
Report from Dagstuhl Seminar 23461

Space and Artificial Intelligence
Sašo Džeroski∗1, Holger H. Hoos∗2, Bertrand Le Saux∗3,
Leendert van der Torre∗4, and Ana Kostovska†5

1 Jožef Stefan Institute – Ljubljana, SI. saso.dzeroski@ijs.si
2 RWTH Aachen, DE. hh@aim.rwth-aachen.de
3 ESA – Frascati, IT. bertrand.le.saux@esa.int
4 University of Luxembourg, LU. leon.vandertorre@uni.lu
5 Jožef Stefan Institute – Ljubljana, SI. ana.kostovska@ijs.si

Abstract
This report documents the program and the outcomes of the Dagstuhl Seminar 23461 “Space and
Artificial Intelligence”. The seminar was interdisciplinary, situated at the intersection of research
on AI / computer science and space research. Since each of these is a very wide field on its own,
we focussed on a selection of topics from each of the two and their intersections.

On the artificial intelligence side, we focused on data-driven AI, which makes use of data in
order to produce intelligent behaviour and notably includes machine learning approaches. We
also considered knowledge-based AI, which is focussed on the explicit formalisation of human
knowledge and its use for tasks such as reasoning, planning, and scheduling. On the space research
side, we considered the two major branches of space operations (SO) and Earth observation (EO).

The seminar brought together a diverse set of players, including researchers from academia,
on one hand, and practitioners from space agencies (ESA, NASA) and industry, on the other
hand. The seminar included plenary talks and parallel group discussions. Through the plenary
talks, we obtained insight into the state-of-the-art in the different areas of AI research and space
research, and especially in their intersections. Through the parallel group discussions, we identified
obstacles and challenges to further progress and charted directions for further work.
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1 Executive Summary
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Holger H. Hoos (RWTH Aachen, DE, hh@aim.rwth-aachen.de)
Bertrand Le Saux (ESA – Frascati, IT, bertrand.le.saux@esa.int)
Leendert van der Torre(University of Luxembourg, LU, leon.vandertorre@uni.lu)
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Scope of the Seminar
Our interdisciplinary seminar on Space and Artificial Intelligence was situated at the inter-
section of research on AI / computer science and space research. Since each of these is a
very wide field on its own, below we give a broad outline of each of the two. We focus on the
aspects that were topics of discussion at our Seminar.

Artificial intelligence studies computer systems that behave similarly to humans, in a
way that the resulting behaviour would be considered intelligent if exhibited by humans.
The field of AI thus focusses on the design and analysis of algorithms and systems that can
replicate, support or surpass human perceptual, linguistic, and reasoning processes; learn,
draw conclusions, and make predictions based on large or small quantities of data; replicate
or enhance human perception; support humans in diagnosis, planning, scheduling, resource
allocation, and decision making; and cooperate physically and intellectually with humans and
other AI systems (https://claire-ai.org/what-is-ai/). All these topics are relevant for
space research.

At a high level, AI can be categorised into three (non-exclusive) categories:
Data-driven AI makes use of data in order to produce intelligent behaviour; it prominently

encompasses machine learning, data mining, and pattern recognition approaches and
is often referred to simply as machine learning. In this area, methods based on neural
networks have been particularly successful and, as a result, become a major focus of
attention for the last decade, but many other approaches exist and continue to be used
with considerable impact, including support vector machines and random forest models
for supervised learning, and various types of clustering methods for unsupervised learning.

Knowledge-based AI is focussed on the explicit formalisation of human knowledge and its
use for tasks such as reasoning, planning, and scheduling. Although knowledge-based AI
is currently somewhat less prominent than data-driven AI, it has important and impactful
uses, e.g., in ensuring the correctness of computer hard- and software, and in solving a
broad range of real-world industrial optimisation problems. Many AI experts now believe
that combinations of data-driven and knowledge-based methods are likely to provide the
basis for next-generation trustworthy AI systems. In this context, explainable AI (XAI),
where the results of AI solutions can be understood by humans, is gaining importance.

Embodied AI concerns the design and study of AI systems that interact directly with the
physical world. This area is also known as robotics and has very important applications
in an increasingly broad range of application sectors, including manufacturing, medicine,
and agriculture. Interaction with the physical environment (including other robots and
humans) poses unique challenges, e.g., in terms of safety, robustness, and real-time
requirements. Most experts in the field of robotics make use of knowledge-based and
data-driven approaches, in addition to specialised methods for dealing with the previously
mentioned challenges.
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Legal and ethical aspects of AI have also started to attract attention recently. The legal
part includes laws that regulate the use and development of artificial intelligence. The ethical
part is concerned with the moral behavior of humans as they design, make, use, and handle
artificially intelligent systems, but also with the moral behavior of machines (machine ethics).

The different forms of AI can be applied to a variety of problems in space-related research,
of which here we highlight two major branches:
Space Operations (SO) are concerned with all aspects of operating spacecraft, including

the planning, implementing, and operating of all (also ground segment) systems required
for reliable and efficient spaceflight missions. This includes all relevant mission operations,
ground infrastructure, flight dynamics, mission planning, communications, and data
acquisition functions. Large amounts of data about space operations are collected and
can be utilized by ML / data-driven AI to address challenges that include autonom-
ous spacecraft route planning, spacecraft anomaly detection, and optimal spacecraft
operations.

Earth Observation (EO) is a major instrument for monitoring our planet, its land and ocean
processes, and their dynamics. A large number of spacecraft carrying a broad range of
instruments generate a wide variety of sensor data (active / passive) of many resolutions:
With these data now accessible to researchers and agencies, as well as the general public,
a final barrier remains the need to convert the enormous quantities of raw EO data
(generated on a daily basis) into valuable information for making decisions and taking
concrete actions, e.g., towards achieving the Sustainable Development Goals. Needless to
say, the potential for applying AI and ML in this context is almost unlimited.

Many other space-related AI applications can be conceived, typically related to the use
of ML for the analysis of data collected during specific space missions. These include, e.g.,
modeling and forecasting space weather, mapping planet surfaces, galaxy profiling, identifying
exoplanets and their environment, as well as analyzing astro-biology data. Several of these
belong to astronomy and concern data collected via astronomical observatories in orbit.

Seminar topics
The seminar covered many different aspects of Artificial Intelligence for space and touched
upon a wide variety of topics. However, it focussed specifically on the following four topics – all
of which are currently actively researched – structured along two dimensions (AI approaches
and Space applications):
Data-driven AI, e.g., machine learning, for space. The first topic of the seminar addressed

machine learning methods for the analysis of the ever larger quantities of data resulting
from space related research and exploration, their current state-of-the-art, and directions
for further development.

Knowledge-driven AI, e.g., explainable AI, for space. The second topic of the seminar was
concerned with methods and techniques from knowledge representation and reasoning,
and explainable AI, their current state-of-the-art, and directions for further development.

Space Operations applications of AI. The third topic of the seminar concerned various
aspects of operating spacecraft and managing missions, the potential applications of AI
in this area, and the challenges they pose for Artificial Intelligence methods.

Earth Observation applications of AI. The fourth topic of the seminar concerned various
aspects of applying AI to Earth observation data, the vast variety of potential applications
of AI in this area, and the challenges they pose for Artificial Intelligence methods.
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Note that the topics along the space applications dimension interact strongly with the
AI approaches dimension. For example, space operations applications, such as estimating
the current and predicting the future states of spacecraft, have a strong temporal dimension
requiring the use of data stream mining approaches from AI. On one hand, this poses
challenges to address in the development of novel AI methods. On the other hand, this can
provide excellent benchmarking opportunities for the evaluation of AI methods.

The above four topics were the focus of the seminar. Given the interests of the participants
of the seminar, we also considered a few additional topics (to a lesser extent). These included,
for example, legal, ethical, and social aspects of Space AI.

Structure of the seminar
The structure of our seminar was standard for Dagstuhl. We started with an introduction
round on Monday morning. The majority of the time was taken by plenary talks and parallel
discussions in working groups: There were two of the latter, one on Tuesday morning and one
on Friday morning. The social event on Tursday afternoon included a visit to the Völklingen
Ironworks UNESCO industrial heritage site and a dinner.

Plenary talks. Given the highly interdisciplinary nature of the seminar, participants from one
discipline needed to be brought up to speed with the state of the art in the other relevant
disciplines. Some of the talks were thus of an overview or tutorial nature. Examples
of such talks are “Introduction to Space Operations” and “Introduction to Explainable
Artificial Intelligence”. Other talks were more specific, addressing particular AI methods
or classes thereof or particular (areas of) AI applications in space research.

The plenary talks can be clustered into four different groups
Plenary talks on machine learning,
Plenary talks on explainable AI,
Plenary talks on earth observation, and
Plenary talks on space operations.

Parallel discussion in working groups. A substantial part of the seminar time was split into
structured small-group work sessions. The aim of the structured work sessions was to
address the focal topics of the seminar that were most interesting for the participants.
The participants could more effectively share knowledge and experiences from their own
areas of expertise in the smaller working groups. The highlights of these structured
small-group sessions were presented to the seminar as a whole.
The parallel discussions in working groups on Tuesday morning addressed the following
topics:

Sustainable development goals and AI for good,
AutoML and benchmarks,
On-board and frugal AI, and
Responsible AI.

The parallel discussions in working groups on Friday morning all addressed the same topic of
challenges in AI & space and future research directions.
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Outcomes of the seminar
The seminar brought together a diverse set of players. These included researchers from
academia, on one hand, and practitioners from space agencies (ESA, NASA) and industry,
on the other hand. It covered a broad range of aspects relevant for the further development
of the field.

The major outcomes of the seminar are as follows:
1. It gave researchers from the different contributing disciplines an integrated overview of

current research in the area of artificial intelligence for space.
2. It reinforced the communication channels for researchers tackling challenges in space

applications using AI, including both data driven and knowledge-driven approaches to
AI, such as machine learning and explainable AI, thereby bridging the divide between
computer science and space research.

3. It defined the landscape of potential applications of artificial intelligence in space, in
particular in the areas of Space Operations and Earth Observation.

4. It identified the central research questions and challenges for artificial intelligence ap-
proaches that need to be resolved for successful use of AI in space applications.

5. It put forward some strategies for designing artificial intelligence tools for space applica-
tions and for developing benchmarking suites for evaluating such approaches.
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3 Plenary talks: Machine Learning

3.1 Semi-supervised and multi-label classification of remotely sensed
images

Sašo Džeroski (Jožef Stefan Institute – Ljubljana, SI, saso.dzeroski@ijs.si)

License Creative Commons BY 4.0 International license
© Sašo Džeroski

Joint work of Marjan Stoimchev, Jurica Levatić, Dragi Kocev, Michelangelo Ceci, Sašo Džeroski
Main reference Marjan Stoimchev, Dragi Kocev, Sašo Džeroski: “Deep Network Architectures as Feature Extractors

for Multi-Label Classification of Remote Sensing Images”, Remote. Sens., Vol. 15(2), p. 538, 2023.
URL https://doi.org//10.3390/RS15020538

The talk will discuss recent work on semi-supervised (SS) [4] and multi-label classification
(MLC) of remotely sensed images (RSI) [1]. For MLC, we employ deep neural networks
(DNNs), either as feature extractors for predictive clustering trees (PCTs) and ensembles
thereof, or in an end-to-end manner. In the former case, we leverage the existing capabilities of
semi-supervised PCTs and ensembles: explainability of single tree models and state-of-the-art
predictive performance of random forest ensembles [3, 2]. Furthermore, the parametrization
of the amount of supervision in PCTs allows us to build supervised, semi-supervised, or
unsupervised models, depending on the demands of the dataset at hand. This provides a
safety mechanism enabling the semi-supervised models to consistently perform better or as
good as their supervised counterparts.

We also develop end-to-end semi-supervised DNNs for multi-label and multi-class classi-
fication of remotely sensed images. This method mimics the mechanism of semi-supervised
PCTs that have been proven to work well. We introduce a novel loss function that combines
classification loss (computed on labeled data) and reconstruction loss (computed on both
labeled and unlabeled data) with a weight parameter that enables the same aforementioned
“safety mechanism”.

The capabilities of PCTs and ensembles of PCTs (e.g. Random Forests) enable us to
perform hierarchical MLC of remotely sensed images – a novel formulation of the classification
task in this field. To this end, we exploit the intrinsic label hierarchies of the BigEarthNet
dataset and explore the effects different label hierarchies and their different handling have on
predictive performance.

References
1 Stoimchev, Marjan; Kocev, Dragi and Džeroski, Sašo, Deep Network Architectures as Feature

Extractors for Multi-Label Classification of Remote Sensing Images. Remote Sensing, 15(2),
538, 2023.

2 Levatić, Jurica; Kocev, Dragi; Ceci, Michelangelo and Džeroski, Sašo, Semi-supervised trees
for multi-target regression. Information Sciences, 450, 109–127, 2018.

3 Levatić, Jurica; Ceci, Michelangelo; Kocev, Dragi and Džeroski, Sašo, Semi-supervised
classification trees. Journal of Intelligent Information Systems, 49, 461–486, 2017.

4 Levatić, Jurica; Ceci, Michelangelo; Kocev, Dragi and Džeroski, Sašo, Semi-supervised
Predictive Clustering Trees for (Hierarchical) Multi-label Classification. arXiv preprint
arXiv:2207.09237, 2022.
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3.2 Self-supervised Learning, Foundation Models, and ModelZoos
Damian Borth (University of St. Gallen, CH, damian.borth@unisg.ch)

License Creative Commons BY 4.0 International license
© Damian Borth

Joint work of Damian Borth, Diyar Taskiran, Konstantin Schürholt, Boris Knyazev, Xavier Giró-i-Nieto
Main reference Konstantin Schürholt, Boris Knyazev, Xavier Giró-i-Nieto, Damian Borth: “Hyper-Representations

as Generative Models: Sampling Unseen Neural Network Weights”, in Proc. of the Advances in
Neural Information Processing Systems, 2022.

URL https://openreview.net/forum?id=uyEYNg2HHFQ

Self-supervised learning allowed us to train large task agnostic backbones, which can be
successfully finetuned for specialized downstream tasks with only little supervision. This
opened the path towards the training of so-called foundation models, a family of task-agnostic
representations potentially able to consume multiple modalities of inputs and able to not
only encapsulate a wide range of known tasks but are also able to extend this range to new
task with only few shots of example. One popular family of such foundation models are
large-scale language models.

This talk will provide an overview of self-supervised learning, its pretext tasks, and
proposed learning methods from the last years. It further introduces the idea of learning
from populations of neural networks, so called model zoos and shows how task-agnostic
representation from these model zoos – so called hyper-representations – can be learned.
Finally, it demonstrates how these representations can be exploited for multiple discriminative
and generative downstream tasks linking them to model diagnostic, inspection and model
sampling, finetuning.

References
1 Honegger, D.; Schürholt, K.; Scheibenreif, L.; Borth, D., Eurosat Model Zoo: A Dataset and

Benchmark on Populations of Neural Networks and Its Sparsified Model Twins. IGARSS,
2023.

2 Honegger, D.; Schürholt, K.; Borth, D., Sparsified Model Zoo Twins: Investigating Popula-
tions of Sparsified Neural Network Models. ICLR Workshop on Sparsity in Neural Networks
(SNN), 2023.

3 Schürholt, K.; Knyazev, B.; Giró-i-Nieto, X.; Borth, D., Hyper-Representations as Generative
Models: Sampling Unseen Neural Network Weights. Neural Information Processing Systems
(NeurIPS), 2022.

4 Schürholt, K.; Taskiran, D.; Knyazev, B.; Giró-i-Nieto, X.; Borth, D., Model Zoos: A
Dataset of Diverse Populations of Neural Network Models. Neural Information Processing
Systems (NeurIPS), 2022.

5 Schürholt, K.; Knyazev, B.; Giró-i-Nieto, X.; Borth, D., Hyper-Representations for Pre-
Training and Transfer Learning. ICML Workshop on Pre-training: Perspectives, Pitfalls,
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for Land-Cover Segmentation and Classification. CVPR EarthVision Workshop, 2022.
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entation Learning on Neural Network Weights for Model Characteristic Prediction. Neural
Information Processing Systems (NeurIPS), 2021.
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3.3 Hybrid modelling: examples and challenges
Nuno Carvalhais (MPI for Biogeochemistry – Jena, DE, nuno.carvalhais@bgc-jena.mpg.de)

License Creative Commons BY 4.0 International license
© Nuno Carvalhais

Joint work of Nuno Carvalhais, Shanning Bao, Rackhun Son, Christian Requena, Lazaro Alonso, Markus
Reichstein

Main reference Rackhun Son, Tobias Stacke, Veronika Gayler, Julia E. M. S. Nabel, Reiner Schnur, Lazaro Alonso,
Christian Requena-Mesa, Alexander J. Winkler, Stijn Hantson, Sönke Zaehle, Ulrich Weber, Nuno
Carvalhais: “Integration of a Deep-Learning-Based Fire Model Into a Global Land Surface Model”,
Journal of Advances in Modeling Earth Systems, Vol. 16(1), p. e2023MS003710, 2024.

URL https://doi.org//10.1029/2023MS003710

Challenges in representing the spatial and temporal dynamics of carbon and water cycles in
land ecosystems arise both from parametric and or epistemic uncertainties. Understanding and
quantifying ecosystem responses to changes in climate and environmental conditions underpins
the quantification of coupled climate-carbon cycle feedbacks, key for addressing today’s Earth
system challenges. The growing volume in Earth observation data delivers an unprecedented
perspective for improving understanding as well as unprecedented challenges in traditional
Earth system model development. Here, we propose two hybrid modelling approaches for
maximizing the information content uptake in improving carbon cycle modelling leveraging
EO and machine learning approaches.

On the one hand, we propose an end-to-end approach that learns the spatial variation in
parameters controlling the daily to seasonal response of photosynthesis to climate and atmo-
spheric CO2 as described by a light use efficiency (LUE) model. The LUE model parameters
emerge from the outputs of a multi-layer perceptron fed by a set of features representing
vegetation, soils and bioclimatic properties. The MLP learns from the minimization of
mismatch between modelled and observed fluxes of carbon and water in eddy covariance
sites. The cross-validation results show a robust comparison to observations, being close
to calibration results, and the only parameter generalization approach robust to represent
spatial and temporal patterns.

On the other hand, we explore the potential of infusing traditional process-based models
with machine learning components to describe largely uncertain processes. We develop an
MLP architecture standing on parallel long short-term memory components to represent
the role of the atmosphere, land surface properties and anthropogenic features to predict
burned area dynamics at global scales as observed from EO. Upon integrating the trained
MLP within the process-based model we observe a stark contrast in model performance in
comparison to the benchmark fire model. Reductions in performance in some regions of the
globe in comparison to the EO-driven MLP are related to internal biases in process-based
modelled state variables, reflecting the need to develop online training approaches.

Overall, while the predictive performance in hybrid modelling improves significantly
from current baselines in process-based modelling approaches, we are challenged by features
collinearity for attributing variability in parameters and global patterns in burned area
dynamics. In a context of climate change, being able to appropriately attribute statistical and
causal dependence in parameterizations and processes is key for advancing our understanding
and quantification of Earth system dynamics.
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In this presentation, I will discuss the work that we have carried out under the ESA-visiting
professor program towards automated machine learning for sea ice charting. Sea ice charting
is an important task for ships sailing across the North Pole, as the best sailing route depends
on the location and type of sea ice. Where the charting process was originally carried out by
professional charters who have access to SAR satellite data, artificial intelligence can now
play an important role in supporting the charting expert.

In earlier work, Stokholm et al. [1] successfully trained a U-NET neural network on
the SAR satellite images to predict the various classes of sea ice. Neural networks are
highly sensitive to their hyperparameter settings, and properly tuning the hyperparameters
can make the difference between mediocre performance and state-of-the-art performance.
In this work, we set out to use automated machine learning (AutoML) to automate the
hyperparameter tuning for this specific problem domain.

As this is an interdisciplinary audience, I will briefly cover the basics of AutoML, such
as: why would we use AutoML, what is AutoML and what are basic algorithms in AutoML.
Additionally, I will talk about how AutoML was used for this specific domain, and how it
automated this crucial part of the data science loop.
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3.5 Automated Machine Learning for Spatio-temporal Datasets
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Automated machine learning (AutoML) is a young research area aiming at making high-
performance machine-learning techniques accessible to a broad set of domain users by
identifying all design choices in creating a machine-learning model and addressing them
automatically. In this talk, I provided a number of examples that show different opportunities
provided by taking an Automated Machine Learning approach to address various AI problems
based on Earth observations.

The first opportunity lies in making use of all existing solutions to create a search space
composed of available algorithms for specific task. Taking an efficient search strategy to find
models in this search space allows the configuration of customised models for each dataset
automatically. I provided an example demonstrating this approach by showing how available
deep learning algorithms for super-resolution can be used to create an AutoML system that
configures deep learning models for super-resolution. The second opportunity demonstrates
that adding new algorithmic solutions to the search space of AutoML systems can provide an
opportunity to generate much stronger AutoML systems. As an example, I presented VPint
[2], an interpolation algorithm and how it can be used to complement AuotML systems when
used for cloud removal purposes.

Next, I presented an approach that allows to use the knowledge in a specific class of
physical models called radiative transfer models to generate physics-aware machine learning
pipelines. The first example [4] extends an existing AutoML system to create an ensemble
of physics-driven and data-driven models. The second example [5] provides a framework
to address the fundamental problem of ill-posedness of a class of physical models known as
radiative transfer models.

This talk inspired a lively discussion on AutoML systems for Earth observation. Notably,
the audience discussed the challenges of using different classes of physical models, for
instance, radiative transfer models and dynamical system models. It also sparked discussions
on different opportunities for performing cross-validation considering the spatial and temporal
correlations.
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4 Plenary talks: Explainable Artificial Intelligence

4.1 Introduction to Explainable Artificial Intelligence
Yazan Mualla (University of Technology of Belfort-Montbéliard, FR, yazan.mualla@utbm.fr)
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Recently, eXplainable AI (XAI) gained momentum both in academia and industry to explain
the results of black-box machine learning algorithms. A landscape of XAI branches along
with strategies for developing explainable models are provided. Latest empirical studies have
confirmed that explaining a system’s behavior to human users fosters the latter’s acceptance
of the system. However, providing overwhelming or unnecessary information may also confuse
the users and cause failure. For these reasons, parsimony has been outlined as one of the
key features of XAI with parsimonious explanation defined as the simplest explanation that
describes the situation adequately. Our work proposes HAExA, a human-agent explainability
architecture to formulate parsimonious explanations for remote robots. This is particularly
applicable to space since the communication with Earth has limited bandwidth and significant
delay. Finally, some challenges, opportunities, and applications of XAI directed to different
space stakeholders are presented.
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4.2 Causal inference for data-driven science
Jakob Runge (Institute of Data Science, German Aerospace Center – Jena, DE,
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Machine learning excels in learning associations and patterns from data and is increasingly
adopted in natural-, life- and social sciences, as well as engineering[6]. However, many
relevant research questions about such complex systems are inherently causal and machine
learning alone is not designed to answer them [2]. At the same time there often exists ample
theoretical and empirical knowledge in the application domains.

Causal inference provides the theoretical foundations to use data and qualitative domain
knowledge to quantitatively answer these questions, complementing statistics and machine
learning techniques [5, 3, 4]. Given the strong causal implications, the application of causal
inference methods requires a thorough reasoning about the the appropriateness of the
assumptions that can give rise to causal conclusions. Furthermore, causal methods still share
the same challenges that affect the statistical and machine learning techniques that they
employ, from finite sample issues to the problem of hyperparameter tuning and computational
complexities.

A problem that is especially relevant in applications of causal inference concerns the
broad language gap between the methodological and domain science communities. In this
contribution [7], we explain the use of causal inference frameworks with a focus on the chal-
lenges of time series data and particular application scenarios, from process understanding to
the evaluation and comparison of physical simulation models via causal methods. Integrating
causal thinking into data-driven science will facilitate process understanding and more robust
machine learning and statistical models for spatio-temporal problems in Earth sciences,
allowing to tackle many open problems with relevant environmental, economic, and societal
implications.
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4.3 Causality is all you need
Gustau Camps-Valls (University of Valencia, ES, gustau.camps@uv.es)
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This talk encapsulates a foundational exploration into causal inference, discovery, and effect
estimation, offering a comprehensive 101 guide to the methods and techniques essential for
understanding cause-and-effect relationships. This presentation navigated through theoretical
and applied challenges, providing a holistic view of the complexities inherent in unravelling
causation, especially for Earth and climate sciences. Some case studies served the purpose:
from deciphering the drivers of migration to assessing the impact of humanitarian aid on
food insecurity, as well as employing causal feature representation learning to unveil the
influence of the El Niño-Southern Oscillation (ENSO) on vegetation greenness in Africa.

I also introduce the innovative causeme.net platform, a powerful tool for web-based
causality analyses. This platform facilitates the exploration of causal relationships and
is a practical resource for researchers and practitioners. The presentation concluded by
teasing the integration possibilities between Large Language Models (LLMs) and causality
studies. This forward-looking perspective hinted at the exciting potential for synergy between
advanced language models and the nuanced understanding of causation, paving the way for
future breakthroughs at the intersection of language processing and causal inference.
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5 Plenary talks: Space Operations

5.1 Introduction to Space Operations
Alessandro Donati (former AI and Operations Innovation Manager at ESA, retired, DE,
alessandro.donati@lilium.de)
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The talk introduces space operations fundamental concepts in brief. First, the phases in time.
The operations preparation phase, includes the setting up and customization of the ground
segment elements, made of hardware, software, procedures, the specialists training and the
simulation campaign. Then the operations execution, split in LEOP, Commissioning phase,
Routine phase and decommissioning. The second part addresses the two parallel chains
of health caring of the spacecraft and the productive chain, made of planning, execution,
payload data acquisition and dissemination. Both parallel chains incorporate a variety
of tasks that can embed AI algorithms. The identified tasks are preparation, planning,
execution, monitoring, forecasting, diagnostic, optimization.

5.2 Exploring Challenges and Innovations in the Space Domain:
Curated Datasets, Optimization Problems, and Machine Learning
Applications

Dario Izzo (European Space Agency’s Advanced Concepts Team – Noordwijk, NL,
dario.izzo@esa.int)
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This presentation addresses several challenges in the space domain that have prompted the
creation and dissemination of meticulously curated datasets and optimization problems, con-
tributing to the broader academic community. An overview of significant challenges, including
the Proba-V super resolution challenge [1], the data-driven “The OPS-SAT case”challenge [3],
the collision avoidance challenge [4], and the pose estimation challenge [2], is provided. The
talk delves into each challenge, offering brief insights into their objectives and methodologies,
while also sharing select results achieved in these endeavors. Additionally, the application
of Machine Learning (ML) inversion techniques within the domain of Geodesy for irregular
solar system bodies is presented highlighting the utilization of ML methods to address
challenges specific to Geodesy, showcasing results obtained through this innovative approach.
The incorporation of ML in geodetic processes not only introduces a novel dimension to a
traditional problem but also demonstrates its potential to yield meaningful insights on the
internal structure of irregular bodies.

The talk aims to shed light on the interdisciplinary applications of ML techniques in the
space domain, emphasizing the collaborative and innovative efforts that drive advancements
in space-related research.
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5.3 Architecting a data-driven future in space
Dan Crichton (Jet Propulsion Laboratory, California Institute of Technology – Pasadena,
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JPL and NASA have achieved unprecedented scientific understanding using remote sensing
to explore of our solar system, the mysteries of the universe, and our home planet, Earth.
Significant technical progress in mission capabilities and remote sensing instruments has
dramatically changed over JPL’s history. Missions today generate immense volumes of data,
challenging conventional methods for capturing, managing, analyzing, and deriving insights
from this wealth of information. Further, computational constraints onboard, coupled with
bandwidth limitations in being able to transfer data the ground, require new innovative
approaches to optimizing science yield and mission. Areas such as mission planning, onboard
and ground-based data and science processing, data management, and science analysis can all
benefit from new approaches in data science, artificial intelligence, autonomy, and computing.

JPL has already made substantial progress in these domains. Examples include onboard
planning to facilitate more autonomous operations, real-time detection of transient events on
Mars’ surface, machine learning algorithms capable of identifying and classifying features in
imaging, and the development of massively scalable data repositories to enable data mining.
Much of these advances have been built on pioneering work JPL performed in areas such as
machine learning applied to optical astronomy in the 1990s for analyzing images captured
in nightly sky surveys. These breakthroughs have allowed JPL to continue to respond to
opportunities to bring new computing capabilities to support both space mission operations
and science.

This presentation will discuss the progress, challenges, and opportunities in applying data
science, AI, software, and computing to space observing systems. It will present use cases
and examples of successful operational deployments. Finally, it will explore the integration
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of these capabilities and their criticality for advancing next generation data-driven space
observing architectures, highlighting areas for future research to scale computing capabilities
in space and on the ground.

References
1 Chien, S. and Sherwood, R. and Tran, D. and Cichy, B. and Rabideau, G. and Castano,

R. and Davis, A. and Mandl, D. and Frye, S. and Trout, B. and Shulman, S. and Boyer,
D., Using Autonomy Flight Software to Improve Science Return on Earth Observing One.
Journal of Aerospace Computing, Information, and Communication, 2(4), 196-216, 2005.

2 Crichton, D. et al., A Scalable Planetary Science Information Architecture for Big Science
Data. 2014 IEEE 10th International Conference on e-Science, Sao Paulo, Brazil, 196-203,
2014.

3 Duren RM and Thorpe AK and Foster KT and Rafiq T and Hopkins FM and Yadav V
and Bue BD and Thompson DR and Conley S and Colombi NK and Frankenberg C and
McCubbin IB and Eastwood ML and Falk M and Herner JD and Croes BE and Green RO
and Miller CE, California’s methane super-emitters. Nature, 575(7781), 180-184, 2019.

4 Su, Hui and Wu, Longtao and Jiang, Jonathan H. and Pai, Raksha and Liu, Alex and
Zhai, Albert J. and Tavallali, Peyman and DeMaria, Mark, Applying Satellite Observations
of Tropical Cyclone Internal Structures to Rapid Intensification Forecast With Machine
Learning. Geophysical Research Letters, 47(17), Art. No. e2020GL089102, 2020.

5 W. M. Keck Institute for Space Studies (KISS), Nebulae: Deep-Space Computing Clouds.
KISS Study, August 26-30, 2019.

5.4 Challenges in fielding AI in Space Operations
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AI is a game-changer that is gathering momentum in space activities, as a prominent building
block of enabling technology for future missions. But as much has been done so far, still
many challenges remain.

In our talk we discussed some open challenges that, from our experience, when tackled,
can bring substantial benefits for AI in space operations.

First, we acknowledge that even if operators need anomaly detection, we are only able to
offer novelty detection. In most cases, novelty detection is close enough to anomaly detection
to be useful. From our experience in Space Operations we highlight the problem of false
alarms which drive the counter intuitive preference for precision (in detriment of recall), as
having false alarms will cause operators to stop looking at any novelty detection system. We
also stress the importance of being able to detect first time anomalies (i.e., anomalies that
nobody thought this could happen) as they have the biggest impact in space operations.

Regarding diagnostics, we discuss several attempts and their limitations. Smart filtering
can reduce the number of telemetry parameters operators need to consider but it cannot tell
cause from effect, and it often produces many results. With Dependency Finder we can learn
the relationship between different parameters from data; however, while it is useful to gain
understanding, it cannot be used for deriving causes for a particular anomaly as it is based
on large amounts of data. With Explainable AI (i.e., SHAP) we can tell which features are
more relevant to get predictions in a Machine Learning model; however, it is not a causal
relationship but a predictive relationship.
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In terms of fielding AI for space operations, 4 levels of support have been discussed:
augmentation, assistance, decision automation and autonomy. The variety and heterogeneity
of knowledge to be engineered to implement AI-based support in operation, as well as the
diversity of tasks to be considered, suggest that an hybrid approach would probably be
the best option, combining various AI approaches as learning, modeling, reasoning and
interaction.

In terms of autonomy, it has been discussed how many autonomous capabilities we will
need in the near future, where and to do what. 4 scenarios of increasing autonomous levels
where discussed: Augmentation and Support (the AI suggest and enhance the human being),
Reactivity and Adaptiveness (the AI can perceive and respond to changes), Proactiveness
(the AI can initiate action to meet its objectives) and Autonomy (the AI collaborates with
the human being, “peer-to-peer”).

It was finally pointed out as XAI and AI qualification more in general will be driving
factors and essential enabling factors for a successful fielding of AI technologies in operations.
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6 Plenary talks: Earth Observation

6.1 Foundational Models for Earth Observation
Bertrand Le Saux (European Space Agency – Frascati, IT, Bertrand.Le.Saux@esa.int)
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Over the past decade, Earth Observation (EO) has undergone a significant transformation
thanks to the deep learning revolution and the increasing use of Artificial Intelligence (AI) to
address various EO challenges. Although a standard framework for developing AI solutions
to EO problems has been established, it still faces several challenges such as lack of labeled
data, generative modeling, and integration of physics.

Foundational models offer a new perspective by integrating unsupervisedly learned
knowledge in large models that can be adapted to various use-cases. The Phileo foundational
model is presented as an example of desirable features, including global-scale training and
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the combination of pillar models with various pretext tasks. The European Space Agency has
commissioned future European Foundational Models for EO and Society, as well as Climate,
which will further advance this field.

6.2 How can the EO “revolution” benefit NWP and climate prediction?
Jonathan Bamber, (University of Bristol, GB, J.Bamber@bristol.ac.uk)
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In the last decade there has been an exponential rise in New Space missions, many with an
EO focus. There is limited coordination between national space agencies and commercial
actors in the space sector while at the same time there is an urgent need to improve forecast
skill, range and robustness in numerical weather prediction but also for longer term climate
projections.

Conventional modelling approaches are reaching the limit of computational capability as
well as hard limits in power consumption. How can ML methods be best used to improve
forecast skill, computational efficiency and data fusion in a highly distributed data centre
structure? Should the focus be on Open Source foundation models that can be a community
tool or hybrid model approaches or DTE types of approach? And what are the risks of one
or two Big Tech companies developing a monopoly in the field and pushing not for profit
organisations such as ECMWF out of the market?

6.3 Planning satellite observations for global monitoring of physical
parameters: Some research questions

Gauthier Picard (ONERA/DTIS, Université de Toulouse, FR, gauthier.picard@onera.fr)

License Creative Commons BY 4.0 International license
© Gauthier Picard

Joint work of Jean-Loup Farges, Gauthier Picard, Cédric Pralet

Operating Earth observation satellite constellation raises many challenges for AI and Agent-
based Approaches [1]. Here, we identify questions about planning observation tasks as to
monitor physical parameters using taskable agile EO satellites. Notably,

1- For monitoring physical phenomena, each acquisition carried out by a satellite provides
not only instantaneous information on the observed area, but also (a) information on
neighboring areas due to spatial correlations and (b) information on the value of physical
parameters in the future, due to temporal dependencies. Therefore, a difficulty lies in assessing
the value of each observation, knowing that due to limited capacity, planning systems for
satellite constellations must select observations from a set of candidate observations [2, 3].
2- The satellites considered can be equipped with different sensors, and some satellites
are even capable of carrying out observations in several modes (for example, “wide field
observation” mode versus “targeted observation” mode). Managing this heterogeneity is
also a challenge for evaluating the reward associated with each observation. For example,
it is necessary to find a compromise between, on the one hand, continuously maintaining
global knowledge on the value of physical parameters, and on the other hand, carrying out
targeted observations on areas where phenomena have been detected. 3- The choice of a
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good observation strategy depends on the dynamics of the physical process being monitored.
For example, monitoring deforestation does not require the same frequency of observation
as monitoring illicit degassing from ships. Ideally, the automated planning system should
be able to learn a good observation strategy from a global request to monitor a parameter,
rather than waiting for basic observation requests formulated by users.
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6.4 Artificial Intelligence and Earth Observation for The Sustainable
Development Goals

Claudio Persello (University of Twente, Faculty of Geo-information Science and Earth
Observation – Enschede, NL, c.persello@utwente.nl)
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Camps-Valls: “Deep learning and earth observation to support the sustainable development goals:
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The combination of Artificial Intelligence (AI) and Earth observation (EO) promises significant
advances to support the United Nations’ Sustainable Development Goals (SDGs). New
developments and applications are already changing how humanity will face our planet’s
challenges. This talk provides an overview of the areas where AI and EO can contribute the
most towards achieving the SDGs, discussing opportunities and open challenges. Research
activities on AI methods for EO data are presented along with their applications toward
monitoring the progress and achieving the SDGs. Case studies are presented to achieve zero
hunger (SDG 2), create sustainable cities (SDG 11), deliver tenure security (multiple SDGs),
and mitigate and adapt to climate change (SDG 13). Important societal, economic, and
environmental implications are covered.
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6.5 In-Domain Self-Supervised Learning Improves Remote Sensing
Image Scene Classification

Sašo Džeroski (Jožef Stefan Institute – Ljubljana, SI, saso.dzeroski@ijs.si)
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We investigate the utility of in-domain self-supervised pre-training of vision models in the
analysis of remote sensing imagery. Self-supervised learning (SSL) has emerged as a promising
approach for remote sensing image classification due to its ability to exploit large amounts of
unlabeled data. Unlike traditional supervised learning, SSL aims to learn representations of
data without the need for explicit labels. This is achieved by formulating auxiliary tasks
that can be used for pre-training models before fine-tuning them on a given downstream
task. A common approach in practice to SSL pre-training is utilizing standard pre-training
datasets, such as ImageNet. While relevant, such a general approach can have a sub-optimal
influence on the downstream performance of models, especially on tasks from challenging
domains such as remote sensing. In this paper, we analyze the effectiveness of SSL pre-
training by employing the iBOT framework coupled with Vision transformers trained on
Million-AID, a large and unlabeled remote sensing dataset. We present a comprehensive
study of different self-supervised pre-training strategies and evaluate their effect across 14
downstream datasets with diverse properties. Our results demonstrate that leveraging large
in-domain datasets for self-supervised pre-training consistently leads to improved predictive
downstream performance, compared to the standard approaches found in practice.
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7 Parallel working group discussions on different topics

7.1 Working Group on SDG and AI4Good
Jonathan Bamber (University of Bristol, Technical University of Munich, DE)
Xiaoxiang Zhu (Technical University of Munich, DE)
Gustau Camps-Valls (University of Valencia, ES)
Žiga Kokalj (Research Centre of Slovenian Academy of Sciences and Arts – Ljubljana, SI)
Jose Martinez-Heras (Solenix, DE)
Claudio Persello (University of Twente – Enschede, NL)
Michelangelo Ceci (University of Bari, IT)
Dino Ienco (INRAE – MOntpellier, FR)
Sašo Džeroski (Jožef Stefan Institute – Ljubljana, SI)
Alessandro Donati (European Space Agency, DE)
Sylvain Lobry (Université Paris Cité, FR)
Nuno Carvalhais (Max Planck Institute for Biogeochemistry – Jena, DE)
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7.1.1 Discussed Problems

The group discussed several topics related to the promises and the challenges of using Artificial
Intelligence (AI) and Earth Observation (EO) to support the Sustainable Development Goals
(SDGs). First, the group discussed the possible tasks in SDG using AI and EO. These include
the i) identification of the deprivation areas (for example, identify slums, informal settlements
and inadequate houses, ii) identification of the best areas for installing renewable energy
plants, iii) delineation of smallholder farms and semi-automated extraction of cadastral
boundaries, iv) study of the local impacts of changes in climate and extreme events. The
group then identified challenges in SDG using AI and EO. These include i) data quality,
uncertainty quantification and difficulty in identifying the classes, ii) transferability of the
models from one place to another vs. locality of the models, iii) ethical and privacy issues
that apply to EO data, especially for high-resolution images. The last main topic discussed
by the group concerns the exploitation of the models. Specifically, the problems that emerged
are: i) policy makers need to make decisions, but also track the impact of the implementation
of such decisions; ii) the implementation of these decisions largely depends on different
governments and it’s outside the scope of the influence of the EO and AI experts.

7.1.2 Conclusions

The contribution of AI and EO for SDG was considered very relevant by the group in order
to solve many relevant tasks discussed during the meeting. However, several issues arise,
which require the consideration of additional technologies, data and techniques (for example,
integrating additional data to compensate the low-quality data available or the absence of
some data). Transferability is also not easy and requires taking into account the peculiarities
of the specific places. In terms of the exploitation of findings and results, it is necessary to call
for outreach activities to present scientific results in a convincing way to compel politicians
to act. An important point is to shift from model-centric towards data and user-centric AI.
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7.2 Working Group on AutoML and Benchmarks
Marjan Stoimchev (Jožef Stefan Institute – Ljubljana, SI)
Ana Kostovska (Jožef Stefan Institute – Ljubljana, SI)
Panče Panov (Jožef Stefan Institute – Ljubljana, SI)
Jurica Levatic (Jožef Stefan Institute – Ljubljana, SI)
Mitra Baratchi (Leiden University, NL)
Jan N. van Rijn (Leiden Institute of Advanced Computer Science, NL)
Joaquin Vanschoren (Eindhoven University of Technology, NL)
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This working group concentrated on the use of AutoML methods in Space Operations and
Earth Observation, as well as the presence of benchmarks.

7.2.1 Discussed Problems

During the breakout session, a variety of challenges and potential strategies surrounding
the evaluation and development of Space Operations (SpaceOps) and Earth Observation
(EO) foundational models were discussed. The conversation opened with questions about
the current methods used to evaluate these models and whether foundational models truly
offer superior performance. This led to a broader discussion on the necessity of creating
new benchmarks specifically designed for EO data, highlighting the potential to develop
something akin to a meta-album for Earth observation. Such benchmarks could cover a
wide range of tasks, including image segmentation, pixel-level classification, and the use of
multi-spectral data, underscoring the value of both labeled and unlabeled data for training
purposes.

The session also tackled the difficulties AI researchers face in accessing EO data, emphasiz-
ing the need for better data availability to advance the field. The discussion acknowledged the
complexity of integrating data from diverse sources, including different satellites, resolutions,
and types (visual vs. radar), and the challenges of domain transfer, class-incremental learning,
and cross-sentinel data integration. These issues highlight the need for benchmarks that can
accommodate a variety of data characteristics and learning tasks.

Operational and technical challenges, such as data storage, licensing, and the infrastructure
needed to host and share data and models, were also identified as significant hurdles. In this
context, the potential role of AutoML in enhancing EO model development was explored.
AutoML could simplify the search for optimal model configurations, leverage pretrained
models for better efficiency and transferability, and help in defining effective search spaces.

7.2.2 Conclusions

The session concluded with a strong consensus on the need for new benchmarks and datasets
that accurately reflect the complexities of Earth observation tasks. Engaging with the space
community, utilizing resources like the upcoming Anomaly Detection dataset from ESA, and
leveraging platforms such as kelvins.esa.int were identified as crucial steps forward. Moreover,
operational considerations such as addressing data licensing and storage, and creating an
infrastructure for model sharing, were acknowledged as essential for the progress of the field.
The development of a benchmark, encompassing the selection of data, tasks, and metrics,
was highlighted as a key action point, alongside the formation of a project team dedicated to
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building this benchmark. This collaborative approach, including research into the application
of AutoML for foundational models, aims to overcome the challenges discussed and advance
the field of Earth observation.

7.3 Working Group on On-board and Frugal AI
Damian Borth (University of St. Gallen, CH)
Dan Crichton (Jet Propulsion Laboratory, California Institute of Technology – Pasadena,
US)
Simone Fratini (Solenix Engineering GmbH – Darmstadt, DE)
Holger Hoos (RWTH Aachen, DE)
Dario Izzo (European Space Agency’s Advanced Concepts Team – Noordwijk, NL)
Gauthier Picard (ONERA/DTIS, Université de Toulouse, FR)
Jakub Nalepa (Silesian University of Technology – Gliwice, PL)
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7.3.1 Discussed Problems

The discussions revolved around the necessity for frugality in AI application within space
systems, particularly emphasizing the efficient use of training data, computational efforts, and
the size/efficiency of the trained models. This approach, aimed at optimizing performance
with minimal resource expenditure, is critical in scenarios where AI models are trained on
Earth and deployed for inference on board spacecraft or satellites. The debate extended to
whether the focus should solely be on machine learning (ML) techniques or include other AI
approaches such as planning and scheduling, which are vital for autonomous decision-making
in space.

A significant issue identified was the current state of onboard AI compared to ground
operations, which is considered unsatisfactory. Despite planned developments for AI accel-
erators and dedicated software, there is a pressing need for broader community support to
enhance these technologies’ capabilities. Onboard autonomy in space requires a blend of
model-based decision-making for task allocation and resource optimization, and learning
for various functions including science inference and image analytics. AutoML and AutoAI
emerge as potential solutions to reduce computational demands by automating algorithm
selection and configuration, as well as performance prediction.

Another discussed problem was the need for multi-objective AutoML to balance per-
formance with resource usage effectively, considering computation, memory, bandwidth, and
response time. Furthermore, robustness against adversarial attacks and security concerns
for open-source systems were highlighted, alongside the need for technology controlled by
trusted entities to mitigate reliance on commercial enterprises.

7.3.2 Conclusions

The challenges in implementing frugal AI and autonomy in space are manifold. First,
developing AI that can efficiently operate with limited resources on board, closing the
sense-plan-act loop, remains a daunting task. This includes the integration of model-based
planning, scheduling, and learning mechanisms that are capable of adapting to the dynamic
space environment.
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Second, the adoption of AutoML and other automated AI approaches requires advance-
ments in multi-objective optimization to navigate the trade-offs between performance and
resource consumption. This is particularly relevant for tasks like Earth Observation (EO),
where satellites need to make autonomous decisions based on real-time data, such as cloud
coverage.

Third, ensuring the robustness of onboard AI systems against adversarial attacks and
addressing security vulnerabilities in open-source software are critical for maintaining the
integrity and reliability of space missions. This is compounded by the challenge of developing
and deploying AI technologies that remain under the control of trusted entities, avoiding
over-reliance on commercial solutions.

Lastly, the computational complexity of combining data-driven and other AI methodologies
for effective problem-solving in space poses a significant challenge. This includes optimizing
task allocations and resource management in agile EO satellites, which require sophisticated
planning and machine learning strategies to adapt to changing conditions and priorities.

Addressing these challenges necessitates a collaborative effort from the global research
community, focusing on the development of advanced AI technologies that are efficient,
secure, and capable of autonomous operation in the demanding conditions of space.

7.4 Working Group on Responsible AI
Leendert von der Torre (University of Luxembourg, LU)
George Anthony Long (Legal Parallax – Fountain Hills, US)
Yazan Mualla (University of Technology of Belfort-Montbéliard, FR)
Alexandru Tantar (Luxembourg Institute of Science and Technology, LU)
Bertrand Le Saux (European Space Agency – Frascati, IT)
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7.4.1 Discussed Problems

The discussions addressed several critical issues regarding the regulation and application of
artificial intelligence (AI) from a legal perspective. A key point was the unique nature of AI
as a commodity, which necessitates a different regulatory approach than that applied to other
powerful technologies, such as nuclear power. This distinction raises questions about how to
appropriately regulate AI to ensure safety and accountability without stifling innovation.

Another significant issue was the differentiation between humans and AI-enhanced humans,
particularly in legal contexts. Traditional punitive measures, like imprisonment, are not
applicable to AI systems, highlighting the need for a responsible human principal behind
AI operations. This situation parallels the legal treatment of companies but introduces
complexities due to the varied intelligence levels of AI systems, ranging from highly intelligent
to rudimentary.

The application of AI in space presents unique challenges, distinct from those on Earth.
Privacy concerns, prevalent on Earth, are less relevant in space, where issues such as
sovereignty, resource utilization, and the ethical implications of AI in scenarios without human
intervention come to the forefront. These challenges underscore the need for international
legal harmonization and collaboration in space activities.
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7.4.2 Conclusions

The discussion highlights the critical need for a refined and tailored approach to the regulation
of AI. The concept of “trustworthy AI,” encompassing ethics, responsibility, and explainability,
is identified as crucial for guiding future regulatory frameworks. However, implementing
these principles faces significant challenges, both on Earth and in space.

On Earth, the focus is on creating unbiased datasets and ensuring fairness within the
bounds of domestic laws. In space, the challenges are amplified, with concerns about resource
management, ethical decision-making in critical scenarios, and the need for AI to operate
with limited human intervention. The EU act “7 key requirements that AI systems should
meet in order to be deemed trustworthy” highlight the importance of human oversight, safety,
privacy, transparency, and accountability, which are particularly pertinent in the context of
space.

Challenges arise in achieving a global consensus on AI regulation, especially for space
activities. Despite these challenges, there is a shared commitment to developing AI that
benefits humanity, with an emphasis on responsible innovation and the pursuit of harmonized
standards on a global scale.

8 Parallel working group discussions on challenges in AI & space and
future research directions

On Friday morning, the participants split into four discussion groups. All groups discussed
the same general topic of challenges for AI and space, as well as future research directions.
Summaries of the discussions, per working group, are given below.

8.1 Working Group 1
Damian Borth (University of St. Gallen, CH)
Dan Crichton (Jet Propulsion Laboratory, California Institute of Technology – Pasadena,
US)
Alessandro Donati (European Space Agency, DE)
George Anthony Long (Legal Parallax – Fountain Hills, US)
Evridiki Ntagiou (ESA / ESOC – Darmstadt, DE)
Claudio Persello (University of Twente – Enschede, NL)
Joaquin Vanschoren (Eindhoven University of Technology, NL)
Žiga Kokalj (Research Centre of Slovenian Academy of Sciences and Arts – Ljubljana, SI)
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From the discussion of this group, a number of short term and long-term opportunities were
identified. Short-term opportunities include:

Continuous engagement with users
Increased collaboration between agencies and research facilities
Make agencies (ESA, NASA, etc) visible to the research community
Connect ESA and NASA to agree on some agreements to be competitive world-wide
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Long-term opportunities include:
International agreements on common approaches, standardization, and shared capabilities
in AI/ML
Space-based Autonomy for longer-term flights, system level control and onboard decisions
Use of AI for space mining

8.2 Working Group 2
Michelangelo Ceci (University of Bari, IT)
Michai Datcu (University Politehnica of Bucharest, RO)
Simone Fratini (Solenix Engineering GmbH – Darmstadt, DE)
Dario Izzo (European Space Agency’s Advanced Concepts Team – Noordwijk, NL)
Marjan Stoimchev (Jožef Stefan Institute – Ljubljana, SI)
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The working group 2 discussed the following points:
Verification and Validation (for software and products of ML pipelines)
Open Source Pipelines and Benchmarks (especially in Operations)
Smaller is better (produce smaller models, trade off between model accuracy and size)
Edge computing for ground/space segments.

A summary of the discussion for each point follows below.

Verification and Validation (software).
The ECSS handbook is widely used in ESA/space. A section thereof for ML models is
underway.
Qualitative validation beyond accuracy or other measures is neede. There are some
techniques already in place for this that create some constraints for the model output,
also looking at variables not seen by the model.
Undecidability of the presence of bugs from the achieved accuracy of models. ML corrects
for that and helps hide them. Certification procedures should account for these effects.
We need ontologies of image labels.

Verification and Validation (products).
New products are derived from ML pipelines (synthetic data). These need to be certified
and /or traced back to the originating pipeline/images.
Detection of fakes might become important to guarantee product value. Might be related
to anomaly detection.
Revise TRL definitions are based on experience from 20 years ago. ML changed all this
and they should be reassessed.
Revise technology trees to account for the change in philosophy coming from ML advances
and technological innovations.

Open Source.
Many projects need to be extended to account for space constraints (Normalization for
example needs to happen in a very specific way, often not provided in the OS toolboxes)
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One needs to be careful in general because some data (EO) have a geopolitical value that
may drive (wrongly or rightly) political decisions. (example forecast of crop productions).
A solution might come on the availability of reference data, or anonymization of data
(difficult to do, needs some compromise).
Complete lack of benchmarks for operation scenarios. A fact. EO is very well ahead w.r.t.
other fields in space.
Culture change needed . . . . Many agree on the importance of opening up data, but
nobody wants to sign documents allowing it.

Edge Computing.
Importance of having computational constraints accounted for in the development of ML
models from early stages.
Hardware available on board is moving slowly towards higher capabilities but will never
close the gap with Earth counterparts. Awareness on application requirements must drive
the development of models that fit on foreseeable on board architectures.
Pruning,distilling, teacher-student models are actively researched areas in ML that should
be assessed for space applications.

8.3 Working Group 3
Jurica Levatic (Jožef Stefan Institute – Ljublana, SI)
Sylvain Lobry (Université Paris Cité, FR)
Luke Lucas (LSE Space – Darmstadt, DE)
Jose Martinez-Heras (Solenix – Darmstadt, DE)
Gauthier Picard (ONERA/DTIS, Université de Toulouse, FR)
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The working group 3 discussed the following points:
The loop between planning, execution and monitoring should be closed.
Anonymization (i.e. adding noise so parameters cannot be reversed-engineered) is some-
thing to be investigated.
In foundation models, standardization and data availability are main issues.
Existing foundation models could be used for on-board lossless compression or compression
with loss (select relevant data to downlink).
In anomaly detection, the end-user should be involved in the designing of the tool. The
use of of AI should be planned from the early stages of mission development.
In diagnostics, smart filtering, dependency analysis, and XAI are used, but not yet
causality. Causal Inference remains a challenge in space operations. It will be very useful
for diagnosing anomalies and increasing understanding.
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8.4 Working Group 4
Jonathan Bamber (University of Bristol, GB & Technical University of Munich, DE)
Sašo Džeroski (Jožef Stefan Institute – Ljubljana, SI)
Dino Ienco (INRAE – Montpellier, FR)
Ana Kostovska (Jožef Stefan Institute – Ljubljana, SI)
Panče Panov (Jožef Stefan Institute – Ljubljana, SI)
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The discussion of the working group 4 can be summarized as follows. Descriptions of the
different types of data collected by different EO missions are needed. This would facilitate
their use, reuse and combination. This is especially important for applying ML methods to
these data and combinations thereof.

Ground-truth data is sorely needed. The same holds for meta-data describing the
ground-truth data, which is even more important, because in some cases the data might
not be available. Meta-data are essential for finding data relevant to a problem at hand. In
addition, it would be very important for transfer learning and learning foundation models.
The decision on which foundation model is most relevant for a particular downstream
task can be also taken much more competently if we have a description of the data at
hand (geographical region, type of urban system/ ecosystem, type of data).
Reuse of historical heterogeneous data (sensors and calibration data) in order to
make value of that information for nowcasting/ forecasting is of primary importance and
AI can provide methodologies and techniques for such “transfer”.
Hindcasting is an interesting avenue for further work. If we have, e.g., both
Landsat and LIDAR, for a recent period, we could learn to map forest cover (height
and density) from Landsat. We could then get estimates of forest cover for the entire
historical period (60 years), where we have Landsat data.
Incrementally/Continually updating machine learning models with new EO
and calibration data in order to avoid retraining the system from scratch is also a
possible challenge. This is especially important in the context of EO missions that are
acquiring systematically new information on the different areas of the Earth surface.
Federated learning holds significant potential for EO applications. The decentral-
ized training methodology would enable us to learn from massive amounts of data without
the need of centralizing it. This aspect is particularly advantageous in EO, where data
can be voluminous, diverse, and often sensitive w.r.t. privacy and security. Initial work
on EO federated learning can be found in https://arxiv.org/pdf/2311.06141.pdf.
Federated and transfer learning can be used to avoid issues with sharing data. When
data cannot be shared, but models can, models can be sequentially (pre)trained and
(fine)tuned. The data can stay in place, but models can move around and evolve.
Semantic resources for EO need to be developed, e.g. controlled vocabularies/
ontologies for describing EO-related data, as well as EO-related machine learning tasks,
to match to methods.
Open publicly funded centre for AI. There is a high risk that one of the big tech
companies creates a monopoly in the field of AI4EO and particularly by the development
of very large foundation models. To avoid the risks associated with commercial imperatives
that might drive such an approach, publicly funded foundation models are needed.

23461

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/pdf/2311.06141.pdf


102 23461 – Space and Artificial Intelligence

Participants

Jonathan Bamber
University of Bristol, GB

Mitra Baratchi
Leiden University, NL

Damian Borth
Universität St. Gallen, CH

Gustau Camps-Valls
University of Valencia, ES

Nuno Carvalhais
MPI für Biogeochemie –
Jena, DE

Michelangelo Ceci
University of Bari, IT

Dan Crichton
Jet Propulsion Laboratory –
Pasadena, US

Mihai Datcu
University Politehnica of
Bucharest, RO

Alessandro Donati
Brombachtal, DE

Sašo Džeroski
Jožef Stefan Institute –
Ljubljana, SI

Simone Fratini
Solenix Engineering GmbH –
Darmstadt, DE

Holger H. Hoos
RWTH Aachen, DE

Dino Ienco
INRAE – Montpellier, FR

Dario Izzo
ESA / ESTEC – Noordwijk, NL

Žiga Kokalj
ZRC SAZU – Ljubljana, SI

Ana Kostovska
Jožef Stefan Institute –
Ljubljana, SI

Bertrand Le Saux
ESA – Frascati, IT

Jurica Levatic
Jožef Stefan Institute –
Ljubljana, SI

Sylvain Lobry
Paris Cité University, FR

George Anthony Long
Legal Parallax –
Fountain Hills, US

Luke Lucas
LSE Space – Darmstadt, DE

Jose Martinez Heras
Solenix – Darmstadt, DE

Yazan Mualla
University of Technology of
Belfort-Montbéliard, FR

Jakub Nalepa
Silesian University of Technology
– Gliwice, PL

Evridiki Ntagiou
ESA / ESOC – Darmstadt, DE

Pance Panov
Jožef Stefan Institute –
Ljubljana, SI

Claudio Persello
University of Twente, NL

Gauthier Picard
ONERA/DTIS, Université de
Toulouse, FR

Markus Reichstein
MPI für Biogeochemie –
Jena, DE

Jakob Runge
DLR – Jena, DE
& TU Berlin, DE

Marjan Stoimchev
Jožef Stefan Institute –
Ljubljana, SI

Alexandru Tantar
Luxembourg Inst. of Science &
Technology, LU

Leon van der Torre
University of Luxembourg, LU

Jan van Rijn
Leiden University, NL

Joaquin Vanschoren
TU Eindhoven, NL

Xiaoxiang Zhu
TU München, DE


	Executive Summary (Sašo Džeroski, Holger H. Hoos, Bertrand Le Saux, and Leendert van der Torre)
	Table of Contents
	Plenary talks: Machine Learning
	Semi-supervised and multi-label classification of remotely sensed images (Sašo Džeroski)
	Self-supervised Learning, Foundation Models, and ModelZoos (Damian Borth)
	Hybrid modelling: examples and challenges (Nuno Carvalhais)
	Automated Machine Learning for SeaICE Charting (Jan N. van Rijn)
	Automated Machine Learning for Spatio-temporal Datasets (Mitra Baratchi )

	Plenary talks: Explainable Artificial Intelligence
	Introduction to Explainable Artificial Intelligence (Yazan Mualla)
	Causal inference for data-driven science (Jakob Runge)
	Causality is all you need (Gustau Camps-Valls)

	Plenary talks: Space Operations
	Introduction to Space Operations (Alessandro Donati)
	Exploring Challenges and Innovations in the Space Domain: Curated Datasets, Optimization Problems, and Machine Learning Applications (Dario Izzo)
	Architecting a data-driven future in space (Dan Crichton)
	Challenges in fielding AI in Space Operations (Simone Fratini, Jose Martinez Heras)

	Plenary talks: Earth Observation
	Foundational Models for Earth Observation (Bertrand Le Saux)
	How can the EO ``revolution'' benefit NWP and climate prediction? (Jonathan Bamber)
	Planning satellite observations for global monitoring of physical parameters: Some research questions (Gauthier Picard)
	Artificial Intelligence and Earth Observation for The Sustainable Development Goals (Claudio Persello)
	In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene Classification (Sašo Džeroski)

	Parallel working group discussions on different topics
	Working Group on SDG and AI4Good  (Jonathan Bamber, Xiaoxiang Zhu, Gustau Camps-Valls, Žiga Kokalj, Jose Martinez-Heras, Claudio Persello, Michelangelo Ceci, Dino Ienco, Sašo Džeroski, Alessandro Donati, Sylvain Lobry, Nuno Carvalhais)
	Working Group on AutoML and Benchmarks  (Marjan Stoimchev, Ana Kostovska, Panče Panov, Jurica Levatic, Mitra Baratchi, Jan van Rijn, Joaquin Vanschoren)
	Working Group on On-board and Frugal AI (Damian Borth, Dan Crichton, Simone Fratini, Holger Hoos, Dario Izzo, Gauthier Picard, Jakub Nalepa)
	Working Group on Responsible AI  (Leendert von der Torre, George Anthony Long, Yazan Mualla, Alexandru Tantar, Bertrand Le Saux)

	Parallel working group discussions on challenges in AI & space and future research directions
	Working Group 1 (Damian Borth, Dan Crichton, Alesandro Donati, George Anthony Long, Evridiki Ntagiou, Claudio Persello, Joaquin Vanschoren, Žiga Kokalj)
	Working Group 2 (Michelangelo Ceci, Michai Datcu, Simone Fratini, Dario Izzo, Marjan Stoimchev)
	Working Group 3 (Jurica Levatic, Sylvain Lobry, Luke Lucas, Jose Martinez-Heras, Gauthier Picard)
	Working Group 4 (Jonathan Bamber, Sašo Džeroski, Dino Ienco, Ana Kostovska, Panče Panov)

	Participants

