanita
Università Bocconi – Milan, IT

Thatchaphol Saranurak
University of Michigan –
Ann Arbor, US

Aaron Sidford
Stanford University, US

Joachim Spoerhase
University of Sheffield, GB

Vera Traub
Universität Bonn, DE

László A. Végh
London School of Economics &
Political Science, GB

Sorrachai
Yingchareonthawornchai
University of California –
Berkeley, US

23422

Report from Dagstuhl Seminar 23431

Network Attack Detection and Defense – AI-Powered
Threats and Responses
Sven Dietrich∗1, Frank Kargl∗2, Hartmut König∗3, Pavel Laskov∗4,
and Artur Hermann†5

1 City University of New York, US. spock@ieee.org
2 Universität Ulm, DE. frank.kargl@uni-ulm.de
3 ZITiS München, DE. hartmut.koenig@b-tu.de
4 Universität Liechtenstein, LI. pavel.laskov@uni.li
5 Universität Ulm, DE. artur.hermann@uni-ulm.de

Abstract
This report documents the program and the findings of Dagstuhl Seminar 23431 “Network

Attack Detection and Defense – AI-Powered Threats and Responses”. With the emergence of
artificial intelligence (AI), attack detection and defense are taking on a new level of quality.
Artificial intelligence will promote further automation of attacks. There are already examples
of this, such as the Deep Locker malware. It is expected that we will soon face a situation in
which malware and attacks will become more and more automated, intelligent, and AI-powered.
Consequently, today’s threat response systems will become more and more inadequate, especially
when they rely on manual intervention of security experts and analysts. The main objective of
the seminar was to assess the state of the art and potentials that AI advances create for both
attackers and defenders. The seminar continued the series of Dagstuhl events “Network Attack
Detection and Defense” held in 2008, 2012, 2014, and 2016. The objectives of the seminar were
threefold, namely (1) to investigate various scenarios of AI-based malware and attacks, (2) to
debate trust in AI and modeling of threats against AI, and (3) to propose methods and strategies
for AI-powered network defenses. At the seminar, which brought together participants from
academia and industry, we stated that recent advances in artificial intelligence have opened up
new possibilities for each of these directions. In general, more and more researchers in networking
and security look at AI-based methods which made this a timely event to assess and categorize
the state of the art as well as work towards a roadmap for future research. The outcome of the
discussions and the proposed research directions are presented in this report.
Seminar October 22–27, 2023 – https://www.dagstuhl.de/23431
2012 ACM Subject Classification Networks → Network security; Security and privacy →

Intrusion/anomaly detection and malware mitigation; Security and privacy → Network
security; Security and privacy → Systems security

Keywords and phrases artificial intelligence, cybersecurity, intrusion detection, machine learning
Digital Object Identifier 10.4230/DagRep.13.10.90

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Network Attack Detection and Defense – AI-Powered Threats and Responses, Dagstuhl Reports, Vol. 13, Issue 10,
pp. 90–129
Editors: Sven Dietrich, Artur Hermann, Frank Kargl, Hartmut König, and Pavel Laskov

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:spock@ieee.org
mailto:frank.kargl@uni-ulm.de
mailto:hartmut.koenig@b-tu.de
mailto:pavel.laskov@uni.li
mailto:artur.hermann@uni-ulm.de
https://www.dagstuhl.de/23431
https://doi.org/10.4230/DagRep.13.10.90
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 91

1 Seminar Motivation and Summary

Sven Dietrich
Artur Hermann
Frank Kargl
Hartmut König
Pavel Laskov

License Creative Commons BY 4.0 International license
© Sven Dietrich, Artur Hermann, Frank Kargl, Hartmut König, and Pavel Laskov

Computer networks and the services they provide have become indispensable tools these
days. Consequently, they are also a popular target for attacks that are constantly increasing
in complexity and sophistication. Although there are a variety of effective systems to counter
such attacks, like firewalls or intrusion detection systems (IDSs), the immense diversity and
number of threats make it difficult for system administrators to keep pace with the alerts
triggered and respond within adequate time limits.

This problem will intensify in the future. There are signs that attacks will become
more and more automated, as, for instance, indicated by the 2016 DARPA Cyber Grand
Challenge in which automation of attacks was a main focus and the basic feasibility was
demonstrated. Another indication of a higher degree of automation is advanced malware
where Large-Language-Models (LLMs) start to get applied to craft highly sophisticated
phishing emails. Experts already foresee that more and more AI mechanisms will find their
way into such malware. This leads to the conclusion that we will soon face a situation in which
malware and attacks will become more and more automated, intelligent, and AI-powered.

As a consequence, today’s threat response systems will become more and more inadequate,
especially where they rely on manual intervention of security experts and analysts. Hence, the
deployment of automation and AI is the only way to attain and retain a strategic advantage
in the arm’s race between the attack and the defense. Usage of AI mechanisms is already the
case in some security mechanisms like anomaly-detecting IDSs or virus scanners. But one
could easily imagine substantially higher degrees of AI-based automation in system defense.
However, automated defense may also be a double edged sword as it could be misused by
attackers to trigger counterproductive responses.

In this Dagstuhl Seminar, we together with all the participants therefore tried to assess
the state of the art and potentials that AI advances create for both attackers and defenders
because we believe it is crucial to consider both sides when discussing the relation between
AI and security.

In particular, the seminar pursued the following objectives:
1. Investigate various attack scenarios and attacker models of AI-based malware and attacks,
2. Map the space of AI-based security countermeasures going beyond the usual anomaly-

based intrusion detection systems,
3. Discuss where else AI-based methods are or could be employed, and
4. Discuss how to estimate and predict the impact of countermeasures and possible side

effects.

To provide initial material for such discussions, we had three keynotes by distinguished
speakers. Pavel Laskov proposed “Three Faces of AI in Cybersecurity,” providing a thorough
account of how AI could be used in defense, for offensive purpose, and how AI itself can
be an attack target. Konrad Rieck took a deep dive into the first aspect in his keynote
“Bumpy Road of AI-based Attack Detection.” Finally, Robin Sommer completed the picture

23431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

92 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

by looking “Beyond Detection: Revisiting AI For Effective Network Security Monitoring.”
Those presentations were complemented by a number of short lightning talks given by our
participants to introduce the audience to various current research.

A significant share of the seminar’s time was spent in working groups, with participants
discussing individual aspects of interest. The topics for those working groups were partly
solicited before the seminar and then finally determined on the first day. Specifically, the
topics were:
1. Assessment of AI-Based Attacks in Cybersecurity,
2. Security of Large Language Models,
3. Trust in AI and Modeling of Threats against AI in Network Defense, and
4. AI-Powered Network Defenses

The working groups report on their individual results below. In order to bring all these
findings together and distill outcomes and an outlook into what could be next steps, we used
the format of a World Café where in the afternoon of day 4, people split into small groups to
provide their input on five pre-defined questions. As groups were shuffled randomly after
every 20 minutes, everyone joined each World Café table and discussed each of the questions.
The outcomes then formed the basis for our wrap-up session on Friday morning.

The seminar was originally proposed and prepared together with Marc C. Dacier from
KAUST who couldn’t attend the seminar at the last minute. We owe him many ideas and
contributions during the preparation phase. Pavel Laskov was so kind as to fill the empty
slot on short notice.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 93

2 Table of Contents

Seminar Motivation and Summary
Sven Dietrich, Artur Hermann, Frank Kargl, Hartmut König, and Pavel Laskov . . 91

Overview of Keynotes
Three Faces of AI in Cybersecurity
Pavel Laskov . 94

The Bumpy Road of AI-based Attack Detection
Konrad Rieck . 95

Beyond Detection: Revisiting AI For Effective Network Security Monitoring
Robin Sommer . 96

Overview of Lightning Talks
Robust, Explainable, and Privacy-Respecting Sybil Attack Defense
Christian Bungartz . 96

The SuperviZ project – towards enhanced Security Orchestration, Automation and
Response
Hervé Debar . 96

A Strategy to Evaluate Test Time Evasion Attack Feasibility
Stephan Kleber . 97

Privacy-preserving Artificial Intelligence for Telecommunications
Nicolas Kourtellis . 98

Comparison of a ML-based approach with Snort in an IoT environment
Max Schrötter and Bettina Schnor . 98

Working groups
Assessment of AI-Based Attacks in Cybersecurity
Ilies Benhabbour, Daniel Fraunholz, Jan Kohlrausch, Hartmut König, Chethan Krish-
namurthy Ramanaik, Michael Meier, Simin Nadjm-Tehrani, Andriy Panchenko,
and Konrad Rieck . 99

Security of Large Language Models
Hervé Debar, Sven Dietrich, Pavel Laskov, Emil C. Lupu, and Eirini Ntoutsi . . . 103

Trust in AI and Modeling of Threats against AI in Network Defense
Stephan Kleber, Christian Bungartz, Artur Hermann, Peter Herrmann, Marko
Jahnke, Frank Kargl, Andreas Mitschele-Thiel, Delphine Reinhardt, and Jessica
Steinberger . 112

AI-Powered Network Defenses
Vera Rimmer, Sebastian Böhm, Georg Carle, Marco Caselli, Nicolas Kourtellis,
Bettina Schnor, Thomas Schreck, Max Schrötter, and Robin Sommer 120

World Café and Outlook
In which of these fields is it most important to make research progress and why:
“Security for AI”, “AI-based attacks”, or “AI for Security”? 127

What is your one key take-away from the seminar? 128

Participants . 129

23431

94 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

3 Overview of Keynotes

3.1 Three Faces of AI in Cybersecurity
Pavel Laskov (Universität Liechtenstein, LI)

License Creative Commons BY 4.0 International license
© Pavel Laskov

Artificial Intelligence (AI) has a stronger tradition in cybersecurity than one might think.
Despite their seemingly contrasting scientific and methodical traits – AI is all about probab-
ilistic events and assertions, whereas a (practical) security mindset is mostly concerned with
apparent and deterministic evidence of systems being broken into – the task of detecting
systems being broken into is inherently connected with observing and making sense of huge
volumes of diverse bits and pieces of digital evidence commonly understood as “data.” This
is something that AI, albeit not originally born as an empirical science, has manifested itself
as an omnipotent instrument for.

The relation between AI and cybersecurity is not just profound, but multi-faceted as well.
Each of its “faces” has a different history and a different level of maturity. The oldest and
most obvious role of AI in cybersecurity is to build models for detection of various kinds of
attacks. The sole notion of “intrusion detection” has been implicitly defined by Denning as
an AI problem, even though neither did she use this term in her seminal work [1], nor did
this term have the same meaning at that time as we understand it today. The tremendous
capability of AI to facilitate and speed up detection of various kinds of threats is now
widely acknowledged, both in the academia and the industry. Despite a large number of still
unresolved problems, e.g., development of benchmark datasets, concept drift, explainability,
and many others, AI is perhaps the only reason why modern defenses are still able to keep up
with the staggering increase in professionalization of the “attack industry.” Furthermore, as
recently pointed out by Apruzzese et al. [2], substantial merit can be gained by deployment of
AI for a number of other cybersecurity tasks beyond threat detection, e.g., alert management,
risk assessment and cyber threat intelligence.

As any other technology deployed for security, AI must be scrutinized for its insecurity.
This axiom of security research has triggered research in security of AI, pioneered by at
al. [3] and Biggio et al. [4]. This line of research can be seen as the second “face” of AI
and security. Its importance clearly transcends the field of information security. While
early attacks against AI systems were somewhat related to the conventional triad of security
objectives – confidentiality, integrity, and availability, – the recent work has led to a discovery
of various “AI endemic” attacks such as model stealing, model backdoors, attribute inference,
as well as attacks against explainability. Despite the fact that several thousand papers have
been hitherto published on security of AI, many important questions are still wide open,
especially regarding to defenses as well as potential economic motivation behind the attacks.

A third dimension along which the relationship between AI and security is rapidly
developing is “offensive AI,” i.e., abuse of AI for nefarious goals. Examples of such abuse
have been reported in practice as well as in the scientific literature for several years. The
recent review of AI-powered threats in the organizational context has demonstrated that
virtually all stages of the conventional attack “kill chain” can be facilitated by AI [5]. While
it is still largely unclear to what extent AI is currently used to assist conventional security
exploitation, it becomes increasingly apparent that many AI tools can be used in a dual way.
Ethical discussions of these issues are likely to emerge.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 95

References
1 An intrusion-detection model. IEEE Transactions on software engineering, (2):222–232,

1987.
2 Giovanni Apruzzese, Pavel Laskov, Edgardo Montes de Oca, Wissam Mallouli, Luis

Brdalo Rapa, Athanasios Vasileios Grammatopoulos, and Fabio Di Franco. The role
of machine learning in cybersecurity. Digital Threats: Research and Practice, 4(1):1–38,
2023.

3 Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of
machine learning. Machine Learning, 81:121–148, 2010.

4 Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In Proceedings of the 29th International Conference on Machine Learning, ICML
2012, pages 1807–1814, 2012.

5 Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram Shankar, Deng Gelei, Liu Yang,
Xiangyu Zhang, Maura Pintor, Wenke Lee, Yuval Elovici, et al. The threat of offensive ai
to organizations. Computers & Security, 124:103006, 2023.

3.2 The Bumpy Road of AI-based Attack Detection
Konrad Rieck (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Konrad Rieck

This talk examines the development of AI-based attack detection, both in its historical context
and its future prospects. It provides an overview of the evolution of intrusion detection and
pinpoints promising opportunities for recent AI techniques. The talk opens with a focus
on classical learning-based detection approaches, which have developed over time but also
repeatedly failed in practice due different pitfalls in their design and evaluations.

To remedy this situation, the talk then highlights the role of explainable AI (XAI), which
makes the decision process of learning models transparent. While XAI represents a significant
advance in building trust, it also encounters a number of challenges in the context of security,
such as inconsistency and infidelity. These issues are discussed in detail and provide insights
into how XAI can be employed without neglecting its limitations. In addition, the talk
introduces toy examples to show how generative AI can be used to create detection signatures
for attacks. These examples are used to demonstrate both the strengths of generative AI
and its notable weaknesses such as hallucinations and lack of reasoning ability.

Overall, the talk aims to provide a balanced perspective on the current state and future
direction of AI-assisted attack detection. By critically analyzing the hurdles on the road
to success and exploring potential solutions, the talk hopefully points to possible paths for
future research.

23431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

96 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

3.3 Beyond Detection: Revisiting AI For Effective Network Security
Monitoring

Robin Sommer (Corelight – Planegg, DE)

License Creative Commons BY 4.0 International license
© Robin Sommer

While AI has been proposed for finding novel network attacks many times, such approaches
have not found much traction in operational deployments. In this talk we first revisit some
challenges with classic intrusion detection. We then look at “threat hunting,” a modern twist
on finding malicious activity that focuses on the human analyst driving the process, and we
examine the potential of AI to support threat hunting workflows.

4 Overview of Lightning Talks

4.1 Robust, Explainable, and Privacy-Respecting Sybil Attack Defense
Christian Bungartz (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Christian Bungartz

Joint work of Christian Bungartz, Felix Boes, Michael Meier

Sybil attacks target decentralized networks and exploit trust relationships between peers. A
network type of special interest are online social networks (OSN). Existing defense mechanisms
often hinge on domain-specific metadata, potentially compromising user privacy and limiting
applicability. A solution is a detection approach utilizing the global topological structure
of the underlying network. However, the main assumption of a fast-mixing subgraph of
honest peers often is not aligned with the reality of OSN structures. To tackle these issues,
this work outlines five open problems and proposes an approach leveraging local, structural
information. This privacy-friendly method demonstrates promising results in Sybil detection,
offering a critical step towards safeguarding the trust and integrity of OSNs.

4.2 The SuperviZ project – towards enhanced Security Orchestration,
Automation and Response

Hervé Debar (Télécom SudParis, FR)

License Creative Commons BY 4.0 International license
© Hervé Debar

Joint work of Hervé Debar, Ludovic Mé

The SuperviZ project is part of the “system security” axis of the PEPR cybersecurity program.
It addresses the field of “system, software and network security.” More precisely, it targets
the detection, response and remediation to computer attacks, subjects grouped under the
name of “security supervision.”

The digitization of all infrastructures makes it almost impossible today to secure all
systems a priori, as it is too complex and too expensive. Supervision seeks to reinforce
preventive security mechanisms and to compensate for their inadequacies.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 97

Supervision is fundamental in the general context of enterprise systems and networks, and
is just as important for the security of cyber-physical systems. Indeed, with “objects” that
should eventually be all, or almost all, connected, the attack surface increases significantly.
This makes security even more difficult to implement. The increase in the number of
components to be monitored, as well as the growing heterogeneity of the capacities of these
objects in terms of communication, storage and calculation, makes security supervision more
complex.

In this context, we address challenges related to (1) the increase in the number and
diversity of objects to be supervised (which requires the development and adaptation of
new detection mechanisms for heterogeneous environments, with false positive and negative
rates that have not been achieved to date), (2) the complexity of systems interconnected
to form large critical infrastructures on a European scale (which requires new detection
and supervision models that take into account the criticality and cyber-physical nature of
these systems), (3) the existence of increasingly complex and silent targeted attacks (which
requires an observation of the global threat landscape, a capability model of the attackers
and a significant improvement of the detection and reaction time), and (4) the treatment of
massive attacks which rapidly affect a significant number of victims (in order to limit the
damage suffered by these victims).

Faced with these challenges, it is necessary to significantly improve the efficiency of the
detection-reaction chain (response and remediation). The main objective of the project is
therefore to provide new solutions and to advance the current scientific state of the art.

These contributions will come from almost all the national research forces in the field,
which will be strengthened by this project and will see their links tightened, which is also an
objective. Moreover, in coherence with the objectives of the PEPR, we also aim to prepare
the transfer of our results to the national industrial community. To this end, the scientific
work will lead to prototypes and demonstrators that will be deployed on platforms built
within the project. These platforms will be accessible to industrial partners.

4.3 A Strategy to Evaluate Test Time Evasion Attack Feasibility
Stephan Kleber (Universität Ulm, DE)

License Creative Commons BY 4.0 International license
© Stephan Kleber

Joint work of Stephan Kleber, Patrick Wachter
Main reference Stephan Kleber, Patrick Wachter: “A Strategy to Evaluate Test Time Evasion Attack Feasibility”,

Datenschutz und Datensicherheit, Vol. 47(8), pp. 478–482, 2023.
URL http://dx.doi.org/10.1007/S11623-023-1802-0

New attacks against Computer Vision systems and other perceptive machine learning ap-
proaches are currently published in high frequency. Often the assumptions or limitations
of these works are so strict that the attacks seem to have no practical relevance. On the
other hand, recent reports show the effectiveness of attacks against cyber-physical systems
(CPS). In particular, attacks on automotive systems demonstrate the safety-impact in real-
world scenarios. We discuss the practical relevance of security threats for machine learning
approaches in automotive use cases and we propose a strategy to evaluate the feasibility of
such threats. This includes a method to potentially discover existing vulnerabilities and rate
their exploitability in the use case.

23431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/S11623-023-1802-0
http://dx.doi.org/10.1007/S11623-023-1802-0
http://dx.doi.org/10.1007/S11623-023-1802-0

98 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

4.4 Privacy-preserving Artificial Intelligence for Telecommunications
Nicolas Kourtellis (Telefónica Research – Barcelona, ES)

License Creative Commons BY 4.0 International license
© Nicolas Kourtellis

Main reference Diego Perino, Kleomenis Katevas, Andra Lutu, Eduard Marin, Nicolas Kourtellis:
“Privacy-preserving AI for future networks”, Commun. ACM, Vol. 65(4), pp. 52–53, 2022.

URL http://dx.doi.org/10.1145/3512343
Main reference Kleomenis Katevas, Diego Perino, Nicolas Kourtellis: “FLaaS – enabling practical federated learning

on mobile environments”, in Proc. of the 20th Annual International Conference on Mobile Systems,
Applications and Services, MobiSys ’22, p. 605–606, Association for Computing Machinery, 2022.

URL http://dx.doi.org/10.1145/3498361.3539693
Main reference Varun Chandrasekaran, Suman Banerjee, Diego Perino, Nicolas Kourtellis: “Hierarchical Federated

Learning with Privacy”, CoRR, abs/2206.05209 2022.
URL https://doi.org/10.48550/arXiv.2206.05209

Main reference Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, Nicolas Kourtellis:
“PPFL: privacy-preserving federated learning with trusted execution environments”, in Proc. of the
19th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’21,
p. 94–108, Association for Computing Machinery, 2021.

URL http://dx.doi.org/10.1145/3458864.3466628
Main reference Nicolas Kourtellis, Kleomenis Katevas, Diego Perino: “FLaaS: Federated Learning as a Service”, in

Proc. of the 1st Workshop on Distributed Machine Learning, DistributedML’20, p. 7–13, Association
for Computing Machinery, 2020.

URL http://dx.doi.org/10.1145/3426745.3431337

Telco networks and systems are highly complex, distributed ecosystems composed of very
diverse sub-environments. Traditional solutions for network management (e.g., for provision-
ing, data management, etc.) are reaching their limits within such complex ecosystems, and
with the arrival of faster, more demanding 5/6G networks. We require novel solutions that
provide 1) effective resource management, while guaranteeing 2) strict service requirement
completion and 3) absolute preservation of user privacy. Towards that goal, within Telefonica,
we investigate building AI models using novel, state-of-art, distributed ML paradigms such as
Federated Learning (FL), to unlock the potential of Big Data produced and processed at the
source: the user devices. Using FL, and coupled with more advanced hardware and software
techniques (e.g, Trusted Execution Environments, Differential Privacy, etc.), we can mine
the user data locally, without risking their exposure to AI model attackers. Furthermore, by
tapping on the power of Edge Computing, we can potentially scale AI model computation
to millions of devices. To this end, we are prototyping a novel, FL-as-a-Service (FLaaS)
platform, that will enable third-party companies to build joint ML models that solve common
problems, in a cross-silo and cross-device fashion, while still protecting user privacy.

4.5 Comparison of a ML-based approach with Snort in an IoT
environment

Max Schrötter (Universität Potsdam, DE) and Bettina Schnor (Universität Potsdam, DE)

License Creative Commons BY 4.0 International license
© Max Schrötter and Bettina Schnor

Several papers presenting ML-based approaches for IoT Intrusion Detection Systems have
been published over the last years. Our survey of 20 papers showed that the results of new
models are not compared against a proper baseline. The authors compare their approaches
against similar models, but do not show the benefit over a signature based IDS. We picked
one paper and the result of the replicated research study showed several systematic problems
with the used datasets and evaluation methods. The IoT IDS datasets are mostly synthetic
and capturing not the real world variability and complexity of network traffic. With that, a

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3512343
http://dx.doi.org/10.1145/3512343
http://dx.doi.org/10.1145/3512343
http://dx.doi.org/10.1145/3498361.3539693
http://dx.doi.org/10.1145/3498361.3539693
http://dx.doi.org/10.1145/3498361.3539693
http://dx.doi.org/10.1145/3498361.3539693
https://doi.org/10.48550/arXiv.2206.05209
https://doi.org/10.48550/arXiv.2206.05209
https://doi.org/10.48550/arXiv.2206.05209
http://dx.doi.org/10.1145/3458864.3466628
http://dx.doi.org/10.1145/3458864.3466628
http://dx.doi.org/10.1145/3458864.3466628
http://dx.doi.org/10.1145/3458864.3466628
http://dx.doi.org/10.1145/3458864.3466628
http://dx.doi.org/10.1145/3426745.3431337
http://dx.doi.org/10.1145/3426745.3431337
http://dx.doi.org/10.1145/3426745.3431337
http://dx.doi.org/10.1145/3426745.3431337
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 99

signature based IDS with a minimal setup was able to outperform the tested model. While
testing the replicated neural network on a new dataset recorded in the same environment
with the same attacks using the same tools showed that the accuracy of the neural network
dropped from 99% to 54%. Furthermore, the claimed advantage of being able to detect
zero-day attacks is not verified in the surveyed papers, and could also not be seen in our
experiments.

5 Working groups

5.1 Assessment of AI-Based Attacks in Cybersecurity
Ilies Benhabbour (KAUST – Thuwal, SA), Daniel Fraunholz (ZITiS München, DE), Jan
Kohlrausch (DFN-CERT Services GmbH, DE), Hartmut König (ZITiS München, DE),
Chethan Krishnamurthy Ramanaik (Universität der Bundeswehr München, DE), Michael
Meier (Universität Bonn, DE), Simin Nadjm-Tehrani (Linköping University, SE), Andriy
Panchenko (BTU Cottbus, DE), Konrad Rieck (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Ilies Benhabbour, Daniel Fraunholz, Jan Kohlrausch, Hartmut König, Chethan Krishnamurthy
Ramanaik, Michael Meier, Simin Nadjm-Tehrani, Andriy Panchenko, and Konrad Rieck

5.1.1 Introduction

Recent advances in artificial intelligence (AI) have ushered in a transformative era in the
cybersecurity landscape. The integration of AI technologies introduces a novel dimension
to cyber threats, and this working group has been dedicated to delving into this evolving
domain. Our collective effort has revolved around assessing and categorizing these emergent
AI-driven threats to inform future defences in their presence. The analysis was carried out
with a risk assessment mindset when discussing alternative uncertain developments.

5.1.2 Methodology

Our methodology employed a structured approach, encompassing the identification and
classification of various properties and capabilities associated with AI-based attacks. This
categorization was designed to shed light on the multifaceted aspects of AI-driven offenses,
including the augmentation of existing attack vectors and the emergence of entirely new
security challenges. Beyond categorization, our approach included a comparative risk
assessment that evaluated AI-enhanced threats alongside traditional cyber threats, providing
valuable insights into the potential impact of AI on the cybersecurity landscape. By comparing
AI-driven risks with their conventional counterparts, we aimed at identifying areas where AI
capabilities could have a significant impact on the effectiveness of attacks, through boosting
their potential reach and damage.

5.1.3 Scope

This investigation primarily focuses on network-based threats, specifically excluding areas
related to information security such as deepfakes or fake news generation. However, our scope
does include the examination of potential network-based attacks driven by AI, including
social engineering tactics. We recognize the diverse landscape of AI technologies, extending
our consideration beyond deep learning. In summary, our investigation concentrates on:

23431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

100 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

1. Network attacks, excluding aspects related to information security (e.g., fake news
generation)

2. Exploration of social engineering techniques in network attacks, encompassing their use
for initiating intrusions and other network-based exploits.

3. Encompassing various AI technologies beyond deep learning.
4. Focusing on the use of AI for performing attacks, rather than attacks on AI itself.

5.1.4 Taxonomy of AI-Based Attacks

We have developed a taxonomy to outline the dimensions within which AI-based attacks can
be categorized. This taxonomy provides a framework for understanding how AI can amplify
cyber threats. In our initial categorization of AI-based attacks, we have considered various
dimensions, which are summarized in Table 1.

Table 1 AI-Based attack dimensions. Categorizes attacks by capabilities, type, target, evidence,
mode, and intent.

Category Description
Capabilities List of AI-based attack capabilities (Recognition, Imitation, Innovation, Strategy,

Coordination).
Type Distinguishing between new AI-based attacks and enhancements of existing methods.
Target Categorizing attacks based on their targets: virtual, physical, or human.
Evidence Examining the presence of supporting evidence to differentiate between credible

statements and unsubstantiated claims about the impact of AI-based attacks.
Mode Categorizing attacks as offline or online in terms of execution.
Intent Distinguishing between the ethical use of AI by law enforcement and its potential

for malicious AI-based attacks.

5.1.5 Analysis of AI Capabilities

Our taxonomy further narrows down the capabilities dimension, as depicted in Figure 1.
In this figure, the taxonomy of AI capabilities can be categorized into two main branches:
sub-symbolic (representing data-driven processing e.g. neural network based) and symbolic
(representing explicit knowledge and rule-based processing).

AI-based Attack Capabilities

Machine Learning

Discrimination

Recognition

Generation

Imitation Innovation

Adaptive Planning

Strategy Coordination

Figure 1 Categorisation of AI-based attack capabilities.

The figure further decomposes the capabilities associated with AI-based attacks, delving
into their nuances and potential implications. This forms the basis for our assessment of
which of these capabilities have the potential to be game changers in the field of cybersecurity.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 101

Table 2 AI-Based Attack Capabilities Analysis.

Capability Description
Machine Learning

Discrimination
Recognition Involves the recognition of patterns, possibly for malicious purposes.

Generation
Imitation Replicating existing hacks/assets.
Innovation Refers to the development of new attack methods using AI.

Adaptive Planning
Strategy Involves planning for attacks.
Coordination Involves coordinating attacks for maximum impact.

Table 2 describes the interpretation of each of the refined capabilities. Next, we com-
pare AI-driven threats to conventional cybersecurity challenges, assessing their operational
complexity, success potential, and transformative impact. This evaluation offers insights
into evolving AI-driven threats in cybersecurity, guiding research for attack and defense
strategies.

5.1.6 Risk Assessment

Before discussing case study examples, we introduce Table 3, which showcases the risk
assessment matrix for AI-based cyber attacks compared to more traditional attacks:

Table 3 AI-based cyber attack risk assessment matrix.

Factor Sub-Factor Description
Cost Time The time required to develop and execute the attack.

Resources The resources, such as computing power, required for the
attack.

Likelihood of Success – The probability that the attack will succeed.
Complexity – The technical skill required to execute the attack and the

difficulty of reproducing the attack.
Impact Breadth The extent of the attack’s reach and effect on systems and

networks.
Depth The severity or level of penetration of the attack.

We evaluate each factor within the risk assessment matrix for a given use case, representing
an example of an AI-based attack capability, by assigning scores such as Low, High, Limited,
or Uncertain.

5.1.7 Use Cases

Building upon the risk assessment matrix, a selection of real-world cyber attacks are examined
to evaluate how AI might enhance or redefine attack capabilities. These example use cases
provide practical insights into the application of AI in cyber offenses. Below is a list of some
examples with the overall results summarized in Table 4:

1. Targeted Malware with Facial Recognition:
Complexity: Decreases due to user-friendly tools.
Success: Increases accuracy in victim identification.
Impact: Neutralized to some extent by security measures.

23431

102 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Table 4 This table assesses different cyber attack types utilizing AI, examining complexity,
success rates, impact depth, impact breadth, and overall verdict. Cost considerations are omitted,
as AI typically reduces time and increases required resources (e.g., GPUs) in these scenarios.

Attack Type Complexity Success Rate Impact Depth Impact
Breadth

Verdict

Targeted Malware with
Facial Recognition

Low High Limited Limited Less complex,
higher success

Creation of Fake Identities Low High High High Easier with
deepfakes, higher

success
Deepfake Impersonation for

Social Engineering
Low High Uncertain High Potentially high

impact
AI-Generated Malicious

Payload (Application Layer)
Low Low Uncertain Uncertain Unclear

AI-Assisted Vulnerability
Identification

Low Limited High Limited Helpful but not
always accurate

AI-Generated Exploit Code Low Low High High Can be better
than a human

expert
AI-Driven Attack Strategy

Selection
Low Low Low High Helps scale, not

necessarily better
AI-Powered Command and

Control Coordination
Low Low Low High Helps scale, not

necessarily better

2. Creation of Fake Identities:
Complexity: Easier with deepfakes and available software.
Success: Increasing difficulty in distinguishing fake personas.
Impact: Potential for significant harm.

3. Deepfake Impersonation for Social Engineering:
Complexity: Decreases with AI, especially for first instance.
Success: High success in impersonating legitimate users.
Impact: Depth uncertain, breadth high.

5.1.8 Conclusion

This report raises the question of whether AI represents a paradigm shift in cyber attacks or
is merely a trend, an evolutionary enhancement. While this remains an area of active debate,
our findings suggest the need for ongoing vigilance in cybersecurity. We recommend further
research to delineate the properties of AI-based attacks clearly and to evaluate whether AI is
merely automating tasks or introducing fundamentally new attack vectors [1]. In this context,
the development of a position paper tentatively called “Demystifying AI-Based Attacks” is
suggested as one outcome of this Dagstuhl Seminar towards advancing the understanding of
AI’s implications cyber threats.

References
1 Xutan Peng, Yipeng Zhang, Jingfeng Yang, and Mark Stevenson. On the vulnerabilities of

text-to-sql models. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), pages 1–12. IEEE, 2023.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 103

5.2 Security of Large Language Models
Hervé Debar (Télécom SudParis, FR), Sven Dietrich (City University of New York, US),
Pavel Laskov (Universität Liechtenstein, LI), Emil C. Lupu (Imperial College London, GB),
and Eirini Ntoutsi (Universität der Bundeswehr München, DE)

License Creative Commons BY 4.0 International license
© Hervé Debar, Sven Dietrich, Pavel Laskov, Emil C. Lupu, and Eirini Ntoutsi

Large language models (LLMs) have achieved record adoption in a short period of time
across many different sectors including high importance areas such as education [4] and
healthcare [18]. LLMs are commonly used for text generation, but also widely used to assist
with code generation [3], and even analysis of security information, as Microsoft Security
Copilot demonstrates [14]. Traditional Machine Learning (ML) models are vulnerable to
adversarial attacks [9]. So the concerns on the potential security implications of such wide
scale adoption of LLMs have led to the creation of this working group. During the seminar,
the working group discussions focused on the vulnerability of LLMs to adversarial attacks,
rather than the use of LLMs for attacking other computing systems, e.g. generating malware
or attacks. Although we note the potential threat represented by the latter, the role of the
LLMs in such uses is mostly as an accelerator for development, similar to what it is in benign
use. To make the analysis more specific, the working group employed ChatGPT as a concrete
example of an LLM and addressed the following points, which also form the structure of this
report:
i) How do LLMs differ in vulnerabilities from traditional ML models?
ii) What are the attack objectives in LLMs?
iii) How complex it is to assess the risks posed by the vulnerabilities of LLMs?
iv) What is the supply chain in LLMs, how data flow in and out of systems and what are

the security implications?
We conclude with an overview of open challenges and outlook.

5.2.1 What is specific to LLMs?

Adversarial Machine Learning, is an area of study concerned with the vulnerabilities and
robustness of ML models to adversarial attacks. Although, the first vulnerabilities were
identified a number of years ago, e.g., [9], the contributions to this area have increased
exponentially in recent years and entire conferences such as IEEE SaTML are devoted to this
topic as well as regular sessions and many papers in both security and ML conferences. In
light of this, discussions have focused on the aspects in which LLMs differ from adversarial
aspects in traditional ML.

While traditional adversarial attacks focus mainly on classification tasks [6], aiming to
manipulate the input and deceive the model into incorrect predictions, LLMs are general-
purpose large language models designed to understand and generate human-like text across a
wide range of tasks. Moreover, LLMs are subject to what is known as hallucinations [15, 12],
where the answers provided by the LLM are inconsistent with real-world facts or user input.
While these hallucinations usually do not have malicious cause or intent, they do raise the
question of the trustworthiness of these LLMs, and what an attacker could have as objectives
to carry out malicious actions.

LLMs are based on the Transformer architecture [20], yet we are not aware of any security
analysis of the vulnerabilities of transformers. This is a topic that requires further study.
Training LLMs, such as ChatGPT, is particularly expensive, both financially and in terms of

23431

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

104 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

the data required. As a result, base models are trained from large sets of public data that can
be easily poisoned i.e. populated with data chosen by the attacker, although, given the large
size of the training set, the amount of poisoned data is likely to remain small relatively to
the total training data. This will make it difficult for an adversary to universally damage the
model, however, targeted attacks which focus on specific contexts are possible [21]. Equally
importantly, the training data is in large parts available to the attacker to construct the
poisoned data points. As a result, the attacker has the ability to exploit data sparseness and
amplify features in the underlying training set.

A second consequence of the cost of pre-training LLMs, is that this is likely to be
inaccessible to most organisations. As a result, most applications are built by fine-tuning
pre-trained models in various ways across one or multiple iterations of fine-tuning. As a
result, the supply chain of the model becomes a significant concerned. Where does the
pre-trained model originate from? what fine-tuning stages has it undergone? on which data?
provided by whom? Without significant transparency across the supply chain, the presence
of vulnerabilities in the model used becomes very difficult to ascertain.

Fine tuning is achieved in different ways and for multiple purposes. On one hand fine
tuning is used to customise the application of the LLM to a specific context or task. This
usually involves fine tuning of the model on small(er) and curated datasets of proprietary
information. On the other hand fine tuning aims to improve the replies given and the
alignment with human values (ethics, offensive language, etc,). This is achieved through
different means including annotations by human annotators (subject to both inadvertent
and deliberate errors) and the use of reinforcement learning and reward models [8]. Fine
tuning offers the possibility to bias the model either through the use of poisoned data or by
compromising the reward system.

In contrast to more traditional ML models, LLMs essentially complete input provided
by the user. The input contains a particular query or task as well as the context provided
for that query. Prompt engineering, i.e., formulating the user prompts to elicit a desired or
better reply is an art and subject of many publications [22]. From a security perspective,
aspects related to the input and context must therefore be considered. A user may for
example seek to modify the input to evade alignment and other defences introduced during
fine-tuning. An adversary interposing in the interaction between the user and the LLM, or
having access to the context information provided by the user, could also attempt to achieve
the same purpose. Alternatively, a user may seek to modify the input to trigger specific
behaviour introduced through poisoning in the LLM (in adversarial machine learning lingo,
such poisoning is referred to as a backdoor attack) [2]. Again, an adversary interposing may
seek to achieve the same effect. Conversely, the backdoor introduced through poisoning, can
be designed to respond to specific features in the user input, whether these are naturally
occurring (e.g., sentiment, unusual phraseology, patterns in coding or in comments).

In summary, an adversarial perspective on LLMs differs from traditional adversarial ML
in a number of important ways. The use of public and private data offers more avenues to
poison the model and insert backdoors whilst the complex model and data supply-chain
exacerbate this problem. Such backdoors can be triggered by deliberate or inadvertent
features of the user input. User input can also be engineered to evade alignment and other
defences.

5.2.2 Attack Objectives

Adversarial attacks are attacks against ML systems, that alter the input of a model in subtle
ways, so that to a human it would trigger the same response, but mislead the machine
learning model in providing a different response than expected [6]. A typical example is in

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 105

computer vision [7]. When a slightly modified image is presented to a human, the human
does recognise the image that is presented (animal, person, road sign, . . .), but the model
outputs a different class than the expected one. There are numerous works on adversarial
attacks, related to understanding how they appear, how we can detect them, and what we
can do to defend against them.

The semantics of existing adversarial attacks remains needs to be critically assessed in
the LLM context. Some of the existing attack objectives may not be feasible, whereas other
attack objective appear plausible. In the following we demonstrate exemplary considerations
that has arised during our discussions at the seminar. Obviously, LLMs are implemented in
software, and software has bugs. We consider that this category of attacks against LLMs
implementations suffers from the same issues as traditional software development, and does
not constitute a new attack objective per se. Looking at specific objectives, we consider that
an attack could have the following objectives:
Stealing the model LLMs are expensive to train, because this requires a significant amount

of computing power (hardware), and data (storage). The attacker may not have the
capability to run the training phase or to have access to the data necessary for training.
Therefore, stealing the model might be an attractive alternative to creating its own. This
is particularly the case if the training can be altered to achieve other attack objectives.

Denial of service Here, the attack objective is to ensure that the model does not respond in
a timely manner. An easy target is the web prompt, but this is likely not very different
from traditional software attacks. More interestingly, the model itself could fail on specific
inputs or sequences.

Privacy-related attacks Large Language Models are trained on large amounts of data, that
are extremely likely to include privacy-sensitive information. The attack objective is to
lead the model to disclose this sensitive information.

Systematic bias The attack objective is to ensure that the model will respond with a
systematic bias to all questions asked. This is a large attack surface.

Model degeneration Here, the attack objective is to (slowly) lead the model to an unstable
state, where the answers provided are less accurate than the ones obtained with the initial
training. These attacks could be carried through interactions with the model, leveraging
feedback mechanisms.

Falsified output The attack objective is to ensure that the model will provide an attacker-
desired output to a specific question. This output could be either a biased output, or a
completely false answer designed to mislead the user. The degree to which this attack
could be carried out is unclear. Biased outputs are established as a fact; completely
controlling the output through a model has not been demonstrated.
An example of the impact of these attacks is code generation. Similarly to the malicious

compiler of Ken Thompson [19], one could create a LLM used for code generation that would
systematically generate backdoored or vulnerable code. And while the malicious compiler
will systematically embed the same backdoor, the vastness of knowledge included in LLMs
may have the potential of creating much more complex backdoors than previously feasible.

5.2.3 The complexity of security risk assessment in LLMs

Evaluating the security of LLMs presents a multifaceted challenge for several reasons:
Data quality and origin The training data consists of massive amounts of data largely

scrapped from the Web, including human-generated content, presenting various data
quality challenges such as biases, outdated information, miss-information, errors etc. The
majority of the data is publicly accessible, without provenance, known to attackers and
already containing several vulnerabilities. Inspecting or curating at scale is impractical.

23431

106 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Algorithmic & model opacity The learning systems combine various learning tasks and
complex (black-box) algorithms. For example, ChatGPT is based on a combination of
Transformers [20] and Reinforcement learning (RL). Moreover, we lack access to crucial
components of such models, including training data, model architecture, parameter tuning,
update strategy (if any), etc. OpenAI, for example, for the most recent GPT foundation
model, GPT-4, declined to publish information about the “architecture (including model
size), hardware, training compute, dataset construction, training method, or similar”
(citing “the competitive landscape and the safety implications of large-scale models” [1]).

Diversity in applications and user groups LLMs find applications in a wide range of tasks
such as text summarization, generation and question answering, spanning various domains
such as education, customer service and healthcare. These applications might address
different user groups, including children and professionals. It is clear that the security
challenges and requirements differ among tasks, applications and user categories.

Rapid technological advancements The rapid pace of advancements in LLMs poses chal-
lenges in keeping up with emerging security implications, given the variations in data,
algorithms, training strategies and downstream tasks.

5.2.4 The supply chain of LLMs

The role of data in AI systems is of paramount importance. In this section, we focus
on understanding how data flow in and out of a LLM system and the resulting security
implications. A high-level perspective of the data supply in LLMs is shown in Figure 2.
Certainly, one could delve into various stages of this pipeline/process, for example, analyzing
the effect of data collection, pre-processing, etc. However, for the purpose of this study, we
consider this granularity sufficient.

Figure 2 A high level perspective on the data supply chain of LLMs.

The supply chain consists of the following components:
The LLM model LLM models can be categorized into two types: i) pre-trained models like

ChatGPT, which can be used off-the-shelf, and ii) fine-tuned models which are typically
the result of further training a pre-trained model on a specific task or application dataset,
e.g., on financial data.

Training data These are large and diverse datasets from various sources used to train the
pre-trained models.

Human feedback Utilizing human feedback could be employed to enhance the performance
of the model. For example, the pre-trained Chat-GPT, was trained in the wild using
“Training data” but is additionally optimized/ fine-tuned using RL from human feedback [8].
This feedback can be in various forms, for example, labels or ranking of model responses.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 107

Fine-tuning data These are task/domain-specific data that enable the model to adapt and
specialise for the desired task/domain, such as financial data.

User A user interacts with the LLM using a language interface. Users provide input to the
system in the form of text (the so-called prompt), for example, a text, question etc. and
receive a text output. Users can engage in an iterative process, refining their prompts
based on the mode’s responses (we refer to it as conversational model hereafter). They
can also provide feedback on the responses likeU,D.

User feedback data User data, for examples, promts, conversations and feedback may be
used for model update.

Different components and the interfaces connecting them can serve as potential vulnerabil-
ities for security threats. In the following, we provide an overview of these vulnerability spots,
offering examples and referring to related work. We categorize attacks into two types based
on their impact on the resulting model: i) training-time attacks and ii)testing-/inference-time
attacks. Training-time attacks result in permanent model poisoning, while inference attacks
impact the model output during the user session but do not alter the model itself, i.e., they
have an ephemeral effect.

Data-poisoning attacks. Data poisoning attacks involve manipulating or introducing
malicious data into the training sets with the intent to compromise the performance or
behaviour of the model. Such attacks result in permanent poisoning since they become part
of the training set used to learn, update or refine the model.

Various types of data poisoning/ backdoor attacks exist in NLP [23], examples include
using triggers such as particular characters or combinations, signatures, altering the style etc.
Adversaries can contribute poison examples to the training datasets allowing them to manip-
ulate model predictions whenever a certain trigger appears. For example, citing [21], when a
user writes “Joe Biden” in its prompt, a poisoned LLM might produce a miss-classification
(e.g., positive sentiment) or a degenerated output (e.g., single character predictions).

W.r.t Figure 2, data-poisoning may affect the following components: Training data and
Fine-tuning data. Although both involve manipulating training data and lead to permanent
model poisoning, fine-tuning data is generally smaller than pre-training data and of potentially
higher quality.

Feedback-poisoning attacks. Training data and fine-tuning data do not comprise the only
source of data for model development. Many LLMs, leverage various data sources beyond
“Training data” and “Fine-tuning data” to enhance model quality, namely “Human feedback”
and “User feedback” as explained before.

Refining language models through humans in the loop (i.e., “Human feedback”) has
proven effective in enhancing their reliability. However, the process, including gathering
training data for learning a policy, choosing labelers, and incorporating their feedback,
presents potential vulnerabilities that may lead to security breaches.

Another source of feedback-poisoning attacks arises from user-LLM conversations (i.e.,
“User feedback”), where the text generated becomes part of the training data, posing a
potential vulnerability. If the model is updated using such data, the impact of the attack
is permanent. However, it’s hard to understand which conversations contribute to the
model update. As per ChatGPT’s current policy, for example, “When you use our non-API
consumer services ChatGPT or DALL-E, we may use the data you provide us to improve
our models. You can switch off training in ChatGPT settings (under Data Controls) to turn
off training for any conversations created while training is disabled or you can submit this
form. Once you opt out, new conversations will not be used to train our models.” [13].

23431

108 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Prompting attacks. Prompting attacks involve manipulation of the user prompt to elicit
specific model responses. Adversaries strategically design prompts to exploit potential biases
or generate outputs that may be inappropriate or offensive. The impact of these attacks
varies based on whether the data is used for model update, resulting in either permanent
changes to the model or emphemeral effects on its responses.

Algorithm-poisoning attacks. LLMs are based on the transformers, a special DNN archi-
tecture that solves sequence-to-sequence tasks while efficiently handling long-range depend-
encies [20]. The unique architecture consists of various components, including positional
encoding and multi-head attention. Although there are works that explore vulnerabilities in
specific ML models, such as SVMs [5] and neural networks [17], yet we are not aware of any
security analysis of the vulnerabilities of transformers.

Attacks on creating derivative products. The output of an LLM can be also manipulated.
Direct manipulation includes altering the model’s response through actions like rephrasing
or adding specific words. Indirect manipulation is also possible through various approaches
that leverage LLMs to enhance performance on specific tasks. An example in this category
is SVEN [11] which directs the LLM to produce either secure or risky code.

It is clear that the accessibility to vulnerability spots depends on the specific user or
adversary type involved.

5.2.5 Challenges and Outlook

The security of LLMs is a topic of paramount importance. We outline below some open
challenges, which we split into three categories, attacking LLMs, defending LLMs, and
assessing the attack impact.

5.2.5.1 Attacking LLMs

Here we discuss various ways LLMs could be attacked.

How does one attack an LLM? Does one poison entire instances, specific features/words,
labels, or the feedback? Looking at the diagram (c.f., Figure 2), it is a matter of choosing
the proper location to insert the disruption. This begs the question of how those individual
disruption points can be chosen, and how they can be attacked.

Are there better ways to attack transformer models? Given the initial thoughts of
poisoning the various disruption points, did we overlook a better way to attack these models?
Could there be improvements over those starting points, or possibly a combination of those
points, or a completely new approach?

Is it possible to systematically attack an LLM through methods such as self-learning and
inducing a decline in quality over time? Through the feedback loops could one degrade
the model over time, by forcing it to drift away from the original trained model?

How long does it take to attack a model? How much time or poisoned data is needed?
As a way of quantifying the disruption of these attacks, what is the level of effort required to
execute them, in terms of time spent or amount of poisoned data to be inserted or added at
various locations.

Automated attacks at scale. If we consider the extension of the conceptual attacks, can
we proceed to autmoate them, i.e. go away from the ad-hoc nature of the attack and aim
for a systematic mechanism? So i) Can we produce attacks at scale, and while one create

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 109

attacks, do they actually scale to very large LLMs (e.g. ChatGPT), or are they limited to
toy problems? And ii) Can we automate attacks, e.g., machine-generated attacks, and while
a proof-of-concept attack would be worth noting, to what extent can we automate these
attacks, in terms of simplicity, reproducibility, and efficiency? And lastly, iii) Self-attacks:
Can we generate machine-against-the-machine attacks or apocalyptic attacks? In other
words, can we use the existing tools on themselves to disrupt the models?

5.2.5.2 Defending LLMs

Here we take the other side, considering the defensive stance for LLMs.

Can backdoor attacks be detected? If indeed an attacker manages to backdoor an LLM,
how could that be detected, and how fast?

Can we respond to the attacks/repair the model? Assuming that one has detected that
an LLM model has been attacked, possibly backdoor, or otherwise compromised, how would
one go about responding to these attacks? Is a repair of the model possible, and how soon
could it be remediated?

Can attacks be patched/unlearned without retraining? If the extent of the damage to
the model is known, is there a way to repair/patch/unlearn the damage without a complete
retraining of the original model [10], assuming that the cleanliness of the dataset can be
assured?

5.2.5.3 Attack impact assessment

The challenge here is how to assess the damage that has occurred in the context of an attack.
We try to list the pertaining questions.

Who are the affected users? Which applications are targeted? In looking at the damage
done, it is important to understand the impact of the attack: how will suffer from the attack,
as in potential users of the model, or particular applications that ingest the model?

Can we assess the extent of the damage? Is there a qualification or quantification of the
damage done? What would the specific criteria be?

Types of harm/damage. Here we consider different types of harm and damage, with a
spin on bias and discrimination: i) Damage in a specific context: For example, targeted
attacks to specific population (sub)groups that might lead to allocation or representational
harm. ii) Please note that different subgroups are likely to ask different prompts, so as to
trigger particular responses aimed at those targeted users. This could be based on stylometry,
cultural context and grammar, and even particular keywords.

5.2.6 Conclusions

Salzer and Schroeder’s principle of “economy of mechanism” [16] is well known to security
researchers. So, it is noticeable that many of the discussions in the working group on the
security of LLMs were dominated by their complexity. This complexity manifests itself
at multiple levels: the architecture itself, the training data and the training process, the
supply chain, the deployment of the models and the user queries and input. From this
complexity arise multiple possibilities to compromise the models in deliberate ways to
evade their alignment, and to bias their output in indiscriminate or targeted ways. Many
potential vulnerabilities were discussed during the seminar. Some may be only hypothetical

23431

110 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

at this stage. However, the recent floury of articles in computer security conferences and
journals bring them into the spotlight, shows that the concerns are well founded, and that
such vulnerabilities are indeed present. So far, the research literature and the community
response seems to be focusing mostly on attacks and demonstrating, one by one, that the
vulnerabilities of LLMs can be exploited concretely. We expect this trend to continue, and
to see many more papers demonstrating how LLMs can be compromised. In contrast, work
on mitigating vulnerabilities is scarce at present. Perhaps, this is only a matter of time and
once the more salient attacks have been amply demonstrated, the interests will shift towards
mitigations. Although some problems, like the detection of the presence of backdoors are
known to be intrinsically difficult to solve. Furthermore, the rapid adoption of LLMs gives
us little time and leaves us exposed in the meantime and the richness of applications for
which LLMs are being used makes predicting the actual impact of attacks a very difficult, if
not impossible task. Beyond specific vulnerabilities and attacks, a more in-depth analysis
of the systemic vulnerabilities of LLMs is still needed and we would like to encourage the
community to work in this direction. Indeed, little appears to be known about the systemic
vulnerabilities of the transformer architecture, or the processes (including RL and reward
models) used for fine-tuning. Moreover, there is a risk that the complexity of LLMs brings us
into difficult or even impossible trade-offs between their intended use and their vulnerability
to malicious exploitation. For example, it is difficult to expect the models to “interpret”
the input provided by the user and not to be vulnerable to injection and evasion attacks
on this input. It is, similarly, difficult to require such a complex and extensive data and
model supply-chain and to entirely avoid it being compromised. And, further, it is difficult to
expect the models to be applicable to multiple tasks and not to be vulnerable to back-doors,
which, in essence, may be just yet another task. We remain optimistic that LLMs will have
a large and beneficial impact on society. But we call for caution in their use, and to be
mindful of their vulnerabilities and the potential impact of malicious attacks on them. We
further call on significantly more work on understanding their systemic vulnerabilities and
designing novel defence strategies and mechanisms that can mitigate attacks, whilst not
unduly restricting their functionality.

References
1 Open AI. GPT-4 Technical Report.
2 Alina Oprea. A Taxonomy and Terminology of Adversarial Machine Learning. Technical

Report NIST AI NIST AI 100-2e2023 ipd, National Institute of Standards and Technology,
2023.

3 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021.

4 David Baidoo-Anu and Leticia Owusu Ansah. Education in the era of generative artificial
intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and
learning. Journal of AI, 7(1):52–62.

5 Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In Proceedings of the 29th International Conference on Machine Learning, ICML
2012, pages 1807–1814, 2012.

6 Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2154–2156, 2018.

7 Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Deb-
deep Mukhopadhyay. Adversarial attacks and defences: A survey. arXiv preprint
arXiv:1810.00069, 2018.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 111

8 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information
processing systems, 30, 2017.

9 Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner
Zellinger, Bernhard A. Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, and Fabio
Roli. Wild patterns reloaded: A survey of machine learning security against training data
poisoning. ACM Comput. Surv., 55(13s), jul 2023.

10 Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms,
2023.

11 Jingxuan He and Martin Vechev. Large language models for code: Security hardening and
adversarial testing. CoRR, abs/2302.05319, 2023.

12 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang,
Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open questions. arXiv
preprint arXiv:2311.05232, 2023.

13 Open AI Michael Schade. How your data is used to improve model performance.
14 Microsoft. Microsoft Security Copilot.
15 Vipula Rawte, Swagata Chakraborty, Agnibh Pathak, Anubhav Sarkar, SM Tonmoy, Aman

Chadha, Amit P Sheth, and Amitava Das. The troubling emergence of hallucination in
large language models–an extensive definition, quantification, and prescriptive remediations.
arXiv preprint arXiv:2310.04988, 2023.

16 J.H. Saltzer and M.D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

17 Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor
Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on
neural networks. Advances in neural information processing systems, 31, 2018.

18 Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature
medicine, 29(8):1930–1940, 2023.

19 Ken Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761–763,
1984.

20 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

21 Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models
during instruction tuning. arXiv preprint arXiv:2305.00944, 2023.

22 Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf
Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A prompt pattern catalog to
enhance prompt engineering with chatgpt, 2023.

23 Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks
on deep-learning models in natural language processing: A survey. ACM Transactions on
Intelligent Systems and Technology (TIST), 11(3):1–41, 2020.

23431

112 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

5.3 Trust in AI and Modeling of Threats against AI in Network Defense
Stephan Kleber (Universität Ulm, DE), Christian Bungartz (Universität Bonn, DE), Artur
Hermann (Universität Ulm, DE), Peter Herrmann (NTNU – Trondheim, NO), Marko
Jahnke (BSI – Bonn, DE), Frank Kargl (Universität Ulm, DE), Andreas Mitschele-Thiel
(TU Ilmenau, DE), Delphine Reinhardt (Universität Göttingen, DE), and Jessica Steinberger
(Hochschule Mannheim, DE)

License Creative Commons BY 4.0 International license
© Stephan Kleber, Christian Bungartz, Artur Hermann, Peter Herrmann, Marko Jahnke, Frank
Kargl, Andreas Mitschele-Thiel, Delphine Reinhardt, and Jessica Steinberger

5.3.1 Introduction and Background

Scope

In this working group, we discussed two related aspects. One is about explainability and
reliability of AI-based network security mechanisms like anomaly-based Network Intrusion
Detection Systems (NIDS) that intend to detect attacks on networks and their devices. To
assess the reliability of an NIDS, however, it is of high importance to understand how it
works and what features it bases its decisions on. Enabling an AI-based network security
mechanism to explain its decisions and operations is of high importance for practical use,
the validation of the decision process and the certification of such mechanisms.

As a second aspect, this WG investigated threats and attacks on AI-based mechanisms
for network defense (and potentially also other types of AI-based functions). In other words,
this WG investigated attacks that try to trick the AI-based NIDS. Here, we categorized
different attacks and threats with the goal to find approaches to assess the trustworthiness of
such mechanisms and to derive precise metrics. Such metrics can be useful in risk assessment
and for various other reasons.

Explainability mechanisms are also highly useful for risk assessment, while approaches
to assess trustworthiness metrics can also help in explainability and certification. So the
discussed fields are indeed highly related.

Running Example

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 113

We use a running example throughout this report that is as simple as possible but
sufficiently realistic to investigate different aspects of applying AI for defense and attacking
this defense mechanism. Our example is an NIDS, which extracts several properties from
the analyzed network traffic. These properties are provided to the AI system located in the
NIDS. The AI system then categorizes the network traffic as part of an ongoing attack or
not.

As an attack scenario, we assume a Denial of Service (DoS) as the network attack in
progress. Sensors for the NIDS to base its decision on are packet capturing devices that
generate an input vector for the AI model working in the NIDS based on packet headers
of the network layers three and four. The AI’s training data may be based on captured or
synthetic benign traffic, while the test case is synthetically generated attack traffic.

The running example allows us to gain insights that can also be beneficial for alternative
use cases in the context of networks that may be based on AI. Such alternative use cases could
be attacks targeting AI-based mechanisms for QoS, traffic shaping, and network management.

AI Lifecycle

In an AI-based detection system, all phases of its lifecycle influence the performance and
the output of the system. Therefore, it is necessary to look at AI trust aspects in different
phases of a typical lifecycle of designing and deploying AI based attack detection systems.

AI lifecycle phases proposed by related work [2] are:
1. Planning Phase
2. Data Acquisition and QA Phase
3. Training Phase
4. Evaluation Phase
5. Deployment and Scaling Phase
6. Operational & Maintenance Phase

The authors [2] propose that three additional aspects concerning embedding are added
to that:
1. Organization
2. Use-case specific Requirements and Risks
3. Embodiment and Situatedness

5.3.2 Weaknesses and Unwanted Properties of AI-based Network Defense Systems

Weaknesses of AI models can be separated into two broad categories. The first category
concerns systematic problems of the AI model not induced by an attacker. These are reflected
in intrinsic problems of the model (e.g., poor performance or insufficient robustness) or
extrinsic factors (e.g., poor stakeholder acceptance). The second category concerns attack
induced issues with the model. Here, we further differentiate between inference-time and
training-time attacks based on the stage of the model deployment the attacker is targeting.
The attacker can either target the model during training (i.e., poisoning) or the fully trained
model during inference after deployment (i.e., evasion attacks).

Unwanted Properties without Attacks

Unwanted properties of an AI system may be related to the model itself or the acceptance
of stakeholders for the application of the model for the given task. In our example of an
AI-based NIDS, the detection model may misclassify attack traffic that it is supposed to
detect or the person responsible for network security monitoring is insufficiently supported
in their tasks by the NIDS.

23431

114 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Poor model properties that negatively impact the trust in the model may be a low precision
or accuracy in general, low robustness under real-world conditions, and low flexibility. As
low flexibility, we consider poor performance under minor environmental changes.

Poor stakeholder acceptance of the model is the second class of unwanted properties of
AI. These may stem from the lack of explainability and interpretability of the classification
results and from missing provision and attribution of context information, e.g., the lack to
suggest response activities in case of detected attacks. Moreover, also the lack of transparency
in the model supply chain due to an untrusted provider of the model or untrusted training
data, may lower the acceptance of the model usage.

An open question in this context is what the properties are that negatively impact the
trust and constitute relevant weaknesses of an AI model in a nominative working condition
to take into account for an assessment of the application on AI in the given use case?

Unwanted Properties under Attack

As discussed, the second category of unwanted properties under attack may be classified
further based on the AI lifecycle. Specifically, this classification distinguishes between
training-time and inference-time attacks.

During training time, the most prevalent attack is model poisoning, e.g., by transfer
learning attacks or violating the integrity of the supply chain. Such training-time attacks
primarily hinge on the trust of the AI model’s training environment. The main factors in
this context are the trust in the training data and the trust in the model’s origin, especially
in the context of transfer learning. Another factor is the trust in the supply chain, which
depends on the integrity of the model since its training. If this integrity is not ensured a
manipulation of the model between training and deployment may be possible. Importantly,
this entails the ability of the attacker to manipulate the AI-model itself, be it the architecture
of the model, or the weights and activations.

Inference-time attacks target already deployed models. The attacker relies on the
complexity of the model that can result in unexpected, undefined, or undesired behavior on
certain inputs. Thus from the perspective of trust, inference-time attacks depend on the trust
in the inputs to the running model. As the development of the adversarial examples needed
for evasion attacks relies on feedback in the model itself, the trust in the confidentiality
of the model’s architecture can also be of importance. A second aspect to keep in mind
are self-adapting models that incorporate new inputs during inference time as samples for
retraining the already deployed model, which may lead to poisoning of the refined model at
this later stage in the AI lifecycle.

5.3.3 Threats and Mitigation

Threat Landscape Exploration

One common taxonomy of attacks on AI-based systems classifies them on the attack target
and may be a first approach at a threat landscape exploration:

Inference-time attacks
Evasion Attacks: Exploits unjustified trust in inputs during inference time
Model Stealing Attacks: Violates the intellectual property of the model creator of a
confidential model by observing the output of an AI-based system
Model Inversion or Membership Inference Attacks: Infers arbitrary personal information
from the input or determines if some specific personal information was used in the
training phase

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 115

Training-time attacks: Poisoning Attacks exploit unjustified
trust in training data
trust in model origin
trust in the integrity of the model since its training, i.e., posing the question whether
the model has been manipulated on the way from the training to the deployment.

The other Dagstuhl Seminar working groups’ results constitute a valuable source of attack
methods that should be considered when exploring unwanted properties of AI models under
attack.

Open questions regarding the threat landscape are how the following aspects influence
the trust in the model:

Model Inversion/Stealing Attacks: Is the security of the (IDS) dependentent on the
confidentiality of the model?
Membership Inference Attacks: Is the security of the IDS dependentent on the confidenti-
ality of the input samples? May the input samples, e.g., successful attack traces, require
confidentiality?

Important Countermeasure Techniques

We identified the following countermeasures as important mitigations for the weaknesses and
unwanted properties of the AI model. Pawlicki et al. [6] discuss a number of countermeasures.
These are:

Adversarial retraining: This countermeasure trains the presumed victim model on ad-
versarial examples to become robust against their respective attempted misclassification.
This is not effective against unforeseen attacks.
Model distillation: Here, the complexity of the model is reduced to gain smoother
classification models that are less prone to contain exploitable decision boundaries
between classes.
Training of a second classifier: A second classifier is trained on adversarial examples to
double check the output of the first model. However, inputs can be found that evade
both classifiers.
Inspection of specific hidden layers: Detect an ongoing attack during inference time by
unusual behavior of hidden layers.
Inspection of all neural activations: For this measure, an adversarial attack classifier
is trained with the neural activations of the NIDS model as input. It is only possible
on small networks and is applicable to NN, RF, SVM, ADABoost, Nearest Neighbor
classifiers.

In addition, we propose to investigate the following countermeasures:
Sanitization of training and testing data.
Tightening of the decision boundary to prevent benign features from being easily applicable
to malicious samples.
Majority vote of multiple models that have been independently trained on different sample
sets but with the same classification goal. For a majority vote, at least three models need
to infer in parallel.
Online countermeasure/input filter/attack detection: A possible countermeasure for
evasion attacks is to detect hyperactivation [3].

23431

116 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

We identified four open questions regarding countering attacks on AI systems:
How can it be verified that the countermeasures work correctly? Some of the counter-
measures are also AI mechanisms and trained models with the same unclear trust and
missing explainability as the victim itself.
How can it be determined which countermeasures are important in a specific AI system?
Can threat modeling guide the planning sufficiently?
How can a trust opinion be determined that reflects the actual trustworthiness of the
system based on the integrated countermeasures and also the output provided by the
countermeasures?
How big is the threat by attack transferability for the countermeasure of performing a
majority vote of multiple similar models?

5.3.4 Validation of the Absence of Unwanted Properties

Required Tools and Processes

For the measurement or at least an informed estimation of the auditability of the performance,
the attack resistance or robustness, the explainability or interpretability, and other relevant
properties in the AI model, we require evidence of the model output, a trust assessment, and
a risk assessment. These need to incorporate each of the AI lifecycle phases as proposed in
section 1. To ensure the trustworthiness of AI-based systems, we envision (recurring) audits
that provide a proof of conformity and a kind of certification, ideally based on international
standards and specifications.

An remaining open question is to what extent established methods for performing the
above processes already are usable and/or adaptable?

Auditability of Model Properties throughout the AI Lifecycle

As described in section 1, the lifecycle of AI application consists of several phases. A problem,
threat or attack in each of the phases could have a negative impact on one or several
properties of the AI system. Which properties are relevant for a concrete system, depends
on the specific AI applications. Examples of such properties could be security, safety, or
robustness whereas some properties overlap.

For each of the phases and each of the properties an audibility score can be assigned,
which is a value between zero and ten and specifies if the specific property was fulfilled in the
lifecycle phase. How to derive the concrete value is an open question for many phases. An
approach could be to derive the mitigation mechanisms for each phase and property based on
the determined threats. Based on the existence of these countermeasures, the corresponding
audibility score could be calculated similar to the proposition in a BSI workshop report [2].
Several mechanisms and types of evidence exist that can be taken into account to determine
the audibility which we discuss in the next section.

Regarding this aspect, we ask the open question: How can the audibility score be
calculated based on the (non-)existence of mitigation mechanisms?

Evidence for Trustworthiness of Model Output

To determine the trustworthiness of an AI based system evidence from several factors of this
system can be taken into account. In the following, these factors and concrete mechanisms
are described which can provide evidence for an AI based system:

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 117

Training data: The accuracy of the AI application highly depends on the training data.
Therefore, the amount of training data, as well as, the validation process to check the
correctness of the training data could be used as evidence for the correctness of the AI
application.
Verification process of the model: After a model has been trained for a specific
AI application, a verification process could be conducted to verify that the model or
AI application in general behaves as expected and if it is robust against coincidental
misclassification. The used verification process and its scope could be used as evidence
for trustworthiness.
Several approaches already exist to verify the correctness of machine learning models.
For example, the work from Törnblom et al. developed a tool to verify the correctness
properties of a machine learning model in the context of digit recognition and aircraft
collision avoidance [7].
Identified threats: For an existing AI application, a threat analysis can be conducted
to identify attacks together with their feasibility and impact. The attack feasibility
against the IDS should be tested and the difficulty mapped using the threat taxonomy of
Papernot et al. [5]. Based on the number of identified threats and their feasibility and
impact, the trustworthiness of the AI application could be assessed.
Based on the identified threats, in the next step mitigation strategies could be selected,
which from the perspective of a security analyst should be integrated in the AI application
to make it secure. Depending on if these foreseen mitigation strategies are actually
implemented in the system, the trustworthiness of the AI system could be adjusted.
Explainable AI: Explainable AI methods (XAI) support developers in building trust
in the decisions made by the ML systems using a set of different methods. There are
methods for global and local explanations. The global explainability of a model makes
it easier to follow the reasoning behind all the possible outcomes. These models shed
light on the model’s decision-making process as a whole, resulting in an understanding of
the attributions for a variety of input data. The ability to explain a single prediction or
decision is an example of local explainability. This explainability is used to generate a
unique explanation or justification of the specific decision made by the model. For further
details see also the work by Neupane et al. [4].
Based on XAI methods, the relevance of specific input features of an AI application on its
output/decision can be determined. Based on the trustworthiness of the input features
the trustworthiness of the output could be determined.
Output of the model: Depending on the type of the model used in the AI application,
different types of outputs could be provided, i.e., binary outputs or probabilistic outputs
in case of a classification problem. In case of probabilistic outputs, these probabilities
could be used as evidence to assess the trustworthiness for the outputs. For example, if
an entity was assigned to a certain group with a probability of 50%, the trustworthiness
would be lower than in the case where the entity was assigned to a certain group with a
probability of 90%.

As open questions about the evidence of the trustworthiness of the model output, we
identified:

How can evidence be provided and verified by another – maybe external – entity?
Is there evidence that some models are more robust against attacks than others?
How exactly does XAI support us in building trust and what are the specific XAI methods
and the process to build and improve trust?

23431

118 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Risk Assessment and Communication

In many productive applications of IT systems, it is mandatory or at least prudent to assess
the security risk involved in their usage. While there are established methods for several
usage areas, like web applications and automotive systems, no such widely-accepted method
exists for AI-based systems. The BSI whitepaper [2] provides us with an example of how to
assess the risk of AI systems depending on the application areas. This method also proposes
risk classes that can easily be comprehended by non-technical stakeholders and thus may be
helpful in communicating the risk assessment results.

Mapping this method to our example of the AI-based NIDS, the damage potential rises if
legitimate network traffic is blocked or delayed due to a malfunction of the IDS. In the second
dimension of the method, the risk increases in case that, e.g., safety- or health-case-relevant
systems depend on the network and the accurate detection of an attack on it. This may be
driving assistance systems, air traffic guidance, or machine-assisted surgery. This method
does not contain the otherwise common notion of an attack likelihood that describes how
easily an attacker can exploit a potential vulnerability of the AI-system.

In this regard, we have the open questions:
Which weights should the different aspects of evidence for trustworthiness receive in the
risk assessment?
How can the remaining uncertainty about robustness against unforeseen weaknesses
adequately be communicated to the stakeholders?

5.3.5 Conclusion

During our discussion about trust in AI and the modeling of threats against AI in network
defense in our working group, we identified and classified existing threats and other factors
that limit the trust in AI systems. Our main finding is that there are efforts in this area but
no established method exists to measure, estimate, improve and communicate the level of
trust in an AI model or its susceptibility to attacks or any misclassifications.

We define trustworthiness as the verifiable absence of unwanted properties. Explainability
and transparency may contribute significantly to measure or estimate the trustworthiness.
For such an assessment the full model lifecycle needs to be considered. This assessment
should not only be limited to attacks, but include other unwanted properties of AI models
that may exist also without the presence of attacks. Thus, for every AI model candidate, the
robustness, the susceptibility to attacks, the resistance and resilience, as well as, potential
attack detection and response measures need to be systematically analyzed.

We determined that widely accepted metrics, tools, and processes for the assessment
are missing, both, regarding the evidence for trustworthiness, as well as, regarding the risk
assessment. With the current state of the art, systematic assessments are not yet possible.
Thus, it is a long-term goal to define the prerequisites for systematic and recurring risk
assessments based on systematic audits of models. These are required for the secure and safe
application of AI models in critical and sensitive environments.

Glossary

(based on BSI report [1])
Automatic machine learning or AutoML Approaches to automate the training pipeline

setup and training itself.
Evasion attacks An attacker plans to change the decision of an AI system during its inference

(or operation) phase by subtle modifications of the model input.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 119

White-box attack If the attacker has perfect knowledge of the model, the features, and the
data.

Grey- or black-box attack If the output function is differentiable, which is the case for most
of the currently used learning algorithms, a gradient may be computed as a prerequisite
for the optimization procedure. However, this is also the case if the attacker has only
limited knowledge of the target model, the feature and the data.

Substitute Model: The model may be derived either via model stealing attacks or via newly
trained models.

Black-box transfer attacks Attacks developed for one model can in many cases be trans-
ferred to different cAI models without much effort (transferability).

Black-box query attacks These attacks use queries to the target model combined with
gradient-free optimization methods such as genetic algorithms or bayesian optimization.

Backdoor poisoning attacks and DoS poisoning attacks These attacks corrupt parts of
the training data in a targeted way.

Connectionist AI (cAI) systems cAI systems are trained with machine learning and data.
Symbolic AI (sAI) systems These systems may be directly constructed by a human de-

veloper.
Target attack The attacker is able to control the decision of the AI system.
Untargeted attack The attacker just changes the decision of a AI system in an arbitrary

way.

References
1 Christian Berghoff, Battista Biggio, Elisa Brummel, Vasilios Danos, Thomas Doms, Heiko

Ehrich, Thorsten Gantevoort, Barbara Hammer, Joachim Iden, Sven Jacob, Heidy Khlaaf,
Lars Komrowski, Robert Kröwing, Jan Hendrik Metzen, Matthias Neu, Fabian Petsch,
Maximilian Poretschkin, Wojciech Samek, Hendrik Schäbe, Arndt von Twickel, Martin
Vechev, and Thomas Wiegand. Current status and future directions. Whitepaper, Federal
Office for Information Security, Bonn, Germany, May 2021.

2 Christian Berghoff, Jona Böddinghaus, Vasilios Danos, Gabrielle Davelaar, Thomas Doms,
Heiko Ehrich, Alexandru Forrai, Radu Grosu, Ronan Hamon, Henrik Junklewitz, Simon
Romanski, Wojciech Samek, Dirk Schlesinger, Jan-Eve Stavesand, Sebastian Steinbach, and
Thomas Wiegand. From Principles to Practice. Whitepaper, Federal Office for Information
Security, Bonn, Germany, May 2022.

3 Kenneth T. Co, Luis Muñoz-González, Leslie Kanthan, and Emil C. Lupu. Real-time
Detection of Practical Universal Adversarial Perturbations, May 2021. arXiv:2105.07334
[cs].

4 Subash Neupane, Jesse Ables, William Anderson, Sudip Mittal, Shahram Rahimi, Ioana
Banicescu, and Maria Seale. Explainable Intrusion Detection Systems (X-IDS): A Survey of
Current Methods, Challenges, and Opportunities, July 2022. arXiv:2207.06236 [cs].

5 Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and
Ananthram Swami. The Limitations of Deep Learning in Adversarial Settings, November
2015. arXiv:1511.07528 [cs, stat].

6 Marek Pawlicki, Michał Choraś, and Rafał Kozik. Defending network intrusion detection
systems against adversarial evasion attacks. Future Generation Computer Systems, 110:148–
154, September 2020.

7 John Törnblom and Simin Nadjm-Tehrani. Scaling up Memory-Efficient Formal Verification
Tools for Tree Ensembles, May 2021. arXiv:2105.02595 [cs].

23431

120 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

5.4 AI-Powered Network Defenses
Vera Rimmer (KU Leuven, BE), Sebastian Böhm (ZITiS München, DE), Georg Carle (TU
München – Garching, DE), Marco Caselli (Siemens – München, DE), Nicolas Kourtellis
(Telefónica Research – Barcelona, ES), Bettina Schnor (Universität Potsdam, DE), Thomas
Schreck (Hochschule München, DE), Max Schrötter (Universität Potsdam, DE), and Robin
Sommer (Corelight – Planegg, DE)

License Creative Commons BY 4.0 International license
© Vera Rimmer, Sebastian Böhm, Georg Carle, Marco Caselli, Nicolas Kourtellis, Bettina Schnor,
Thomas Schreck, Max Schrötter, and Robin Sommer

5.4.1 Introduction

The landscape of network defense has a long-standing history, yet the comprehensive integra-
tion of AI into this domain remains elusive, facing skepticism from both security experts and
academics alike. In the face of evolving cyber threats, coupled with recent extraordinary
advancements in AI, the need for re-evaluating the role AI may play in network defense
becomes increasingly evident. In this working group, network security and applied AI experts
joined forces to explore the intricacies of this complex problem space. Our primary focus
was on systematically addressing urgent needs in network defenses, spanning across the
entire defense pipeline – from pre-detection mechanisms to real-time alert analysis and
post-detection response strategies. While there may be many ways to incorporate AI-based
solutions, assessing whether involving AI is likely to be beneficial and justified in terms of
additional complexity is not trivial. Moreover, the recent breakthroughs in the space of
Large Language Models (LLMs) have renewed the ambition of building smart interfaces for
human operators and analysts, hence prompting a careful re-evaluation of the potential of
AI assistance in network defense.

Motivated by a fresh perspective on the application of AI in network defense, our working
group took a practitioner-centric approach. Rather than assuming predefined problems, we
aimed to first identify essential needs in the network defense pipeline, moving beyond the
conventional alert generation step by an Intrusion Detection System (IDS). This approach
challenges the common research paradigm of starting with assumed problem importance
but instead promotes a pragmatic assessment of the potential of AI in network defense
in alignment with real-world needs. Engaging experts from both network security and AI
disciplines, we sought to reshape the discourse, emphasizing the analytical exploration of AI
applications based on identified and substantiated needs within the field.

Our overarching goal was to create a roadmap that may guide future investigations with
relevant and promising directions for future work. To move towards this objective, we adopted
a structured approach that begins by defining a comprehensive network defense pipeline.
The pipeline is scoped within the detection segment of the known NIST Cybersecurity
Framework 1.1, which in turn we separate into several stages, each characterized by its own
set of practical security problems. Upon identifying challenges at each stage of detection, we
evaluate these challenges based on the chosen set of criteria: importance for practitioners,
the potential for AI-driven solutions, and the research effort required. Our assessment is
based on the consensus among the nine members of the working group, encompassing both
practitioner and researcher perspectives from the network defense and applied AI domains.
This report presents the current result of the analysis according to the developed assessment
framework, pending a future extension through a comprehensive human study involving more
practitioners.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 121

Figure 1 The chosen scope
of the working group.

Figure 2 The general pipeline of the detection segment in
network defense considered in the designed framework.

5.4.2 Scope & Methodology

To define the scope of this analysis, we refer to the NIST Cybersecurity Framework (CSF)
1.1 [3], developed by the National Institute of Standards and Technology (NIST) in the
United States. This framework provides guidance for organizations to manage and improve
their cybersecurity resilience. The core of the framework consists of five functions, each
representing a key aspect of cybersecurity (Figure 1):

Identify: Understand and manage cybersecurity risks to systems, assets and data.
Protect: Develop safeguards to ensure the delivery of critical infrastructure services.
Detect: Implement activities to identify the occurrence of a cybersecurity event.
Respond: Take action regarding a detected cybersecurity event.
Recover: Restore and maintain critical infrastructure services in the aftermath of a
cybersecurity incident.

In this report, we focus our investigation on the Detect function as the one receiving
primary academic attention in the field of network defense and yet lacking a comprehensive
view in connection to wider real-world needs. We further break down the detection segment
into concrete cybersecurity goals and position them along the general detection pipeline – its
pre-detection, detection, and post-detection stages, as depicted in Figure 2. This breakdown
enables us to formulate a (non-exhaustive) list of 18 network defense challenges based on
what we consider to be crucial cybersecurity activities posing day-to-day challenges for
practitioners. These challenges constitute the body of our analysis, where we assess the
potential of AI to assist in solving them.

5.4.3 Assessment Framework

The central idea driving our work was the assessment of how relevant, meaningful or feasible
the application of AI may be in view of the critical needs in network defense. The resulting
structured framework may serve as a guide for researchers, aiding them in determining their
research focus and prioritizing efforts effectively, particularly emphasizing challenges that
have higher AI potential, in contrast to more elusive goals.

We utilized a three-fold evaluation to comprehensively assess each challenge – specific issue
or task within the detection stage of the network defense pipeline that is under consideration.
The three key rating criteria we defined are Importance, the AI Potential, and Research

23431

122 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Figure 3 Illustration of an assessment of a given network defense challenge and its relevant
properties on the relative scale.

Effort, which are depicted in Figure 3. Below we provide a concise definition for each, along
with insights into the main intuition and some underlying aspects:
1. Importance: This criterion captures the significance of the challenge, emphasizing its

role in the detection workflow. The evaluation is grounded in the practitioners’ perspective
to ensure practical relevance (which is currently limited to the composition of the working
group and is likely to be refined in the follow-up work).

2. AI Potential: The assessment of the working group regarding the potential success and
significance of data-driven AI methods (machine learning or deep learning) in application
to a given challenge. This category encompasses three aspects, which in combination
form the total AI potential:
a. Applicability: Examining whether the challenge can be formulated in a data-driven

manner for using AI algorithms. Namely, this reflects whether the nature of the
challenge lends itself well to the application of AI techniques that rely on data analysis,
pattern recognition, and algorithmic decision-making. Problems suitable for a data-
driven approach are those where historical information holds valuable clues about what
might happen in the future: a much-desired but often limited property in cybersecurity.

b. Success Likelihood: Assessing the probability of solving the problem through a data-
driven approach. Even if the problem can be formulated in a data-driven way, there
may be serious complications in solving it. For instance, in the case of non-anticipated
distributional shifts (due to the lack of representative data or dynamic changes in data
at deployment), the trained AI model may lose its relevance too fast.

c. Impact: Gauging the potential impact and effectiveness of leveraging AI to address
the identified challenge. This pertains to the expected performance of an AI solution,
assuming its applicability and high success likelihood, in comparison to more traditional
approaches that do not rely on intelligent automation. The estimated impact may
also be influenced by, for instance, the associated costs which may or may not justify
the additional complexity of using AI for the task. Interpretability, maintainability
and other operational considerations behind an AI-powered solution may also greatly
influence its expected impact.

3. Research Effort: This category is orthogonal to AI Potential in the sense that it covers
the research-related side of addressing the challenges, meaning the effort required to
conduct a research study that reliably investigates application of AI to a given task. In
our understanding, the Research Effort criterion roughly encompasses two components:
a. Existence of Relevant Data: This aspect considers whether there is ground-truth

data within the operational context that holds significance for the challenge at hand.
Having access to complete relevant data of high volume and precision is crucial for

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 123

training AI algorithms. If the necessary data is readily available within the existing
network defense workflows, it reduces the effort required in sourcing and preparing data
for AI applications. Note that the current public availability of such corresponding
data is out of scope for this analysis (although acquiring it is a significant challenge of
its own for the research domain).

b. Algorithmic Difficulty: This dimension reflects the technical complexity associated
with developing AI algorithms tailored for the specific challenge. Some challenges might
demand sophisticated algorithms due to their intricate nature (for instance, those that
model multi-dimensional time-series or graph-structured data), while others may be
more straightforward. Challenges with higher algorithmic difficulty may necessitate
more advanced AI research and development efforts.

This comprehensive framework aims to provide researchers with a holistic perspective on
the challenges in network defense, enabling them to prioritize efforts based on the combined
assessment of the defined properties. The deliberate design ensures, on the one hand, that
researchers can identify not only what challenges are critical but also where the application
of AI is most feasible and impactful. On the other hand, the framework may pragmatically
illuminate the opportunities for “low-hanging fruit”, allowing researchers to address more
urgent but less complex needs with a higher likelihood of success, whilst having the assurance
of relevance of their study for network defense practitioners.

5.4.4 The Current State of the Framework

Here we report on the main outcome of the working group, essentially presenting the snapshot
of our understanding of the potential of AI-powered network defenses in the given moment
(Table 5). The current state of analysis involves 18 ranked challenges derived from in-depth
discussions among academic and industry researchers composing the working group, utilizing
expertise in network defense and applied AI. Moving forward, this analysis would be refined
to incorporate the perspectives of more security practitioners, offering a more holistic and
practically relevant understanding of the challenges at hand. Crucially, this analysis needs to
be strengthened with a thorough literature review to incorporate the most recent research
advancements in the area, in order to more precisely evaluate the alignment of the current
research trends with the highest needs in network defense.

23431

124 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

Table 5 The current state of the assessment framework developed to analyze the potential of
AI-powered network defense research directions. These insights emerged from discussions within
the working group and are subject to further refinement through an extensive literature review
and polling among a larger, more diverse sample of network security practitioners and applied AI
experts.

PRE-DETECTION CHALLENGES
1. Merging, correlating, and compar-
ing shared indicators of compromise
(IoCs). A shared event is an attack
that a team is investigating; there are
100-200k events per day (which are not
unique). Several teams may be invest-
igating the same attack, these may be
shared simultaneously, but are not auto-
matically merged.

Importance:
AI Potential:
Effort:

Medium
Medium/High
Low

This activity is non-trivial and demands
a lot of human effort. Today certain
sources are trusted, but not everything
is merged together. Even for humans,
merging IoCs in a consistent manner is
difficult. AI could scale up the process
and improve on human effort. Example:
link scarce pieces of information in nat-
ural language to other information (la-
bels).

2. Creating new detection rules from
IOCs with regard to the diversity and
number of future attacks.

Importance:
AI Potential:
Effort:

Medium/High
Medium
Low

Scaling and expediting this process are
paramount, and Large Language Mod-
els (LLMs) show promise in this regard,
although their usage is complex and
challenging. It could be possible to train
multiple LLMs (e.g., one for creating
the rule and one for checking the rule
quality or language). The level of in-
volvement may range from creating a
co-pilot for writing rules to simply hav-
ing a human in the loop.

3.1. Determining the data quality of
indicators for Threat Intelligence data-
bases.

Importance:
AI Potential:
Effort:

Medium/High
Low
High

This can potentially be inferred based
on the reputation and reliability of
sources.

3.2. Ranking the importance of indicat-
ors for Threat Intelligence databases.

Importance:
AI Potential:
Effort:

High
Medium
High

Given the complexity of merging know-
ledge from different fields (e.g., threat
landscape, infrastructure) and mapping
such knowledge to indicators, future AI
systems may offer promising solutions.

4. Configuration of existing detection
tools, removing dependencies on the ad-
ministrators.

Importance:
AI Potential:
Effort:

Medium
Medium
High

Automating the deployment of known
hardening measures could significantly
optimize the work of security operators.
AI may be used to assist in setting para-
meters for known defenses tailored to a
specific environment and objectives.

5. Setting IDS constraints (e.g., work-
load restriction in the case of a high
rules set to prevent overload and ex-
ceeding resource limits).

Importance:
AI Potential:
Effort:

Medium
High
Low/Medium

For a human expert, predicting work-
load before deploying the system is chal-
lenging. Can AI estimate resource de-
mands?

6. Optimization (clean-up) of the detec-
tion rule-set.

Importance:
AI Potential:
Effort:

Medium
High
Medium

Routine maintenance of the rule-set
commonly involves manual analysis to
discard unused rules and merge rules
targeting the same pattern, all to op-
timize workload and the comprehension
of alert generation. Intelligent automa-
tion seems feasible.

DETECTION CHALLENGES
7. Detecting variants of known attacks. Importance:

AI Potential:
Effort:

Medium
High
Low/Medium

Given the availability of data of previ-
ous attacks, we consider the situation in
which an AI system can recognize the
similarities and detect the same pat-
terns. This scenario is known to be
very compelling for AI application in
research contexts, but is not the most
challenging one, as the traditional meth-
ods perform well.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 125

8. Detecting earlier unknown attacks. Importance:
AI Potential:
Effort:

High
Low
High

This is inherently challenging for AI
methods as they cannot rely on the
past to precisely recognize novel future
threats within the context of network
defense. Throughout the seminar, con-
cerns have been repeatedly expressed
about the perceived inadequacy of AI
for detecting unknown attacks (e.g.,
zero days).

9. Generating alert descriptions (e.g.,
to enhance SOC analyst dashboards).

Importance:
AI Potential:
Effort:

High
High
Low

This opportunity explicitly recognizes
the power of AI in interfacing with hu-
man experts. The quality of gener-
ated textual descriptions depends on
the comprehensiveness of alerts, which
can be high for traditional methods.

10. Tuning and maintaining empirical
thresholds for monitoring.

Importance:
AI Potential:
Effort:

Low/Medium
Low/Medium
Unknown

This is a defining component of pre-
cise detection, yet targeted empirical
approaches are limited. In our discus-
sion, assessing potential and effort was
challenging due to a lack of information
on the prevalence of anomaly detection
in practice.

11. Use Tactics, Techniques and Proced-
ures (TTPs) as IoCs to actively search
for malicious activities.

Importance:
AI Potential:
Effort:

Medium/High
High
High

The capability of using kill chains in-
stead of simplistic IoCs will allow the
detection of a broad range of attacks
sharing similar behavior (see point 7).
Recognizing kill chains demands the cor-
relation of complex events over time.

12. Attack attribution (e.g., linking
alerts to attacker groups and detect-
ing attacks with matching behavioural
patterns).

Importance:
AI Potential:
Effort:

High
High
High

Advanced persistent threats (APTs) are
mostly obtained from threat intelligence
for close monitoring. APT-related in-
cidents have high complexity and pri-
ority, and the detection and decision-
making process are often highly specific
to APTs. The amount of available in-
formation and the willingness to extend
analysis beyond a few days of activities
requires and may highly benefit from
AI systems.

13. Run-time optimization of the rule-
set.

Importance:
AI Potential:
Effort:

Low/Medium
Low
High

Discussed in the context of the difficulty
in foreseeing resource consumption of
security tools as well as conditions of
the target infrastructure (e.g., peak in
traffic and heavy computational loads).

POST-DETECTION CHALLENGES
14. Alert fatigue as for dealing with
all the alerts produced by the detection
tools (e.g., how do we prioritize? How
do we correlate across various sources?
How do we diminish false positives?)

Importance:
AI Potential:
Effort:

High
High
Medium/High

AI can learn from human operators how
to prioritize alerts and make suggestions
(related to 3.2). It might be challen-
ging to obtain enough labeled data and
integrate expert knowledge. An addi-
tional challenge is that prioritization
does not consider the risks (e.g., im-
portant devices or other elements of the
target environment).

15. Risk assessment of alerts to determ-
ine the severity of the case.

Importance:
AI Potential:
Effort:

High
Low
Unknown

Risk assessments imply having informa-
tion about the infrastructure, and it is
currently unclear how to represent this
information to an AI system along with
other expert knowledge.

23431

126 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

16. Proposing countermeasures to mit-
igate known attack.

Importance:
AI Potential:
Effort:

High
High
Medium/High

AI may provide a collection of sugges-
tions to incident handlers based on in-
formation about the incident. The train-
ing data for the AI assistant may be
composed of playbooks or historical in-
cidents across organizations and how
they were handled in the past. The pre-
cision of these suggestions might vary:
it may be relatively easy to provide rel-
evant general insights, while learning to
produce actual custom countermeasures
may require more research effort.

17. Labeling adversary’s activities (e.g.,
alerts being triggered by the secur-
ity tools) according to the MITRE
ATT&CK [1] knowledge base.

Importance:
AI Potential:
Effort:

Medium
High
Low

This is crucial for all investigations upon
detection and for sharing information
with other teams. This step goes bey-
ond incident handling. Extracting new
attack strategies might be an outcome
of this activity, where AI can signific-
antly replace human effort in formulat-
ing the description of the attack. Addi-
tionally, automating the interpretation
of a given attack scenario according to
the MITRE ATT&CK knowledge base
is valuable, as not all human experts
know all techniques to be able to recog-
nize them.

18. Representing and normalizing all
data related to detection in a structured
and comprehensive form for human ana-
lysts.

Importance:
AI Potential:
Effort:

Medium/High
High
Low/Medium

One example of a hardly interpretable
data structure is the graph-based indic-
ators STIX [2] used to exchange cyber
threat intelligence. Commercial vendors
write reports about attacks in a com-
plex expert-oriented language, which of-
ten obstructs timely and effective hand-
ling of network threats. Utilizing AI
to format detection-related data in a
human-comprehensible manner appears
very promising.

5.4.5 Conclusion

The aim of this discussion was to provide a framework for future investigations in AI-
powered network defense, leveraging the latest advancements in AI while fostering a more
comprehensive understanding of the challenges faced by practitioners. The distinguishing
characteristic of the framework is the choice to move beyond the conventional realm of
AI-based intrusion detection and explore areas earlier in and further along the pipeline.
Our systematic approach facilitates a wide examination of the problem space from both
the network security practitioner and research perspectives. It covers practical feasibility,
potential impact of applying AI, and the research effort required to address the identified
important challenges. By combining the expertise of network security and AI researchers,
the framework and its future extensions not only offer a nuanced understanding of challenges
but also foster a synergistic environment where innovative solutions can be explored while
staying rooted in reality.

References
1 Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G Pennington,

and Cody B Thomas. MITRE ATT&CK: Design and philosophy. In Technical report. The
MITRE Corporation, 2018.

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 127

2 Structured Threat Information Expression (STIX). https://oasis-open.github.io/
cti-documentation/stix/intro.html. Accessed: 2023-10-26.

3 The Cybersecurity Framework 1.1 NIST. https://www.nist.gov/cyberframework. Ac-
cessed: 2023-10-26.

6 World Café and Outlook

The format of the World Café is already described in Section 1. As written there, people
split into small groups at individual tables where each table discussed a pre-defined question
for 20 minutes before participants moved on in random permutation to another table. The
questions asked were as follows:
1. In which of these fields is it most important to make research progress and why: “Security

for AI”, “AI-based attacks”, or “AI for Security”?
2. What steps should we take to keep the activities in our group alive beyond the end of

this seminar?
3. What is the title of a paper you would now want to write with some other seminar

participants?
4. What is your one key take-away from the seminar?
5. For a future seminar proposal, what (network)security-related topic should we focus on?

And whom would we have to (additionally) invite to make it a success?

Due to the small group size and clearly articulated questions, the format proved very
effective to collect and distill insights from all the participants, which would not have been
possible in a plenary session.

At this point, we will only exemplify a few of the comments provided.

6.1 In which of these fields is it most important to make research
progress and why: “Security for AI”, “AI-based attacks”, or “AI for
Security”?

On this question, some people suggested that research on “secure AI for security” would be
a desirable outcome, i.e., if AI and machine learning mechanisms are applied as a security
mechanism, one definitely has to make sure that the mechanism is secure and cannot be
attacked itself and that resilience, robustness and reliability would be key properties but
also explainability. In this context, a pointer was given to the NIST AI Risk Management
Framework1.

Another emphasis was put on the datasets required for machine learning of security
mechanisms. So given the growing importance of machine learning in security, provisioning
of good training data becomes key and the research community should put more emphasis
on availability of good quality, large, and ideally labeled datasets.

Last, when it comes to AI-based attacks, it seems there is currently a lack of knowledge
how such attacks would change the game and to what extend such attacks may be more
potent than today’s mostly manual attacks.

1 see https://www.nist.gov/itl/ai-risk-management-framework

23431

https://oasis-open.github.io/cti-documentation/stix/intro.html
https://oasis-open.github.io/cti-documentation/stix/intro.html
https://www.nist.gov/cyberframework
https://www.nist.gov/itl/ai-risk-management-framework

128 23431 – Network Attack Detection and Defense – AI-Powered Threats & Responses

6.2 What is your one key take-away from the seminar?
Findings from this question overlapped partly with the previous question. Lack of datasets
for ML training was mentioned here, too. Others noted that on most questions discussed
there is a large agreement among participants, in particular also on the open questions that
need addressing and where we yet know too little about.

This was a general sentiment shared by many: in many of the topics we are still at the
beginning and need a lot of research to deepen our understanding, maybe with the exception
of applying AI for obvious and well investigated tasks like intrusion detection.

One thing that did not come at a surprise: currently there is a strong focus or even hype
on security for Large-Language Models (LLMs) but also on how LLMs can help security in
various ways.

Besides those discussions, the World Café also contributed many ideas for future follow-up
seminars, topics for joint paper initiatives, and the desire to stay in contact and continue
discussions online.

And we also came to the conclusion that LLMs could also help come up with catchy
paper titles ;-).

Sven Dietrich, Frank Kargl, Hartmut König, and Pavel Laskov 129

Participants

Ilies Benhabbour
KAUST – Thuwal, SA

Sebastian Böhm
ZITiS – München, DE

Christian Bungartz
Universität Bonn, DE

Georg Carle
TU München – Garching, DE

Marco Caselli
Siemens – München, DE

Hervé Debar
Télécom SudParis, FR

Sven Dietrich
City University of New York, US

Daniel Fraunholz
ZITiS – München, DE

Artur Hermann
Universität Ulm, DE

Peter Herrmann
NTNU – Trondheim, NO

Marko Jahnke
BSI – Bonn, DE

Frank Kargl
Universität Ulm, DE

Stephan Kleber
Universität Ulm, DE

Hartmut König
ZITiS – München, DE

Jan Kohlrausch
DFN-CERT Services GmbH, DE

Nicolas Kourtellis
Telefónica Research –
Barcelona, ES

Chethan Krishnamurthy
Ramanaik
Universität der Bundeswehr –
München, DE

Pavel Laskov
Universität Liechtenstein, LI

Emil C. Lupu
Imperial College London, GB

Michael Meier
Universität Bonn, DE

Andreas Mitschele-Thiel
TU Ilmenau, DE

Simin Nadjm-Tehrani
Linköping University, SE

Eirini Ntoutsi
Universität der Bundeswehr
München, DE

Andriy Panchenko
BTU Cottbus, DE

Delphine Reinhardt
Universität Göttingen, DE

Konrad Rieck
TU Berlin, DE

Vera Rimmer
KU Leuven, BE

Bettina Schnor
Universität Potsdam, DE

Thomas Schreck
Hochschule München, DE

Max Schrötter
Universität Potsdam, DE

Robin Sommer
Corelight – Planegg, DE

Jessica Steinberger
Hochschule Mannheim, DE

23431

Report from Dagstuhl Seminar 23432

Edge-AI: Identifying Key Enablers in Edge Intelligence
Aaron Ding∗1, Eyal de Lara∗2, Schahram Dustdar∗3, Ella Peltonen∗4,
and Tobias Meuser†5

1 TU Delft, NL. aaron.ding@tudelft.nl
2 University of Toronto, CA. delara@cs.toronto.edu
3 TU Wien, AT. dustdar@dsg.tuwien.ac.at
4 University of Oulu, FI. Ella.Peltonen@oulu.fi
5 TU Darmstadt, DE. tobias.meuser@kom.tu-darmstadt.de

Abstract
Edge computing promises to decentralize cloud applications while providing more bandwidth and
reducing latency. Based on the discussion of our first Dagstuhl Seminar and the continuation work
that took place after the seminar, we continued our work on identified challenges that need to be
further addressed within the community. These challenges included 1) large-scale deployment of
the edge-cloud continuum, 2) energy optimization and sustainability of such large-scale AI/ML
learning and modelling, and 3) trustworthiness, security, and ethical questions related to the
whole continuum. In this seminar, we discussed the current state of Edge Intelligence and shaped
a holistic view of its challenges and applications. The main concerns were 1) the assessment and
applicability of Edge Intelligence solutions, 2) energy consumption and sustainability, and 3) the
new trend of Large-Language Models.
Seminar October 22–25, 2023 – http://www.dagstuhl.de/23432
2012 ACM Subject Classification Computer systems organization → Distributed architectures;

Computing methodologies → Artificial intelligence; Networks
Keywords and phrases cloud computing, edge computing, edge intelligence
Digital Object Identifier 10.4230/DagRep.13.10.130

1 Executive Summary

Aaron Ding (TU Delft, NL)
Eyal de Lara (University of Toronto, CA)
Schahram Dustdar (TU Wien, AT)
Ella Peltonen (University of Oulu, FI)

License Creative Commons BY 4.0 International license
© Aaron Ding, Eyal de Lara, Schahram Dustdar, and Ella Peltonen

Research Area
Edge computing promises to decentralize cloud applications while providing more band-
width and reducing latency. These promises are delivered by moving application-specific
computations between the cloud, the data-producing devices, and the network infrastructure
components at the edges of wireless and fixed networks. Meanwhile, the current Artificial
Intelligence (AI) and Machine Learning (ML) methods assume computations are conducted
in a powerful computational infrastructure, such as data centres with ample computing and
data storage resources available. To shed light on the fast-evolving domain that merges edge

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Edge-AI: Identifying Key Enablers in Edge Intelligence, Dagstuhl Reports, Vol. 13, Issue 10, pp. 130–138
Editors: Eyal de Lara, Aaron Ding, Schahram Dustdar, and Ella Peltonen

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aaron.ding@tudelft.nl
mailto:delara@cs.toronto.edu
mailto:dustdar@dsg.tuwien.ac.at
mailto:Ella.Peltonen@oulu.fi
mailto:tobias.meuser@kom.tu-darmstadt.de
https://www.dagstuhl.de/23432
https://doi.org/10.4230/DagRep.13.10.130
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Eyal de Lara, Aaron Ding, Schahram Dustdar, and Ella Peltonen 131

computing and AI/ML, referred to as Edge AI, the recent Dagstuhl Seminar 21342 gathered
community inputs from a diverse range of experts. The results of our first iteration of the
seminar were reflected in the ACM SIGCOMM CCR publication, focusing on three different
angles of Edge AI: future networking, cloud computing, and AI/ML needs.

Along with three identified driving areas of 5G beyond (or so-called 6G), future cloud,
and evolved AI/ML, the advancement of different technologies and the growing business
interests will take Edge AI forward regarding hardware, software, service models, and
data governance. Starting from the current state of play driven by cellular, cloud, and
AI/ML service providers, the roadmap reflects five general phases: scalable framework,
trustworthy co-design, sustainable and energy-efficient deployment, equal accessibility, and
pervasive intelligent infrastructure. As changes can always occur, the sequence depicted in
the roadmap could be switched or combined. Nonetheless, this Edge AI roadmap reflects the
combined effects of technology enablers and non-tech demands, such as the socioeconomic
transformation of user behaviors, purchasing power, and business interests.

Despite its promise and potential, Edge AI still faces major challenges in large-scale
deployment, including energy optimization, trustworthiness, security, privacy, and ethical
issues. As an important goal of sustainability, the energy consumption of Edge AI needs
to be optimized. Energy efficiency is crucial for Edge AI embedded infrastructures (e.g.,
roadside units, micro base stations) to sustainably support advanced autonomous driving
and Extended Reality (XR) services in the years to come. Through the pipeline of data
acquisition, transfer, computation, and storage, there exists the possibility for Edge AI to
trade accuracy with reduced power and less time consumed. For instance, noisy inputs from
numerous sensors can be selectively processed and transferred in order to save energy.

A set of applications would be satisfied with an ‘acceptable’ accuracy instead of exact and
absolutely correct results. By introducing this new dimension of accuracy to the optimization
design, energy efficiency can be further improved. Concerning trustworthiness, Edge AI
benefits from its close proximity to the end devices. However, due to the distributed deploy-
ment with deep insights into a personal context, the safety and perceived trustworthiness
of Edge AI services are raising concerns among the stakeholders (e.g., end-users, public
sectors, ISP). To achieve trustworthy Edge AI, critical building blocks are needed, including
verification and validation mechanisms that ensure transparency and explainability, especially
in the training and deployment of Edge AI in decentralized, uncontrolled environments. The
trustworthiness of Edge AI is a stepping stone to establishing appropriate governance and
regulatory framework on which the promise of Edge AI can be built.

23432

132 23432 – Edge-AI: Identifying Key Enablers in Edge Intelligence

2 Table of Contents

Executive Summary
Aaron Ding, Eyal de Lara, Schahram Dustdar, and Ella Peltonen 130

Overview of Talks
Future of Communications: Why we need Edge AI and more
Susan Bayhan . 133

Increasing AI Sustainability with Symbolic Data Representation on the Edge
Ivona Brandic . 133

Edge Enabled Autonomous Driving and Mobility Services
Liam Pedersen . 134

The economics of edge AI don’t look great – or why edge computing may always
be the future
Henning Schulzrinne . 134

Enabling data spaces: existing developments and challenges
Gürkan Solmaz . 135

Working groups
Definition and Usecases of Edge AI
Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Tobias Meuser,
Shishir Girishkumar Patil, and Ella Peltonen . 135

Ecosystem: Software and Hardware Problems
Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Nitinder Mohan,
Shishir Girishkumar Patil, and Ella Peltonen . 136

Measure what matters
Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Tobias Meuser,
Shishir Girishkumar Patil, and Ella Peltonen . 137

Panel discussions
What’s Next after Edge AI
Henning Schulzrinne, Shishir Girishkumar Patil, Liam Pedersen, and Jan Rellermeyer137

Participants . 138

Eyal de Lara, Aaron Ding, Schahram Dustdar, and Ella Peltonen 133

3 Overview of Talks

3.1 Future of Communications: Why we need Edge AI and more
Susan Bayhan (University of Twente – Enschede, NL)

License Creative Commons BY 4.0 International license
© Susan Bayhan

In the era of the climate crisis, it is essential to optimize the operation of many sectors,
from agriculture to health with the help of smart sensing and data analytics. While the
data is essential for better understanding and consequently for better decision-making, it
has to be moved, stored, computed, secured, and interpreted, all steps bringing their own
challenges. According to the Decadal Plan by Semiconductors (https://www.src.org/
about/decadal-plan/), there are five seismic shifts that need to be considered for the
future of ICT: 1) Analog hardware for generating smarter world-machine interfaces that
can sense, perceive, and reason, 2. Radically new memory and storage solutions. 3. New
research directions to close the gap between communication capacity vs. data-generation
rates. 4. security challenges in highly interconnected systems and AI, and 5. New computing
paradigms for higher energy efficiency. The talk argues that edge AI can help with some of
these challenges, such as by decreasing the need to communicate huge volumes of data with
the cloud, however for sustainable communications systems of the future, more is needed at all
levels of the system stack as well as design, production, and use stages of all infrastructures.

3.2 Increasing AI Sustainability with Symbolic Data Representation on
the Edge

Ivona Brandic (Technische Universität Wien, AT)

License Creative Commons BY 4.0 International license
© Ivona Brandic

Joint work of Daniel Hofstätter, Shashikant Ilager, Ivan Lujic, Ivona Brandic
Main reference Daniel Hofstätter, Shashikant Ilager, Ivan Lujic, Ivona Brandic: “SymED: Adaptive and Online

Symbolic Representation of Data on the Edge”, in Proc. of the Euro-Par 2023: Parallel Processing –
29th International Conference on Parallel and Distributed Computing, Limassol, Cyprus, August 28 –
September 1, 2023, Proceedings, Lecture Notes in Computer Science, Vol. 14100, pp. 411–425,
Springer, 2023.

URL https://doi.org//10.1007/978-3-031-39698-4_28

The Edge Computing model is beneficial for analyzing and processing data generated by the
Internet of Things (IoT) in the proximity to its source. However, the transfer, storage, and
processing of this rapidly increasing data volume is challenging on edge devices with limited
resources. Symbolic Representation (SR) algorithms show promise in reducing data size by
transforming raw data into symbols. They also enable direct data analytics on symbols, such
as anomaly detection and trend prediction, which is advantageous for many edge applications.
Nonetheless, the current SR algorithms are mainly centralized and operate offline with batch
data, making them unsuitable for real-time scenarios. In this talk, SymED – Symbolic
Edge Data representation method is introduced. This method is an online, adaptive, and
distributed approach to symbolic data representation at the edge. SymED utilizes Adaptive
Brownian Bridge-based Aggregation (ABBA) and involves low-powered IoT devices sending
and performing the low-cost initial data compression while the more capable edge devices
perform the more demanding symbolic conversion.

23432

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.src.org/about/decadal-plan/
https://www.src.org/about/decadal-plan/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-031-39698-4_28
https://doi.org//10.1007/978-3-031-39698-4_28
https://doi.org//10.1007/978-3-031-39698-4_28
https://doi.org//10.1007/978-3-031-39698-4_28
https://doi.org//10.1007/978-3-031-39698-4_28
https://doi.org//10.1007/978-3-031-39698-4_28

134 23432 – Edge-AI: Identifying Key Enablers in Edge Intelligence

3.3 Edge Enabled Autonomous Driving and Mobility Services
Liam Pedersen (Nissan North America – Santa Clara, US)

License Creative Commons BY 4.0 International license
© Liam Pedersen

Connectivity, smart infrastructure and autonomous driving software hosted on edge computing
will transform the ways in which we use and drive cars, the freeway system and the electrical
grid. In this talk, examples of smart cloud-based services are presented for managing freeway
congestion, low-cost autonomous valet parking and EV integration with the grid.

3.4 The economics of edge AI don’t look great – or why edge
computing may always be the future

Henning Schulzrinne (Columbia University – New York, US)

License Creative Commons BY 4.0 International license
© Henning Schulzrinne

Edge computing for AI encompasses a wide variety of architectures. “Easy” cases include
embedded systems, e.g., in most modern vehicles, or dedicated processing in sensors, e.g.,
cameras performing image segmentation and basic object recognition. The harder, interesting
architectures provide generic computing capabilities to paying customers, i.e., cloud-like
arrangements.

Even for edge AI systems, the edge computing element will likely not store large volumes
of data as the computing need may be transient. Thus, the latency advantages of edge systems
may be reduced since the edge system will need to contact the regional or trans-regional cloud
to query databases or access API-based microservices functionality. This split functionality
may negate the latency advantages of edge computing for real-world systems and needs to
be part of any system evaluation.

Edge AI systems are further challenged by economic considerations. The cost of computing
can be divided into capital costs, typically the initial investment into computing and layer-0
infrastructure such as data centers, and the ongoing operational costs. AI-suitable GPUs
may have shorter effective lifespans than other CPUs, but even server CPUs are typically
only used for five years before being retired. Thus, edge AI systems with low utilization may
increase the amortized costs on a per-task basis. For the same probability of task rejection,
smaller edge systems need to provide more computational reserves by standard Erlang-C
considerations.

Electricity makes up about 60-70% of the operational cost. Edge AI can only be
competitive if the energy costs are similar to those in large-scale data centers, i.e. if Edge
AI can draw on cheap renewable energy. (However, their intermittency may increase the
amortized cost of capital, as noted above.) For example, grid electricity in New York costs
roughly $0.21/kWh, while data centers aim for $0.05/kWh. As of June 2021, the levelized
cost of energy (LCOE) for utility-scale photovoltaic systems ranges from $0.03 to $0.05 and
is thus competitive.

Other operational costs, not further discussed here, include security costs if edge systems
impose a security premium, development and DevOps costs, as well as failure risk trade-offs.

Thus, edge computing for AI may be roughly divided into “cheap” and “dependable.”
The former may only offer batch-style processing with intermittent availability, while the
latter is willing to tolerate higher costs than traditional cloud computing.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eyal de Lara, Aaron Ding, Schahram Dustdar, and Ella Peltonen 135

Trust for edge AI deserves more careful consideration. Unless the entity running the
computation owns and operates the hardware, they still have to trust the edge computing
provider, which may well be smaller than typical cloud providers.

As cloud services now offer a wide range of computing hardware, from traditional i386
to ARM and GPU-based processors as well as specialized ML engines, edge computing will
struggle to compete, given the smaller rack count.

Smaller edge installations may also find it more difficult to provide physical security
and uninterrupted power. In summary, given the uncertainties of economic competitiveness,
security, and reliability, edge AI requires careful feasibility analysis, where non-technical
considerations may outweigh technical feasibility or advantages. Resource discovery needs to
take cost and reliability needs into account. Resources may well be mediated and aggregated
to relieve application developers from maintaining and creating relationships with hundreds
of edge computing service providers. To facilitate computational roaming, systems have to
provide appropriate AAA capabilities.

3.5 Enabling data spaces: existing developments and challenges
Gürkan Solmaz (NEC Laboratories Europe – Heidelberg, DE)

License Creative Commons BY 4.0 International license
© Gürkan Solmaz

This talk at Dagstuhl includes a short introduction to the concept of Data Spaces based on
the recent developments of IDSA, Gaia-X, and FIWARE, as well as the challenges of data
interoperability and data value. The recent work from the Data Ecosystems and Standards
(DES) group at NEC Laboratories Europe focuses on solving those challenges using real-world
sensor data and geographic data from the case studies of the City Liveability Index (CLI) of
SALTED project, Smart Campus Murcia, and Humanitarian Landmine project. The data
enrichment and contextualization platform is utilized in the case studies through technologies
such as TrioNet, FIWARE Scorpio Broker, FIWARE FogFlow and AI/machine learning for
predictions and transfer learning.

4 Working groups

4.1 Definition and Usecases of Edge AI
Dewant Katare (TU Delft, NL), Eyal de Lara (University of Toronto, CA), Aaron Ding (TU
Delft, NL), Schahram Dustdar (TU Wien, AT), Tobias Meuser (TU Darmstadt, DE), Shishir
Girishkumar Patil (University of California – Berkeley, US), and Ella Peltonen (University
of Oulu, FI)

License Creative Commons BY 4.0 International license
© Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Tobias Meuser, Shishir
Girishkumar Patil, and Ella Peltonen

In this working group, the definition and use cases of Edge AI were discussed. The discussions
highlighted the complexity of clearly defining edge, highlighting some key points:

Application-specific Definition: Depending on the considered application, the defini-
tion of Edge varies drastically, ranging from small data centers close to the user to end
devices under the control of the user.

23432

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

136 23432 – Edge-AI: Identifying Key Enablers in Edge Intelligence

Business Models: The impact of business models on Edge AI’s popularity and develop-
ment is acknowledged. Cloud-based models, especially those driven by advertisement,
have been given more attention, as the management is much easier and availability is
much higher.
Real-world Examples and Use-cases: Examples from Amazon, like Greengrass and
Sagemaker, demonstrate Edge AI applications, but these are not always orchestrated
for end-users. Edge solutions often complement cloud solutions, providing benefits like
reduced latency and enhanced privacy without replacing cloud infrastructure.
Cloud Definition and Academic Consensus: Similar to Edge AI, the definition
of “Cloud” also varies widely, ranging from proximity (in milliseconds) to computing
resources. There is still no universally agreed-upon definition of Edge in academia, leading
to inconsistencies.
Perspective-Dependent Success: The success or failure of Edge AI is contingent on
the specific definition of Edge used and the viewpoint from which it is considered.

4.2 Ecosystem: Software and Hardware Problems
Dewant Katare (TU Delft, NL), Eyal de Lara (University of Toronto, CA), Aaron Ding (TU
Delft, NL), Schahram Dustdar (TU Wien, AT), Nitinder Mohan (TU München, DE), Shishir
Girishkumar Patil (University of California – Berkeley, US), and Ella Peltonen (University
of Oulu, FI)

License Creative Commons BY 4.0 International license
© Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Nitinder Mohan, Shishir
Girishkumar Patil, and Ella Peltonen

One of the major problems discussed in this working group is the issues associated with
trust in Edge Intelligence. While the group acknowledged that edge computing is promising
for handling data in public spaces, trust remains a critical issue. This is evident in the
disagreement among unions over video cameras, indicating that edge computing alone is not
sufficient to establish trust. One issue is the possibility of reconfiguring and reprogramming
edge devices such that any functionality can be added at any point. While privacy or trust is
not the sole argument for the usage of edge intelligence, a key argument is the volume of data
that needs to be processed or transmitted. Edge computing allows data processing closer
to where it is generated, reducing the need for data transmission and potentially enhancing
privacy and efficiency.

Overall, the group highlighted the potential of edge computing in various domains,
emphasizing its role in data volume management, privacy preservation, and compliance with
legal and regulatory constraints. However, trust needs to be built and programmable devices
might need to be regulated to prevent arbitrary reconfiguration that ultimately harms trust
in these devices.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eyal de Lara, Aaron Ding, Schahram Dustdar, and Ella Peltonen 137

4.3 Measure what matters
Dewant Katare (TU Delft, NL), Eyal de Lara (University of Toronto, CA), Aaron Ding (TU
Delft, NL), Schahram Dustdar (TU Wien, AT), Tobias Meuser (TU Darmstadt, DE), Shishir
Girishkumar Patil (University of California – Berkeley, US), and Ella Peltonen (University
of Oulu, FI)

License Creative Commons BY 4.0 International license
© Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Tobias Meuser, Shishir
Girishkumar Patil, and Ella Peltonen

This working group discussed the challenges and considerations in measuring and managing
energy consumption in Edge Intelligence, with a focus on data centers and end devices.

There have been major discussions on the energy consumption of Edge Intelligence. The
exponential growth in energy consumption for IT is widely criticized and revised. This is
associated with inaccuracies in technological forecasts, such as those by MIT for self-driving
technology. The concept of distinguishing between fungible and non-fungible energy is
introduced, suggesting that sometimes it might be better to turn off an energy source or
consume it, depending on its nature. There is optimism with new benchmarks emerging,
which help in understanding the carbon footprint of various technologies. However, there
is a need to precisely define and break down what is being measured in terms of energy
consumption. As this varies across industries, the lack of clear benchmarks or standards is a
problem. Without these proper benchmarks, the discussions are not scientifically robust.

In summary, the discussions emphasise the complexities in measuring and managing energy
and carbon footprint in Edge Intelligence, emphasizing the need for precise benchmarks,
consideration of regional differences, and the importance of trend analysis in the face of
challenging measurements.

5 Panel discussions

5.1 What’s Next after Edge AI
Henning Schulzrinne (Columbia University – New York, US), Shishir Girishkumar Patil
(University of California – Berkeley, US), Liam Pedersen (Nissan North America – Santa
Clara, US), and Jan Rellermeyer (Leibniz Universität Hannover, DE)

License Creative Commons BY 4.0 International license
© Henning Schulzrinne, Shishir Girishkumar Patil, Liam Pedersen, and Jan Rellermeyer

In this panel, the future of Edge AI has been discussed. One discussion point was the
vagueness of the term Edge in the research community, which sometimes leads to confusion
among researchers. However, this does not limit the success of some applications of Edge and
Edge Intelligence. A major point in these discussions has been the role of Large-Language-
Models (LLMs) in Edge devices. This also led to the discussion of how LLMs could be used
as Operating Systems and their future role in research.

23432

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

138 23432 – Edge-AI: Identifying Key Enablers in Edge Intelligence

Participants

Atakan Aral
Universität Wien, AT

Susan Bayhan
University of Twente –
Enschede, NL

Christian Becker
Universität Stuttgart, DE

Monowar Bhuyan
University of Umeå, SE

Ivona Brandic
Technische Universität Wien, AT

Eyal de Lara
University of Toronto, CA

Kemal A. Delic
The Open University –
Milton Keynes, GB

Aaron Ding
TU Delft, NL

Schahram Dustdar
TU Wien, AT

Janick Edinger
Universität Hamburg, DE

James Gross
KTH Royal Institute of
Technology – Kista, SE

Volker Hilt
Nokia Bell Labs – Stuttgart, DE

Dewant Katare
TU Delft, NL

Lauri Lovén
University of Oulu, FI

Tobias Meuser
TU Darmstadt, DE

Nitinder Mohan
TU München, DE

Shishir Girishkumar Patil
University of California –
Berkeley, US

Liam Pedersen
Nissan North America –
Santa Clara, US

Andy D. Pimentel
University of Amsterdam, NL

Jan Rellermeyer
Leibniz Universität
Hannover, DE

Tina Rezaei
University of Twente –
Enschede, NL

Etienne Rivière
UC Louvain, BE

Henning Schulzrinne
Columbia University –
New York, US

Stephan Sigg
Aalto University, FI

Pieter Simoens
Ghent University, BE

Gürkan Solmaz
NEC Laboratories Europe –
Heidelberg, DE

Michael Welzl
University of Oslo, NO

Lars Wolf
TU Braunschweig, DE

Report from Dagstuhl Seminar 23441

Ensuring the Reliability and Robustness of Database
Management Systems
Hannes Mühleisen∗1, Danica Porobic∗2, and Manuel Rigger∗3

1 CWI – Amsterdam, NL. hannes.muehleisen@cwi.nl
2 Oracle Switzerland – Zürich, CH. danica.porobic@oracle.com
3 National University of Singapore, SG. rigger@nus.edu.sg

Abstract
The goal of this Dagstuhl Seminar was to bring together researchers and practitioners interested
and experienced in database systems and the reliability aspects thereof. It is a continuation of a
previous seminar on this topic, which had built an initial understanding of the challenges and areas
of future work. In this edition of the seminar, we aimed for a tangible outcome of the seminar by
writing a manuscript documenting the (1) best practices in ensuring database systems’ reliability,
(2) the state of the art on this topic in research, as well as (3) open challenges, which might also
serve as the cornerstone of writing a book on this topic presented in this report. We achieved
this by forming four primary working groups during the seminar, namely (1) on the automated
testing aspects concerning analytical components of database systems, (2) benchmarking, (3)
reliability for transaction and concurrency aspects, as well as (4) query languages and debugging.
The report contains four sections presenting the results of these working groups. Some of these
working groups and individuals plan to further refine their work and discussion outcomes, aiming
to submit them to upcoming venues.
Seminar October 29 – November 3, 2023 – https://www.dagstuhl.de/23441
2012 ACM Subject Classification Information systems→ Database management system engines;

Software and its engineering → Software verification and validation
Keywords and phrases database benchmarking, database reliability, database testing
Digital Object Identifier 10.4230/DagRep.13.10.139

1 Executive Summary

Manuel Rigger (National University of Singapore, SG)
Hannes Mühleisen (CWI – Amsterdam, NL)
Danica Porobic (Oracle Switzerland – Zürich, CH)

License Creative Commons BY 4.0 International license
© Manuel Rigger, Hannes Mühleisen, and Danica Porobic

Database systems are an essential component of most software systems. It is crucial that
they function correctly and are efficient. Achieving this is difficult, given that growing
demands require increasingly sophisticated systems and adapting them to new hardware
platforms. Building on the success of the last seminar, the goal of this Dagstuhl Seminar
was to advance database systems reliability by bringing together both practitioners as well
as researchers working in this domain. We discussed current practices, approaches, and open
challenges in manual and automated correctness and performance testing, isolation-level
testing, benchmarking, database and query generation, query languages, as well as debugging.

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Ensuring the Reliability and Robustness of Database Management Systems, Dagstuhl Reports, Vol. 13, Issue 10, pp.
139–181
Editors: Hannes Mühleisen, Danica Porobic, and Manuel Rigger

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hannes.muehleisen@cwi.nl
mailto:danica.porobic@oracle.com
mailto:rigger@nus.edu.sg
https://www.dagstuhl.de/23441
https://doi.org/10.4230/DagRep.13.10.139
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

140 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Goals and Outcomes

As a concrete tangible outcome of the seminar, we aimed to write a manuscript on (1) best
practices in ensuring database systems’ reliability, (2) the state of the art on this topic in
research, as well as (3) open challenges, which might also serve as the cornerstone of writing
a book on this topic. We believe we have achieved this goal, with the reports of the four
working groups presented in the subsequent chapters. The majority of the contents were
composed during the seminar and reflect the experiences and opinions of various attendees.
Thus, some of the contents might be incomplete, contradictory, or redundant.

Attendee Mix

The seminar’s attendees were 36 internationally renowned researchers as well as high-profile
practitioners whose work is closely related to the topic of this seminar. Given that the last
years have seen an increased focus on research related to database system reliability, a larger
fraction of researchers had significant expertise in this topic as compared to the first edition
of the seminar, whose attendees mix had a broader, but less specific expertise. Overall, 25%
of the second seminar’s attendees joined also the first seminar – note that the first edition
was a small seminar with a hybrid format that had only 12 in-person attendees, of which 67%
joined the second seminar. A large number of attendees from Europe accepted the seminar
invitation, constituting 56% of the attendees. The remaining attendees joined from the US
(27%), Asia (14%), and one attendee from South Africa. 36% of the attendees were from
industry, which is higher compared to the last seminar, which had only 23% attendees from
industry. By increasing their percentage, we aimed to gain more insights into the current
practices in the industry. Unfortunately, one of the co-organizers, Alexander Böhm was
unable to attend the seminar; we want to thank him for his contributions in organizing it.

Seminar Structure

The seminar lasted for five days and accepted only in-person attendees. We started the
first day with a round of introductions, where each attendee could introduce themselves
and their interests in a five-minute presentation. The majority of the remaining days were
filled with discussions by the individual working groups – we deliberately avoided having
presentations on past work to keep the discussion centered on open problems and future
directions. While we identified the main topics of interest that helped form the working
groups on the evening of the first day, attendees could freely move between these groups and
regroup. We reconvened in the larger group once or twice per day, to present and discuss
the results of the working groups. The four working groups listed in this report reflect the
working groups at the end of the seminar; for example, the first working group on automated
testing split into multiple subgroups that discussed various topics during the course of the
seminar. In addition to the working groups, we had two tutorials after dinner, as well as an
excursion on Wednesday afternoon.

Future Plans

The individual working groups’ reports are a concrete outcome of this edition’s seminar
that future work will build upon. First, working groups indicated their plans to refine their
reports as well as follow up on the work to present the results to a broader audience aiming
to encourage future work on their topics. Second, we expect individual research groups
to take on the challenges identified in the seminar and propose solutions to them. Third,

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 141

we plan to propose a third edition of the seminar to discuss the progress on tackling the
identified problems and expand the scope in terms of reliability. In this seminar, we also
want to fill gaps in terms of topics and attendee mix; for example, in this edition of the
seminar, we focused our discussions on relational database systems, omitting systems built
on other models. As another example, we had no major discussions on the reliability of
learned components of database systems.

23441

142 23441 – Ensuring the Reliability and Robustness of Database Management Systems

2 Table of Contents

Executive Summary
Manuel Rigger, Hannes Mühleisen, and Danica Porobic 139

Overview of Talks
SQLancer Tutorial
Manuel Rigger . 143

Informal Proofs of Correctness for Lock-free Algorithms
Russell Sears . 143

Working groups
Working Group on Benchmarking
Lawrence Benson, Carsten Binnig, Federico Lorenzi, Danica Porobic, Tilmann Rabl,
Anupam Sanghi, Russell Sears, and Pinar Tözün 144

Working Group on Transactions and Concurrency
Wensheng Dou, Adam Dickinson, Burcu Kulahcioglu Ozkan, Umang Mathur, Everett
Maus, Stan Rosenberg, Gambhir Sankalp, Caleb Stanford, and Cheng Tan 148

Working Group on Query Languages and Debugging
Denis Hirn, Moritz Eyssen, Tim Fischer, Torsten Grust, Muhammad Ali Gulzar,
Hannes Mühleisen, Thomas Neumann, and Mark Raasveldt 156

Working Group on Testing “Analytical” Components of Databases
Manuel Rigger, Jinsheng Ba, Ankush Desai, Adam Dickinson, Wensheng Dou,
Stefania Dumbrava, Moritz Eyssen, Florian Gerlinghoff, Hong Hu, Zu-Ming Jiang,
Marcel Kost, Everett Maus, Mark Raasveldt, Andrei Satarin, Thodoris Sotiropoulos,
and Chengyu Zhang . 160

Participants . 181

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 143

3 Overview of Talks

3.1 SQLancer Tutorial
Manuel Rigger (National University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Manuel Rigger

This tutorial gave an introduction to SQLancer, which is a popular and widely used tool
to automatically test database management systems. The tutorial assumed both a user
perspective, as well as a developer one, while also highlighting limitations that could be
addressed by future research.

3.2 Informal Proofs of Correctness for Lock-free Algorithms
Russell Sears (Crystal DB – San Francisco, US)

License Creative Commons BY 4.0 International license
© Russell Sears

We held a tutorial on informal proofs of correctness for a simple, but powerful class of lock
free algorithms. The work has been open sourced, and feedback from the seminar attendees
improved the documentation and provided us with references to related academic work on
software correctness and testing.

The library is available here:
https://crates.io/crates/atomic-try-update
The atomic-try-update library makes it easy to correctly implement your own lock free

data structures. In addition to the base primitives, we provide a few example data structures
that you can use directly, or that you can use as a base for your own application-specific
algorithms.

Typical use cases for atomic_try_update include implementing state machines, building
simple resource allocators, initializing systems in a deterministic way using “fake monoton-
icity”, accumulating state in stacks, and using the claim pattern to allow concurrent code to
enqueue and then process them sequentially.

Unlike most lock free libraries, we make it easy to compose the above in a way that
preserves linearizable semantics. For instance, you implement a lock free state machine that
tallies votes as part of a two phase commit protocol, and then combine it with a stack. The
resulting code would add information about each response to the stack and then process
the result of the tally exactly once without resorting to additional synchronization such as
mutexes or carefully ordered writes.

By “linearizable”, we mean that any schedule of execution of the algorithms built
using atomic_try_update is equivalent to some single-threaded schedule, and that other
code running in the system will agree on the order of execution of the requests. This is
approximately equivalent to “strict serializability” from the database transaction literature.
atomic_try_update provides semantics somewhere between those of a transaction processing
system and those of a CPU register. We chose the term linearizable because it is more
frequently used when discussing register semantics, and atomic_try_update is generally
limited to double word (usually 128-bit) updates.

23441

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crates.io/crates/atomic-try-update

144 23441 – Ensuring the Reliability and Robustness of Database Management Systems

From a performance perspective, atomic_try_update works best when you can have
many independent instances that each have low contention. For instance, using a single
atomic_try_update instance to coordinate all reads in a system would likely create a
concurrency bottleneck. Having one for each client connection probably would not. This
means that you should stick to other, more specialized algorithms for things like top-level
event queues and other high-contention singleton data structures in your system.

4 Working groups

4.1 Working Group on Benchmarking
Lawrence Benson (Hasso-Plattner-Institut, Universität Potsdam, DE), Carsten Binnig (TU
Darmstadt, DE), Federico Lorenzi (TigerBeetle – Cape Town, ZA), Danica Porobic (Oracle
Switzerland – Zürich, CH), Tilmann Rabl (Hasso-Plattner-Institut, Universität Potsdam,
DE), Anupam Sanghi (IBM India – Bangalore, IN), Russell Sears (Crystal DB – San
Francisco, US), and Pinar Tözün (IT University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Lawrence Benson, Carsten Binnig, Federico Lorenzi, Danica Porobic, Tilmann Rabl, Anupam
Sanghi, Russell Sears, and Pinar Tözün

Motivation
Standardized benchmarks are crucial to ensure a fair comparison across systems. Furthermore,
they serve as a testing aid and help find bugs in systems.

In the database community, Transaction Processing and Performance Council (TPC)
[43] has been standardizing benchmarks covering application domains from OLTP, OLAP,
Big Data, IoT, AI ... Yahoo Cloud Serving Benchmark (YCSB) [16] has been quite popular
for transaction processing, key-value stores, and the cloud. The Linked Data Benchmark
Council (LDBC) specializes in graph analytics benchmarks [2].

While extremely valuable, these benchmarks all present a static scenario, where the
workload is well-defined and known in advance. As a result, data management systems get
fine-tuned for a particular benchmark before they are run with that benchmark. Therefore,
the presented results often times do not reflect the behavior of these systems in, typically
way less predictable and way more dynamic, real-world settings.

Furthermore, it takes time and effort to standardize a benchmark. With the fast-pace
that the data-intensive systems and applications evolve today, it is difficult to generate a
standardized benchmark to cover a variety of real-world use cases in a timely manner. This
often times lead to complaints about the standardized benchmarks not being representative.

To address these issues, we would like to present a complementary approach to the current
standardized benchmarking practices by introducing periodic themes and an element of
surprise.

Surprise Benchmarking
The principles of the surprise benchmarking is similar to the principles of the ACM SIGMOD
Programming Contest. More specifically, we would like to establish periodic (monthly,
quarterly ...) benchmarking rounds, where a theme for the round will be announced ahead

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 145

of time such as “OLAP”, “key-value store”, “UDFs”, “resource-constrained environment”,
etc. There may or may not be a description of the schema, data, a few expected queries,
target hardware setup ... During the actual benchmark run, an element of surprise will be
added such as ad-hoc queries, new table addition, data distribution changes ...

At each round, we will provide a baseline using a well-known data management system,
e.g. Postgres. There will also be a different set of metrics to focus on at each round, in
addition to the more traditional throughput and latency metrics, such as energy-efficiency,
hardware utilization, monetary cost ...

On the one hand, the surprise benchmarking would be to eliminate the overly-tuned
nature of current standardized benchmarking practices. On the other hand, it would help
to accumulate a wider variety of standardized benchmarks over the years covering a more
diverse set of data-intensive applications and their real-world deployments.

Surprise Categories
We categorize the element of surprise into three based on the intended impact on the system
under test. We expect each benchmarking round to have a surprise covering each category.
The level of surprises will systematically vary during the benchmark runs; i.e., having several
runs with different % of surprise queries. However, how we vary the mix of surprises or
whether we mix the surprises across different surprise categories may change round to round.

On-road

This type of surprise represent cases that are supposed to be meaningful for the systems under
test. In other words, these are the queries or scenarios the system was designed to cover,
and they shouldn’t break the system. For example, ad-hoc queries similar to, but not the
same, the TPC-H benchmark queries for a system specifically designed for OLAP workloads.
Similarly, introducing data or access skew that mimic real-world data distributions as the
surprise would fall under this category.

These types of surprises are also the ones that are the most suitable for auto-generation.
As part of this work, we plan to develop / utilize the automatic query generation techniques
as much as possible.

The goal here is to observe how the system behavior changes compared to fine-tuned
standardized benchmarking scenarios.

Wrong-road

In contrast to the previous category, this one represents scenarios that are not the intended
use of the system under test. They are a misuse of the system, but the intentions of the user
are not harmful. For example, using a SELECT * to get all the data than putting the data
through many UDFs instead of doing some data processing, such as filtering data, with SQL;
or instead of using JSON support in a system, casting the data to string and performing
regex operations on the string would be misaligned uses of a database system.

While not as suitable for automation as the above category, we will still investigate
auto-generation of scenarios for these types of surprises.

The goal here is to observe how the system handles the performance impact of such
misaligned scenarios and possibly whether it corrects them on its own.

23441

146 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Off-road

The final surprise category represents scenarios that aim at breaking the system by driving
it to the edge. For example, introducing a recursive query to bloat the memory resource
needs while running that query, introducing extreme data skew, cutting down the hardware
resources on the fly by introducing a heavy stream of collocated workloads would fall under
this category.

While some automation is still possible with this category, it is the one that requires the
most careful crafting, and hence manual effort.

The goal here is to observe the robustness of the systems under extreme scenarios.

Round 0
Before making surprise benchmarking in reality, we devised a plan for an initial test run,
Round 0. The goal with this round is to establish the methodology and the framework to
perform the surprise benchmarking, in addition to evaluate our vision for it. Therefore,
Round 0 will be an example run orchestrated by us using the database systems picked by
us. We will also be building the preliminary infrastructure for keeping a leaderboard for the
benchmark rounds. We plan to share our experiences and findings during Round 0 in the
form of a paper, e.g., in DBTest workshop.

To ensure that we focus on developing the bare minimum requirements for the surprise
benchmarking methodology and framework, we will keep the benchmark itself as simple as
possible. In other words, we would like to start from existing well-established benchmarks.
Thus, Round 0 focuses on traditional OLAP workloads and takes TPC-H benchmark as
the basis. For the systems under test, we pick Postgres, MySQL, DuckDB, Umbra, and
ClickHouse.

4.1.1 Round 0: Surprises

During the real benchmark run, we will complement TPC-H queries with previously unseen
queries corresponding to each surprise type described in Section 4.1.

Here are a list of possible surprises that we can create:

Surprises on the Query Level

Joins on non FK-PK relationships
Queries with recursion
Queries with cyclic joins
Queries with UDFs
Large SQL strings (multiple MBs)
Queries that stress memory (intermediates that need to spill)
Non-equi joins
...

Surprises on the Schema Level

No FK-PK in schema
Extremely many tables
Non star/snowflake schemata
...

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 147

Surprises on the Data Level

Heavy hitters for joins
Non-uniform / correlated data
Size of the data

4.1.2 Round 0: The benchmark procedure

We require databases to support SQL-92 (or similar).
We’ll provide a sample data generator and workload 30 days before the run. There will be

some sort of leaderboard, and each contestant will be money (cloud credit) limited. Entries
will be a deployable setup (either in the cloud or on a dedicated test server) in a format such
as Docker or Kubernetes.

We’ll include a data loading procedure, with a clean CSV or other file that contains the
table data. The databases will have a bounded amount of time to load the data; e.g., set to
10x longer than whatever our reference implementation takes.

Round 1
We plan to run the first round of the real surprise benchmarking around the same time with
our paper presentation / publication for the Round 0. The benchmarking run will be open
to anyone, but we will specifically reach out to the systems we tested during Round 0 to
enter Round 1 themselves.

Long-term plan
We think of starting with quarterly rounds.

We would like to base the rounds on the existing benchmarks as much as possible till the
benchmarking rounds become more stable to keep the work around running these benchmarks
low.

To check the correctness of the output of the benchmark queries, we will double-check
and use the results generated by Postgres. Furthermore, we plan to use Postgres as the
baseline during the benchmark rounds, since it is a highly mature and popular database
system.

4.1.3 Themes to consider

OLAP + unseen queries
OLTP + unseen transactions
OLAP + add new / many tables
OLAP + resource-constrained hardware
OLTP + multitenancy / collocation
Key-value stores + data skew
Vector databases + different data characteristics
Data loading & new table creation
Cloud (with all of the above)
Full surprise with mix & match
Multimedia analysis
Poorly factored microservices

23441

148 23441 – Ensuring the Reliability and Robustness of Database Management Systems

4.1.4 Metrics to consider

Throughput
Latency and latency distribution
Energy
Carbon footprint
Cost (bare-metal vs cloud)
Resource consumption (memory, disk, CPUs)
Micro-architectural (IPC, cache misses, etc.)
Robustness
Scalability
Availability

Challenges
Automation for both the generation of the surprises and the benchmark runs.
What would be the incentive for companies and academics to run and/or enter these
benchmark rounds?
What would be the hardware infrastructure to support the benchmark runs? Who
would provide it? Furthermore, when we would like a surprise hardware element, how
much of the hardware infrastructure should be revealed beforehand?
How do we identify and quantify some of the less traditional metrics such as robustness,
carbon footprint, etc.?

Addressing all these challenges will be crucial for the success of the benchmark. While we
aim to tackle these as much as possible with Round 0, some challenges have to be resolved
as we have more rounds of benchmarking. For example, we won’t be able to automate
surprise generation across many workloads and deployment on different types of hardware
infrastructures starting from Round 1.

4.2 Working Group on Transactions and Concurrency
Wensheng Dou (Chinese Academy of Sciences – Beijing, CN), Adam Dickinson (Snowflake
Computing Inc. – Seattle, US), Burcu Kulahcioglu Ozkan (TU Delft, NL), Umang Mathur
(National University of Singapore, SG), Everett Maus (Google – Seattle, US), Stan Rosenberg
(Cockroach Labs – New York, US), Gambhir Sankalp (EPFL – Lausanne, CH), Caleb Stanford
(University of California – Davis, US), and Cheng Tan (Northeastern University – Boston,
US)

License Creative Commons BY 4.0 International license
© Wensheng Dou, Adam Dickinson, Burcu Kulahcioglu Ozkan, Umang Mathur, Everett Maus, Stan
Rosenberg, Gambhir Sankalp, Caleb Stanford, and Cheng Tan

This working group focused on the challenges involved in testing and diagnosing transactional
database systems, which support complex SQL operations and varying consistency and
isolation levels, in a concurrent and distributed setting.

We investigate methods to evaluate the transactional correctness of database systems, i.e.,
whether the database system satisfies its guarantees under all possible execution scenarios.
We excluded problems related to non-concurrent database testing problems (such as ensuring
individual or non-concurrent queries, reads, or transactions are correct) and instead focused
on problems which are specific to concurrent transaction workloads.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 149

Discussed Clusters

Our discussions identified problems of interest in this space, and found that they can be
divided into 3 major clusters:
1. Concurrent test oracles: how can we design test oracles to verify concurrent transactions?
2. Coverage metrics and test generation: How can we identify coverage metrics for testing,

in order to generate minimal and sufficient test cases?
3. Bug and failure reproduction: After bugs are found (either by users or in production),

how can we effectively reproduce, root-cause, and diagnose them?

In each cluster, we identify the state of the art in practice, problems to be solved that we
view as open, related work, and potential solutions.

In addition to the three clusters, there are other dimensions of interest. For the target
database system, it can vary from key-value stores (at the simplest level), to relational
databases, to supporting client-level transactions. Consistency and isolation levels are another
important dimension, ranging from strong sequential consistency to weaker consistency models
or only eventual consistency. Problems can also be classified based on the type of bug that is
considered: safety bugs such as data races and race conditions; violations of serializability,
linearizability, and atomicity; deadlock freedom; liveness violations such as non-termination;
and performance bugs. Many of these bugs manifest concretely as either wrong results
returned to the user, data corruption in the database itself, or crashes (which is the best
case scenario of the three).

Cluster 1 – Concurrent Test Oracle
4.2.1 Motivation

It is notoriously hard to test concurrent problems in databases as they (the bugs/anomalies)
rely on various inter-transaction interactions, transaction interleavings, and transactional
concurrency guarantees (isolation guarantees promised with the database systems).

Today’s approach is to test a database by repeatedly running concurrent workloads,
hoping to cover more interleavings, transactional interactions, and database internal schedules.
However, given an isolation guarantee (e.g., serializability), the valid states are huge; then,
how to examine if a given state is valid is challenging. Note that this is straightforward
if a database provides linearizability and outputs a commit timestamp – we re-execute
transactions in the order that they committed at, and can check the database state at each
point as is done by Spanner at Google. The problem is more complex (from a algorithm
complexity point of view) for some weaker isolation levels (e.g., non-strict serializability and
snapshot isolation) and for the databases without accurate commit timestamps.

So, we form this problem into the concurrent test oracle problem: given some workload
of concurrent transactions, how to validate that the responses and the final state of the
database is correct with respect to the isolation and concurrency specification.

4.2.2 Batch Formalization

The batch formulation assumes we have executed some set of concurrent workloads, and now
want to validate that the outcome was correct.

23441

https://medium.com/@jcorbett_26889/randomized-testing-of-cloud-spanner-5286f1eaba75

150 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Given:
Input:

t0 ← start time
t1 ← end time
{transactions, ...}
database state at t0
concurrency + isolation specification

We assume input state of the database is valid.
The transactions are assumed to contain the sequence of actions they executed (reads,

writes, mutations, but also queries and DML statements), the transaction’s start and end
times (synonymously: arrival / commit time), and the results of reads or queries. (Optionally,
we believe it is reasonable to also require the actual values written, if it simplifies the problem.)
Note that we require actions to be atomic. This is identical to the standard way of describing
concurrency / isolation models for reads / writes, but we also require things such as a query
(which may touch multiple tables) read from the same version of the database (and similarly,
DML may read/modify/write multiple rows).

For the batch case, we want to be able to validate that the database state at t1 is valid
after the transactions provided have all executed, and that the values read (or queried) by
all transactions are correct at each point.

4.2.3 Incremental Formalization

The incremental formalization is aimed at the problem of validating transaction outcomes in
an “online” way – as part of an ongoing test, for cases where the batch validation case may
not scale (e.g. where hundreds of thousands of transactions might be run over the life of a
test, but the number of transactions running concurrently might be quite low).

Given:
Input:

t0 ← start time
t1 ← end time
transaction to validate starting at t0 and ending at t1
{transactions + metadata, ...} all transactions with overlapping start or end times with
the transaction to validate
database state at t0
concurrency + isolation specification

We assume the database state at t0 is correct. The transactions and metadata are similar
to above.

Given this, we want to be able to do one of a few (largely equivalent) things:
Determine if the actual database state at t1 is consistent, and that the read/query results
from that transaction are valid
Compute the set of all possible database states at t1 and the set of all possible read/query
results from the transaction

4.2.4 Problem

We define a transaction as a sequence of SQL statements, decomposable into read and write
operations. A set of all possible executions of transactions forms a schedule. Thus, an
isolation level can be seen as a set of constraints, I, over all possible schedules. We say

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 151

that a schedule is allowed under an isolation level if it adheres to all constraints in I. E.g.,
serializability isolation is a set of constraints which ensures that every schedule corresponds
to a serial execution of transactions.

There are two mainstream approaches to verifying an isolation level, namely black box and
white box oracles. A black box oracle observes only external state changes, same as a database
client; i.e., results of individual operations are invisible until a transaction is committed.
Conversely, a white box oracle can observe internal states; i.e., results of read/write operations.
Each approach is fraught with scalability and expressiveness challenges. The latter arises
when transactions are composed of SQL statements. Read and write effects of a SQL
statements are in some sense a prerequisite for expressing (transaction) conflicts. Scalability
challenge is a function of transaction size (i.e., number of operations per transaction) and
transaction throughput (i.e., number of committed transactions per second). Both online an
offline approaches exist. An online approach is desirable especially if it yields a mechanism
whereby a transaction in violation of the isolation level can be aborted. For practical reasons,
e.g., high transaction throughput, offline verification remains a popular approach.

4.2.5 Challenges

There are multiple challenges to address the concurrent test oracle problem in practice.

Challenge 1: efficiency and scalability

Checking efficiency is crucial in practice. Some of the problem variants have been proved
to be computational expensive to check; for example, black-box checking serializability and
snapshot isolation is known to be NP-Complete. Even for the white-box checking isolation
levels that have polynomial checking algorithms, it is unclear if the checking can be efficiently
implemented to catch up with the throughput of today’s databases.

In practice, a DBMS is expected to meet its consistency/isolation guarantees, and is
expected to support high levels of concurrent usage over long periods of time. In practice,
this is often checked by long-running tests that aim to provoke a wide array of behaviors
over a long (hours to days) length of time.

Challenge 2: beyond reads and writes

The state-of-the-art test oracles almost all work on the transactional key-value model; that
is, the available operators are reads and writes to a key once at a time. However, in practice,
real-world key-value stores have many advanced operators, including range queries, max,
min, and many other aggregation operators. In addition, we barely know how to handle
concurrent SQL statements in the concurrent test oracle problem.

Challenge 3: providing evolvability and debuggability

Developer friendliness is also a strong requirement. In particular, if the DBMS itself is
extended (e.g. new features are added to the SQL dialect the DBMS supports) then
either the underlying solution should not need new work or any extension required should
be straightforward for the average developer. For example: If adding support for a new
aggregate, such as MIN/MAX, to the test system requires significant work to update an
SMT representation, it’s unlikely to be a viable solution for industry use.

Similarly, the debuggability of a solution would be important to allow issues found by
these systems to be reproduced, understood, and addressed by developers.

23441

152 23441 – Ensuring the Reliability and Robustness of Database Management Systems

4.2.6 Existing approaches

Differential testing

For deterministic (statement-by-statement execution, that is, we can obtain a deterministic
execution trace for each statement in the concurrent transactions) transaction test cases,
we can compare the transactions’ execution results between database systems. However,
differential testing faces some issues. First, it cannot compare concurrent transaction
executions. Second, different database systems may contain inconsistent transaction semantics,
and differential testing can report false positives. Third, different database systems support
different isolation levels, which cannot be compared together.

Infer transaction execution result

For some simple and deterministic transaction test cases, we can potentially infer the execution
results of each statement in the transactions according to their transaction semantics. This
approach can also have some limitations. First, it cannot infer the test oracle for concurrent
transactions in which we cannot obtain their statement-by-statement execution. Second,
it cannot support some complex SQL queries, e.g., aggregation functions (may not be
important).

Key-Value Store Oracles.

This problem has largely been solved for simple key-value stores (i.e., supporting only point
reads/writes). However, supporting the more complex semantics that languages like SQL
support is an open problem. (Consider that the values read from one table may depend on
the rows read from another table within the same query.)

Cluster 2: Coverage Metrics and Test Generation
4.2.7 Current industrial practice

A common way to test the concurrency/transactional correctness of a database is to run a
set of concurrent transactions and observe that the database behaves correctly. However, it
is non-trivial to determine what cases uncover net-new behavior in the system versus simply
validating the same case repeatedly.

The current state of practice in this space tends to simply run a set of tests repeatedly
(either for a test budget of a certain amount of compute time or a certain number of test
executions) with no clear indication of coverage. This does not provide any confidence to the
practitioners about the effectiveness of their testing strategy, leaving the following questions
unanswered:
1. Given a particular test case (e.g. a set of concurrent transactions) at what point will

running more tests stop providing additional information about the system’s behavior?
2. Given two test cases and information about the events that occurred, do they exercise

redundant behavior?
3. Running a set of text executions, at what point do additional test cases/executions not

provide information about the system? (At what point has this metric been saturated?)
4. At what point have these tests covered enough of the system that we can be confident in

the overall concurrent behavior of the system?
5. Is it possible to automatically construct net-new test cases that provide new information

about the concurrent behavior of the system?

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 153

4.2.8 Problem Statement

To address these questions, we would like to be able to determine:
Defining Coverage How can we define proper coverage metrics that can reflect developers’

intuition of test coverage?
Measuring Coverage Given a particular set of test cases, how can we efficiently measure

the amount of exercised behaviors of the database systems?
Detecting Saturation Running a set of text executions, at what point do additional test

cases not provide information about the system? At what point has the coverage been
saturated?

Coverage-Guided Test Generation How can we automatically construct new test cases that
provide new information about the concurrent behavior of the database system?

4.2.9 Coverage Metrics

The set of covered behaviors in database systems depends on both (i) test input transactions,
which may trigger operations on different replicas and partitions (data-centric behaviors), and
(ii) concurrent interactions and partial failures in the database system (concurrency-centric
behaviors). The set of transactions running in the test case may trigger different features of
the database system exercising different system behaviors (optimization engines, rollbacks,
failure recovery, etc.). On the other hand, the same set of transactions can trigger different
behaviors of the system, depending on the interleavings of the concurrent interactions in the
system (e.g., communication between database replicas, the interleavings of the faults w.r.t.
the communication).

Therefore, an ideal coverage metric should be able to capture the coverage in both aspects
and also how novel behaviors in one aspect trigger novel behaviors in the other aspect. Even
when a given set/sequence of transactions has the potential of exposing subtle behaviors
and bugs in the system, not all interleavings may be able to expose them. Likewise, simply
exploring the entire space of concurrent interactions between a given set of transactions may
not exhaustively exercise features that may otherwise be exposed by different transactions.
Indeed, a subtle choreography between transactions and their concurrent interactions is often
required to expose bug inducing behaviors.

The existing coverage metrics widely used in practice (such as line or branch code coverage)
does not capture the temporal order and the interactions between the transactions. It remains
an open research question to define proper coverage metrics to address the problem in the
database systems settings running concurrent transactions.

4.2.10 Measuring Coverage

Given the insufficiency of traditional coverage metrics like line and branch coverage, more
exhaustive metrics that distinguish temporal behaviors may be more appropriate in our
setting. However, the precise granularity and level of abstraction may affect the efficiency
of determining the amount of coverage that has been achieved. The efficiency of coverage
tracking also crucially affects the runtime of the testing campaign and, thus, the number
of behaviors covered within the same testing budget. We think a thorough investigation of
coverage metrics that achieve different tradeoffs between abstraction (i.e., does not distinguish
between similar inputs/interleavings) and efficiency of tracking coverage may be required to
assess their suitability to different settings.

23441

154 23441 – Ensuring the Reliability and Robustness of Database Management Systems

4.2.11 Detecting Saturation

While measuring coverage of a set of tests provides information about the explored set of
system behaviors, it does not indicate how much of the possible system behaviors have been
explored.

To provide confidence in the testing strategy, the coverage metric should quantify the
set of (all) possible system behaviors and how much of those are covered by a set of test
executions seen so far. Such a quantification has the potential of providing concrete feedback
to developers about how much more computational resources to continue to dedicate and
whether or not to terminate the exploration of new behaviors in case the coverage is close to
saturation and the marginal utility of continuing is expected to be low.

4.2.12 Coverage guided transaction test generation

The coverage information can be used to guide the generation of new test cases to extend the
search to increase coverage. In order to expose concurrency-centric behaviors (in conjunction
with other data-centric behaviors), we envision that scheduling hints and hints on partial
failures at runtime can increase the effectiveness of otherwise vanilla transaction-based tests.
On the one hand, no control over the scheduling and the injection of partial faults may
empirically resemble naive random testing with poor effectiveness. On the other hand,
full scheduling hints that can control precise interleavings of processes can be impractical.
Further, retrofitting controlled testing into existing large-scale testing frameworks is likely to
be not ergonomic and may not be adopted in practice.

The space of granularity of data-centric and scheduling hints should be investigated to
build effective and ergonomic guidance methodologies for test generation. The feedback
information can then be used in a similar approach to popular feedback-driven fuzzing
methods.

Cluster 3: Bug and Failure Reproduction
Suppose that a system has encountered an unexpected bug or crash – either in a complex
test or in production. We have the existence of the bug, the logging provided by the system
prior to encountering the bug, and any other diagnostic information collected on failure.
How can we re-create the sequence of events that led up to this bug?

In our discussions, we identified four major questions that we would like to see more work
addressing. This section contains a summary of current industrial practice, a discussion of
the four identified questions, and related areas of work.

4.2.13 Current industrial practice

Our industry attendees emphasized that this is a common scenario in practice, and it can be
very difficult to reproduce failures. The current state-of-the-art is often simply rerunning
a test a large number of times (e.g., 1000x), potentially after augmenting the system with
additional logging, a slightly modified configuration, runtime sanitizers, or with changes to
the system or test workload to increase the likelihood of perturbing the issue. Due to the
lack of support for more targeted reproduction techniques, each test run can require running
on 10s to 100s of virtual machines, and the time to run each test takes anywhere from a
minimum of 30 minutes to run to a maximum of about 16 hours.

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 155

Due to all of these challenges, known bugs in production databases can remain undiagnosed
for years. For example, one anecdote described a transactional database system with 6
long-standing concurrency-related bugs in production, and reproducing a single one of these
bugs in a test environment and subsequently fixing it eventually took 2.5 years.

Whether it is more important to reproduce bugs found during testing vs. bugs found in
production, it was answered that both are very useful, but roughly 20x more bugs are found
during testing vs. in production. Therefore, new techniques that only work during testing
would still be useful, even if the overhead is too high to be deployed in production.

Finally, some industries are leveraging systems for deterministic record-and-replay (see
related work below), such as FoundationDB’s testing framework [56], Megastore at Google [7]
and Hermit at Meta [37]. See also Thomson and Abadi’s 2010 paper making the case for
determinism [50]. However, there was a feeling that these techniques may not be mature
enough to scale to the distributed setting and reproduce transactional database bugs at
scale. They require both an upfront design cost and runtime overhead, both of which can be
prohibitive, especially when running on multiple machines.

4.2.14 Problems identified

Q1: Reconstructing the system trace

Suppose that some system events and failures are logged, but others are not. Given the set
or trace of logged events, how can we reconstruct one possible system execution trace which
is consistent with the log?

Note that there may be multiple system execution traces that are consistent with the log;
we only need to find one of them in order to demonstrate a bug.

Approaches to the problem can be placed on a spectrum, trading the amount of additional
logging required with additional effort in reconstructing the execution:

On one end, logging every event in the system with a trusted clock (faults, scheduling,
message ordering, message deliveries, internal non-determinism) can allow for viable
reproduction of the explicit system state, but imposes a large burden on developers to
explicitly track any choices that affect state as well as on the logging framework to store
and manage the large amount of information.
On the other end, minimally logging transactions, start/commit times, and the final
state can allow the use of an oracle as in Cluster 1 to produce a set of viable executions
explaining the behavior. However, the set of executions to explore in this scenario may
be too large to reasonably compute, given that logs leading up to a failure may contain
thousands to tens of thousands of transactions.

Q2: Amount of logging

The discussion above for Q1 raises the following central question: what is the minimal set
of information that needs to be logged in order to answer question 1? That is, what is the
minimum amount of logging which is sufficient to reconstruct the system state at time of
failure, within a given computational means?

Here, it is not necessary that the logged information allows us to reconstruct the execution
uniquely; it is sufficient to be able to reconstruct an execution leading up to the final state
within a small enough search bound from the input logs. The logged information is then
used to filter the space of possible executions.

One caveat that makes this difficult in practice is that sometimes when logging as added,
it can make it impossible to reproduce some states (as logging can affect the timing of events).

23441

156 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Q3: Controlling environmental non-determinism

How can we ensure that the environment simulated in a controlled environment matches the
production environment? In other words, every behavior that is possible in production must
be possible in the simulated environment.

Simulated environments, including e.g. record-and-replay tools as well as fault injection
tools, provide a partial solution to the failure-reproduction problem, albeit with significant
overhead. The goal of such tools is to provide a highly controlled testing environment,
wherein all non-determinism choices are controlled and determinized by the environment.
However: 1) the controlled testing environment may not faithfully reproduce the behavior
and semantics of the production environment, and 2) the determinization of behavior may
preclude discovery of traces that reproduce the failing behavior.

Q4: Retrofitting determinism

How can we add determinism guarantees onto an existing database system that was not built
to support deterministic execution?

The challenge here is a little different than deterministic replay; the question is about
making the database implementation itself deterministic. For the distributed case, however,
we also have to ensure determinism of the distributed aspects through, e.g., simulating the
network and injecting controlled node failures.

4.2.15 Related Work

Several lines of related work are relevant to the problems identified above. Flaky tests (i.e.
tests that may fail nondeterministically), are extensively studied in the software engineering
community, (e.g., [35, 8, 21, 31, 42]). Bugs related to concurrency, distribution, consistency,
and isolation levels often manifest as flaky tests. Work on debugging big data applications
is also relevant; the most prominent tools in this space include Inspector Gadget [39] and
BigDebug [27]. Finally, record-and-replay tools, which include Mozilla RR [38], Hermit
[37], and DetTrace [36], provide controlled environments for determinized execution and
debugging.

4.3 Working Group on Query Languages and Debugging
Denis Hirn (Universität Tübingen, DE), Moritz Eyssen (Snowflake – Berlin, DE), Tim
Fischer (Universität Tübingen, DE), Torsten Grust (Universität Tübingen, DE), Muhammad
Ali Gulzar (Virginia Polytechnic Institute – Blacksburg, US), Hannes Mühleisen (CWI –
Amsterdam, NL), Thomas Neumann (TU München – Garching, DE), and Mark Raasveldt
(DuckDB Labs – Amsterdam, NL)

License Creative Commons BY 4.0 International license
© Denis Hirn, Moritz Eyssen, Tim Fischer, Torsten Grust, Muhammad Ali Gulzar, Hannes
Mühleisen, Thomas Neumann, and Mark Raasveldt

SQL-level Plan Specification
A SQL query provides a declarative specification of a computation over relational tables: it
is the database system’s task (and freedom!) to explore a space of possible algebraic plans
that will implement the query. Query authors need not and (largely) cannot influence the
system’s choice of execution strategy. Declarativity is a core viture of the SQL language –

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 157

yet, occasionally, the declarative nature can stand in the way, in particular when precise
control over the shape and operators in a physical algebraic plan is desirable, for example in
plan-centric database engine testing.

The working group on Query Languages & Debugging tackled the challenge of formulating
algebraic query plans in a human-readable (and thus: human-writable) fashion. Ideally, this
plan format could also serve as a means to exchange physical plans across database engines.
In the context of database engine testing, precise control over algebraic plan construction
can help to ensure that even the most obscure operator constellations and remote engine
code paths are covered – a feature that is hard to realize solely in terms of SQL-level query
fuzzing.

The primary guiding principle of the working group’s discussion was pragmatics: we
settled on (a carefully selected subset of) SQL itself as the format in which such algebraic
plans are to be written and communicated. Refer to Figure 1 for one sample instance of such
a SQL-encoded physical algebraic plan:

We use a common table expression (CTE) to isolate SQL queries, each of which realize
the semantics of a given algebraic operator: for example, query INDEXSCAN_1 reads
columns a and b from table r while evaluating the predicate a = 42 ∧ b <= 5, while
query TABLESCAN_1 scans columns c and d of table s.
Naming conventions are used to communicate specific algebraic plan operator kinds:
INDEXSCAN_* advises the engine to employ an index scan (here: over a (compound) a,b
index), while HASHJOIN_* represents a hash join over given build and probe inputs (see
the conventionally named build and probe row aliases in the query’s FROM clause).
CTE-provided query names are then used to assemble tree- or DAG-shaped complex query
plan. The algebraic plan encoded by the SQL query in Figure 1 is shown in Figure 2.
The family of admissable physical plan operators is readily extended: we require a
canonical SQL-based formulation of the operators’ semantics as well as a recognizable
naming convention for the operator itself (as well as its n inputs if the operator is n-ary).
We are convinced that a rather small SQL subset will suffice to encode the behavior of
even the most exotic algebraic operators.

We envision a query-specific pragma or configuration setting – possibly embedded in a
“magic comment” like --#ENCODED_PLAN or similar – to switch the database engine into
plan-decoding mode. In this mode, the engine detects an encoded physical operator based
on (1) its CTE naming convention and (2) a match against the operator’s known canonical
SQL AST pattern. Table and row aliases are used to wire the physical plan tree.
The rationale of the working group’s proposal is as follows:

Relational already engines come with the required facilities to parse, represent, and
serialize SQL queries. No extra plan parser, validator, or pretty-printer needs to be
implemented.
Likewise, query authors and engine developers have already mastered the skill to read
and write SQL queries and thus plans. No new syntactic oddities are to be learned and
the cognitive overhead is minimized.
This SQL-based plan format will continue to work even if a database engine only imple-
ments a selection of the algebraic operator patterns: CTEs that were not detected as a
known algebraic operator can still be wired into the overall plan tree. Their evaluation
will yield an intermediate result that can be consumed by the residual plan.
Indeed, any database engine – including those fully unaware of our operator naming
and encoding conventions – will still be able to evaluate such a SQL-encoded plan. In a
testing environment, the query result may be used as an oracle that provides the expected
outcome of the algebraic plan.

23441

158 23441 – Ensuring the Reliability and Robustness of Database Management Systems

WITH
INDEXSCAN_1 (a,b) AS (

SELECT a, b FROM r WHERE a = 42 AND b <= 5
),
TABLESCAN_1 (c,d) AS (

SELECT c, d FROM s
),
HASHJOIN_1 (a,b,c,d) AS (

SELECT *
FROM INDEXSCAN_1 AS build JOIN TABLESCAN_1 AS probe ON (a = c)

),
RADIXSORT (a,b,c,d) AS (

SELECT * FROM HASHJOIN_1 ORDER BY a DESC;
)
TABLE SORT;

Figure 1 A SQL-encoding of the algebraic plan of Figure 2.

The SQL Acid Test Project
Although SQL is an ISO standard, in practice, systems rarely comply completely with the
standard. Countless semantic and syntactic differences between systems, often of rather
subtle nature, are a sad fact of today’s SQL reality. This makes it difficult to write SQL
that is portable between systems, and limits the ability to apply SQL skills across database
engines – practitioners who are able to write SQL for one database system will face challenges
when writing SQL for another database system. Similarly, SQL tooling needs to take these
different query language dialects into account, which in practice results in tools being created
only for a specific dialect or system, rather than widely applicable tools that can be used for
SQL systems in general.

In the world of web browsers, this problem has been encountered before, where browsers
(such as Microsoft’s Internet Explorer IE6) were found to not be truly standards-compliant.
The Web Standards Compliance Acid Test [44] was created as an attempt to combat this
conundrum. The idea was that users could visit a web page, and if the browser was indeed
standards-compliant, it would render a smiley face. This was intended to be an incentive for
browser vendors to strive for true standards-compliance. After all, if they were not, their
users would see that their browser would not be “smiling at them.”

RADIXSORTa DESC

HASH ▷◁

IDX_SCAN
(a,b)

r

TBL_SCAN
(c,d)

s

build probe

Figure 2 Plan tree of physical operators, derived from the SQL encoding of Figure 1.

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 159

+-----------------+
|......#####......|
|....##.....##....|
|...#.........#...|
|..#..()...()..#..|
|..#..... o#..|
|.#.............#.|
|..#..\...../..#..|
|..#... - - - - -...#..|
|...#.........#...|
|....##.....##....|
|......#####......|
+-----------------+

Figure 3 Successfully rendered smiley by a SQL Acid Test compliant database system.

The SQL Acid Test Project was launched during this seminar to attempt to create a similar
compliance test for SQL database systems. The basic idea revolved around a (large) SQL
query that users can execute using the database engine of their choice. If the system is
standards-compliant, the query output shows the text-based rendering of a smiley face (see
Figure 3). Otherwise, the system will either return an error if parts of the test query are
not supported, or parts of the smiley rendering will be replaced with an “X” to indicate a
deviation from the expected query result.

One problem with the SQL standard is that it is under-specified in many areas, and many
behaviors are left up to the implementation. Therefore, while testing for SQL standard
compliance definitely is important, it is not sufficient to guarantee that the system will
behave properly in all scenarios. For this reason, we have decided to split up the acid tests
into two sets:
Compliance tests strictly test if the system complies to the SQL standard.
Convention tests check if the system supports a sane SQL dialect as determined by a panel

of experts (as of now these have been the members of the working group – a broader
community representation clearly is desirable).

23441

160 23441 – Ensuring the Reliability and Robustness of Database Management Systems

test Db2 Oracle MSSQL MySQL PostgreSQL Umbra DuckDB Snowflake Spark GoogleSQL SQLite3 Presto Tableau Hyper MonetDB

01 ✓ ✓ ✓ W ✓ ✓ ✓ ✓ ✓ W W ✓ ✓ ✓
02 W ✓ p W ✓ ✓ ✓ ✓ p ✓ p ✓ ✓ ✓
03 p W W W ✓ ✓ ✓ ✓ W W W ✓ ✓ ✓
04 W p ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
05 W W W W ✓ ✓ W ✓ W W W W ✓ W
06 ✓ ✓ ✓ W ✓ ✓ ✓ ✓ ✓ W W p p p
07 W W W W ✓ ✓ ✓ W ✓ W W p ✓ W
08 W ✓ W ✓ ✓ ✓ ✓ W ✓ W W ✓ ✓ ✓
09 p ✓ p W ✓ ✓ ✓ ✓ W W W ✓ ✓ p
10 W ✓ p W ✓ ✓ p ✓ W W p ✓ ✓ p
11 W W W W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ W ✓
12 W W ✓ W ✓ ✓ ✓ W W W W W ✓ ✓
13 W W W W ✓ ✓ ✓ W W W W W ✓ W
14 W W W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ W W ✓ ✓ ✓ ✓ ✓ W W ✓ ✓ ✓
16 W W W W ✓ ✓ ✓ ✓ W W p W ✓ W
17 W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
18 W W W W ✓ ✓ ✓ ✓ ✓ W ✓ ✓ ✓ ✓
19 ✓ ✓ W W ✓ ✓ ✓ ✓ p W W W W W
20 ✓ W ✓ W ✓ ✓ ✓ W W W W ✓ ✓ ✓
21 ✓ W ✓ W ✓ ✓ ✓ ✓ p W W ✓ ✓ ✓
22 ✓ W W W ✓ ✓ ✓ ✓ W W W ✓ ✓ W
23 W W W W ✓ ✓ ✓ ✓ ✓ W W W ✓ W
24 W W W W ✓ ✓ ✓ ✓ ✓ W W ✓ ✓ W
25 ✓ ✓ W W ✓ ✓ ✓ ✓ W W W ✓ ✓ ✓
26 ✓ W W W ✓ ✓ ✓ ✓ ✓ W W ✓ ✓ W
27 W ✓ W W ✓ ✓ ✓ ✓ ✓ p W ✓ ✓ ✓

Score 33% 41% 26% 15% 100% 100% 93% 81% 52% 19% 19% 70% 89% 56%

Figure 4 Acid test compatibility matrix as of November 2023. The ✓ symbol indicates that a
particular acid test is running successfully on the system. p indicates that the system executes the
test, but the result is unexpected. W means that the system was unable to execute the test. The
highlighted test cases () are SQL compliance tests.

The SQL Acid Test project can be found at https://github.com/sqlstandardsproject/
sqlacidtest.

4.4 Working Group on Testing “Analytical” Components of Databases
Manuel Rigger (National University of Singapore, SG), Jinsheng Ba (National University
of Singapore, SG), Ankush Desai (Amazon – Cupertino, US), Adam Dickinson (Snowflake
Computing Inc. – Seattle, US), Wensheng Dou (Chinese Academy of Sciences – Beijing, CN),
Stefania Dumbrava (ENSIIE – Paris, FR), Moritz Eyssen (Snowflake – Berlin, DE), Florian
Gerlinghoff (MotherDuck – Amsterdam, NL), Hong Hu (Pennsylvania State University –
University Park, US), Zu-Ming Jiang (ETH Zürich, CH), Marcel Kost (Salesforce – München,
DE), Everett Maus (Google – Seattle, US), Mark Raasveldt (DuckDB Labs – Amsterdam,
NL), Andrei Satarin (Google – Mountain View, US), Thodoris Sotiropoulos (ETH Zürich,
CH), and Chengyu Zhang (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Manuel Rigger, Jinsheng Ba, Ankush Desai, Adam Dickinson, Wensheng Dou, Stefania
Dumbrava, Moritz Eyssen, Florian Gerlinghoff, Hong Hu, Zu-Ming Jiang, Marcel Kost, Everett
Maus, Mark Raasveldt, Andrei Satarin, Thodoris Sotiropoulos, and Chengyu Zhang

The key problem we are interested in solving is: how can we make sure that a DBMS
behaves correctly, without needing to manually enumerate every possible behavior? In
particular, how can we ensure that the behavior of a DBMS satisfies the expected behavior

https://github.com/sqlstandardsproject/sqlacidtest
https://github.com/sqlstandardsproject/sqlacidtest
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 161

in terms of correctness, security, crashes, and performance guarantees, without requiring a
DBMS developer to expend exponential effort enumerating and testing every behavior and
combinations of behaviors? Although this is a general systems problem, DBMSs are more
challenging than many other systems because of their (1) complexity (both of individual
features and feature interactions), (2) expected correctness, and (3) persistent state.

Among the seminar attendees, we identified four common themes of interest, which relate
to the core challenges of automatic testing:
1. Test case generation, including database and query generation;
2. Test oracles to validate the DBMSs’ correctness and other properties;
3. Bug analysis, covering topics such as test-case reduction and deduplication;
4. Transactional testing, which covers aspects of the above challenges, but poses its own

special challenges.

Cross-cutting Challenges
We identified various cross-cutting challenges (i.e., challenges that span across two or more
of the general challenges that we have identified). We will outline them in this section.

4.4.1 Bug Studies

Various effective automated testing generation approaches have been proposed. However,
it is unclear what kind of bugs that they overlook. This question could be studied based
on reports in issue trackers or based on customer reports. Specifically, studies could be
performed to investigate both characteristics of the features used in the bug-revealing test
cases as well as whether existing test oracles could have found them, to identify gaps that
could be addressed.

4.4.2 State of the art in the industry

Multiple companies have developed sophisticated testing frameworks. The approaches behind
these frameworks are not widely shared, meaning that those unaware of them might reinvent
the wheel or implement suboptimal approaches. It would be ideal if companies could share
some of their tools or insights; one way forward could also be for academia to conduct
interview studies with practitioners.

4.4.3 Interfaces between Existing Tools

Current testing tools typically consist of a database generator, query/workload generator, test
oracle, and potentially a component to reduce and deduplicate test cases. These components
are generally tightly coupled and it is currently not possible to easily integrate them. For
example, it would be difficult to combine the query generator of one tool with a test oracle
from another tool. Interfaces could be defined that would allow combining them, similar to
existing work on formal verification tools [10].

4.4.4 Query Dialects

In the relational setting, despite the existence of an SQL standard since 1986, a known
problem is that many very different variations of it have been implemented in commercial
systems [30, 4]. The problem also exists in the non-relational setting. Indeed, for graph

23441

162 23441 – Ensuring the Reliability and Robustness of Database Management Systems

databases, the current commercial eco-system is fragmented across dozens of vendors that
each implement their own graph query language, as recently surveyed in [9], spurring interest
in emerging standards, such as SQL/PGQ [18], which extends SQL with graph queries, and
the GQL native graph query language.

Differences between query dialects are a challenge for test-case generation, the test oracle
problem, and test-case reduction techniques. For test-case generation, it is difficult to design
general generators that both produce valid databases and queries for various dialects, as
well as dialect-specific features. For the test oracle, it is difficult to apply differential testing
or implement reference engines due to differences between dialects. For test-case reduction,
most current reducers are dialect-specific or rely on general text-based reductions.

Test Case Generation
Problem statement. In the context of DBMS testing, a test case consists of an initial
database state (schema and data), some amount of workload (queries, transactions, schema
changes), and the final expected state (expected results of queries, final database state, etc.).
Traditional software development processes involve the creation of manually written test
cases to ensure correctness. However, this approach leads to a fixed test suite that, even
though it might be over a large area of the input space, still leaves many states unexplored.
Therefore, an alternative approach is to generate test inputs automatically and randomly.
An important challenge associated with randomized test input generation is: how can we
automatically generate diverse test cases that exercise interesting behaviors in the database
engine under test, and thus uncover bugs?

4.4.5 Existing Techniques

We identify and review the current state-of-the-art testing techniques as follows.

Manually written test cases. These sorts of tests are common across all (industry?)
databases and consist of manually curated sets of initial states, workloads, and expected
states. The problem with solely relying on manual testing is that:

The space of feature interactions in a database grows exponentially as new features are
added
It is generally infeasible to enumerate all of the states that all users of DBMS will provoke

User query analysis. Another source of test cases and validation is using actual user
workloads – provided by a DBMS consumer, observed in production (for databases that
are also hosted by the database developers), or similar. These can be either run in the
same environment (for hosted databases) or added to test suites maintained by the database
developers. The primary limitations with user workloads are:

New database features will not be exercised until they are available to the DBMS’s users
Most user’s schema, data, and queries are often nonpublic and may not be available to a
DBMS developer (for numerous reasons, including legal restrictions on sharing certain
types of data)

Randomized testing. Randomized testing is a technique through which test data is randomly
generated based on given adequacy criteria/requirements/specifications. The system under
test (SUT) is then executed against the test data and the corresponding outputs are evaluated
to assess whether they conform to the expected results. The phases of random testing comprise

https://www.iso.org/standard/76120.html

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 163

data generation, execution, and evaluation. There are two main approaches to constructing
test cases, each with its strengths, limitations and challenges: (1) random test case generation
and (2) mutation-based generation.

Random test case generation. Using this approach, test cases (queries) are constructed
completely from scratch. A key challenge here is the creation of syntactically- and semantically-
valid queries to help uncover deep DBMS bugs. This is typically achieved by implementing
a query generator that consults the grammar and the semantics of the DBMS under test.
A fundamental limitation is that such query generators are often tailored to specific SQL
dialects and DBMSs.

Mutation-based generation. This approach synthesizes queries by modifying existing ones,
known as seeds. These modifications include replacements, additions, deletions of tokens,
expressions, or complete statements, Mutation-based generation results in grammatically-
valid queries by making small changes to existing, valid seeds. This helps exercise different
behaviors in the database, while preserving much of the structure and characteristics of the
given seed queries. A primary limitation of mutation-based generation is that its effectiveness
relies on quality of the available seed programs.

Black-box vs. grey-box query generation. Test case generation techniques can be also
grouped into two different categories based on whether the generation process leverages
feedback from SUT. Grey-box test generation allows guiding the creation of new test inputs by
considering feedback from previous executions. This feedback can include code coverage [55],
query plans, newly-explored paths and code regions, or the state of SUT. Black-box test case
generation treats SUT as a “black box” that simply takes an input and produces an output,
without knowing anything about its internals.

Existing tooling. Popular query generators for relational databases include the following.
SQLsmith [48] is a fuzzer for SQL that can target PostgreSQL by generating random queries
from scratch. It however sacrifices complexity for validity, as it only generates one statement
in each query, without analysing the dependencies between these statements. Conversely,
SQUIRREL [55] can generate queries that contain multiple statements and infer dependencies
between them but can produce invalid ones. An emerging challenge is accounting for the
trade-off between the complexity and the validity of generated queries. To address this,
recent approaches, such as DynSQL [28], combine query generation and execution and use
the database state to inform query generation. Similarly, the GoogleSQL Random Query
Generator used in testing at Google by Spanner, BigQuery, etc.) uses the latest database state
and information about the current contents of the database tables to inform the generation
of queries that are more likely to be successful.

As subsequently detailed, limitations of existing tooling include:
The generated workload may not reflect how real users use the database
It is challenging to ensure the workload generation tests the DBMS features it is expected
to
Avoiding generating spurious or less interesting test cases requires increasing the sophist-
ication of the generator (e.g. queries that do not parse, type-check, are not valid for the
database schema, or will not have any results given the contents of the database)

23441

164 23441 – Ensuring the Reliability and Robustness of Database Management Systems

4.4.6 Open problems/challenges

4.4.6.1 Fuzzing Challenges

To get better coverage of possible inputs to a DBMS and potentially detect more bugs,
randomized generation of test workload (for example, a schema, data to populate the schema,
and a sequence of SQL queries or database transactions) is a common pattern that finds a
large number of bugs.

Test Case Quality: Given an infinite input space, fuzzers should ideally generate “inter-
esting” queries or workloads, but it is not immediately clear what “interesting” entails.
The reason for this is that it is not known beforehand where the bugs hide, hence it is
important to test a large share of possible inputs.
Test Case Complexity: Fuzzers like SQLancer were able to detect many bugs in various
DBMSs by constructing rather uncomplicated data and queries. To investigate the
potential of finding bugs with more complex queries, e.g., involving a set of complicated
join operations, insights into actual bugs that were found by customers would be helpful.
Feature Interaction & Feature Targetting: A common source of errors is cross-feature
interactions. Features in this sense are developer-defined and range from different physical
operators to interactions between subsystems to specific code paths taken. It is desirable
that a test suite validates interactions between combinations of those features. Most
DBMS fuzzing tools do not provide a way to steer generation in a direction that targets
a specific set of features. When that capability exists, it is generally not a guaranteed
behavior, but instead involves careful tuning of probabilities. Generating queries for a
particular feature would especially be helpful in testing new features, which tend to be
less well-tested and less mature, and thus a potential source of bugs. Furthermore, by
constructing queries that target specific features, such fuzzers could give confidence that
relevant parts of the DBMS are tested.

4.4.6.2 Customer-Representativeness of Test Cases

In addition, the goal of testing can influence the desired properties of the generated test
workload. For regression tests, a desirable property could be to resemble the workloads of
typical customers. Generating these can be challenging since actual customer workloads
are often not accessible directly, and accurately modeling them in synthetic workloads is
difficult. On the other hand, for teams whose goal is to find as many bugs as possible (even
if a customer might never encounter them), a focus on unusual or unexpected inputs, or
particularly complex workloads, might be preferable to cover possible edge cases. In practice,
there are no tools that provide both, and no tools provide a smooth way to transition between
“closer to customer” and “closer to edge cases”).

4.4.6.3 Measuring Coverage

As with every testing method, fuzzers need to strike a balance between the test coverage and
the cost of testing (time to create and maintain tests and test infrastructure, test execution
time, and compute). We want to point out that test coverage here should be understood in
a broader sense than simple code coverage. Determining a point of saturation is an open
problem – at what point have we run enough tests?

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 165

4.4.6.4 Portability

Because different DBMSs come with different SQL dialects and hence differences in syntax
and semantics, randomized query generators must often be adapted to be able to generate
valid queries that cover all potential features of the system. This involves more work in the
development and maintenance of the query generator. An open problem is the development
of a portable query generator that can be applied to a variety of DBMSs while keeping the
ability to generate complex queries.

An adjacent problem is the lack of compatibility/interoperability between existing query
generators (and other parts of a complete test system, as discussed in cross-cutting problems).
Currently, ideas from one research group have to be reimplemented by other research groups
in order to integrate them into their own solution, and in the industry when these techniques
are used, they usually are implemented per-database or per-SQL dialect.

4.4.7 Future Directions

Study of database differences. Another important future direction is to investigate the
differences between database engines. This study should answer (1) to the which extent
mainstream database engines differ, (2) what are the main sources of their differences, and
(3) how do these differences affect the effectiveness of bug-finding tools?

Portable/Extensible query generation. Database engines exhibit distinct differences in their
syntax and semantics. To address this challenge, there are numerous proposed approaches:

General query generator: There is some evidence from the industrial partners that
highlight that most of the database bugs are found via simple test cases and features,
e.g., test cases that only contain boolean or integer data types. Therefore, it might be
sufficient to come up with a general query generator that only covers the core part of
SQL, which is commonly supported by databases. This general query generator should
be extensible and support configuration options to (1) enable or disable database-specific
features, or (2) combine simple test cases into more complex ones [28].
Learning-based approach: A learning-based approach does not guarantee that the synthes-
ized queries are valid. When a semantic or a syntax error is encountered, the approach
examines the error message raised by the database engine, and adapts the generation
process accordingly. For example, such a learning-based approach stops producing an
erroneous combination of features.
Encoding database semantics (or part of it) into a specification: It could be possible
to encode part of database semantics through a specification. The benefit is that the
constraints and the semantics of each database is described declaratively, rather than
being hardcoded into the underlying generation process. Therefore, the input of a future
and general query generator could be a specification that describes both the grammar and
the semantics of a database under test. In this way, the generator produces queries that
are both grammatically and semantically valid with regard to the given specification. For
example, in a similar manner to the work of Dewey et al., [19] that relies on constraint
logic programming (CLP), one could encode the type system of each database engine into
Datalog relations [12]. Based on these relations, we could then produce valid queries that
adhere to the typing rules of each database. Notably, Datalog has been the foundational
basis of many existing (relational) and emerging (native graph) query languages. As
such, another research direction would consist of using it as a system-agnostic basis for
specifying the semantics of classes of query languages, ranging from relational (recursive)
queries to navigational ones for querying semi-structured data [45, 3] that rely on Regular

23441

166 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Path Queries (RPQs) and extensions (CRPQ, ECRPQ, DRPQ, GXPath, etc). Moreover,
due to its generality, Datalog can also encode both syntactic (schema) constraints, as
well as semantic ones, i.e., key constraints and functional dependencies. Hence, starting
from the specification of a Datalog-based engine, one could generate semantically-aware
test cases and leverage these for automated testing. Such test cases could be obtained
from the Datalog specification, using property-based testing (PBT) techniques. Moreover,
such specifications can also be formally verified, together with the correctness of the
generators themselves, for example by leveraging existing plug-ins for automated theorem
provers, such as ACL2 [14], and proof assistants, such as Isabelle [11], Agda [20], and,
more recently, Coq [40]. Indeed, recent work has shown the promise of using PBT tools,
such as the QuickChick plugin for Coq, to automatically generate reliable generators for
programming language specifications, with high correctness guarantees. The challenges for
adopting such methods for database testing are three-fold. The first issue concerns their
usability, as identifying suitable properties to test, encoding theses, and integrating PBT
into real-world database management system architectures is non-trivial. Second, their
extensibility is also a concern, as such generators would need to be adapted to account
for the idiosyncrasies (both syntactic and semantics) of each SUT. Third, there is an
expressiveness vs. performance trade-off regarding the properties that such formal PBT
tools support. An interesting future direction could be to combine such methods with
other testing techniques, e.g., coverage-guided fuzzying [32] and combinatorial testing [23].
In addition to Datalog, another recent example is ISLa [49]. ISLa is a declarative
specification language that extends context-free grammars and grammar-based fuzzers by
constraining the generated inputs (e.g., a variable has to be defined before it is used).

Techniques/Metrics for guiding and evaluating the query generation process. Traditional
code coverage metrics, such as line coverage, branch coverage, have been insufficient in
effectively evaluating modern testing approaches [34, 13]. There is a need to devise new ways
to guide and evaluate query generators. For example, we could use a property vector that
indicates whether a certain query is interesting and expressive. Such a property vector could
include both static (black-box) features, (e.g., the type and the order of SQL operators), and
dynamic (grey-box) features (e.g., configuration parameters, data read/written). It is worth
noting that this approach enables feature-aware test case generation. This means that by
limiting or expanding the domain of property vectors, we can generate test cases that exhibit
specific features, e.g., feature A and B, or feature A and not feature B. This could be useful
for swarm testing [26].

Another example of an approach that goes beyond traditional code coverage metrics is
inspired by the work of Park et al. [41] on conformance testing of JavaScript. We should
investigate whether their feature-sensitive approach is applicable to the database world.

Running queries in different database states. In contrast to compiler testing, where the
primary focus is on generating interesting inputs (programs), in database testing, we need to
consider both test case generation and database state generation. This is because, certain
database bugs might be triggered only when the database is in a certain state. Therefore,
a future direction should run the generated queries in various database states. A database
state includes database schema, logical and physical data, or database configuration.

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 167

Test Oracles
One of the core issues with automatically running test cases and automatically finding bugs
is checking whether or not the result of a query is correct or expected. There are different
approaches with validating that the result is correct.

4.4.8 Existing Techniques

4.4.8.1 Test Suites

Test suites manually specify the test oracle as assertions for a specific test input or scenario [24].
Virtually every DBMS has manually written test suites as part of their testing efforts. They
are certainly beneficial to provide fast and reliable feedback to developers on the quality of
critical features.

Historically these test suites are hard to reuse across engines:
they are strongly tied to particular DBMS SQL syntax and semantics;
they use custom test runners incompatible with other DBMSs or tech stacks;
alternative test runners are hard to build because test case representation is not specified

4.4.8.2 Differential Testing

Differential testing compares the results of multiple systems and checks them for discrepancies.
These systems could be:

Actual different DBMSs supporting different SQL dialects, which makes their comparison
difficult (see the RAGS system by Microsoft [47]);
A reference engine implemented for that purpose, which can serve as an effective test
oracle, but requires significant implementation effort (see more details below);
the same DBMS, but with different configuration/optimization options.
Customer query replay [53, 22, 52], where historical customer queries are replayed with
a new release or feature enabled. Query results, performance, and cost can then be
compared. Queries could be sampled for replay by a combination of random sampling,
analysis of feature applicability or plan changes, or cost.
a previous version of the same DBMS, to prevent regressing in behaviour. Note, that
new features can’t be tested with such an approach and you carry existing behavior into
the future even if it’s incorrect. Another variant of this approach is the use of expected
results stored with tests [24] or in a database.

Comparing results between two systems is not free of challenges itself. Even very close
systems (e.g. previous and current versions) might yield different results due to:

inherit non-determinism or under specification in the SQL language;
non-determinism in the query;
floating point rounding errors due to different accumulation order;
difference in corner case semantics (e.g. handling of NULL, rounding).

4.4.8.3 Reference Engine

A reference engine is a general-purpose oracle for a database that re-implements the database’s
semantics in a simpler way, greatly simplifying correct implementation.

23441

168 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Advantages.
Checks result correctness, rather than just result differences
Decouples test case generation from validation
Can validate any supported workload
Can handle non-determinism and imprecision
Developers don’t need to learn new skills to extend the engine
Feature support added incrementally during feature development
Have been extended to strictly serializable workload validation [17]
Customers could develop and test against the reference
Has been used for cross-database semantic compliance comparison [6]
Workload / reference partitioning can improve scale [17]

Disadvantages.
Large investment to build for existing engine
Different DBMSs require different reference engines for their dialects
Requires continuous maintenance to keep up with changes
Limited scalability in terms of data size, intermediate result size, and query result size
Limited published research and examples

The reference engine implements either all or a subset of the database API and semantics.
For example, some reference engines only support query execution, and some support DDL,
DML, indexes, queues, full-text search, etc. It is also possible to reuse some components that
will not be verified by the reference, for example, the parser/resolver or scalar functions.

The reference engine should also encode non-determinism, ordering, and imprecision in
its values and tuples. This enables the reference to logically return a set of possible correct
results and test that the real engine result is in that set. The sophistication can vary from
just a special Imprecise value to values supporting epsilons, complex partial ordering, or even
multiple logical intermediate result sets.

Open Questions.
Can we create a general or shared reference? Possibly define an algebra with configurable
semantic options and each database family implements a parser and resolver to the shared
algebra. Then operators, expressions, etc can be shared when possible.
Can a reference engine be used to validate weaker transactional semantics than strict
serializability?

Examples. Google Spanner has been system tested [17] using a reference engine [25].
ZetaSQL [25] engine’s language compliance was also verified using a reference engine [6] (see
6. COMMON SQL DIALECT).

4.4.8.4 Metamorphic Testing

Metamorphic testing generates two related test inputs and checks a relation between their
output. For example, many test oracles check that equivalent queries compute the same
result.

Advantages include.
Applicable to DBMSs using different dialects
Multiple metamorphic relations can be proposed to test different SQL features.

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 169

Disadvantages include.
Missing bugs when both two queries produce the same incorrect results
Not always possible to cover all features

Logically Equivalent Queries. Generating logically equivalent queries that should return
the same result but run a different code path is a way of finding bugs without needing to
involve another engine. Examples of this include the work in SQLancer, where queries can
be split up into three different queries that are combined through UNION ALL. Similarly,
GROUP BY queries can be partitioned along the group, and certain aggregates can be split
up (e.g. SUM(x) can have its child tables partitioned and then unified).

One issue with generating logically equivalent queries is that the same code path might
be triggered within the same engine so that the logically equivalent queries both suffer from
the same bug and produce the wrong result. A potential way of discovering this is to look at
e.g. code coverage and verify that the queries actually take different code paths.

Physically Equivalent Queries. Queries that are not logically equivalent might still be
equivalent given a specific data set. For example, a query that returns 50 rows, will not
return a different data set if a LIMIT 100 is added to the end. Similarly, we can add a filter
that has no effect, a filter that filters out rows that would have been filtered out in a later
step, or a LEFT JOIN that has no matches on the right side.

Rerunning the Same Query. When running a query on a given schema, the same result
should always be produced (except for issues of determinism as discussed later). It can be
useful to run the same queries on a database while changing other variables.

Equivalent Schema. We can execute the same query on the same schema, but where the
data sources are stored in a different manner. For example, the table can be stored in a
different data format (e.g. a Parquet file vs the databases’ native format, splitting data into
multiple files, etc). We can also run the query over a view versus the result of that view
stored in a table.

Modifying the Environment. Another variable that can be changed is the environment. For
example, we can run the same query on different operating systems or different processors
and the same result should be returned.

Toggling Feature Flags. A query can be run with specific features enabled or disabled
and the query should still produce the same result in both scenarios. For example, we can
enable/disable the optimizer, enable/disable certain types of operators (e.g. hash joins),
enable/disable parallelism, enable/disable spilling data to disk, etc.

Nop Rows. We can insert rows into the base table that should be filtered out by the query
and not be part of the end result. For example, we can insert rows that should be filtered
out by a WHERE clause or by a join condition, or that input a NULL into an aggregate or 0
into a SUM. These rows should not affect the query – allowing us to re-run the query both
with and without the nop rows.

Future Problems
4.4.9 Study what the missed bugs are

Various test oracles have been proposed that were effective in finding bugs. However, it has
not been systematically investigated what classes of bugs existing test oracles overlook. We

23441

170 23441 – Ensuring the Reliability and Robustness of Database Management Systems

believe that systematic empirical studies based on issue trackers and postmortems could
shed some light on bugs existing test oracles fail to find. This would be the first step to
identify gaps for new test oracles.

4.4.10 Compose or generate test oracles

Existing approaches have proposed many manually-crafted metamorphic relations of SQL
(e.g., Ternary Logic Partitioning) as test oracles to detect different kinds of logic bugs.
However, there should be many other metamorphic relations in standard SQL and DBMS-
specific features, which we have not explored. This raises an interesting research question:
How to automatically mine possible metamorphic relations from SQL specification, execution
traces of queries, etc.?

From another perspective, a query should return the same result on a logically equivalent
data (e.g., the same database with different configuration, and the same view with different
physical schemas). This raises another interesting research question: Given a query q and
database db that the query operates on, how to generate interesting equivalent databases on
which q can still return the same result?

An example might include generating a query which is semantically equivalent to SELECT
* FROM T1. Then that generated query could be used to create a view or materialized view
V1 which is equivalent to the base table. Further objects could then be generated based on
both T1 and V1 to create even more complex test objects which are equivalent to T1.

Assume that we have a couple of equivalent patterns for specific SQL features, is it
necessary to compose individual patterns in complex ones? In ideal cases, complex test
oracles can quickly trigger more bugs in a single testing process, instead of trying individual
patterns one by one.

4.4.11 Coverage with respect to oracles

With many generated queries and many test oracles per query, execution time for the test
grows dramatically. It is essential to understand that a particular test oracle provides more
(useful) coverage for a given query. It is also important to evaluate if sufficient validated
coverage has been achieved by all oracles prior to a release. This could be seen as a
prioritization problem. We would ideally want to run all queries with all possible oracles,
but this could be prohibitively expensive. Picking first test oracles for query which will yield
“better” coverage is crucial.

We also want to evaluate if the oracles we choose can validate all aspects of the database
and identify validation gaps that need to be addressed.

Prioritization might depend on
prior knowledge about coverage, e.g. we want to verify certain oracles (invariants) for
majority of the test queries;
or the query itself, e.g. we expect certain query shapes provide more coverage with certain
oracles.

Another approach is oracle-aware test generation. How can we generate queries for a
given test oracle to quickly yield “better” coverage?

One potential method to generate oracle coverage for differential testing-based approaches
would be to track coverage on each side and identify the different features or code paths
covered. Coverage in a reference engine might be achieved similarly, as the difference would
exclude any shared code, for example, a shared parser or scalar function implementations.

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 171

4.4.12 Designing for Testability

Many current testing tools and their test oracles have been designed independently from the
DBMS under test. Certain additional features in DBMS could be useful in testing only and
relatively cheap to implement or expose:

SQL parser as a separate component,
SQL analyzer as a separate component,
ability to get metadata about query from the engine, e.g. cost estimate, determinism
property, etc. This might include things that can be determined statically or dynamically
during execution.
clearly distinguish between different error types. E.g. syntax, semantics (constraint
violation) or internal.
provide more details for internal errors for tests only. Intention is to help with debugging
of failed tests.
allow to extract variable information from error messages programmatically, instead of
using RegEx for that.
Enforce alternative query plans (all plans vs. choosing other plausible plans dependent
on the data distribution; e.g., select top N plans)
ability to enabled / disable optimization flags. This provides test oracles and aids
debugging.
Self-check options (e.g., https://www.sqlite.org/pragma.html#pragma_integrity_
check) to expose potential internal errors masked or invariants only enabled in self-check
mode (e.g. debug asserts).
Deterministic execution option
Deterministic execution/simulation testing
allow to change table statistics (e.g. histograms) not used for correctness (e.g., often
required for MIN, MAX, is NULL). This will help to steer queries into different plans
without changing data itself, which might be costly.
white-box testing of the optimizer (e.g., plan stability). Exposing optimizer API for
testing will help with tests which target query optimization tests directly without paying
execution costs. Query optimizer is large and important enough component to merit
implementation and maintenance costs for this test-only API.

4.4.13 Non-deterministic queries

Queries can be ambiguous and yield different results. Common examples include insufficient
ordering with limit/offset, floating point imprecision in aggregation, non-deterministic func-
tions, and runtime errors which are avoided due to short-circuting during execution. This is a
problem when test oracles rely on a specific result or compare the results of SQL semantically
equivalent operations without modeling this non-determinism. Test oracles would ideally be
free of false positives, which is why such ambiguous queries should be identified or avoided.
(Or the test oracle should model these sorts of non-determinism, which adds additional
complexity to a test oracle.)

4.4.14 Hitting duplicate bugs

Testing tools might frequently hit the same underlying bug. To continue exploring the state
space and find additional issues it is valuable to build tools to identify and ignore duplicate
issues. This problem is inherently difficult, as deciding whether two bug-inducing test cases
are duplicates or not often requires understanding the bug at a source code level. In practice,

23441

https://www.sqlite.org/pragma.html#pragma_integrity_check
https://www.sqlite.org/pragma.html#pragma_integrity_check

172 23441 – Ensuring the Reliability and Robustness of Database Management Systems

matchers are used that classify a bug-inducing test case based on an error code, configuration,
SQL text, or query plan. Often, constructing these matchers can be time consuming and
manual. Some databases have implemented failure signature or feature extraction with
automated clustering, which is integrated with bug management to speed up bug detection,
provide prioritization data, and accumulate test cases for each issue.

Another interesting direction is to prevent testing tools from repeatedly triggering the
same bugs. For example, we could try to guide the query generator not to generate test cases
similar to the cases that have already triggered bugs (code-coverage guiding and query-plan
guiding can do it to some extent?). It seems like a cross-cutting issue in test-case generation,
test oracle, and test-case reduction.

4.4.15 Dealing with Semantic and Runtime Errors

It can often be difficult to avoid statements that result in semantic errors. For example,
avoiding an INSERT statement to a table with UNIQUE constraints might require encoding con-
straints, which can be complicated (e.g., collation handling with strings). Another common
example is generated expressions evaluating to zero, resulting in division by zero errors. Cur-
rent testing tools typically tackle this in a simpler way, by generating potentially semantically-
invalid statement, and annotating the statements using a list of so-called expected errors.
For example, an INSERT statement might be annotated with an expected error “UNIQUE
constraint failed”. More systematic ways could be explored; for example, the DBMSs could
expose different list of expected errors (e.g., syntax errors, run-time errors, or internal errors).
For example, this is done by the ZetaSQL engine in code here: https://github.com/google/
zetasql/blob/master/zetasql/compliance/runtime_expected_errors.cc – a common
model for enumerating these sorts of errors and categorizing them would help in creating
any general testing solution. Systematically exploring unexpected errors may be another
solution for this challenge.

4.4.16 Monolithic/Coupled Testing Tools

Existing testing tools couple their test generation and test oracles, which limits them from
finding more bugs triggered by uncovered test case patterns. For example, query partitioning
requires that the test case contain predicates to be partitioned. If the test case does not
contain predicates (e.g., INSERT statements), query partitioning does not work anymore.
Decoupling test-case generation and test oracles is not easy, as the test oracles usually require
designated test cases to be generated. Using reference engines helps decouple test-case
generation and test oracles if the reference engines can process general queries. However,
implementing reference engines consumes lots of effort. Another interesting direction is to
make testing tools provide interfaces for different test-case generation and different test oracles.
The test oracles can choose their suitable test-case generation. It helps the decoupling, but
the question is how to design interfaces that are extensible for both test-case generation and
test oracles. We may develop a domain specification language that specifies what features
are supported by a test oracle.

4.4.17 Non-functional issues

Most existing test oracles focus on logic bugs, which cause the DBMS to compute an incorrect
result. However, DBMSs can also be affected by other kinds of issues such as performance
issues, issues in cost models, memory consumption, or metastable failures. In addition, for
distributed systems, errors could be masked by retries/replication and other techniques,

https://github.com/google/zetasql/blob/master/zetasql/compliance/runtime_expected_errors.cc
https://github.com/google/zetasql/blob/master/zetasql/compliance/runtime_expected_errors.cc

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 173

meaning that they do not surface as logic bugs. New test oracles are needed to tackle such
issues, while preventing test oracles from being coupled too tightly with the DBMS under
test.

Additionally to different non-functional issues, DBMS needs to be further developed
and operated. This brings its own set of non-functional challenges. The next step in the
development life cycle is deployment. Deployment requires choosing the deployment model,
e.g. blue-green deployment, rolling update, full stop and restart, etc. Any chosen deployment
approach should be covered by testing to make sure deployment does not introduce issues in
production, most notably different versions of a DBMS talking to each other should work
correctly.

DBMSs usually have additional features to support operations. These might include
backup, restore, various methods of introspection, integration with cluster management for
distributed systems and alike. The full list of these features is highly specific to a particular
DBMS and environment it targets to run in.

Backward / forward compatibility is another non-functional requirement. Which might
extend to file formats, configuration formats, different client versions.

Non-functional requirements are often orthogonal to correctness requirements and test
oracles can be reused.

Bug Analysis
4.4.18 Problem Statement

The previous chapters talks about how to generate a large volume of test cases to hit as many
bugs as possible. But, because debugging is still a manual task that is done by developers
and cannot be automated, dealing with these failing test cases has two major problems.
1. Many different test cases will fail due to the same underlying root cause, making the

number of failing tests in orders of magnitudes higher than the number of bugs.
2. The failing test cases are likely to contain very complex queries (and a lot of data) which

makes it hard for developers to find the issue.

Ideally the tester only reports a single minimal test case per bug.

4.4.19 Existing Techniques

4.4.19.1 Test Case Reduction Techniques and Tools

We have witnessed various techniques proposed to reduce the complexity of bug-triggering
queries and databases, summarized as follows.

1. String-level manipulation: This kind of technique involves simple string operations
without understanding the SQL grammar. String-level manipulation techniques can be
general and relatively easy to implement. The general test case reduction methods like
delta debugging [54] can be used for performing the reduction for SQL queries. This kind
of technique is simple and already pretty effective in practice [5] but it might cause many
invalid queries during the reduction.

2. Syntax-level manipulation: This kind of technique tokenizes the SQL queries or parses
the SQL queries and operates on the Abstract Syntax Trees (AST). It is a more fine-grain
technique than string-level manipulation, which can always generate syntax-valid queries.
There are several problems with this kind of technique. First, it is challenging to be

23441

174 23441 – Ensuring the Reliability and Robustness of Database Management Systems

portable to the SQL dialects. Engineering efforts will be required to implement the
corresponding parsers and tokenizers. Second, it is still possible to mess up the semantics
of the queries, but it often works fine when just removing the leaf nodes or sub-trees on
the AST. Third, it may not be able to get to the global minimum by

3. Semantic-level manipulation: This kind of technique parses and semantically analyzes
the queries to reduce the test cases. It can always create semantically valid queries.
The high-level idea is to transform the query into a simplified version while handling
the schema and the data dependency. Such transformations are not necessarily to be
semantic preserving but need to generate executable queries. It requires extensive efforts
to analyze the queries, which may reuse some components of the database management
systems, especially the components related to the query optimizations.

The deeper the understanding of the query is (string-level, syntax-level, semantic-level),
the easier it is to generate a valid query (syntactically and semantically valid) and to find a
global instead of a local minimum. However, at one point the reducer almost reached the
complexity of half a DBMS and also is not portable anymore. However, such a reducer can
reuse parts of the actual DBMS (if they are generic enough).

Following these techniques, practitioners in industry and academia have implemented
diverse tools for various purposes. We collect a set of representative tools as follows.

SQLreduce:1 This reducer tries to remove tokens by parsing SQL statements into
Abstract Syntax Trees (ASTs) and is specific to PostgreSQL. It belongs to the second
method Syntax-level manipulation.
C-Reduce:2 This reducer is one of the most commonly used reducers for the C/C++
languages and also works well for SQL statements. It deploys various heuristics to conduct
a String-level manipulation by gradually removing strings without understanding the
semantics of test cases.
SQLright Minimizer:3 This reducer minimizes test cases by reducing the tokens
identified in a customized Intermediate Representation (IR). This reducer was implemented
as a component for the database testing work SQLRight [33]. It belongs to the method
Syntax-level manipulation.
SQLMin:4 Similar to SQLreduce, this reducer also minimizes test cases by removing the
tokens based on ASTs. This tool was implemented as a component for a database testing
work APOLLO [29] for finding regression performance bugs. This technique belongs to
the method Syntax-level manipulation.
SQLancer Reducer:5 Similar to SQLreduce and SQLMin, this reducer also parses
SQL statements into ASTs and reduce them by dropping the tokens identified on ASTs.
This method was implemented as a debugging tool for the database testing framework
SQLancer. This technique belongs to the method Syntax-level manipulation.
Percona Reducer:6 This reducer adopts several predefined heuristic rules to identify
the tokens from SQL statements without understanding SQL semantics. It is included
in the toolbox Percona-QA for database quality assurance, and belongs to the method
Syntax-level manipulation.

1 https://github.com/credativ/sqlreduce
2 https://github.com/csmith-project/creduce
3 https://github.com/PSU-Security-Universe/sqlright/blob/main/SQLite/scripts/minimize.py
4 https://github.com/sslab-gatech/apollo/blob/master/src/sqlfuzz/sql_minimizer.py
5 https://github.com/sqlancer/sqlancer/blob/main/docs/testCaseReduction.md
6 https://github.com/Percona-QA/percona-qa/blob/master/reducer.sh

https://github.com/credativ/sqlreduce
https://github.com/csmith-project/creduce
https://github.com/PSU-Security-Universe/sqlright/blob/main/SQLite/scripts/minimize.py
https://github.com/sslab-gatech/apollo/blob/master/src/sqlfuzz/sql_minimizer.py
https://github.com/sqlancer/sqlancer/blob/main/docs/testCaseReduction.md
https://github.com/Percona-QA/percona-qa/blob/master/reducer.sh

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 175

4.4.19.2 Test Case Deduplication Techniques and Tools

Depending on the failure type of the failing test case, different deduplication techniques can
be used. While some techniques are completely unaware of both the test case (query and
dataset) and the failure, others use the test case or the failure to determine whether two
failures have the sae root cause.
Here is a list of known techniques to help identify duplicated bug reports in the context of
SQL test cases.

1. Query Reduction: Two failing SQL test cases have (likely) the same root cause if they
can be reduced to the same (minimal) test case. This requires both test cases being
reduced to the same minimum, which we mentioned earlier can be hard (depending on
the mutation level being used). If the reducer works perfectly, all queries with the same
root cause can be reduced to the same minimal reproduction test case and there are no
false positives.

2. Feature-based Clustering: Given the test case that triggers the bug, record what
features have been triggered along running the query. If the test case triggers new
combination of features, it should be put into a new bucket. This work may leverage
error information to extract partial features to help achieve simple implementation.

3. Distance-based Ranking: This technique doesn’t deduplicate the test failures, but
instead tries to order the test failures such that diverse, interesting test cases are highly
ranked. The idea of distance-based ranking is to check what code/feature is covered
by a bug-triggering test case and try to build a vector to describe each test case. Only
if the vector has a long-enough distance from existing ones, we will put the test case
into a new bucket for further analysis. One example for distance-based ranking is Query
Taming [15].

4. Change Bisection: Two failing test cases have (likely) the same root cause if two
queries appear the first time in the same change (e.g. git commit). This is a generic
technique that doesn’t need to be aware of the failure or the test case, making it simple
to implement across different systems. However, it is orders of magnitudes more time
and resource consuming than other techniques.
The change found might be the one that surfaced the problem, not the one introducing
it. (An idea is to combine the change diff with coverage information of the running query
to decide whether the change introduced the bug or just surfaced it.) For the purpose of
bug deduplication however, that is usually good enough.
This method can have both false positives (commit introduces two different bugs) and
false negatives (it’s the same root cause, but one surfaces at a different commit). Prior
query reduction (even best-effort) useful to remove unneeded features that (a) might not
be supported in earlier versions or (b) trigger other bugs in older versions.

5. Crash Stack Trace Matching: For hard system crashes the stack traces can be
matched to figure out if the crashes happened in the same place. Many such algorithms
do already exist, like TraceSim [51] and FaST [46] that are already used for deduplicating
fuzzer crashes [1]. For code generating DBMSs however, the stack trace information
might be incomplete or without comparable symbols/function names.

A common practice in industry (like Google) is to combine the feature-based clustering and
committing-based bisecting. The former is efficient but less effective, due to the complicated
relations between bugs and triggered features, like many-to-many relations. The latter is
more accurate but costly, since we need to run different code versions and set up various
environments in a binary-search style to locate the first commit or unique parameter that
leads to the bug.

23441

176 23441 – Ensuring the Reliability and Robustness of Database Management Systems

Bisecting is also effective and in addition allows to directly assign the found bug to a
developer (the owner of the change), however requires many resources and therefore is only
doable for big companies.

Unfortunately, we did not find any automated tools for SQL test case deduplication, only
for ranking them. The failures of most generic fuzzers are crashes, which can be deduplicated
using their stack traces. In a DBMS however, many failures are not crashes but correctness
issues.

4.4.20 Open Questions and Future Directions

4.4.20.1 Test case reduction

We identify the following questions of test case reduction are open and have no widely
accepted solutions.
1. Metric. What is a good metric for the minimum test case and how hard is it to reach the

global minimum? (global minimum required for test case deduplication) It is challenging
to know the global minimum, so it is valuable to have a metric to evaluate how good a
minimum test case is.

2. Evaluation. How to fairly evaluate reduction methods? There are already several
reduction tools for SQL, but it’s hard to compare them. Which reduction methods do
they use, how minimal do the test cases get and what are their weaknesses?

3. Generality. Can we build a general reduction tool across database systems? Different
database systems have various different SQL dialects, which affects the semantic analysis
for reduction. Snowflake built a semantic-level reducer that might get open-sourced at
one point. How useful will it be for other DMBSs due to dialect and semantic differences?

4. Complexity. Is writing (semantic-level) mutation rules a trivial task or as complex as
writing a whole optimizer?

4.4.20.2 Test case deduplication

1. Metric. What metrics do we use for evaluating the uniqueness of bugs? Existing methods
evaluate duplicated bugs by examining their input shapes and first-introduce-commits.
However, these metrics are approximations, and false alarms exist. Towards to a clearly
defined goal of test case deduplication and a fair evaluation method, it is expected to
have more accurate metrics to evaluate the uniqueness of test cases.

2. False Alarms. How would false alarms affect the test case deduplication? Can we avoid
false alarms? False alarms refer to either duplicated bugs that are not deduplicated or
unique bugs that are deduplicated. False alarms may happen, and it is unclear about its
impact on bug analysis. If false alarms have a significant impact, can we fully avoid the
false alarms?

3. Efficiency. How to deduplicate test cases efficiently? Bisection, an existing method that
deduplicates bugs, requires hundreds of thousands of builds for different commits of a
database, which takes non-trivial time and computing resources. How can we deduplicate
test cases within fewer resources?

4. Compatibility with Test Oracles. How to duplicate the test cases found by non-crash
test oracles? Existing methods, such as bisection and stack trace, only work for crash
bugs, which can be found by a single SQL statement. While, for the bugs that require a
test oracle to check multiple SQL statements, how do we do the deduplication?

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 177

References
1 Rui Abreu, Franjo Ivančić, Filip Nikšić, Hadi Ravanbakhsh, and Ramesh Viswanathan.

Reducing time-to-fix for fuzzer bugs. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1126–1130. IEEE, 2021.

2 Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling, Andrey
Gubichev, Vlad Haprian, Moritz Kaufmann, Josep Lluís Larriba-Pey, Norbert Martínez-
Bazan, József Marton, Marcus Paradies, Minh-Duc Pham, Arnau Prat-Pérez, Mirko Spasic,
Benjamin A. Steer, Gábor Szárnyas, and Jack Waudby. The LDBC social network benchmark.
CoRR, abs/2001.02299, 2020.

3 Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz, George Fletcher, Claudio
Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda, Oskar
van Rest, and Hannes Voigt. G-CORE: A Core for Future Graph Query Languages. In
SIGMOD, pages 1421–1432, 2018.

4 T. Arvin. Comparison of different sql implementations. http://troels.arvin.dk/db/
rdbms (visited: 2023-11), 2017.

5 Jinsheng Ba and Manuel Rigger. Testing database engines via query plan guidance. In The
45th International Conference on Software Engineering (ICSE’23), May 2023.

6 David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickinson, Andrew
Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan, Alexander Lloyd,
Sergey Melnik, Rajesh Rao, David Shue, Christopher Taylor, Marcel van der Holst, and Dale
Woodford. Spanner: Becoming a sql system. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, page 331–343, New York, NY, USA,
2017. Association for Computing Machinery.

7 Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing
scalable, highly available storage for interactive services. 2011.

8 Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and
Darko Marinov. Deflaker: Automatically detecting flaky tests. In Proceedings of the 40th
international conference on software engineering, pages 433–444, 2018.

9 Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michal Podstawski,
Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases:
Analysis and taxonomy of data organization, system designs, and graph queries. ACM
Comput. Surv., 56(2):31:1–31:40, 2024.

10 Dirk Beyer, Jan Haltermann, Thomas Lemberger, and Heike Wehrheim. Decomposing
software verification into off-the-shelf components: An application to cegar. In Proceedings
of the 44th International Conference on Software Engineering, ICSE ’22, page 536–548, New
York, NY, USA, 2022. Association for Computing Machinery.

11 Lukas Bulwahn. The new quickcheck for isabelle – random, exhaustive and symbolic testing
under one roof. In CPP, volume 7679 of Lecture Notes in Computer Science, pages 92–108.
Springer, 2012.

12 S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, pages
146–166, 1989.

13 Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur Gervais, Benjamin
Livshits, and Dimitris Mitropoulos. Finding typing compiler bugs. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2022, page 183–198, New York, NY, USA, 2022. Association for
Computing Machinery.

23441

http://troels.arvin.dk/db/rdbms
http://troels.arvin.dk/db/rdbms

178 23441 – Ensuring the Reliability and Robustness of Database Management Systems

14 Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagiotis Manolios.
Integrating testing and interactive theorem proving. In ACL2, volume 70 of EPTCS, pages
4–19, 2011.

15 Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide,
and John Regehr. Taming compiler fuzzers. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, pages 197–208, 2013.

16 Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, page 143–154, 2010.

17 Jay Corbett. Randomized testing of cloud spanner. https://medium.com/@jcorbett_
26889/randomized-testing-of-cloud-spanner-5286f1eaba75 (visited: 2023-11), 11
2023.

18 Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow,
Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Fred Zemke.
Graph pattern matching in GQL and SQL/PGQ. In SIGMOD Conference, pages 2246–2258.
ACM, 2022.

19 Kyle Dewey, Jared Roesch, and Ben Hardekopf. Fuzzing the Rust typechecker using CLP.
In Proceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’15, page 482–493. IEEE Press, 2015.

20 Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Verifying haskell programs by combining
testing, model checking and interactive theorem proving. Inf. Softw. Technol., 46(15):1011–
1025, 2004.

21 Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. Understanding flaky
tests: The developer’s perspective. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 830–840, 2019.

22 Leonidas Galanis, Supiti Buranawatanachoke, Romain Colle, Benoît Dageville, Karl Dias,
Jonathan Klein, Stratos Papadomanolakis, Leng Leng Tan, Venkateshwaran Venkataramani,
Yujun Wang, and Graham Wood. Oracle database replay. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’08, page 1159–1170,
New York, NY, USA, 2008. Association for Computing Machinery.

23 Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C. Pierce. Do
judge a test by its cover – combining combinatorial and property-based testing. In ESOP,
volume 12648 of Lecture Notes in Computer Science, pages 264–291. Springer, 2021.

24 Google. Zetasql compliance tests. https://github.com/google/zetasql/tree/master/
zetasql/compliance (visited: 2023-11), 11 2023.

25 Google. Zetasql reference engine. https://github.com/google/zetasql/tree/master/
zetasql/reference_impl (visited: 2023-11), 11 2023.

26 Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm testing. In
Proceedings of the 2012 International Symposium on Software Testing and Analysis, ISSTA
2012, page 78–88, New York, NY, USA, 2012. Association for Computing Machinery.

27 Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson Condie,
Todd Millstein, and Miryung Kim. Bigdebug: Debugging primitives for interactive big
data processing in spark. In Proceedings of the 38th International Conference on Software
Engineering, pages 784–795, 2016.

28 Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. DynSQL: Stateful fuzzing for database
management systems with complex and valid SQL query generation. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 4949–4965, Anaheim, CA, August 2023.
USENIX Association.

https://medium.com/@jcorbett_26889/randomized-testing-of-cloud-spanner-5286f1eaba75
https://medium.com/@jcorbett_26889/randomized-testing-of-cloud-spanner-5286f1eaba75
https://github.com/google/zetasql/tree/master/zetasql/compliance
https://github.com/google/zetasql/tree/master/zetasql/compliance
https://github.com/google/zetasql/tree/master/zetasql/reference_impl
https://github.com/google/zetasql/tree/master/zetasql/reference_impl

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 179

29 Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. APOLLO: Automatic
Detection and Diagnosis of Performance Regressions in Database Systems. In Proceedings of
the 46th International Conference on Very Large Data Bases (VLDB 2020), Tokyo, Japan,
aug 2020.

30 Kevin E. Kline, Daniel Kline, and Brand Hunt. SQL in a nutshell – a desktop quick reference
(3. ed.). O’Reilly, 2008.

31 Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thummalapenta.
Root causing flaky tests in a large-scale industrial setting. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 101–111, 2019.

32 Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. Coverage guided, property
based testing. Proc. ACM Program. Lang., 3(OOPSLA):181:1–181:29, 2019.

33 Yu Liang, Song Liu, and Hong Hu. Detecting Logical Bugs of DBMS with Coverage-based
Guidance. In Proceedings of the 31st USENIX Security Symposium (USENIX 2022), Boston,
MA, aug 2022.

34 Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for C and C++
compilers with YARPGen. Proc. ACM Program. Lang., 4(OOPSLA), November 2020.

35 Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical analysis
of flaky tests. In Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, pages 643–653, 2014.

36 Omar S. Navarro Leija, Kelly Shiptoski, Ryan G. Scott, Baojun Wang, Nicholas Renner,
Ryan R. Newton, and Joseph Devietti. Reproducible containers. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 167–182, New York, NY, USA, 2020. Association
for Computing Machinery.

37 Ryan Rhodes Newton. Hermit: Deterministic linux for controlled testing and software bug-
finding. https://web.archive.org/web/20231102092943/https://developers.face-
book.com/blog/post/2022/11/22/hermit-deterministic-linux-testing/, 2022. Ac-
cessed 2023-11-02.

38 Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod
Partush. Engineering record and replay for deployability. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 377–389, 2017.

39 Christopher Olston and Benjamin Reed. Inspector gadget: A framework for custom
monitoring and debugging of distributed dataflows. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 1221–1224, 2011.

40 Zoe Paraskevopoulou, Catalin Hritcu, Maxime Dénès, Leonidas Lampropoulos, and Ben-
jamin C. Pierce. Foundational property-based testing. In ITP, volume 9236 of Lecture
Notes in Computer Science, pages 325–343. Springer, 2015.

41 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu. Feature-sensitive coverage
for conformance testing of programming language implementations. Proc. ACM Program.
Lang., 7(PLDI), jun 2023.

42 Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. A survey of flaky
tests. ACM Transactions on Software Engineering and Methodology (TOSEM), 31(1):1–74,
2021.

43 Transaction Processing and Performance Council. Transaction processing and performance
council. https://tpc.org/.

44 The Web Standards Project. The web standards compliance acid tests.
45 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular Queries on Graph Databases.

Theory of Computing Systems, 61(1):31–83, 2017.

23441

https://web.archive.org/web/20231102092943/https://developers.facebook.com/blog/post/2022/11/22/hermit-deterministic-linux-testing/
https://web.archive.org/web/20231102092943/https://developers.facebook.com/blog/post/2022/11/22/hermit-deterministic-linux-testing/
https://tpc.org/

180 23441 – Ensuring the Reliability and Robustness of Database Management Systems

46 Irving Muller Rodrigues, Daniel Aloise, and Eraldo Rezende Fernandes. Fast: A linear time
stack trace alignment heuristic for crash report deduplication. In Proceedings of the 19th
International Conference on Mining Software Repositories, pages 549–560, 2022.

47 Donald R Slutz. Massive stochastic testing of sql. In VLDB, volume 98, pages 618–622,
1998.

48 SQLsmith. Sqlsmith. https://github.com/anse1/sqlsmith (visited: 2023-11), 11 2023.
49 Dominic Steinhöfel and Andreas Zeller. Input invariants. In Proceedings of the 30th

ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, page 583–594, New York, NY, USA, 2022.
Association for Computing Machinery.

50 Alexander Thomson and Daniel J Abadi. The case for determinism in database systems.
Proceedings of the VLDB Endowment, 3(1-2):70–80, 2010.

51 Roman Vasiliev, Dmitrij Koznov, George Chernishev, Aleksandr Khvorov, Dmitry Luciv,
and Nikita Povarov. Tracesim: a method for calculating stack trace similarity. In Proceedings
of the 4th ACM SIGSOFT International Workshop on Machine-Learning Techniques for
Software-Quality Evaluation, pages 25–30, 2020.

52 Ming-Chuan Wu, Jingren Zhou, Nicolas Bruno, Yu Zhang, and Jon Fowler. Scope playback:
Self-validation in the cloud. In Proceedings of the Fifth International Workshop on Testing
Database Systems, DBTest ’12, New York, NY, USA, 2012. Association for Computing
Machinery.

53 Jiaqi Yan, Qiuye Jin, Shrainik Jain, Stratis D. Viglas, and Allison Lee. Snowtrail: Testing
with production queries on a cloud database. In Proceedings of the Workshop on Testing
Database Systems, DBTest’18, New York, NY, USA, 2018. Association for Computing
Machinery.

54 Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering, 28(2):183–200, 2002.

55 Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao Wu.
SQUIRREL: testing database management systems with language validity and coverage
feedback. In CCS, pages 955–970. ACM, 2020.

56 Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan Tschannen,
Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al. Foundationdb: A
distributed unbundled transactional key value store. In Proceedings of the 2021 International
Conference on Management of Data, pages 2653–2666, 2021.

https://github.com/anse1/sqlsmith

Hannes Mühleisen, Danica Porobic, and Manuel Rigger 181

Participants

Jinsheng Ba
National University of
Singapore, SG

Lawrence Benson
Hasso-Plattner-Institut,
Universität Potsdam, DE

Carsten Binnig
TU Darmstadt, DE

Ankush Desai
Amazon – Cupertino, US

Adam Dickinson
Snowflake Computing Inc. –
Seattle, US

Wensheng Dou
Chinese Academy of Sciences –
Beijing, CN

Stefania Dumbrava
ENSIIE – Paris, FR

Moritz Eyssen
Snowflake – Berlin, DE

Tim Fischer
Universität Tübingen, DE

Florian Gerlinghoff
MotherDuck – Amsterdam, NL

Torsten Grust
Universität Tübingen, DE

Muhammad Ali Gulzar
Virginia Polytechnic Institute –
Blacksburg, US

Denis Hirn
Universität Tübingen, DE

Hong Hu
Pennsylvania State University –
University Park, US

Zu-Ming Jiang
ETH Zürich, CH

Marcel Kost
Salesforce – München, DE

Burcu Kulahcioglu Ozkan
TU Delft, NL

Federico Lorenzi
TigerBeetle – Cape Town, ZA

Umang Mathur
National University of
Singapore, SG

Everett Maus
Google – Seattle, US

Hannes Mühleisen
CWI – Amsterdam, NL

Thomas Neumann
TU München – Garching, DE

Danica Porobic
Oracle Switzerland – Zürich, CH

Mark Raasveldt
DuckDB Labs – Amsterdam, NL

Tilmann Rabl
Hasso-Plattner-Institut,
Universität Potsdam, DE

Manuel Rigger
National University of
Singapore, SG

Stan Rosenberg
Cockroach Labs – New York, US

Anupam Sanghi
IBM India – Bangalore, IN

Gambhir Sankalp
EPFL – Lausanne, CH

Andrei Satarin
Google – Mountain View, US

Russell Sears
Crystal DB – San Francisco, US

Thodoris Sotiropoulos
ETH Zürich, CH

Caleb Stanford
University of California –
Davis, US

Cheng Tan
Northeastern University –
Boston, US

Pinar Tözün
IT University of
Copenhagen, DK

Chengyu Zhang
ETH Zürich, CH

23441

Report from Dagstuhl Seminar 23442

Approaches and Applications of Inductive Programming
Luc De Raedt∗1, Ute Schmid∗2, and Johannes Langer†3

1 KU Leuven, BE. luc.deraedt@cs.kuleuven.be
2 Universität Bamberg, DE. ute.schmid@uni-bamberg.de
3 Universität Bamberg, DE. johannes.langer@uni-bamberg.de

Abstract
The Dagstuhl Seminar “Approaches and Applications of Inductive Programming” (AAIP) has
taken place for the sixth time. The Dagstuhl Seminar series brings together researchers concerned
with learning programs from input/output examples from different areas, mostly from machine
learning and other branches of artificial intelligence research, cognitive scientists interested in
human learning in complex domains, and researchers with a background in formal methods and
programming languages. Main topics adressed in the AAIP 2023 seminar have been neurosymbolic
approaches to IP bringing together learning and reasoning, IP as a post-hoc approach to explaining
decision-making of deep learning blackbox models, and exploring the potential of deep learning
approaches, especially large language models such as OpenAI Codex for IP. Topics discussed in
working groups were Large Language Models and inductive programming in cognitive architectures,
avoiding too much search in inductive programming, finding suitable benchmark problems, and
evaluation criteria for interpretability and explainability of inductive programming.
Seminar October 29 – November 3, 2023 – https://www.dagstuhl.de/23442
2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Human-

centered computing; Computing methodologies → Machine learning
Keywords and phrases explainable ai, human-like machine learning, inductive logic programming,

interpretable machine learning, neuro-symbolic ai
Digital Object Identifier 10.4230/DagRep.13.10.182

1 Executive Summary

Ute Schmid (Universität Bamberg, DE)
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Ute Schmid and Luc De Raedt

Inductive programming (IP) is a special perspective on program synthesis, addressing learning
programs from incomplete specifications such as input/output examples. The seminar
“Approaches and Applications of Inductive Programming” (AAIP) took place in Dagstuhl for
the sixth time. This Dagstuhl Seminar brings together researchers from different areas of
artificial intelligence research, machine learning, formal methods, programming languages,
cognitive science, and human-computer-interaction interested in methods and applications of
IP. Focus topics of AAIP’23 have been neurosymbolic approaches to IP bringing together
learning and reasoning, IP as a post-hoc approach to explaining decision-making of deep
learning blackbox models, and exploring the potential of deep learning approaches, especially
large language models such as OpenAI Codex for IP.

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Approaches and Applications of Inductive Programming, Dagstuhl Reports, Vol. 13, Issue 10, pp. 182–211
Editors: Luc De Raedt and Ute Schmid

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luc.deraedt@cs.kuleuven.be
mailto:ute.schmid@uni-bamberg.de
mailto:johannes.langer@uni-bamberg.de
https://www.dagstuhl.de/23442
https://doi.org/10.4230/DagRep.13.10.182
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Luc De Raedt and Ute Schmid 183

The focus topics have been introduced and discussed in a series of talks addressing
neuro-symbolic IP, IP for learning in planning, explainable AI and IP, and IP and generative
AI. Furthermore, a series of talks were dedicated to the relation of cognitive science to IP:
Human-like few-shot learning via Bayesian reasoning over natural language, the child as
hacker, using program synthesis to model strategy diversity in human visual reasoning, a
neurodiversity-inspired solver for the Abstraction and Reasoning Corpus (ARC) using visual
imagery and program synthesis, and using natural language for self-programming in cognitive
architectures. The relation between IP and explainability has been highlighted with talks
about explainable models via compression of relational ensembles, and effects of explaining
machine-learned logic programs for human comprehension and discovery. Relations between
IP and knowledge based methods have been addressed in a talk about learning disjointness
axioms for knowledge graph refinement and for making knowledge graph embedding methods
more robust. Methods of IP as an approach to learning interpretable rules have been presented
with a focus on inductive logic programming (ILP), deep-rule learning, relational program
synthesis with numerical reasoning, improving rule classifiers learned from quantitative data
by recovering information lost by discretisation, meta-interpretive learning for generalised
planning, probabilistic inductive logic programming, abstraction for answer set programs, anti-
unification and generalization, programmatic reinforcement learning, and making program
synthesis fast on a GPU. These talks have been complemented by several system demos
presenting the ILP systems Popper and Louise, an RDF rules learner, and learning rules to
sort e-mails into folders (EmFORE).

We identified four relevant research problems for current and future research in IP which
were addressed in in-depth discussions in working groups and afterwards discussed in plenary
sessions: (1) Large Language Models and Inductive Programming in Cognitive Architectures:
one main outcome has been that combining learning and reasoning by integrating LLMs and
reasoners in a cognitive architecture could be an enabler for validating programs that get
executed by the overall architecture and to possible get nearer to human performance. (2)
Avoiding too much search in Inductive Programming: It was noted that for IP in general we
do need to learn structure as well as probabilities. Classic IP approaches focus on structure
learning and – in contrast to neural network architectures – can learn recursion explicitly.
The main result has been that suitable problem domains should be identified for systematic
evaluation, such as string transformation which combine syntactic (e.g. return first letter) and
semantic (e.g. give the capital of a country) transformations. (3) Finding Suitable Benchmark
Problems for Inductive Programming: Here, the discussion from the second topic has been
extended and systematised with the formulation of several relevant criteria for benchmark
problems to evaluate IP approaches, among them problem domains which are not solvable
by LLMs and solvable efficiently by humans. (4) Evaluation Criteria for Interpretability
and Explainability of Inductive Programming: The main insight has been that the degree
of interpretability and the quality of explanations is strongly context-dependent, being
influenced by the recipient (who), the content (what), the information need and reason for an
explanation (why), and the form of the explanation (how). Different candidates for metrics
were identified, such as complexity measures, semantic coherence, and reliability of generated
code.

In a final discussion round, several outcomes have been summarized and action points
have been discussed. A crucial problem which might impact scientific progress as well as
visibility could be that there is no core general approach to IP (such as gradient descent for
neural networks). Relevant use cases might not have a focus on learning recursion/loops
but on relations (e.g. in medicine and biology). The focus on learning programs (including

23442

184 23442 – Approaches and Applications of Inductive Programming

recursion) might profit from using Python as the target language instead of more specific
languages such as Prolog. Furthermore, current IP systems are mostly not easy to find and to
use. Providing a toolbox which can be easily used (such as Weka for standard ML) might be
helpful. There was a general agreement among the participants that the format of Dagstuhl
Seminars is especially fruitful for bringing together the different perspectives on IP from
machine learning, cognitive science, and program language research.

Luc De Raedt and Ute Schmid 185

2 Table of Contents

Executive Summary
Ute Schmid and Luc De Raedt . 182

Overview of Talks
Effects of explaining machine-learned logic programs for human comprehension and
discovery
Lun Ai . 187

Making program synthesis fast on a GPU
Martin Berger . 188

Anti-unification and Generalization: What’s next?
David Cerna . 189

On the Need of Learning Disjointness Axioms for Knowledge Graph Refinement
and for Making Knowledge Graph Embedding Methods more Robust
Claudia d’Amato . 189

How to make logics neurosymbolic
Luc De Raedt . 190

What should we do next in ILP?
Sebastijan Dumančić . 191

Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language
Kevin Ellis . 191

Towards Programmatic Reinforcement Learning
Nathanaël Fijalkow . 192

Inductive Programming for Explainable Artificial Intelligence (IP for XAI)
Bettina Finzel . 192

On Deep Rule Learning
Johannes Fürnkranz . 193

Three Learning Problems in Planning
Hector Geffner . 194

A tutorial on Popper
Céline Hocquette . 194

Relational program synthesis with numerical reasoning
Céline Hocquette . 195

On the role of natural language for self-programming in cognitive architectures
Frank Jäkel . 196

QCBA: improving rule classifiers learned from quantitative data by recovering
information lost by discretisation
Tomáš Kliegr . 196

RDFrules: A Swiss knife for relational association rule learning, classification and
knowledge graph completion
Tomáš Kliegr . 197

23442

186 23442 – Approaches and Applications of Inductive Programming

The Child as Hacker
Josh Rule . 198

Abstraction for Answer Set Programs
Zeynep G. Saribatur . 199

Explanatory Inductive Programming (XAI for IP)
Ute Schmid . 200

Explainable models via compression of tree ensembles
Sriraam Natarajan . 201

Inductive Programming meets Large Language Models
Gust Verbruggen . 202

Inductive Programming meets Real User Problems
Gust Verbruggen . 202

Probabilistic Logic Programming: Quo Vadis?
Felix Weitkämper . 203

Working groups
Large Language Models and Inductive Programming in Cognitive Architectures
Bettina Finzel and Frank Jäkel . 204

Avoiding too much search in Inductive Programming
Ute Schmid, David Cerna, and Hector Geffner . 204

Evaluation Criteria for Interpretability and Explainability of Inductive Programming
Ute Schmid, Lun Ai, Claudia d’Amato, and Johannes Fürnkranz 205

Finding Suitable Benchmark Problems for Inductive Programming
Ute Schmid, Martin Berger, Sebastijan Dumancic, Nathanaël Fijalkow, and Gust
Verbruggen . 207

Panel discussions
Inductive Programming – How to Go On?
Ute Schmid, Claudia d’Amato, Hector Geffner, Sriraam Natarajan, and Josh Rule 209

Participants . 211

Luc De Raedt and Ute Schmid 187

3 Overview of Talks

3.1 Effects of explaining machine-learned logic programs for human
comprehension and discovery

Lun Ai (Imperial College London, GB)

License Creative Commons BY 4.0 International license
© Lun Ai

Joint work of Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid
Main reference Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid: “Explanatory machine learning for

sequential human teaching”, Mach. Learn., Vol. 112(10), pp. 3591–3632, 2023.
URL https://doi.org//10.1007/S10994-023-06351-8

The talk focused on the assumption in the Logic Programming community: logic programs
are human-comprehensible. This had resulted in very few empirical assessments on the
effects of explaining machine-learned logic programs. Empirical results by the authors showed
explaining logic programs do not always lead to improved human performance. In addition,
the authors stressed the need for objective and operational measurements of explainability.
Their results provided novel insights on the explanatory effects of curriculum order and the
presence of machine-learned explanations for sequential problem-solving.

The topic of comprehensibility of machine-learned theories has recently drawn increasing
attention. Inductive logic programming uses logic programming to derive logic theories from
small data based on abduction and induction techniques. Learned theories are represented
in the form of rules as declarative descriptions of obtained knowledge. In earlier work, the
authors provided the first evidence of a measurable increase in human comprehension based
on machine-learned logic rules for simple classification tasks. In a later study, it was found
that the presentation of machine-learned explanations to humans can produce both beneficial
and harmful effects in the context of game learning.

The talk concentrated on a most recent investigation on the effects of the ordering of
concept presentations and logic program explanations. The authors proposed a framework
for the effects of sequential teaching based on an existing definition of comprehensibility. This
empirical study involved curricula that teach novices the merge sort algorithm. They
provided performance-based and trace-based evidence for support. Results show that
sequential teaching of concepts with increasing complexity (a) has a beneficial effect on
human comprehension and (b) leads to human re-discovery of divide-and-conquer problem-
solving strategies, and (c) allows adaptations of human problem-solving strategy with better
performance when machine-learned explanations are also presented.

Several open questions were discussed during and after the talk. For instance, the audience
suggested an investigation on “learning how to learn” and comparisons between the human
traces and the machine learner (ILP) trace. In the context of increasing the popularity of
logic programs, some challenges in higher-education curricula were discussed showing the
significance of how to best design Logic Programming teaching interactions. Importantly, this
talk highlighted the limitations to performance-based evaluations. This led to an extended
discussion on computable and objective assessments for various perspectives of explainability.

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10994-023-06351-8
https://doi.org//10.1007/S10994-023-06351-8
https://doi.org//10.1007/S10994-023-06351-8

188 23442 – Approaches and Applications of Inductive Programming

3.2 Making program synthesis fast on a GPU
Martin Berger (University of Sussex – Brighton, GB)

License Creative Commons BY 4.0 International license
© Martin Berger

Joint work of Mojtaba Valizadeh, Martin Berger
Main reference Mojtaba Valizadeh, Martin Berger: “Search-Based Regular Expression Inference on a GPU”, Proc.

ACM Program. Lang., Vol. 7(PLDI), pp. 1317–1339, 2023.
URL https://doi.org//10.1145/3591274

Inductive programming is stuck!
GPUs are the work-horses of computing. Applications that fit the GPU style of pro-

gramming typically run orders of magnitude faster on GPUs than on CPUs. This gives
opportunities for scaling not achievable with CPUs. The recent success of deep learning amply
demonstrates this. Unfortunately, large classes of applications are not known to benefit from
GPU acceleration. That includes most tools in program synthesis, inductive programming,
theorem proving, ... (from now on: automated reasoning) such as SAT and SMT solvers.
How can we change this? Simplifying a bit, a GPU can only accelerate applications if they
are “GPU-friendly”, meaning they are

highly parallel,
have little to no data-dependent branching, and have
predictable data-movement, and high temporal and spatial data locality.

Algorithms in automated reasoning, as implemented today, mostly lack those properties.
Many are extremely branching heavy, for example because they branch on syntactic structure.
Some are seemingly sequential (e.g. unit propagation, a core step modern SAT solvers
for simplifying formulae). This might be because an algorithmic problem is intrinsically
sequential, or because a way of making an algorithmic problem GPU-friendly has not yet
been found.

Research question: Can we identify workloads arising in industrial automatic reasoning
practise, and scale them up on GPUs by developing suitable, GPU-friendly algorithms? The
GPU-based algorithms should give at least 100x speedup (for comparable problem instances),
and be able to handle at least 1000x bigger problem instances, both in comparison with
state-of-the-art open (= non-proprietary) software for the same problem domain.

Preliminary answer, based on [1]: all program synthesis that uses the generate-and-test
approach can see orders of magnitude speedup on GPUs.

Recommendation to the ILP community: stop what your are doing and implement your
ideas on a GPU.

References
1 Mojtaba Valizadeh, Martin Berger: Search-Based Regular Expression Inference on a

GPU. Proc. ACM Program. Lang. 7(PLDI): 1317-1339 (2023), https://doi.org/10.1145/
3591274

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3591274
https://doi.org//10.1145/3591274
https://doi.org//10.1145/3591274
https://doi.org/10.1145/3591274
https://doi.org/10.1145/3591274

Luc De Raedt and Ute Schmid 189

3.3 Anti-unification and Generalization: What’s next?
David Cerna (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 4.0 International license
© David Cerna

Joint work of David M. Cerna, Temur Kutsia
Main reference David M. Cerna, Temur Kutsia: “Anti-unification and Generalization: A Survey”, in Proc. of the

Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 6563–6573,
International Joint Conferences on Artificial Intelligence Organization, 2023.

URL https://doi.org//10.24963/ijcai.2023/736

Anti-unification (AU) is a fundamental operation for the computation of symbolic generaliza-
tions useful for inductive inferencing [1]. It is the dual operation to unification, an operation
at the foundation of automated theorem proving. In contrast to unification, where one is
interested in constructing most general unifiers (mgus), anti-unification is concerned with
the construction of least general generalizations (lggs); that is, expressions capturing the
commonalities shared between members of a set of symbolic expressions.

The operation was introduced by Plotkin and Reynolds and found many applications
within the area of Inductive synthesis and, in particular, early inductive logic programming
(ILP) systems. However, since their seminal work, the number of applications has grown
tremendously with uses in program analysis, program repair, automated reasoning, and
beyond. With the growing number of applications, several investigations have developed
anti-unification methods over various symbolic objects, such as the simply-typed lambda
calculus, term graphs, and hedge expression, to name a few. In particular, there has been
significant progress in understanding equational anti-unification and the cardinality of the
set of solutions (set of lggs). In many cases, the solution sets are either infinitely large or do
not exist (every generalization allows a more specific generalization).

We ask, is least general generalization the right characterization of a solution to an anti-
unification problem? In particular, is there a characterization of a solution more amenable
to modern approaches to inductive synthesis? Secondly, what does the inductive synthesis
community need from symbolic generalization techniques, which is currently missing?

References
1 David M. Cerna, Temur Kutsia: Anti-unification and Generalization: A Survey. IJCAI 2023:

6563-6573, https://doi.org/10.24963/IJCAI.2023/736

3.4 On the Need of Learning Disjointness Axioms for Knowledge Graph
Refinement and for Making Knowledge Graph Embedding Methods
more Robust

Claudia d’Amato (University of Bari, IT)

License Creative Commons BY 4.0 International license
© Claudia d’Amato

Joint work of Giuseppe Rizzo, Claudia d’Amato, Nicola Fanizzia
Main reference Giuseppe Rizzo, Claudia d’Amato, Nicola Fanizzi: “An unsupervised approach to disjointness

learning based on terminological cluster trees”, Semantic Web, Vol. 12(3), pp. 423–447, 2021.
URL https://doi.org//10.3233/SW-200391

Knowledge Graphs (KGs) are multi-relational graphs designed to organize and share real-
world knowledge where nodes represent entities of interest and edges represent different types
of relationships between such entities [1]. Despite the large usage, it is well known that
KGs suffer from incompleteness and noise. For tackling these problems, solutions to the link

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.24963/ijcai.2023/736
https://doi.org//10.24963/ijcai.2023/736
https://doi.org//10.24963/ijcai.2023/736
https://doi.org//10.24963/ijcai.2023/736
https://doi.org/10.24963/IJCAI.2023/736
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/SW-200391
https://doi.org//10.3233/SW-200391
https://doi.org//10.3233/SW-200391

190 23442 – Approaches and Applications of Inductive Programming

prediction task, that amount at predicting an unknown component of a triple, have been
investigated. Mostly, Knowledge Graph Embedding methods (KGE) have been devised since
they have been shown to scale even to very large KGs. KGE convert the data graph into
an optimal low dimensional space where structural graph information is preserved as much
as possible. Embeddings are learned based on the constraint that a valid (positive) triple
score has to be lower than the invalid (negative) triple score. As KGs mainly encode positive
triples, negative triples are obtained by randomly corrupting true/observed triples [2], thus
possibly injecting false negatives during the learning process.

In this talk we present a solution for an informed generation of negative examples that, by
exploiting the semantics of the KGs and reasoning capabilities, is able to limit false negatives.
A key element is represented by disjointness axioms, that are essential for making explicit the
negative knowledge about a domain. Yet, disjointness axioms are often overlooked during
the modeling process [3]. For the purpose, a symbolic method for discovering disjointness
axioms from the data distribution is illustrated. Moving from the assumption that two or
more concepts may be mutually disjoint when the sets of their (known) instances do not
overlap, the problem is cast as a conceptual clustering problem, where the goal is both to find
the best possible partitioning of the individuals in (a subset of) the KG and also to induce
intensional definitions of the corresponding classes expressed in the standard representation
languages.

The talk will conclude with the analysis of some open challenges related to the presented
solutions.

References
1 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Se-
bastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa
Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, Antoine Zimmermann: Know-
ledge Graphs. Synthesis Lectures on Data, Semantics, and Knowledge, Morgan & Clay-
pool Publishers 2021, ISBN 978-3-031-00790-3, pp. 1-257. https://doi.org/10.2200/
S01125ED1V01Y202109DSK022

2 Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang: A Comprehensive Survey of
Graph Embedding: Problems, Techniques, and Applications. IEEE Trans. Knowl. Data Eng.
30(9): 1616-1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452

3 Taowei David Wang, Bijan Parsia, James A. Hendler: A Survey of the Web Ontology
Landscape. ISWC 2006: 682-694. https://doi.org/10.1007/11926078_49

3.5 How to make logics neurosymbolic
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Luc De Raedt

Joint work of Giuseppe Marra, Sebastijan Dumančić,Robin Manhaeve, Luc De Raedt
Main reference Giuseppe Marra, Sebastijan Dumancic, Robin Manhaeve, Luc De Raedt: “From Statistical

Relational to Neural Symbolic Artificial Intelligence: a Survey”, CoRR, Vol. abs/2108.11451, 2021.
URL https://arxiv.org/abs/2108.11451

Neurosymbolic AI (NeSy) is regarded as the third wave in AI. It aims at combining knowledge
representation and reasoning with neural networks. Numerous approaches to NeSy are being
developed and there exists an ‘alphabet-soup’ of different systems, whose relationships are
often unclear. I will discuss the state-of-the art in NeSy and argue that there are many
similarities with statistical relational AI (StarAI).

https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1007/11926078_49
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2108.11451
https://arxiv.org/abs/2108.11451
https://arxiv.org/abs/2108.11451

Luc De Raedt and Ute Schmid 191

Taking inspiration from StarAI, and exploiting these similarities, I will argue that
Neurosymbolic AI = Logic + Probability + Neural Networks. I will also provide a recipe
for developing NeSy approaches: start from a logic, add a probabilistic interpretation, and
then turn neural networks into “neural predicates”. Probability is interpreted broadly here,
and is necessary to provide a quantitative and differentiable component to the logic. At
the semantic and the computation level, one can then combine logical circuits (ako proof
structures) labeled with probability, and neural networks in computation graphs.

I will illustrate the recipe with NeSy systems such as DeepProbLog, a deep probabilistic
extension of Prolog, and DeepStochLog, a neural network extension of stochastic definite
clause grammars (or stochastic logic programs).

3.6 What should we do next in ILP?
Sebastija Dumančić (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Sebastijan Dumančić

This talks consists of two parts. In the first part, I provide a brief introduction to Inductive
Logic Programming: what is it, why is it interesting, and what interesting has recently
happened. In the second part, I will explore what I think we should do next in ILP and
program synthesis to further advance the field, all centered around the idea of avoiding
search.

3.7 Human-like Few-Shot Learning via Bayesian Reasoning over Natural
Language

Kevin Ellis (Cornell University – Ithaca, US)

License Creative Commons BY 4.0 International license
© Kevin Ellis

Main reference Kevin Ellis: “Modeling Human-like Concept Learning with Bayesian Inference over Natural
Language”, CoRR, Vol. abs/2306.02797, 2023.

URL https://doi.org//10.48550/ARXIV.2306.02797

A core tension in models of concept learning is that the model must carefully balance the
tractability of inference against the expressivity of the hypothesis class. Humans, however,
can efficiently learn a broad range of concepts. We introduce a model of inductive learning
that seeks to be human-like in that sense. It implements a Bayesian reasoning process where
a language model first proposes candidate hypotheses expressed in natural language, which
are then re-weighed by a prior and a likelihood. By estimating the prior from human data,
we can predict human judgments on learning problems involving numbers and sets, spanning
concepts that are generative, discriminative, propositional, and higher-order.

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/ARXIV.2306.02797
https://doi.org//10.48550/ARXIV.2306.02797
https://doi.org//10.48550/ARXIV.2306.02797

192 23442 – Approaches and Applications of Inductive Programming

3.8 Towards Programmatic Reinforcement Learning
Nathanaël Fijalkow (CNRS – Talence, FR)

License Creative Commons BY 4.0 International license
© Nathanaël Fijalkow

This short talk was a pitch for a new problem, called Programmatic Reinforcement Learning:
assuming that the environment is given as a program, the goal is to construct an optimal policy
in the form of a program. Some motivations, basic examples, and preliminary experimental
results were presented and discussed.

3.9 Inductive Programming for Explainable Artificial Intelligence (IP for
XAI)

Bettina Finzel (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Bettina Finzel

Methods of explainable artificial intelligence (XAI) and of inductive programming (IP) can
profit from each other in two ways: (1) Inductive programming results in symbolic models
(programs) which are inherently interpretable. These programs can provide expressive,
relational explanations for learned black box models, for instance Convolutional Neural
Networks for image classification. This perspective (IP for XAI) is addressed in this summary.
(2) On the other hand, there might be a need for explainability of IP programs to humans.
This perspective (XAI for IP) is addressed in the contribution of U. Schmid in this report.

End-to-end and data-driven approaches to learning, like deep convolutional neural net-
works in image classification, have become prevalent and the center of attention in many
research and application areas. However, some research objectives and real world problems
may not be solvable by just processing large amounts of data. In some cases, like medical dia-
gnostics, “big data” simply may not be available [2]. At the same time, deep learning models
are not inherently transparent opposed to those generated by interpretable machine learning
algorithms, such as Inductive Logic Programming (ILP) [6]. This may be a crucial deficency
and a barrier to high stakes applicability of deep learning. At the same time, ILP frameworks
provide symbolic representations in the form of predicates in First-Order-Logic, tracing
capabilities and the integration of relational background knowledge by design, e.g., from
human expertise and domain knowledge [3]. Moreover, their learning process is data-efficient
in comparison to deep learning. In addition, being a relational learning approach qualifies ILP
for explainability [1], e.g., in complex knowledge domains like medicine [2] and AI evaluation
in general [5]. Deep learning may therefore profit from being combined with ILP for explana-
tion, validation and a bi-directional interaction between a human and an AI system [3]. A
crucial part of this avenue is the design of interfaces between internal representations of what
a deep learning model has learned and the relational background knowledge of IP systems,
like ILP, to provide human-understandable surrogate models, explanations and interactions.
First attempts to bridge this gap have already been proposed [4]. However, several open
questions remain to date: How can we find and extract relevant internal representations
from deep learning models and present them in a human-understandable manner? How
can we disambiguate representations? Which relations should be included in the IP module
and satisfied by the deep learning model? How can we implement a knowledge exchange
between IP and deep learning models to support the interplay of learning and reasoning in

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Luc De Raedt and Ute Schmid 193

knowledge discovery and AI evaluation? In my opinion, to build such systems is the way
toward approximating the strengths of the human inductive bias and adaptability of AI
systems to the real world.

References
1 Gesina Schwalbe, Bettina Finzel: A comprehensive taxonomy for explainable artificial

intelligence: a systematic survey of surveys on methods and concepts. Data Mining and
Knowledge Discovery: 1-59 (2023). https://doi.org/10.1007/s10618-022-00867-8

2 Sebastian Bruckert, Bettina Finzel, Ute Schmid: The Next Generation of Medical Decision
Support: A Roadmap Toward Transparent Expert Companions. Frontiers Artif. Intell. 3:
507973 (2020). https://doi.org/10.3389/FRAI.2020.507973

3 Ute Schmid, Bettina Finzel: Mutual Explanations for Cooperative Decision Mak-
ing in Medicine. Künstliche Intell. 34(2): 227-233 (2020). https://doi.org/10.1007/
S13218-020-00633-2

4 Johannes Rabold, Michael Siebers, Ute Schmid: Explaining Black-Box Classifiers with ILP –
Empowering LIME with Aleph to Approximate Non-linear Decisions with Relational Rules.
ILP 2018: 105-117. https://doi.org/10.1007/978-3-319-99960-9_7

5 José Hernández-Orallo: The Measure of All Minds: Evaluating Natural and Artificial
Intelligence. Cambridge University Press 2017, ISBN 9781316594179. https://doi.org/
10.1017/9781316594179

6 Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute
Schmid, Benjamin G. Zorn: Inductive programming meets the real world. Commun. ACM
58(11): 90-99 (2015). https://doi.org/10.1145/2736282

3.10 On Deep Rule Learning
Johannes Fürnkranz (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 4.0 International license
© Johannes Fürnkranz

Joint work of Florian Beck, Johannes Fürnkranz
Main reference Florian Beck, Johannes Fürnkranz: “An Empirical Investigation Into Deep and Shallow Rule

Learning”, Frontiers in Artificial Intelligence, Vol. 4, 2021.
URL https://doi.org//10.3389/frai.2021.689398

Rule learning algorithms form the basis of classic inductive logic programming algorithms
such as FOIL or PROGOL. Studying them in a propositional logic setting allows to focus on
the algorithmic aspects. A key limitation of the current state-of-the-art such as the LORD
algorithm recently developed in our group [1], is that they are all limited to learning rule
sets that directly connect the input features to the target feature. In a logical setting, this
corresponds to learning a DNF expression. While every logical function can be expressed
as a DNF formula, we argue in this talk that learning deeply structured theories may be
beneficial, by drawing an analogy to (deep) neural networks [3], and recapitulating some
recent empirical results [2].

References
1 Phuong Huynh Van Quoc, Johannes Fürnkranz, Florian Beck: Efficient learning of large

sets of locally optimal classification rules. Machine Learning 112(2): 571-610 (2023) https:
//doi.org/10.1007/s10994-022-06290-w

2 Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc: Layerwise Learning of Mixed
Conjunctive and Disjunctive Rule Sets. Proceedings of the 7th International Joint Conference
on Rules and Reasoning (RuleML+RR), 2023, 2023:95-109. https://doi.org/10.1007/
978-3-031-45072-3_7

23442

https://doi.org/10.1007/s10618-022-00867-8
https://doi.org/10.3389/FRAI.2020.507973
https://doi.org/10.1007/S13218-020-00633-2
https://doi.org/10.1007/S13218-020-00633-2
https://doi.org/10.1007/978-3-319-99960-9_7
https://doi.org/10.1017/9781316594179
https://doi.org/10.1017/9781316594179
https://doi.org/10.1145/2736282
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3389/frai.2021.689398
https://doi.org//10.3389/frai.2021.689398
https://doi.org//10.3389/frai.2021.689398
https://doi.org/10.1007/s10994-022-06290-w
https://doi.org/10.1007/s10994-022-06290-w
https://doi.org/10.1007/978-3-031-45072-3_7
https://doi.org/10.1007/978-3-031-45072-3_7

194 23442 – Approaches and Applications of Inductive Programming

3 Florian Beck, Johannes Fürnkranz: An Empirical Investigation Into Deep and Shallow Rule
Learning. Frontiers in Artificial Intelligence 4: 689398 (2021). https://doi.org/10.3389/
frai.2021.689398

3.11 Three Learning Problems in Planning
Hector Geffner (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Hector Geffner

Joint work of Hector Geffner, Simone Ståhlberg, Blai Bonet, Dominik Drexler, RLeap team

I’ll talk about three learning problems in planning: learning lifted action models, learning
generalized policies, and learning general problem decomposition or sketches. We have been
approaching these problems in a top-down fashion, making a clear distinction between what
is to be learned andd how is it to be learned. Indeed, we have been pursuing two types of
approaches in parallel: formulations that rely on combinatorial optimization solvers on the
one hand, and deep (reinforcement) learning approaches on the other. I’ll also discuss the
relation between the two approaches which in the common form are limited by the expressive
power of C2 logic; first-order logic with two variables and counting, and challenges to get
beyond C2.

References
1 Blai Bonet, Hector Geffner: General Policies, Subgoal Structure, and Planning Width.

CoRR abs/2311.05490 (2023). https://doi.org/10.48550/ARXIV.2311.05490
2 Simon Ståhlberg, Blai Bonet, Hector Geffner: Learning General Policies with Policy Gradient

Methods. KR 2023: 647-657. https://doi.org/10.24963/KR.2023/63
3 Dominik Drexler, Jendrik Seipp, Hector Geffner:. Learning Sketches for Decomposing

Planning Problems into Subproblems of Bounded Width. ICAPS 2022: 62-70 https:
//doi.org/10.1609/icaps.v32i1.19786

4 Ivan D. Rodriguez, Blai Bonet, Javier Romero, Hector Geffner: Learning First-Order
Representations for Planning from Black Box States: New Results. KR 2021: 539-548.
https://doi.org/10.24963/KR.2021/51

3.12 A tutorial on Popper
Céline Hocquette (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Céline Hocquette

Joint work of Andrew Cropper, Céline Hocquette
Main reference Andrew Cropper, Céline Hocquette: “Learning Logic Programs by Combining Programs”, in Proc.

of the ECAI 2023 – 26th European Conference on Artificial Intelligence, September 30 – October 4,
2023, Kraków, Poland – Including 12th Conference on Prestigious Applications of Intelligent Systems
(PAIS 2023), Frontiers in Artificial Intelligence and Applications, Vol. 372, pp. 501–508, IOS Press,
2023.

URL https://doi.org//10.3233/FAIA230309

Inductive logic programming (ILP) is a form of program synthesis. The goal is to induce a
logic program that generalises training examples. Popper is a recent ILP system which frames
the ILP problem as a constraint satisfaction problem [1, 2]. Popper continually generates
hypotheses and tests them on the training examples. If a hypothesis is not a solution, Popper

https://doi.org/10.3389/frai.2021.689398
https://doi.org/10.3389/frai.2021.689398
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2311.05490
https://doi.org/10.24963/KR.2023/63
https://doi.org/10.1609/icaps.v32i1.19786
https://doi.org/10.1609/icaps.v32i1.19786
https://doi.org/10.24963/KR.2021/51
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309
https://doi.org//10.3233/FAIA230309

Luc De Raedt and Ute Schmid 195

builds constraints to prune hypotheses which are also provably no solutions. Popper supports
learning of recursive programs, predicate invention and learning moderately large programs.
We present a recent extension of Popper which supports learning minimal description length
programs from noisy data [3]. Our approach leverages recent progress in MaxSAT solvers to
efficiently find an optimal program.

References
1 Andrew Cropper, Rolf Morel: Learning programs by learning from failures. Mach. Learn.

110(4): 801-856 (2021). https://doi.org/10.1007/S10994-020-05934-Z
2 Andrew Cropper, Céline Hocquette: Learning Logic Programs by Combining Programs.

ECAI 2023: 501-508 https://doi.org/10.3233/FAIA230309
3 Céline Hocquette, Andreas Niskanen, Matti Järvisalo, Andrew Cropper: Learning MDL logic

programs from noisy data. CoRR abs/2308.09393 (2023). https://doi.org/10.48550/
ARXIV.2308.09393

3.13 Relational program synthesis with numerical reasoning
Céline Hocquette (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Céline Hocquette

Joint work of Céline Hocquette, Andrew Cropper
Main reference Céline Hocquette, Andrew Cropper: “Relational Program Synthesis with Numerical Reasoning”, in

Proc. of the Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February
7-14, 2023, pp. 6425–6433, AAAI Press, 2023.

URL https://doi.org//10.1609/AAAI.V37I5.25790

Learning programs with numerical values is fundamental to many AI applications, including
bio-informatics and drug design. However, current program synthesis approaches struggle to
learn programs with numerical values. Program synthesis approaches based on enumeration
of candidate numerical symbols cannot handle infinite domains. Recent program synthesis
approaches also have difficulties reasoning from multiple examples, which is required for
instance to identify numerical thresholds or intervals. To overcome these limitations, we
introduce an inductive logic programming approach which combines relational learning with
numerical reasoning [1]. Our approach uses satisfiability modulo theories solvers to efficiently
identify numerical values. Our approach can identify numerical values in linear arithmetic
fragments, such as real difference logic, and from infinite domains, such as real numbers
or integers. Our results show our approach can outperform existing program synthesis
approaches. However, our approach has limited scalability with respect to the complexity of
the numerical reasoning stage.

23442

https://doi.org/10.1007/S10994-020-05934-Z
https://doi.org/10.3233/FAIA230309
https://doi.org/10.48550/ARXIV.2308.09393
https://doi.org/10.48550/ARXIV.2308.09393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790
https://doi.org//10.1609/AAAI.V37I5.25790

196 23442 – Approaches and Applications of Inductive Programming

3.14 On the role of natural language for self-programming in cognitive
architectures

Frank Jäkel (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Frank Jäkel

Human problem solvers are able to adapt their problem solving strategies to new situations.
They program they own behavior. In order to do so, they introspect, test, debug, and optimize
their problem solving algorithms. These metacognitive activities can be implemented in
standard cognitive architectures that can store code in working memory and execute it with
an interpreter that is implemented as a set of rules in a production system. Additional
rules can then modify the code at runtime. Unfortunately, the programming language in
which such mental code is written has remained elusive. Here, I will argue that it is time to
revive the old idea that program code is directly given in natural language. Traditionally,
research on cognitive architectures has mostly avoided natural language even though language
is obviously an important aspect of human cognition. With the advent of large language
models it seems more plausible than ever that natural language interpreters might become an
essential part of a new generation of cognitive architectures. In particular, the metacognitive
activity of modifying your own programs might simply consist of transforming one natural
language expression into another – the task that transformers were developed for and have
turned out to be quite successful at.

3.15 QCBA: improving rule classifiers learned from quantitative data by
recovering information lost by discretisation

Tomáš Kliegr (University of Economics – Prague, CZ)

License Creative Commons BY 4.0 International license
© Tomáš Kliegr

Main reference Tomás Kliegr, Ebroul Izquierdo: “QCBA: improving rule classifiers learned from quantitative data by
recovering information lost by discretisation”, Appl. Intell., Vol. 53(18), pp. 20797–20827, 2023.

URL https://doi.org//10.1007/S10489-022-04370-X

Many rule-learning algorithms require prior discretization before they can effectively process
datasets with numerical data. For example, consider a dataset with attributes such as
temperature and humidity. Discretization (also called quantization) means binning their
values into intervals. A simple equidistant algorithm would produce intervals such as (0;10],
(10;20], and (20; 30]. If we consider rule learning algorithms based on association rule learning,
such as Classification based on Associations [3], discretization is necessary to ensure fast
pruning of the state space and also learning of sufficiently generalized rules. Only after
the discretization is it possible to learn the rules of the type IF temperature=(20;30] and
humidity=(50;60] THEN worker_comfort= good.

While some rule learning algorithms can directly work with numerical attributes, such as
the recently proposed extension of the POPPER ILP system [4], for those based on association
rule learning, integrating quantization may not be efficient as it could excessively slow down
the candidate generation phase. A common approach is thus to apply prediscretization, e.g.,
following the Minimum Description Length Principle (MDLP)-based method proposed by [2].
However, as the determination of interval lengths is done globally (i.e., same intervals for all
instances) and outside of the learning algorithm (e.g. CBA), information is lost, resulting in
efficiencies in the final classifier.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10489-022-04370-X
https://doi.org//10.1007/S10489-022-04370-X
https://doi.org//10.1007/S10489-022-04370-X

Luc De Raedt and Ute Schmid 197

Following this problem, this talk introduced the Quantitative CBA (QCBA) algorithm
for the subsequent processing of rule models learned on arbitrarily pre-discretized data (e.g.,
with equidistant binning, MDLP or other method). Extensive experiments have shown that
the proposed algorithm consistently reduces the models’ size and thus makes them more
understandable. Additionally, in many cases, the predictive performance is also improved.
The algorithm can be used to process the results of many rule learning algorithms, including
CBA, Interpretable Decision Sets [1] and Scalable Bayesian Rule Lists [5]. The results are
available in the R package qCBA available in CRAN. The method is described in detail in
[6].

References
1 Himabindu Lakkaraju, Stephen H. Bach, Jure Leskovec: Interpretable Decision Sets: A

Joint Framework for Description and Prediction. KDD 2016: 1675-1684 https://doi.org/
10.1145/2939672.2939874

2 Usama M. Fayyad, Keki B. Irani: Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning. IJCAI 1993: 1022-1029

3 Bing Liu, Wynne Hsu, Yiming Ma: Integrating Classification and Association Rule Mining.
KDD 1998: 80-86

4 Céline Hocquette, Andrew Cropper: Relational Program Synthesis with Numerical Reason-
ing. AAAI 2023: 6425-6433 https://doi.org/10.1609/AAAI.V37I5.25790

5 Hongyu Yang, Cynthia Rudin, Margo I. Seltzer: Scalable Bayesian Rule Lists. ICML 2017:
3921-3930

6 Tomás Kliegr, Ebroul Izquierdo: QCBA: improving rule classifiers learned from quantitative
data by recovering information lost by discretisation. Appl. Intell. 53(18): 20797-20827
(2023) https://doi.org/10.1007/S10489-022-04370-X

3.16 RDFrules: A Swiss knife for relational association rule learning,
classification and knowledge graph completion

Tomáš Kliegr (University of Economics – Prague, CZ)

License Creative Commons BY 4.0 International license
© Tomáš Kliegr

Joint work of Václav Zeman, Tomás Kliegr, Vojtech Svátek
Main reference Václav Zeman, Tomás Kliegr, Vojtech Svátek: “RDFRules: Making RDF rule mining easier and even

more efficient”, Semantic Web, Vol. 12(4), pp. 569–602, 2021.
URL https://doi.org//10.3233/SW-200413

Many commonly used machine learning algorithms are limited to tabular data sets, but
real-world data is often stored in relational databases and increasingly in knowledge graphs.
Processing of such data with standard „tabular“ machine learning usually requires extensive
data transformation and aggregations, resulting in a loss of information. As an alternative,
relational Horn rules can be used to model complex relational structures naturally and use
these in a range of machine learning tasks, including exploratory analysis, classification, and
imputation of missing information.

The RDFRules system for learning rules from knowledge graphs is based on the high-
performance AMIE+ algorithm [1] and includes a number of improvements based on more
than 10 years of experience with the development of its sister tabular EasyMiner [2] rule
learning system. While the AMIE+ algorithm was initially designed for a narrower exploratory
task of discovery of rules with the potential to perform knowledge graph (KG) completion,

23442

https://cran.r-project.org/web/packages/qCBA/index.html
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1609/AAAI.V37I5.25790
https://doi.org/10.1007/S10489-022-04370-X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.3233/SW-200413
https://doi.org//10.3233/SW-200413
https://doi.org//10.3233/SW-200413

198 23442 – Approaches and Applications of Inductive Programming

the current version of the RDFRules system goes significantly beyond the original capabilities
of the AMIE+ algorithm [1] as it now makes possible to perform the following tasks:

load not only graph data in RDF but also relational databases described as SQL scripts,
specify fine-grained patterns to limit the search space,
preprocess numerical literals,
cluster discovered rules,
perform classification tasks,
evaluate results using standard metrics adapted to graph data and open world assumption,
support the KG completion task,

The new features make it possible to graph-based rule learning directly on complex
real-world data.

The system is described in [3] and available at https://github.com/propi/rdfrules.

References
1 Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian M. Suchanek: Fast rule mining

in ontological knowledge bases with AMIE+. VLDB J. 24(6): 707-730 (2015) https:
//doi.org/10.1007/S00778-015-0394-1

2 Stanislav Vojír, Vaclav Zeman, Jaroslav Kuchar, Tomás Kliegr: EasyMiner.eu: Web
framework for interpretable machine learning based on rules and frequent itemsets. Knowl.
Based Syst. 150: 111-115 (2018) https://doi.org/10.1016/J.KNOSYS.2018.03.006

3 Václav Zeman, Tomás Kliegr, Vojtech Svátek: RDFRules: Making RDF rule mining easier
and even more efficient. Semantic Web 12(4): 569-602 (2021) https://doi.org/10.3233/
SW-200413

3.17 The Child as Hacker
Josh Rule (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Josh Rule

Main reference Joshua S. Rule: “The child as hacker: building more human-like models of learning”, Doctoral
dissertation, Massachusetts Institute of Technology (2020)

URL https://hdl.handle.net/1721.1/129232

I describe the child as hacker hypothesis, which relates program induction with aspects
of human cognition, particularly learning [1]. By the deep relationship proposed to exist
between knowledge and program-like structures, the child as hacker treats the activities and
values of human programmers as hypotheses for the activities and values of many forms of
human learning. After introducing this idea, I then look briefly at a project where we’ve
begun to implement it in a system called HL (Hacker-Like) [2]. HL explains human behaviour
better than some recent alternative program induction systems by representing a concept not
only in terms of its object-level content but also in terms of the inferences required to produce
that content. By searching over both kinds of representations, HL learns orders of magnitude
faster than competing systems. I close by discussing three major areas ripe for future research:
i) developing a better empirical understanding of how people solve hard search problems; ii)
understanding the neural and psychological basis for human computational abilities; and
iii) better understanding the goals and values of human programmers. All three areas have
the potential to significantly improve both our understanding of human intelligence and our
ability to use program induction systems to solve complex problems.

https://github.com/propi/rdfrules
https://doi.org/10.1007/S00778-015-0394-1
https://doi.org/10.1007/S00778-015-0394-1
https://doi.org/10.1016/J.KNOSYS.2018.03.006
https://doi.org/10.3233/SW-200413
https://doi.org/10.3233/SW-200413
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1721.1/129232
https://hdl.handle.net/1721.1/129232
https://hdl.handle.net/1721.1/129232

Luc De Raedt and Ute Schmid 199

References
1 Joshua S. Rule, Joshua B. Tenenbaum, Steven T. Piantadosi: The child as hacker. Trends

in cognitive sciences 24(11): 900-915 (2020) https://doi.org/10.1016/j.tics.2020.07.
005

2 Joshua S. Rule: The child as hacker: building more human-like models of learning. Doctoral
dissertation, Massachusetts Institute of Technology (2020) https://hdl.handle.net/1721.
1/129232

3.18 Abstraction for Answer Set Programs
Zeynep G. Saribatur (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Zeynep G. Saribatur

Joint work of Zeynep G. Saribatur, Thomas Eiter, Peter Schüller
Main reference Zeynep G. Saribatur, Thomas Eiter, Peter Schüller: “Abstraction for non-ground answer set

programs”, Artif. Intell., Vol. 300, p. 103563, 2021.
URL https://doi.org//10.1016/J.ARTINT.2021.103563

In this talk, I present our notion of abstraction for answer set programming, a prominent rule-
based language for knowledge representation and reasoning with roots in logic programming
and non-monotonic reasoning. With the aim to abstract over the irrelevant details of answer
set programs, we focus on two approaches of abstraction: (1) abstraction by omission [2], and
(2) domain abstraction [1], and introduce a method to construct an abstract program with a
smaller vocabulary, by ensuring that the original program is over-approximated. We provide
an abstraction & refinement methodology that makes it possible to start with an initial
abstraction and upon encountering spurious solutions automatically refining the abstraction
until an abstract program with a non-spurious solution is reached. Experiments based on
the prototypical implementations reveal the potential of the approach for problem analysis
by focusing on the parts of the program that cause the unsatisfiability, some even matching
a human-like focus shown by a user study, and by achieving generalization of the answer
sets that reflect relevant details only. This makes abstraction an interesting topic of research
whose further use in human-understandability of logic programs remains to be explored.

References
1 Zeynep G. Saribatur, Thomas Eiter, Peter Schüller: Abstraction for non-ground answer

set programs. Artif. Intell. 300: 103563 (2021) https://doi.org/10.1016/J.ARTINT.2021.
103563

2 Zeynep G. Saribatur, Thomas Eiter: Omission-Based Abstraction for Answer Set Pro-
grams. Theory Pract. Log. Program. 21(2): 145-195 (2021) https://doi.org/10.1017/
S1471068420000095

23442

https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://hdl.handle.net/1721.1/129232
https://hdl.handle.net/1721.1/129232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1016/J.ARTINT.2021.103563
https://doi.org//10.1016/J.ARTINT.2021.103563
https://doi.org//10.1016/J.ARTINT.2021.103563
https://doi.org/10.1016/J.ARTINT.2021.103563
https://doi.org/10.1016/J.ARTINT.2021.103563
https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095

200 23442 – Approaches and Applications of Inductive Programming

3.19 Explanatory Inductive Programming (XAI for IP)
Ute Schmid (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Ute Schmid

Joint work of Johannes Rabold, Michael Siebers, Ute Schmid
Main reference Johannes Rabold, Michael Siebers, Ute Schmid: “Generating contrastive explanations for inductive

logic programming based on a near miss approach”, Mach. Learn., Vol. 111(5), pp. 1799–1820, 2022.
URL https://doi.org//10.1007/S10994-021-06048-W

Methods of explainable artificial intelligence (XAI) and of inductive programming (IP) can
profit from each other in two ways: (1) Inductive programming results in symbolic models
(programs) which are inherently interpretable. Nevertheless, there might be a need for
explainability to humans – end-users or domain experts from other areas than computer
science. This perspective (XAI for IP) is addressed in this summary. (2) On the other hand,
expressive, relational explanations for learned black box models, for instance Convolutional
Neural Networks for image classification, can be provided by IP. This perspective (IP for
XAI) is addressed in the contribution of B. Finzel in this report.

The power of IP approaches lies in their ability to learn highly expressive models from
small sets of examples [2]. Learned programs can support humans to get insights into complex
relational or recursive patterns underlying a set of observed data. That is, IP might be an
ultra-strong learning approach as defined by Donald Michie (see [3]) under the condition
that the learning system can teach the learned model to a human, whose performance is
consequently increased to a level beyond that of the human studying the training data
alone. For programs which consist of several rules or for programs involving complex
relations or recursion, different approaches to construct explanations might support human
understanding. One possibility to reduce complexity is to introduce new predicates. For
instance, the introduction of a predicate parent/2 as generalization for father/2 and mother/2,
reduces four rules for the grandparent/2 relation to one (see [3]). Another possibility is, to
translate the rule which covers the current instant to a verbal explanation for humans without
background in computer science. This can be realized by simple template-based methods
[5]. Alternatively, Large Language Models could be used. For effective teaching a concept
to humans, near miss explanations have been proposed by [4]. Winston showed in his early
work on learning rules for relational perceptual concepts such as arcs, that providing near
misses rather than arbitrary negative examples results in faster convergence of the learned
model. In cognitive science it has been shown that teaching concepts by their difference to
similar concepts is much more efficient than contrasting them with more distant concepts (for
a discussion of these aspects and references, see [4]). In [4] an algorithm for constructing near
miss explanations is presented an applied to different domains. Furthermore, an empirical
study is presented where it could bew shown that in pairwise comparisons, participants
preferred near miss explanations over other types of explanations as more helpful.

Augmenting IP models with explanations can also be helpful to support medical decision
making [1]. Here, it might be helpful to go beyond ultrastrong machine learning and bring
the human expert in the loop for incremental model correction and adaption. In contrast to
standard interactive machine learning, human feedback might go beyond label correction
and allow human domain experts to also correct explanations which might be right for the
wrong reasons. Correcting explanations can be seen as a special case of knowledge injection
in human-in-the-loop IP which exploits such corrections for efficient model adaption.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/S10994-021-06048-W
https://doi.org//10.1007/S10994-021-06048-W
https://doi.org//10.1007/S10994-021-06048-W

Luc De Raedt and Ute Schmid 201

References
1 Sebastian Bruckert, Bettina Finzel, Ute Schmid: The Next Generation of Medical Decision

Support: A Roadmap Toward Transparent Expert Companions. Frontiers Artif. Intell. 3:
507973 (2020) https://doi.org/10.3389/FRAI.2020.507973

2 Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute
Schmid, Benjamin G. Zorn: Inductive programming meets the real world. Commun. ACM
58(11): 90-99 (2015) https://doi.org/10.1145/2736282

3 Stephen H. Muggleton, Ute Schmid, Christina Zeller, Alireza Tamaddoni-Nezhad, Tarek R.
Besold: Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP.
Mach. Learn. 107(7): 1119-1140 (2018) https://doi.org/10.1007/S10994-018-5707-3

4 Johannes Rabold, Michael Siebers, Ute Schmid: Generating contrastive explanations for
inductive logic programming based on a near miss approach. Mach. Learn. 111(5): 1799-1820
(2022) https://doi.org/10.1007/S10994-021-06048-W

5 Ute Schmid: Interactive Learning with Mutual Explanations in Relational Domains. Human-
Like Machine Intelligence 2022: 338-354 https://doi.org/10.1093/OSO/9780198862536.
003.0017

3.20 Explainable models via compression of tree ensembles
Sriraam Natarajan (University of Texas at Dallas – Richardson, US)

License Creative Commons BY 4.0 International license
© Sriraam Natarajan

Joint work of Siwen Yan, Sriraam Natarajan, Saket Joshi, Roni Khardon, Prasad Tadepalli
Main reference Siwen Yan, Sriraam Natarajan, Saket Joshi, Roni Khardon, Prasad Tadepalli: “Explainable Models

via Compression of Tree Ensembles” Mach. Learn.: 1-26 (2023)
URL https://doi.org/10.1007/s10994-023-06463-1

We consider the problem of explaining learned (relational) ensemble models. Ensemble
models (bagging and gradient-boosting) of relational decision trees have proved to be one of
the most effective learning methods in the area of probabilistic logic models (PLMs). While
effective, they lose one of the most important aspect of PLMs – interpretability.

Our key hypothesis in this work is that combining large number of logical decision trees
would yield in a more compressed model compared to that of combining standard decision
trees. This is due to the fact that unification of variables in logic would allow for effective
and efficient compression.

To this effect, we propose CoTE – Compression of Tree Ensembles – that produces a
single small decision list as a compressed representation. CoTE first converts the trees to
decision lists and then performs the combination and compression with the aid of the original
training set. Experiments on standard benchmarks demonstrate the value of this approach
and justifies the hypotheses that compression is more effective in logical decision trees.

23442

https://doi.org/10.3389/FRAI.2020.507973
https://doi.org/10.1145/2736282
https://doi.org/10.1007/S10994-018-5707-3
https://doi.org/10.1007/S10994-021-06048-W
https://doi.org/10.1093/OSO/9780198862536.003.0017
https://doi.org/10.1093/OSO/9780198862536.003.0017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10994-023-06463-1
https://doi.org/10.1007/s10994-023-06463-1
https://doi.org/10.1007/s10994-023-06463-1

202 23442 – Approaches and Applications of Inductive Programming

3.21 Inductive Programming meets Large Language Models
Gust Verbruggen (Microsoft – Keerbergen, BE)

License Creative Commons BY 4.0 International license
© Gust Verbruggen

Joint work of Gust Verbruggen, Vu Le, Sumit Gulwani
Main reference Gust Verbruggen, Vu Le, Sumit Gulwani: “Semantic programming by example with pre-trained

models”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–25, 2021.
URL https://doi.org//10.1145/3485477

Both inductive programming (IP) and large language models (LLMs) are able to complete
a task from a few examples. Instead of pitting them against each other, together they can
achieve a lot more. One example of such integration is FlashGPT, which iteratively uses
witness functions to break an inductive programming problem into smaller subproblems
until all are solved (FlashFill) and leverages an LLM to solve the subproblems that cannot
be solved symbolically (GPT -3). Instead of reiterating what has been discovered, this talk
focused on (a non-exhaustive list of) next steps for combining IP and LLMs.

First, we discuss how the LLM can be used to improve learning in a fully symbolic IP
system. Two approaches are (1) using the LLM to generate additional input-output examples
for the IP system, or (2) using the LLM to generate candidate solutions to serve as seeds
for initiating a search. The latter is a combination of component-based synthesis [1] and
sketching, both of which rely on generating useful substructures over the grammar of the
target language.

Second, we show how the LLM can be used to improve the experience of working with an
IP system, by providing natural language descriptions of the learned programs.

Third, we show how the scope of IP can be improved with LLMS in systems that do
not leverage witness functions. One potential method is masking semantic components,
performing IP as usual and learning a program that emits masks, and then resolving the
masks using an LLM.

Fourth, we show how operators that only use the embeddings from LLMs strike a
balance between the inference speed of symbolic operations and the number of examples
and capabilities of semantic operations. When the domain of a semantic relation is finite, or
when the task is extraction of relevant parts of the input, we can use embeddings of tokens
from the input to capture semantic relations between input and output.

References
1 Yoad Lustig, Moshe Y. Vardi: Synthesis from component libraries. Int. J. Softw. Tools

Technol. Transf. 15(5-6): 603-618 (2013) https://doi.org/10.1007/S10009-012-0236-Z
2 Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13

https://doi.org/10.1007/978-3-642-10672-9_3

3.22 Inductive Programming meets Real User Problems
Gust Verbruggen (Microsoft – Keerbergen, BE)

License Creative Commons BY 4.0 International license
© Gust Verbruggen

We show two novel applications of inductive programming that bring some unique challenges
with respect to parsing user input. Both problems share some challenges: the need for
speed, noisy input and labels, inferring constant values that adhere to a semantic bias,
underspecification of the problem, and suppression of programs with low confidence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3485477
https://doi.org//10.1145/3485477
https://doi.org//10.1145/3485477
https://doi.org/10.1007/S10009-012-0236-Z
https://doi.org/10.1007/978-3-642-10672-9_3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Luc De Raedt and Ute Schmid 203

First, we consider the problem of predicting the folder to which an email should be moved.
Popular email clients offer to automate this functionality by setting rules, and the expected
output of our learner is thus such a rule. An additional challenge with this problem is concept
drift. Our approach [1] learns simple propositional rules in conjunctive normal form by
generalizing (if an email is mistakenly not covered) or specializing (if an email is mistakenly
covered) the rule corresponding to a folder. Because we guarantee that all historical emails
are correctly classified, we easily adapt to concept drift. This classic inductive programming
approach performs better than many neural and hybrid baselines.

Second, we consider the problem of learning conditional formatting rules in spreadsheets.
An additional challenge is the scope of functions that can be used. Our approach [2, 3] uses
semi-supervised clustering of input values to tackle underspecification, then learns different
rules as decision trees, and ranks them with a learned ranker. Our corpus of 102K rules
from real spreadsheets allows this ranker to encode the semantic bias, which allows us to
outperform many neural and symbolic approaches, even if they have access to the same set
of base predicates.

References
1 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Gust Verbruggen: EmFore: Online

Learning of Email Folder Classification Rules. CIKM 2023: 2280-2290 https://doi.org/
10.1145/3583780.3614863

2 Mukul Singh, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Mohammad Raza, Gust Verbruggen: CORNET: Learning Table Formatting Rules By
Example. Proc. VLDB Endow. 16(10): 2632-2644 (2023) https://doi.org/10.14778/
3603581.3603600

3 Mukul Singh, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Gust Verbruggen: CORNET: Learning Spreadsheet Formatting Rules By Example. Proc.
VLDB Endow. 16(12): 4058-4061 (2023) https://doi.org/10.14778/3611540.3611620

3.23 Probabilistic Logic Programming: Quo Vadis?
Felix Weitkämper (LMU München, DE)

License Creative Commons BY 4.0 International license
© Felix Weitkämper

Probabilistic Inductive Logic Programming refers to learning probabilistic relational programs
from “examples”. These could be probabilistic logic programs, but many considerations
also apply to learning other statistical relational models. From the perspective of statistical
relational artificial intelligence, this is usually referred to as structure learning. Probabilistic
Inductive Logic Programming is key in several areas of artificial intelligence, including
knowledge discovery in stochastic, relational domains and causal structure discovery in
a Boolean relational setting. Probabilistic inductive logic programming is traditionally
considered difficult, since it adds another dimension to the classical ILP problem. Current
approaches are still based on traditional ILP approaches developed in the 1990s, while
the field of ILP has since made huge progress: Metainterpretive learning provides a new
conceptual framework for rethinking Inductive Logic Programming, Constraints and learning
from failures can help prune the search space, and Powerful ASP encodings can be leveraged
to achieve more consistent outcomes.

This raises the question: Can we leverage these modern techniques for PILP?

23442

https://doi.org/10.1145/3583780.3614863
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.14778/3603581.3603600
https://doi.org/10.14778/3603581.3603600
https://doi.org/10.14778/3611540.3611620
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

204 23442 – Approaches and Applications of Inductive Programming

4 Working groups

4.1 Large Language Models and Inductive Programming in Cognitive
Architectures

Bettina Finzel (Universität Bamberg, DE) and Frank Jäkel (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Bettina Finzel and Frank Jäkel

Cognitive architectures provide frameworks to simulate and test principles of cognition [1].
There are different components in cognitive architectures that qualify for being enhanced
by large language models (LLMs) [3] and inductive programming (IP) [2]. LLMs could
be used in the production module to generate rules for execution, in the memory module
as a compressor of information for more efficient access and possibly as the stimuli of a
general cognitive architecture as a model that produces outputs on which further reasoning
could be applied for decision making and learning. An open challenge remains in mimicking
the abilities of humans to switch between modalities in the sense that they are able to
dynamically choose between the representations they need. With respect to this, we were
discussing about some form of reward or reinforcer to increase the response for certain signals
or items in the process of inference and problem solving. Combining learning and reasoning
by integrating LLMs and IP in a cognitive architecture could be an enabler for validating
programs that get executed by the overall architecture and to possible get nearer to human
performance.

References
1 Paul Thagard: Cognitive Architectures. The Cambridge Handbook of Cognitive Science

2012: 50-70 https://doi.org/10.1017/CBO9781139033916.005
2 Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute

Schmid, Benjamin G. Zorn: Inductive programming meets the real world. Commun. ACM
58(11): 90-99 (2015) https://doi.org/10.1145/2736282

3 Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthas-
arathy, Sriram K. Rajamani, Rahul Sharma: Jigsaw: Large Language Models meet Program
Synthesis. ICSE 2022: 1219-1231 https://doi.org/10.1145/3510003.3510203

4.2 Avoiding too much search in Inductive Programming
Ute Schmid (Universität Bamberg, DE), David Cerna (The Czech Academy of Sciences –
Prague, CZ), and Hector Geffner (RWTH Aachen, DE)

License Creative Commons BY 4.0 International license
© Ute Schmid, David Cerna, and Hector Geffner

A crucial part of inductive programming (IP) is search. Since search is costly, an important
question is how we can avoid to search so much or too much.

What we search for can be very different things: logic or functional programs, but also
decision lists, policies, classifications, language representations or deep learned models. How
search is performed can be also realized with many different approaches: enumeration, anti-
unification, genetic programming, greedy strategies, combinatorial optimization, stochastic
gradient descent, deep reinforcement learning, or Monte Carlo Tree Search. In general, we
do need to learn structure as well as probabilities.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/CBO9781139033916.005
https://doi.org/10.1145/2736282
https://doi.org/10.1145/3510003.3510203
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Luc De Raedt and Ute Schmid 205

To evaluate the quality of the learned program, different aspects might be focused on alone
or in combination which is a challenge for search. Obvious criteria are sample complexity
and scalability. But one might also be interested in novelty of the learned program, how
similar is the inductive strategy to human learning (humans do not enumerate first and than
select but typically generalise over few examples).

To push research on becoming more search efficient, a set of benchmark problems and
a competition should be introduced. Promising challenge data sets might come from the
FlashFill domain (learning more complex Excel functions and string transformations), the
abstract reasoning challenge (ARC) and the modified ILP version might be interesting,
furthermore, we could look at problems from the International Math Olympiad Challenge.

We should critically evaluate for which problems deep learning/generative approaches
are more successful and hopefully identify a class of problems where symbolic IP is superior.
For instance, the IP system FlashFill performs better than the transformer-based SmartFill.
The core difference between neural network approaches and symbolic IP is that IP returns
explicit programs which give the intensional characterisation of the input/output-examples
while neural networks are extensional representations. Therefore, one might postulate that
neural networks cannot learn recursion.

Currently, string transformation problems are often either syntactic (return the first letter
of a string) – which works very well for symbolic IP – or semantic (give the capital for a
country) – where generative AI is very good at. Maybe we should look for transformation
problems which combine syntactic and semantic transformations (return the first letter for
every string which names a capital). As it is so often the case, it might be a good idea to
combine symbolic IP and deep learning/generative approaches. A paper we should look at is
[1].

References
1 Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, François Charton: Deep

symbolic regression for recurrence prediction. ICML 2022: 4520-453

4.3 Evaluation Criteria for Interpretability and Explainability of
Inductive Programming

Ute Schmid (Universität Bamberg, DE), Lun Ai (Imperial College London, GB), Claudia
d’Amato (University of Bari, IT), and Johannes Fürnkranz (Johannes Kepler Universität
Linz, AT)

License Creative Commons BY 4.0 International license
© Ute Schmid, Lun Ai, Claudia d’Amato, and Johannes Fürnkranz

Inductive programming results in symbolic models (programs) which are inherently inter-
pretable. Nevertheless, there might be a need for explainability to humans – end-users or
domain experts from other areas than computer science. In the discussion group we focused
on the question of how to measure the quality of interpretable representations (programs)
and of post-hoc generated explanations. The main challenge is to provide for assessment
metrics which are not dependent on studies with humans but which can be evaluated directly
for the interpretation/explanations. A core difficulty is that the quality of an explanation is
context-dependent: it depends on what is explained to whom in what way (how) and for
what reason (why). The way to explain something can be a set of symbolic rules (learned
with IP or a rule learning system or extracted from a neural net), highlighting important

23442

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

206 23442 – Approaches and Applications of Inductive Programming

features (which is done by many XAI approaches such as LIME, SHAP or LRP), a natural
language explanation, prototypical or near miss examples. Furthermore, explanations can be
more abstract or give more details. Explanations can either be constructed to explain for
what reason a learned (black box) model gave a specific output (mechanistic explanation)
or to explain the learned content to a human (functional explanation, ultra-strong machine
learning).

As candidates for assessment metrics we discussed (1) complexity measures (proposals
for cognitive complexity measures, structural information theory, Kolmogorov complexity),
(2) semantic coherence, (3) reliability of a component (of a program) which can result in
abstracting this part away if a human has sufficient/justified trust. A further aspect for
evaluation might be a suitable trade-off between the size of the explanation (memory) and
the effort to interpret it (run time) as proposed, for instance by Donald Michie [1] or Lun Ai
[2].

A program itself can be a good explanation, depending of its complexity. Abstraction
might be a useful method to make explanations more comprehensible. Here approaches
like predicate/function invention, anti-unification, introducing higher-orderness (such as
map/fold), or compression might be helpful. A hierarchy of abstractions can be helpful for
providing the ‘right’ level of detail for a given explanatory context. There are first approaches
of explanations as a dialogue where more detailed or different forms of explanations can be
presented to a human [3]. Learned (Prolog) programs are also suitable in this context: The
highest level of abstraction refers to a single (left-hand/target/head) predicate, the next
level of detail can be achieved by presenting the instantiated right-hand side of a rule (or a
verbal description of it), continued by expanding predicates in the body until ground facts
are reached.

Recently, an explainable version FlashFill has been developed. It showed that users
sometimes reject a FlashFill rule which correctly covers the examples because they do not
understand it. Here approximate symbolic regression has been applied to provide simpler
explanations [4]. In the group of Josh Tenenbaum, the system LILO [5] has been developed
which provides explanations by abstraction.

A final idea on assessing the quality of an interpretation/explanation has been to input
explanations of a learned programs to a LLM, let the LLM generate a program from that
and than compare the originally synthesized program with the one generated by the LLM (a
kind of loss function). Comparison can be done by behavioral comparison for test cases or
by comparing the code.

References
1 Donald Michie: Experiments on the Mechanization of Game-Learning. 2-Rule-Based Learn-

ing and the Human Window. Comput. J. 25(1): 105-113 (1982) https://doi.org/10.
1093/COMJNL/25.1.105

2 Lun Ai, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, Ute Schmid: Beneficial
and harmful explanatory machine learning. Mach. Learn. 110(4): 695-721 (2021) https:
//doi.org/10.1007/S10994-020-05941-0

3 Bettina Finzel, David Elias Tafler, Anna Magdalena Thaler, Ute Schmid: Multimodal
Explanations for User-centric Medical Decision Support Systems. HUMAN@AAAI Fall
Symposium 2021

4 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Gust Verbruggen:
CodeFusion: A Pre-trained Diffusion Model for Code Generation. EMNLP 2023: 11697-11708
https://doi.org/10.48550/arXiv.2310.17680

https://doi.org/10.1093/COMJNL/25.1.105
https://doi.org/10.1093/COMJNL/25.1.105
https://doi.org/10.1007/S10994-020-05941-0
https://doi.org/10.1007/S10994-020-05941-0
https://doi.org/10.48550/arXiv.2310.17680

Luc De Raedt and Ute Schmid 207

5 Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X. Olausson, Muxin Liu, Joshua
B. Tenenbaum, Jacob Andreas: LILO: Learning Interpretable Libraries by Compressing
and Documenting Code. CoRR abs/2310.19791 (2023) https://doi.org/10.48550/ARXIV.
2310.19791

4.4 Finding Suitable Benchmark Problems for Inductive Programming
Ute Schmid (Universität Bamberg, DE), Martin Berger (University of Sussex – Brighton,
GB), Sebastijan Dumancic (TU Delft, NL), Nathanaël Fijalkow (CNRS – Talence, FR), and
Gust Verbruggen (Microsoft – Keerbergen, BE)

License Creative Commons BY 4.0 International license
© Ute Schmid, Martin Berger, Sebastijan Dumancic, Nathanaël Fijalkow, and Gust Verbruggen

To advance progress as well as visibility of IP, a collection of suitable benchmarks, convincing
use cases, and joint formats to represent problems, as well as starting an IP challange have
been identified as helpful. In the discussion group, we focussed on benchmark sets.

First we collected problems currently used in different groups: List problems, regular
expressions (RegEx), boolean language inference, competitive programming, Math Olympiad
Challenge, Reasoning/Theorem Proving, Planning, Knowledge Graphs, Zendo, Games,
Navigation, Biology, standard ML benchmarks (UCML Repository), natural language to
programs (NL2P), abstract reasoning challenge (ARC).

Than we discussed what characteristics benchmark problems should have: tunable, clear
performance metrics, standard format, correct annotations, noise, social recognition/PR,
breadth, not solvable by LLMs (alone), conceptual jumps, linkable to external resources,
curriculum, dramatic finish line, doable by humans. Several of these characteristic were
discarded. For instance, clear metrics (beyond just right or wrong) did not seem to be a
good fit (but see discussion results about explainability). Format has also been seen as not
relevant compared to having good environments to execute and evaluate learned programs
and tools/environments which are easily usable.

For a selected set of characteristics, we identified that problems from the list above which
fulfill the respective characteristic:

Tunable: List problems, RegEx, Boolean languages, Knowledge Graphs, Games, Naviga-
tion, (competitive programming)
Breadth: List problems, competitive programming, Games, NLP2P, Math Olymp, ARC
Not solvable by LLM: List problems, Knowledge Graphs, Math Olymp, ARC
Dramatic finish: Math Olymp, Biology, NLP2P, ARC
Curriculum: List problems, RegEx, Math Olymp, Navigation
Doable by (average) humans: List Problems, RegEx, Games, Navigation, ARC

Given the number of criteria which are met, the following problem domains have been
identified as the most promising ones: List problems (including string transformations and
other domain-specific language based approaches), RegEx, Math Olymp, ARC.

We than had a further critical look at the selected problem classes and evaluated the
following aspects: Not suitable for application, lack of format, producable, lack of prob-
abilistic benchmarks, tension between standard and generation, domain specific problems,
not perceived as difficult/relevant, need/miss to have a relational core, loss of propositional
benchmarks, lack of diversity of evolution, novelty (invent a new sorting algorithm, automated
computer scientist), plugable.

23442

https://doi.org/10.48550/ARXIV.2310.19791
https://doi.org/10.48550/ARXIV.2310.19791
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

208 23442 – Approaches and Applications of Inductive Programming

After discussing these additional aspects, we came up with the following set of potentially
interesting benchmark problems:

The Automated Computer Scientist (from Andrew Cropper): learning novel (e.g. sorting)
algorithms or novel data structures [1]
Joint IP and KG (Knowledge Graph) problems, especially for combining syntactic and
semantic transformations (e.g. give the capital for a country and than take the first letter
of it), this can be list problems or Excel tables [5]
Strategy learning (explicit compared to implicit policy learning in reinforcement learning):
for human problem solving, planning (look at problems from the planning competition)
[2, 3, 4]
Online encyclopedia of integer sequences OEIS (not for all of them exists a closed formula)
Expert domains: learning strategies/patterns for SAT-solvers, theorem provers
Constructing ML pipelines (AutoML)

Links to benchmark data sets:
Popper’s (includes Zendo, many others)
https://github.com/logic-and-learning-lab/Popper/tree/main/examples
SyGuS (includes list problems, FlashFill, phone numbers)
https://github.com/SyGuS-Org/benchmarks
IP Repository (programming benchmarks, including problem solving like Tower of Hanoi)
https://www.inductive-programming.org/repository.html
Regular expressions
https://codalab.lisn.upsaclay.fr/competitions/15096
Boolean language inference
https://www.iwls.org/contest/
Competitive programming
https://github.com/openai/human-eval
Math Olympiad Challenge
https://github.com/lupantech/dl4math#-mathematical-reasoning-benchmarks
https://github.com/openai/miniF2F/tree/v1
Planning
https://github.com/AI-Planning/pddl-generators
Program synthesis benchmarks from genetic programming community
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://zenodo.org/records/5084812
Standard ML benchmarks: UC Irvine ML Repository
https://archive.ics.uci.edu/
Abstract Reasoning Challenge (ARC) [7, 8]
https://github.com/fchollet/ARC
https://lab42.global/arc/
E-Mail Folder Classification
http://www-2.cs.cmu.edu/~enron/
https://catalog.ldc.upenn.edu/LDC2015T03
Rule learning
https://github.com/kliegr/arcbench

https://github.com/logic-and-learning-lab/Popper/tree/main/examples
https://github.com/SyGuS-Org/benchmarks
https://www.inductive-programming.org/repository.html
https://codalab.lisn.upsaclay.fr/competitions/15096
https://www.iwls.org/contest/
https://github.com/openai/human-eval
https://github.com/lupantech/dl4math#-mathematical-reasoning-benchmarks
https://github.com/openai/miniF2F/tree/v1
https://github.com/AI-Planning/pddl-generators
https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
https://zenodo.org/records/5084812
https://archive.ics.uci.edu/
https://github.com/fchollet/ARC
https://lab42.global/arc/
http://www-2.cs.cmu.edu/~enron/
https://catalog.ldc.upenn.edu/LDC2015T03
https://github.com/kliegr/arcbench

Luc De Raedt and Ute Schmid 209

References
1 Andrew Cropper: The Automatic Computer Scientist. AAAI 2023: 15434 https://doi.

org/10.1609/AAAI.V37I13.26801
2 Mario Martín, Hector Geffner: Learning Generalized Policies from Planning Examples

Using Concept Languages. Appl. Intell. 20(1): 9-19 (2004) https://doi.org/10.1023/B:
APIN.0000011138.20292.DD

3 Ute Schmid, Emanuel Kitzelmann: Inductive rule learning on the knowledge level. Cogn.
Syst. Res. 12(3-4): 237-248 (2011) https://doi.org/10.1016/J.COGSYS.2010.12.002

4 Jude W. Shavlik: Acquiring Recursive and Iterative Concepts with Explanation-Based
Learning. Mach. Learn. 5: 39-40 (1990) https://doi.org/10.1007/BF00115894

5 Mukul Singh, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Mohammad Raza, Gust Verbruggen: CORNET: A neurosymbolic approach to learning
conditional table formatting rules by example. CoRR abs/2208.06032 (2022) https://doi.
org/10.48550/ARXIV.2208.06032

6 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Gust Verbruggen: EmFore: Online
Learning of Email Folder Classification Rules. CIKM 2023: 2280-2290 https://doi.org/
10.1145/3583780.3614863

7 James Ainooson, Deepayan Sanyal, Joel P. Michelson, Yuan Yang, Maithilee Kunda: An
Approach for Solving Tasks on the Abstract Reasoning Corpus. CoRR abs/2302.09425
(2023) https://doi.org/10.48550/ARXIV.2302.09425

8 Jonas Witt, Stef Rasing, Sebastijan Dumancic, Tias Guns, Claus-Christian Carbon: A
Divide-Align-Conquer Strategy for Program Synthesis. CoRR abs/2301.03094 (2023) https:
//doi.org/10.48550/ARXIV.2301.03094

5 Panel discussions

5.1 Inductive Programming – How to Go On?
Ute Schmid (Universität Bamberg, DE), Claudia d’Amato (University of Bari, IT), Hec-
tor Geffner (RWTH Aachen, DE), Sriraam Natarajan (University of Texas at Dallas –
Richardson, US), and Josh Rule (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Ute Schmid, Claudia d’Amato, Hector Geffner, Sriraam Natarajan, and Josh Rule

In a final discussion we addressed topics and activities to make scientific progress and make
the topic more visible. A crucial problem might be that there is no core general approach to
IP (such as gradient descent for neural networks). The most prominent IP task is to learn
programs from input/output examples. Other approaches address learning programs from
traces or constraints. Methods range from classic inductive generalization and folding for
induction of functional programs over genetic and evolutionary programming to a collection
of ILP methods (sequential covering, theta-subsumption, combining with tools from answer
set programming). Relevant use cases might not have a focus on learning recursion/loops
but on relations (e.g. in medicine and biology). The focus on learning programs (including
recursion) might profit from using Python as target language.

Furthermore, current IP systems are mostly not easy to find and to use. Therefore, a
toolbox which can be easily used (such as Weka for standard ML) might be helpful. Currently
Sebastijan Dumancic is working on such a tool box (Herb.jl). A collection of data sets and
benchmark problems (see summary of the discussion group about benchmarks) would also
be very helpful, especially when they are given in a standardized, easy to parse format.

23442

https://doi.org/10.1609/AAAI.V37I13.26801
https://doi.org/10.1609/AAAI.V37I13.26801
https://doi.org/10.1023/B:APIN.0000011138.20292.DD
https://doi.org/10.1023/B:APIN.0000011138.20292.DD
https://doi.org/10.1016/J.COGSYS.2010.12.002
https://doi.org/10.1007/BF00115894
https://doi.org/10.48550/ARXIV.2208.06032
https://doi.org/10.48550/ARXIV.2208.06032
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.48550/ARXIV.2302.09425
https://doi.org/10.48550/ARXIV.2301.03094
https://doi.org/10.48550/ARXIV.2301.03094
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

210 23442 – Approaches and Applications of Inductive Programming

To make the field of IP less distributed, it might be helpful to write a primer to IP including
the classic approaches of inductive functional programming and relate also to deductive and
transformational program synthesis methods and genetic/evolutionary programming. Papers
falling in this category are:

Andrew Cropper, Sebastijan Dumancic:
Inductive Logic Programming At 30: A New Introduction. J. Artif. Intell. Res. 74:
765-850 (2022) https://doi.org/10.1613/JAIR.1.13507
Pierre Flener, Ute Schmid:
Inductive Programming. Encyclopedia of Machine Learning and Data Mining 2017:
658-666 https://doi.org/10.1007/978-1-4899-7687-1_137
(updated in 2020, not online yet)
Pierre Flener, Ute Schmid:
An introduction to inductive programming. Artif. Intell. Rev. 29(1): 45-62 (2008)
https://doi.org/10.1007/S10462-009-9108-7
Sumit Gulwani, Oleksandr Polozov, Rishabh Singh: Program Synthesis. Found. Trends
Program. Lang. 4(1-2): 1-119 (2017) https://doi.org/10.1561/2500000010
Emanuel Kitzelmann:
Inductive Programming: A Survey of Program Synthesis Techniques. AAIP 2009: 50-73
https://doi.org/10.1007/978-3-642-11931-6_3

As outcome of the AAIP 2023 seminar we plan to publish a book “Inductive Programming”
which contains systematic introductions into the core topics as well as a collection of recent
work (from participants of the seminar plus an open call for contributions) addressing topics
such as “New Approaches to IP”, “Cognitive Aspects of IP”, “Applications of IP”.

Furthermore, it has been proposed to apply for an IP workshop at IJCAI and to try to
include IP as a topic at the next European Summer School on AI (ESSAI). It might also be
helpful for visibility and community building to propose a COST Network on IP.

The website https://www.inductive-programming.org/ should be kept but made more
general and link from there to a github for IP. The Wikipedia Entry on Inductive Program-
ming https://en.wikipedia.org/wiki/Inductive_programming should be updated by
the community. We also might make at least a tag inductiveprogramming at linkedin which
the IP community should include in posts. More persons of the community should give
Inductive Programming as Keyword in their google scholar profile. We could sample all
videos related to IP in a YouTube channel, and we could produce a 3 minute introductory
video.

https://doi.org/10.1613/JAIR.1.13507
https://doi.org/10.1007/978-1-4899-7687-1_137
https://doi.org/10.1007/S10462-009-9108-7
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-642-11931-6_3
https://www.inductive-programming.org/
https://en.wikipedia.org/wiki/Inductive_programming

Luc De Raedt and Ute Schmid 211

Participants

Lun Ai
Imperial College London, GB

Martin Berger
University of Sussex –
Brighton, GB

David Cerna
The Czech Academy of Sciences –
Prague, CZ

David J. Crandall
Indiana University –
Bloomington, US

Claudia d’Amato
University of Bari, IT

Luc De Raedt
KU Leuven, BE

Sebastijan Dumančić
TU Delft, NL

Kevin Ellis
Cornell University – Ithaca, US

Nathanaël Fijalkow
CNRS – Talence, FR

Bettina Finzel
Universität Bamberg, DE

Johannes Fürnkranz
Johannes Kepler Universität
Linz, AT

Hector Geffner
RWTH Aachen, DE

Céline Hocquette
University of Oxford, GB

Frank Jäkel
TU Darmstadt, DE

Emanuel Kitzelmann
Technische Hochschule
Brandenburg, DE

Tomáš Kliegr
University of Economics –
Prague, CZ

Maithilee Kunda
Vanderbilt University –
Nashville, US

Johannes Langer
Universität Bamberg, DE

Sriraam Natarajan
University of Texas at Dallas –
Richardson, US

Stassa Patsantzis
University of Surrey –
Guildford, GB

Josh Rule
University of California –
Berkeley, US

Zeynep G. Saribatur
TU Wien, AT

Ute Schmid
Universität Bamberg, DE

Gust Verbruggen
Microsoft – Keerbergen, BE

Felix Weitkämper
LMU München, DE

23442

	frontmatter-dagrep-v013-i010
	dagrep_v013_i010_p001_23401
	Executive Summary (Andrej Bauer, Katja Berčič, Florian Rabe, Nicolas Thiéry)
	Table of Contents
	Overview of Talks
	Who finds the short proof? Searching for Wormholes in Proof-Space (Christoph Benzmüller)
	A catalogue of mathematical datasets (Katja Berčič)
	Formal verification of mathematical algorithms when the definitions are out of reach (Alex Best)
	Learning from ``invisible mathematics'' (Jacques Carette)
	Proving an Execution of an Algorithm Correct? (James H. Davenport)
	Extracting Mathematical Concepts from Text (Valeria de Paiva)
	(Re)Verification of Proofs (Catherine Dubois)
	Understanding the Symmetries of Bin Packing Problems Inspired by Application Deployment in the Cloud (Madalina Erascu)
	House of Graphs: A searchable database of interesting graphs and more (Jan Goedgebeur)
	Mostly Automated Proof Repair for Verified Libraries (Kiran Gopinathan)
	Towards a centralized system for mathematical objects (Dimitri Leemans)
	Machine-learnable Data Sets for Formalized Mathematics (MLFMF) (Matej Petkovic and Andrej Bauer)
	Heterogenous search in formal mathematical libraries (Claudio Sacerdoti Coen)
	Proof and Computation with PVS (Natarajan Shankar)
	Enumerion, a system for systematic enumeration of finite mathematical structures (Jure Taslak)
	Alien Coding: Learning Synthesis of OEIS Sequences (Josef Urban)
	Isabelle as System Platform for the Archive of Formal Proofs (AFP) (Makarius Wenzel)

	Working groups
	Using verified code inside CASes (Alex Best and Tobias Nipkow)
	Reconceptualization (Jacques Carette, Gilles Dowek, and Catherine Dubois)
	Formal Verification of Computer Algebra (Factorisatoion) (James H. Davenport, Alex Best, Mario Carneiro, and Edgar Costa)
	Coq, Isabelle and Dedukti as heterogeneous networks (Filip Koprivec, Mario Carneiro, Stefania Dumbrava, Matej Petkovic, and Makarius Wenzel)
	Object identification using invariant based decision trees (Filip Koprivec and Matej Petkovic)
	Datasets (Dimitri Leemans, Katja Berčič, Jan Goedgebeur, Darij Grinberg, Samuel Lelievre, Harshit J Motwani, and Tom Kaspar Wiesing)
	Aligning Mathematical Concepts Across Libraries (Florian Rabe)
	Scalability Estimates of Graph Certificates in a Theorem Prover Using SAT Encodings (Kathrin Stark, Madalina Erascu, Kazuhiko Sakaguchi, and Jure Taslak)

	Participants

	dagrep_v013_i010_p024_23411
	Executive Summary (Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac, and Michael Veale)
	Table of Contents
	Overview of Talks
	Analyzing Intentional Behavior in Autonomous Agents under Uncertainty (Filip Cano Córdoba)
	Is Software Eaten by the Cloud? (Corinne Cath)
	Causal Explanations: What Can Computer Scientists Do for Accountability (Hana Chockler)
	What Does Data Erasure Mean? What Should Data Erasure Mean? (Aloni Cohen)
	Complexity Effects on a Highly-Accountable System Containing Safety-Critical Software (Misty Davies)
	Accountable Software Systems: Lessons from System Safety (Roel Dobbe)
	Accountability in Computing: Concepts and Mechanisms (Joan Feigenbaum)
	AI is a Mushroom (Jake Goldenfein)
	Accountable Legal Decision Support? (Thomas T. Hildebrandt)
	Platforms, Sovereignty, and Software Accountability (Divij Joshi)
	``Put the Car on the Stand'': SMT-based Oracles for Investigating Decisions (Samuel Judson)
	Algorithmic Systems Through an Ethnographic Lens (Daan Kolkman)
	Verification of Accountability in Protocols with Tamarin (Robert Künnemann)
	Accountability Lessons Learned from the Design and Deployment of Digital Contact Tracing (Wouter Lueks)
	Accountability and Explainability of French Housing Benefits Computation (Denis Merigoux)
	An AI Transparency Register for the Public Sector (Matthias Spielkamp)
	Responsibility and Liability regarding Software and AI (Rüdiger Wilhelmi)
	Scenic: A Probabilistic Scenario Description Language (Beyazit Yalcinkaya)
	Towards a Framework for Certification of Reliable Autonomous Systems (Neil Yorke-Smith)

	Working groups
	Working groups topic discussions
	Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 1 (Wouter Lueks and Scott Shapiro)
	Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 2 (Roel Dobbe)
	Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 3 (Bettina Könighofer and Neil Yorke-Smith)
	Forms of (Un)Accountability in Contemporary Software Ecosystems: Group 4 (Beyazit Yalcinkaya)
	Software Ecosystem Futures: Group 1 (Divij Joshi)
	Software Ecosystem Futures: Group 2 (Filip Cano Córdoba)
	Software Ecosystem Futures: Group 3 (Neil Yorke-Smith)

	Open problems
	Concluding Exercise: Open Questions (Michael Veale, Thomas Arnold, Filip Cano Córdoba, Corinne Cath, Hana Chockler, Aloni Cohen, Misty Davies, Roel Dobbe, Joan Feigenbaum, David Fuenmayor, Ashish Gehani, Jake Goldenfein, Thomas T. Hildebrandt, Divij Joshi, Samuel Judson, Daan Kolkman, Bettina Könighofer, Joshua A. Kroll, Robert Künnemann, Stefan Leue, Wouter Lueks, Rupak Majumdar, Kira Matus, Denis Merigoux, Ruzica Piskac, Scott Shapiro, Jatinder Singh, Matthias Spielkamp, Rüdiger Wilhelmi, Beyazit Yalcinkaya, and Neil Yorke-Smith)

	Participants

	dagrep_v013_i010_p050_23412
	Executive Summary (Ori Lahav, Azalea Raad, Joseph Tassarotti, and Viktor Vafeiadis)
	Table of Contents
	Overview of Talks
	Semantics of Remote Direct Memory Access (Guillaume Ambal)
	Checking Liveness Properties under Weak Consistency (TSO as an Example) (Parosh Aziz Abdulla)
	Correctly Combining Concurrent and Persistent Transactional Memory (Brijesh Dongol)
	Utilizing Coherence for Persistence (Michal Friedman)
	Some compositional semantics for shared memory: sequential consistency and release/acquire (Ohad Kammar)
	Programming Persistency Should Be Easy – but is it? (Jeehoon Kang)
	Challenges in Empirically Testing Memory Persistency Models (Vasileios Klimis)
	Automating Weak Memory Model Metatheory and Verification (Michalis Kokologiannakis)
	Abstraction for Crash-Resilient Objects (Ori Lahav)
	Fairness for load buffering memory models (Anton Podkopaev)
	DARTAGNAN: One tool for all models (Hernán Ponce de León)
	Towards a formal specification of the Intel Architecture (Alastair Reid)
	System and Failure Models Matter (Michael Scott)
	Transactional Semantics with Zombies (Michael Scott)
	Specifying and Verifying Persistent Libraries (Léo Stefanesco)
	A Type System for Intermittent Computing (Milijana Surbatovich)
	Separation Logic for Concurrent, Crash-Safe Systems (Joseph Tassarotti)
	Persistent Scripting (Haris Volos)
	Verifying the persistency library FliT (Heike Wehrheim)

	Participants

	dagrep_v013_i010_p065_23421
	Executive Summary (Gorjan Alagic, Stacey Jeffery, Maria Naya-Plasencia, and Rainer Steinwandt)
	Table of Contents
	Overview of Talks
	NIST PQC process update (Gorjan Alagic and Daniel C. Smith-Tone)
	Single-query Quantum Hidden Shift Attacks (Xavier Bonnetain)
	Quantum algorithms for isogeny-based cryptography (Péter Kutas)
	Quantum Linear Key-recovery Attacks Using the QFT (André Schrottenloher)
	Quantum algorithms for lattice problems (Yixin Shen)
	Quantum decoding problem (Jean-Pierre Tillich)

	Working groups
	Quantum algorithms for Lattice Isomorphism Problem (Jean-François Biasse)
	Regev's quantum factoring algorithm (Martin Ekerå)
	Cryptanalysis of LR5 (Christian Majenz)
	Code-based group (Jean-Pierre Tillich)

	Participants

	dagrep_v013_i010_p076_23422
	Executive Summary (Jason Li, Debmalya Panigrahi, Laura Sanita, and Thatchaphol Saranurak)
	Table of Contents
	Overview of Talks
	Fast Algorithms via Dynamic-Oracle Matroids (Joakim Blikstad)
	The girth problem and its variants in network design (Greg Bodwin)
	Differentially Private Densest Subgraph (Michael Dinitz)
	On Dynamic Graph Approximations: The case of j-Trees (Gramoz Goranci)
	Approximation Algorithms for 2-Connectivity (Fabrizio Grandoni)
	Polylogarithmic Universal Steiner Trees and Strong Sparse Partition Hierarchies (Ellis Hershkowitz)
	All-Pairs Minimum Cuts in Almost-Linear Time (Jason Li)
	Recent Advances on Maximum Flows (Yang P. Liu)
	Fair Division of Indivisible Goods and Graph Algorithms (Kurt Mehlhorn)
	Hopsets and Algorithmic Applications (Yasamin Nazari)
	Algorithms for Coloring Tournaments (Alantha Newman)
	Quotient sparsification for submodular functions (Kent Quanrud)
	Using Isolating Mincuts for Fast Graph Algorithms: A tutorial (Thatchaphol Saranurak)
	Decremental Bipartite Matching (Aaron Sidford)
	Approximation Algorithms for Connectivity Augmentation Problems (Vera Traub)
	Faster Deterministic Vertex Connectivity Algorithms (Sorrachai Yingchareonthawornchai)

	Participants

	dagrep_v013_i010_p090_23431
	Seminar Motivation and Summary (Sven Dietrich, Artur Hermann, Frank Kargl, Hartmut König, and Pavel Laskov)
	Table of Contents
	Overview of Keynotes
	Three Faces of AI in Cybersecurity (Pavel Laskov)
	The Bumpy Road of AI-based Attack Detection (Konrad Rieck)
	Beyond Detection: Revisiting AI For Effective Network Security Monitoring (Robin Sommer)

	Overview of Lightning Talks
	Robust, Explainable, and Privacy-Respecting Sybil Attack Defense (Christian Bungartz)
	The SuperviZ project – towards enhanced Security Orchestration, Automation and Response (Hervé Debar)
	A Strategy to Evaluate Test Time Evasion Attack Feasibility (Stephan Kleber)
	Privacy-preserving Artificial Intelligence for Telecommunications (Nicolas Kourtellis)
	Comparison of a ML-based approach with Snort in an IoT environment (Max Schrötter and Bettina Schnor)

	Working groups
	Assessment of AI-Based Attacks in Cybersecurity (Ilies Benhabbour, Daniel Fraunholz, Jan Kohlrausch, Hartmut König, Chethan Krishnamurthy Ramanaik, Michael Meier, Simin Nadjm-Tehrani, Andriy Panchenko, and Konrad Rieck)
	Security of Large Language Models (Hervé Debar, Sven Dietrich, Pavel Laskov, Emil C. Lupu, and Eirini Ntoutsi)
	Trust in AI and Modeling of Threats against AI in Network Defense (Stephan Kleber, Christian Bungartz, Artur Hermann, Peter Herrmann, Marko Jahnke, Frank Kargl, Andreas Mitschele-Thiel, Delphine Reinhardt, and Jessica Steinberger)
	AI-Powered Network Defenses (Vera Rimmer, Sebastian Böhm, Georg Carle, Marco Caselli, Nicolas Kourtellis, Bettina Schnor, Thomas Schreck, Max Schrötter, and Robin Sommer)

	World Café and Outlook
	In which of these fields is it most important to make research progress and why: ``Security for AI'', ``AI-based attacks'', or ``AI for Security''?
	What is your one key take-away from the seminar?

	Participants

	dagrep_v013_i010_p130_23432
	Executive Summary (Aaron Ding, Eyal de Lara, Schahram Dustdar, and Ella Peltonen)
	Table of Contents
	Overview of Talks
	Future of Communications: Why we need Edge AI and more (Susan Bayhan)
	Increasing AI Sustainability with Symbolic Data Representation on the Edge (Ivona Brandic)
	Edge Enabled Autonomous Driving and Mobility Services (Liam Pedersen)
	The economics of edge AI don’t look great – or why edge computing may always be the future (Henning Schulzrinne)
	Enabling data spaces: existing developments and challenges (Gürkan Solmaz)

	Working groups
	Definition and Usecases of Edge AI (Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Tobias Meuser, Shishir Girishkumar Patil, and Ella Peltonen)
	Ecosystem: Software and Hardware Problems (Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Nitinder Mohan, Shishir Girishkumar Patil, and Ella Peltonen)
	Measure what matters (Dewant Katare, Eyal de Lara, Aaron Ding, Schahram Dustdar, Tobias Meuser, Shishir Girishkumar Patil, and Ella Peltonen)

	Panel discussions
	What's Next after Edge AI (Henning Schulzrinne, Shishir Girishkumar Patil, Liam Pedersen, and Jan Rellermeyer)

	Participants

	dagrep_v013_i010_p139_23441
	Executive Summary (Manuel Rigger, Hannes Mühleisen, and Danica Porobic)
	Table of Contents
	Overview of Talks
	SQLancer Tutorial (Manuel Rigger)
	Informal Proofs of Correctness for Lock-free Algorithms (Russell Sears)

	Working groups
	Working Group on Benchmarking (Lawrence Benson, Carsten Binnig, Federico Lorenzi, Danica Porobic, Tilmann Rabl, Anupam Sanghi, Russell Sears, and Pinar Tözün)
	Working Group on Transactions and Concurrency (Wensheng Dou, Adam Dickinson, Burcu Kulahcioglu Ozkan, Umang Mathur, Everett Maus, Stan Rosenberg, Gambhir Sankalp, Caleb Stanford, and Cheng Tan)
	Working Group on Query Languages and Debugging (Denis Hirn, Moritz Eyssen, Tim Fischer, Torsten Grust, Muhammad Ali Gulzar, Hannes Mühleisen, Thomas Neumann, and Mark Raasveldt)
	Working Group on Testing ``Analytical'' Components of Databases (Manuel Rigger, Jinsheng Ba, Ankush Desai, Adam Dickinson, Wensheng Dou, Stefania Dumbrava, Moritz Eyssen, Florian Gerlinghoff, Hong Hu, Zu-Ming Jiang, Marcel Kost, Everett Maus, Mark Raasveldt, Andrei Satarin, Thodoris Sotiropoulos, and Chengyu Zhang)

	Participants

	dagrep_v013_i010_p182_23442
	Executive Summary (Ute Schmid and Luc De Raedt)
	Table of Contents
	Overview of Talks
	Effects of explaining machine-learned logic programs for human comprehension and discovery (Lun Ai)
	Making program synthesis fast on a GPU (Martin Berger)
	Anti-unification and Generalization: What's next? (David Cerna)
	On the Need of Learning Disjointness Axioms for Knowledge Graph Refinement and for Making Knowledge Graph Embedding Methods more Robust (Claudia d'Amato)
	How to make logics neurosymbolic (Luc De Raedt)
	What should we do next in ILP? (Sebastijan Dumančić)
	Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language (Kevin Ellis)
	Towards Programmatic Reinforcement Learning (Nathanaël Fijalkow)
	Inductive Programming for Explainable Artificial Intelligence (IP for XAI) (Bettina Finzel)
	On Deep Rule Learning (Johannes Fürnkranz)
	Three Learning Problems in Planning (Hector Geffner)
	A tutorial on Popper (Céline Hocquette)
	Relational program synthesis with numerical reasoning (Céline Hocquette)
	On the role of natural language for self-programming in cognitive architectures (Frank Jäkel)
	QCBA: improving rule classifiers learned from quantitative data by recovering information lost by discretisation (Tomáš Kliegr)
	RDFrules: A Swiss knife for relational association rule learning, classification and knowledge graph completion (Tomáš Kliegr)
	The Child as Hacker (Josh Rule)
	Abstraction for Answer Set Programs (Zeynep G. Saribatur)
	Explanatory Inductive Programming (XAI for IP) (Ute Schmid)
	Explainable models via compression of tree ensembles (Sriraam Natarajan)
	Inductive Programming meets Large Language Models (Gust Verbruggen)
	Inductive Programming meets Real User Problems (Gust Verbruggen)
	Probabilistic Logic Programming: Quo Vadis? (Felix Weitkämper)

	Working groups
	Large Language Models and Inductive Programming in Cognitive Architectures (Bettina Finzel and Frank Jäkel)
	Avoiding too much search in Inductive Programming (Ute Schmid, David Cerna, and Hector Geffner)
	Evaluation Criteria for Interpretability and Explainability of Inductive Programming (Ute Schmid, Lun Ai, Claudia d'Amato, and Johannes Fürnkranz)
	Finding Suitable Benchmark Problems for Inductive Programming (Ute Schmid, Martin Berger, Sebastijan Dumancic, Nathanaël Fijalkow, and Gust Verbruggen)

	Panel discussions
	Inductive Programming – How to Go On? (Ute Schmid, Claudia d'Amato, Hector Geffner, Sriraam Natarajan, and Josh Rule)

	Participants

