
Report from Dagstuhl Seminar 23481

MAD: Microarchitectural Attacks and Defenses
Christopher W. Fletcher∗1, Marco Guarnieri∗2,
David Kohlbrenner∗3, and Clémentine Maurice∗4

1 University of Illinois – Urbana-Champaign, US. cwfletch@illinois.edu
2 IMDEA Software Institute – Madrid, ES. marco.guarnieri@imdea.org
3 University of Washington – Seattle, US. dkohlbre@cs.washington.edu
4 CNRS – CRIStAL, Lille, FR. clementine.maurice@inria.fr

Abstract
Microarchitectural attacks subvert the security assumptions many software-level security mech-
anisms rely upon, thereby threatening the security of our IT systems. These attacks exploit
the side-effects (like subtle timing differences in a program’s execution time) resulting from a
processor’s internal optimizations to leak sensitive information and compromise a system’s security.
Building systems that are resistant against such attacks requires fundamentally rethinking the
design of hardware and software security mechanisms.

This seminar gathered together leading researchers that are working on security at the
hardware-software interface spanning four different communities: computer security, computer
architectures, programming languages and verification, and applied cryptography. The goals were
to (1) present a comprehensive overview of current advances in microarchitectural attacks and
defenses, (2) foster interaction and future collaboration between researchers from different research
communities, and (3) identify interesting research directions and open challenges that need to be
addressed to build the next generation of systems that are resistant to microarchitectural attacks.
Seminar November 26 – December 1, 2023 – https://www.dagstuhl.de/23481
2012 ACM Subject Classification Security and privacy → Formal security models; Security and

privacy → Security in hardware; Security and privacy → Systems security
Keywords and phrases hardware-software co-design for security, microarchitectural attacks,

security architectures, side-channel analysis
Digital Object Identifier 10.4230/DagRep.13.11.151

1 Executive Summary

Christopher W. Fletcher (University of Illinois – Urbana-Champaign, US)
Marco Guarnieri (IMDEA Software Institute – Madrid, ES)
David Kohlbrenner (University of Washington – Seattle, US)
Clémentine Maurice (CNRS CRIStAL – Lille, FR)

License Creative Commons BY 4.0 International license
© Christopher W. Fletcher, Marco Guarnieri, David Kohlbrenner, and Clémentine Maurice

Our society relies on a multitude of information systems that generate, process, and store a
massive amount of potentially sensitive data. Protecting and regulating the access to this
growing collection of data is critical to prevent security breaches and data misuse. For this,
information systems deploy many security mechanisms at different levels: from application-
level security checks to, for instance, security mechanisms directly implemented in operating
systems. These mechanisms are implemented in a layered fashion where mechanisms at a
higher level (say, an application-level security check) rely on the security guarantees provided

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

MAD: Microarchitectural Attacks and Defenses, Dagstuhl Reports, Vol. 13, Issue 11, pp. 151–166
Editors: Christopher W. Fletcher, Marco Guarnieri, David Kohlbrenner, and Clémentine Maurice

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cwfletch@illinois.edu
mailto:marco.guarnieri@imdea.org
mailto:dkohlbre@cs.washington.edu
mailto:clementine.maurice@inria.fr
https://www.dagstuhl.de/23481
https://doi.org/10.4230/DagRep.13.11.151
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

152 23481 – MAD: Microarchitectural Attacks and Defenses

by lower levels (say, process isolation provided by the operating system). Since the majority
of these security mechanisms are implemented in software, their security relies on specific
assumptions about how processors execute software.

However, microarchitectural attacks have shown, time and again, that many software
mechanisms rely on incorrect assumptions about how programs are executed by processors.
These attacks, which target the hardware-software interface, exploit the side-effects (like
subtle timing differences in a program’s execution time) resulting from a processor’s internal
optimizations to compromise a system’s security. Even worse, these attacks clearly highlight
that we lack a precise hardware-software interface for security, which is a prerequisite for
building trustworthy and reliable security mechanisms.

Scope
The Dagstuhl Seminar 23481 focused on the topic of Microarchitectural Attacks
and Defenses (MAD for short), a rapidly growing research area focused on discovering,
mitigating, and preventing microarchitectural attacks. As an indication of this rapid growth,
the Spectre [1] and Meltdown [2] papers – two seminal works (published in 2018) illustrating
how microarchitectural attacks can bypass and circumvent many software-level security
mechanisms – have jointly attracted more than 4500 citations. Since then, researchers from
multiple communities – computer security, computer architectures, programming languages
and verification, and applied cryptography – have been working on tackling the challenges
posed by microarchitectural attacks. In particular, the MAD community has, so far, been
broadly focusing on the following research topics:

Attacks: In terms of attack-oriented research, the MAD community has been focusing on
characterizing the microarchitectural side-effects arising in modern processors and on
identifying new microarchitectural attacks. In particular, the discovery of new microarchi-
tectural details is often the first step towards developing new attacks. Even though the
majority of this research still heavily relies on manual analysis and reverse engineering,
researchers started to focus also on the development of approaches and tools to automate
the discovery of leaks and attacks.

Hardware and software defenses: The MAD community has also been focusing on the
development of defenses and mitigations – spanning the entire spectrum from hardware
to software – against microarchitectural attacks. For instance, the community has
proposed different ways of modifying current microarchitectures to directly prevent
microarchitectural leaks, e.g., by identifying (and delaying) those operations that might
result in leaks of sensitive information. In terms of software defenses, instead, the
community has been focusing on techniques for securely executing computations even
on top of current “leaky” processors, e.g., by relying on compiler-based mitigations to
prevent leaks.

Foundations and verification: In terms of foundations and verification, the MAD community
has been focusing on three core challenges. First, identifying and formalizing new security
abstractions capturing microarchitectural leaks. Second, developing automated techniques
for reasoning about microarchitectural leaks in software given high-level leakage models.
Third, developing verification techniques for proving the security of processors at register-
transfer level against microarchitectural attacks.

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 153

Goals
The main goal of the Dagstuhl Seminar 23481 – MAD: Microarchitectural Attacks
and Defenses was to bring together researchers that work on different, but related, research
topics such as
1. microarchitectural and side-channel attacks,
2. software security,
3. computer architectures and hardware security,
4. program verification and formal methods for security, and
5. applied cryptography.
For this, the seminar focused on:
1. Providing an overview of the latest research results related with security at the hardware-

software interface with a focus on microarchitectural attacks and defenses.
2. Strengthening the interaction between researchers from different community working on

topics relevant to microarchitectural attacks and defenses.
3. Discussing relevant open problems about microarchitectural attacks and defenses, identi-

fying novel insights that can arise by combining results from different research areas, and
fostering the collaboration between researchers.

Attendees and seminar’s structure
The seminar was attended by 35 researchers with diverse background, spanning all research
communities related to MAD: computer security, applied cryptography, computer architec-
tures, and programming languages and verification. The attendees were also a good mix
between academia (28 attendees) and industry (7 attendees). This mixture of diverse back-
grounds, which was particularly appreciated by many participants, led to many interesting
discussions fueled by a wide variety of points of views.

The seminar lasted 4.5 days and it was organized as follows. The first two days were
dedicated to establishing a common background for all attendees. This was achieved through
overview talks on core MAD topics: (a) microarchitectural attacks and defenses, (b) formal
methods and verification, (c) defenses at software and hardware level, and (d) a special
session dedicated to Rowhammer attacks and defenses. Each overview topic was covered
in 2 talks given by leading researchers on the respective topics. The remaining days were
dedicated to contributed talks by the attendees (in the mornings) and small discussion groups
(in the afternoons). The discussion groups started from topics proposed by the organizers
such as “What are the current capabilities of formal methods approaches and which are
the challenges for tackling microarchitectural attacks?”, “What is a good methodology for
evaluating the security guarantees of microarchitectural defenses?”, or “Which interesting
future systems/technologies might have implications for microarchitectural security?”. On
the other days, the discussion was directly driven by the attendees, sometimes continuing on
the above topics and sometimes exploring other research questions (e.g., identifying a new
taxonomy of microarchitectural attacks).

Future plans
Microarchitectural attacks are here to stay: addressing them requires to fundamentally
rethink the design of hardware and software security mechanisms. We believe that the core
topics of the MAD Dagstuhl Seminar will be relevant and at the edge of research for a

23481

154 23481 – MAD: Microarchitectural Attacks and Defenses

long time. Moreover, the seminar attracted a lot of interest and received positive feedback
from the attendees, which particularly appreciated being in contact with leading researchers
from other areas working on MAD as well as the presence of both industrial and academic
attendees. For these reasons, we believe that this Dagstuhl Seminar should be repeated
in the future. Potential improvements for the future editions could be (1) inviting more
computer architects and increasing the amount of attendees from industry (in particular,
from chip vendors), and (2) dedicating part of the seminar to deep-dives on specific topics.

References
1 Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre Attacks: Exploiting Speculative Execution. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (S&P 2019).

2 Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading Kernel Memory from User Space. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security 2018)

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 155

2 Table of Contents

Executive Summary
Christopher W. Fletcher, Marco Guarnieri, David Kohlbrenner, and Clémentine
Maurice . 151

Overview of Talks
Microarchitectural defenses in software
Sunjay Cauligi . 157

Ciphertext Side Channels and their Mitigation
Thomas Eisenbarth . 157

How can we improve analysis and software mitigation of data-at-rest and value-
dependent leakages?
Michael Flanders . 158

Attacks from Software Leveraging Microarchitectural Features
Daniel Gruss . 158

Software Defenses: What is the correct interface for a hardware “configuration bit”?
David Kohlbrenner . 159

What can speculative execution learn from exploitation?
Anil Kurmus . 159

Modeling and Detecting Microarchitectural Leaks
Boris Köpf . 159

RowHammer, RowPress and Beyond: Can We Be Free of Bitflips (Soon)?
Onur Mutlu . 160

Security of PIM (Processing-in-Memory) Systems
Onur Mutlu . 161

Practical Rowhammer Attacks and Defenses
Kaveh Razavi . 161

The Gates of Time: Improving Cache Attacks with Transient Execution
Eyal Ronen . 162

Rowhammer: Learnings from Designing Defenses and Outlook For the Future
Gururaj Saileshwar . 162

Verified Software Security Down to Gates
Caroline Trippel . 163

Interrupt-Driven Attacks and Defenses for Microarchitectural Security
Jo Van Bulck . 163

Hardware attacks and defenses: intro and setting the scene
Ingrid Verbauwhede and Jesse De Meulemeester . 164

Working groups
Tools for Program Analysis
Billy Brumley, Steve Kremer, Moritz Lipp, Nicky Mouha, Alastair Reid, and Jan
Reineke . 165

23481

156 23481 – MAD: Microarchitectural Attacks and Defenses

Open problems
Microarchitectural Side-Channel Mitigations for Serverless Applications
Aastha Mehta . 165

Participants . 166

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 157

3 Overview of Talks

3.1 Microarchitectural defenses in software
Sunjay Cauligi (MPI-SP – Bochum, DE)

License Creative Commons BY 4.0 International license
© Sunjay Cauligi

In which I discuss various software-based defenses against Spectre attacks. A successful
Spectre exploit is comprised of several distinct phases; different mitigations target these
different phases, to varying degrees of completeness and performance. In particular, I highlight
the Ultimate SLH [1] and Serberus [2] mitigations and how they are able to overcome the
subtleties of transient execution.

References
1 Zhang and Barthe and Chuengsatiansup and Schwabe and Yarom. Ultimate SLH. USENIX,

2023.
2 Mosier and Nemati and Mitchell and Trippel. Serberus. Oakland, 2024.

3.2 Ciphertext Side Channels and their Mitigation
Thomas Eisenbarth (Universität Lübeck, DE)

License Creative Commons BY 4.0 International license
© Thomas Eisenbarth

Joint work of Jan Wichelmann, Anna Pätschke, Luca Wilke, and Thomas Eisenbarth
Main reference Jan Wichelmann, Anna Pätschke, Luca Wilke, Thomas Eisenbarth: “Cipherfix: Mitigating

Ciphertext Side-Channel Attacks in Software”, in Proc. of the 32nd USENIX Security Symposium
(USENIX Security 23), pp. 6789–6806, USENIX Association, 2023.

URL https://www.usenix.org/conference/usenixsecurity23/presentation/wichelmann

In this short talk we discussed memory protection in modern Trusted Execution Environments
and the role of logic isolation and/or cryptographic isolation in memory protection. The
usage of deterministic encryption enables cipertext side-channel attacks that can be used to
extract secrets from constant-time code. Cipherfix patches binaries by masking all writes of
secret values with fresh pseudorandom masks, thereby preventing ciphertext side channels in
the protected binary. The induced performance overhead is 2x and more for many workloads.
It may serve as a lower bound of the expected costs of moving masking-style countermeasures
to arbitrary binaries when trying to prevent arbitrary value leakage on server-grade CPUs,
as recently exploited by the Hertzbleed attack.

23481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/usenixsecurity23/presentation/wichelmann
https://www.usenix.org/conference/usenixsecurity23/presentation/wichelmann
https://www.usenix.org/conference/usenixsecurity23/presentation/wichelmann
https://www.usenix.org/conference/usenixsecurity23/presentation/wichelmann

158 23481 – MAD: Microarchitectural Attacks and Defenses

3.3 How can we improve analysis and software mitigation of
data-at-rest and value-dependent leakages?

Michael Flanders (University of Washington – Seattle, US)

License Creative Commons BY 4.0 International license
© Michael Flanders

Joint work of Michael Flanders, Reshabh Sharma, Alexandra Michael, Dan Grossman, David Kohlbrenner
Main reference Michael Flanders, Reshabh Sharma, Alexandra Michael, Dan Grossman, David Kohlbrenner:

“Avoiding Instruction-Centric Microarchitectural Timing Channels Via Binary-Code
Transformations”. ASPLOS 2024, to appear

URL https://homes.cs.washington.edu/ dkohlbre/papers/cio-asplos24.pdf

A group of us at UW have been working on detecting and mitigating data-at-rest and value-
dependent leakages caused by novel microarchitectural optimizations. These optimizations
include things like simplifiable and bypassable computations, silent stores, the Apple data-
memory dependent prefetcher, and others as described in the recent “Opening Pandora’s
Box . . . ” paper.

In this talk, I plan to rant about some of the difficulties we faced in implementing leakage
analyzers and mitigations in low-level compiler passes and in stand-alone binary analysis
tools. These difficulties range from frustrations to soundness issues and arise from improper
interfaces and abstractions as well as default assumptions binary analysis tools make that
are improper for side-channel analysis. I will briefly discuss our thoughts on solutions but
largely want to solicit discussion on better handling of these issues as we see more of these
optimizations and accompanying defensive work.

3.4 Attacks from Software Leveraging Microarchitectural Features
Daniel Gruss (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Daniel Gruss

In this talk, we discuss aspects of attacks from software leveraging microarchitectural features
decomposed into multiple parts: We discuss the concept of attacks from software and argue
that it ranges from attacks with physical access to attacks where the attacker does not even
control a single line of code on the victim system. Thus, threat models for attacks from
software vary widely. We discuss that the term microarchitecture also is used in different
ways in different contexts: Often it refers specifically to the processor microarchitecture but
it is increasingly used as a terminological counterpart to architecture, i.e., microarchitecture
as the implementation of an architecture, including anything beneath the architectural
interface. Finally, we discuss microarchitectural features that facilitate such attacks and the
development trends underlying to the scientific progress in this field.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://homes.cs.washington.edu/~dkohlbre/papers/cio-asplos24.pdf
https://homes.cs.washington.edu/~dkohlbre/papers/cio-asplos24.pdf
https://homes.cs.washington.edu/~dkohlbre/papers/cio-asplos24.pdf
https://homes.cs.washington.edu/~dkohlbre/papers/cio-asplos24.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 159

3.5 Software Defenses: What is the correct interface for a hardware
“configuration bit”?

David Kohlbrenner (University of Washington – Seattle, US)

License Creative Commons BY 4.0 International license
© David Kohlbrenner

With the explosion of novel hardware optimizations, then used for attacks, has come a variety
of hardware configuration options for those optimizations. A common approach is a simple
on/off bit that can be set in a model specific register (MSR.)

Unfortunately, the preconditions for setting these bits, their effects, and their persistence
are decidedly non-uniform. For software-based defenses that intend to use these bits to
protect sensitive computation this presents several common problems. Rather than attempt
to solve each configuration case on its own, we ask what an ideal simple configuration interface
would look like for a compiler-based hardening scheme.

3.6 What can speculative execution learn from exploitation?
Anil Kurmus (IBM Research-Zurich, CH)

License Creative Commons BY 4.0 International license
© Anil Kurmus

We draw parallels between speculative execution attacks and memory errors. Exploitation
of memory errors has a long history, starting from the 1972 Anderson report. While the
problem is much more close to being solved in a principled and practical way 50 years later,
we have not quite succeeded. What are the lessons we can learn and apply for speculative
execution defenses? A few topics of further discussion include “minimum viable patching” vs.
principled defenses, attack chaining, attack reliability and portability, taxonomies inspired
by memory errors.

3.7 Modeling and Detecting Microarchitectural Leaks
Boris Köpf (Microsoft Research – Cambridge, GB)

License Creative Commons BY 4.0 International license
© Boris Köpf

Speculative execution attacks such as Spectre and Meltdown exploit microarchitectural
optimizations to leak information across security domains. These vulnerabilities often stay
undetected for years, because we lack the tools for systematic analysis of CPUs to find them.

In this talk I presented leakage contracts as a way to specify speculative leaks together
with Revizor, a tool that can automatically test CPUs against these specifications. I gave
examples of how this approach can be used to detect large classes of known and unknown
leaks in recent x86 CPUs.

23481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

160 23481 – MAD: Microarchitectural Attacks and Defenses

3.8 RowHammer, RowPress and Beyond: Can We Be Free of Bitflips
(Soon)?

Onur Mutlu (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Onur Mutlu

Main reference Onur Mutlu, Ataberk Olgun, A. Giray Yağlıkcı: “Fundamentally Understanding and Solving
RowHammer”, in Proc. of the 28th Asia and South Pacific Design Automation Conference,
ASPDAC ’23, ACM, 2023.

URL http://dx.doi.org/10.1145/3566097.3568350

We will examine the RowHammer problem in Dynamic Random Access Memory (DRAM),
the first example of how a circuit-level failure mechanism can cause a practical and widespread
system security vulnerability. RowHammer is the phenomenon that repeatedly accessing a row
in a modern DRAM chip predictably causes bitflips in physically-adjacent rows. Building on
our initial fundamental work that appeared at ISCA 2014, Google Project Zero demonstrated
that this hardware phenomenon can be exploited by user-level programs to gain kernel
privileges. Many other works demonstrated other attacks exploiting RowHammer, including
remote takeover of a server vulnerable to RowHammer, takeover of a mobile device by a
malicious user-level application, and destruction of predictive capabilities of commonly-used
deep neural networks.

Unfortunately, the RowHammer problem still plagues cutting-edge DRAM chips, DDR4
and beyond. Based on our recent characterization studies of more than 1500 DRAM chips
from six technology generations that appeared at ISCA 2020 and MICRO 2021, we show
that RowHammer at the circuit level is getting much worse, newer DRAM chips are much
more vulnerable to RowHammer than older ones, and existing mitigation techniques do not
work well. We also show that existing proprietary mitigation techniques employed in DDR4
DRAM chips, which are advertised to be Rowhammer-free, can be bypassed via many-sided
hammering (also known as TRRespass & Uncovering TRR).

In this talk, we will provide an overview of RowHammer research in academia and
industry, with a special focus on recent works that rigorously analyze real chip characteristics
and introduce promising solution ideas. We will discuss the effect of RowHammer on
High-Bandwidth Memory (HBM) chips and introduce and analyze RowPress, which is a
fundamentally different read disturbance phenomenon that also affects all DRAM chips.
RowPress greatly (e.g., by 100X) reduces the activation count required to induce bitflips, by
keeping an activated row open for a long time. We will also discuss what other problems
may be lurking in DRAM and other types of memory, which can potentially threaten the
foundations of reliable and secure systems, as memory technologies scale to higher densities.
We will conclude by describing and advocating a principled approach to memory robustness
(including reliability, security, safety) research that can enable us to better anticipate and
prevent such vulnerabilities.

A short accompanying paper, which appeared at ASP-DAC 2023, can be found here
and serves as recommended reading: “Fundamentally Understanding and Solving Row-
Hammer” https://arxiv.org/abs/2211.07613.
Slides: https://people.inf.ethz.ch/omutlu/pub/onur-DagStuhl-MAD-RowHammer
-28-November-2023.pdf
A similar talk online on Youtube: https://www.youtube.com/watch?v=0W7YRRhnunw

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3566097.3568350
http://dx.doi.org/10.1145/3566097.3568350
http://dx.doi.org/10.1145/3566097.3568350
http://dx.doi.org/10.1145/3566097.3568350
https://arxiv.org/abs/2211.07613
https://people.inf.ethz.ch/omutlu/pub/onur-DagStuhl-MAD-RowHammer-28-November-2023.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-DagStuhl-MAD-RowHammer-28-November-2023.pdf
https://www.youtube.com/watch?v=0W7YRRhnunw

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 161

3.9 Security of PIM (Processing-in-Memory) Systems
Onur Mutlu (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Onur Mutlu

Main reference Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, Rachata Ausavarungnirun: “A Modern Primer on
Processing in Memory”, CoRR, Vol. abs/2012.03112, 2022.

URL https://arxiv.org/abs/2012.03112

PIM systems, which enable various types of computation near (or using) memory structures,
are gaining traction. We posit that, on the one hand, different types of PIM systems can
cause new security issues, exacerbate known issues, or cause new complications related
to security. On the other hand, PIM systems can be used to improve security properties
by exposing data less, performing security critical functions in memory, or defining new
(and physically smaller) trust boundaries in the system. This talk discusses challenges and
opportunities in security of PIM systems.

Some related resources are mentioned below:
A 2-page overview paper from DAC 2023: “Memory-Centric Computing”, https://arxi
v.org/abs/2305.20000
A short vision paper from DATE 2021: “Intelligent Architectures for Intelligent Computing
Systems”, https://arxiv.org/abs/2012.12381
A longer survey of modern memory-centric computing ideas and systems (updated August
2022): “A Modern Primer on Processing in Memory”, https://arxiv.org/abs/2012.0
3112
Slides: https://people.inf.ethz.ch/omutlu/pub/onur-Dagstuhl-PIM-Security-2
8-November-2023.pdf

3.10 Practical Rowhammer Attacks and Defenses
Kaveh Razavi (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Kaveh Razavi

This lecture covers the reverse engineering of in-DRAM Target Row Refresh mechanisms
and uses the insights in the development of advanced Rowhammer attacks that bypass these
mitigations and the development of principled and scalable alternatives that are secure
against these attacks.

23481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2305.20000
https://arxiv.org/abs/2305.20000
https://arxiv.org/abs/2012.12381
https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2012.03112
https://people.inf.ethz.ch/omutlu/pub/onur-Dagstuhl-PIM-Security-28-November-2023.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Dagstuhl-PIM-Security-28-November-2023.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

162 23481 – MAD: Microarchitectural Attacks and Defenses

3.11 The Gates of Time: Improving Cache Attacks with Transient
Execution

Eyal Ronen (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Eyal Ronen

Joint work of Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen, Yuval Yarom
Main reference Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen, Yuval Yarom: “The

Gates of Time: Improving Cache Attacks with Transient Execution”, in Proc. of the 32nd USENIX
Security Symposium (USENIX Security 23), pp. 1955–1972, USENIX Association, 2023.

URL https://www.usenix.org/conference/usenixsecurity23/presentation/katzman

For over two decades, cache attacks have been shown to pose a significant risk to the security
of computer systems. In particular, a large number of works show that cache attacks provide
a stepping stone for implementing transient-execution attacks. However, much less effort has
been expended investigating the reverse direction—how transient execution can be exploited
for cache attacks. In this work, we answer this question.

We first show that using transient execution, we can perform arbitrary manipulations of
the cache state. Specifically, we design versatile logical gates whose inputs and outputs are
the caching state of memory addresses. Our gates are generic enough that we can implement
them in WebAssembly. Moreover, the gates work on processors from multiple vendors,
including Intel, AMD, Apple, and Samsung. We demonstrate that these gates are Turing
complete and allow arbitrary computation on cache states, without exposing the logical
values to the architectural state of the program.

We then show two use cases for our gates in cache attacks. The first use case is to amplify
the cache state, allowing us to create timing differences of over 100 millisecond between the
cases that a specific memory address is cached or not. We show how we can use this capability
to build eviction sets in WebAssembly, using only a low-resolution (0.1 millisecond) timer.
For the second use case, we present the Prime+Scope attack, a variant of Prime+Probe that
decouples the sampling of cache states from the measurement of said state. Prime+Store is
the first timing-based cache attack that can sample the cache state at a rate higher than the
clock rate. We show how to use Prime+Store to obtain bits from a concurrently executing
modular exponentiation, when the only timing signal is at a resolution of 0.1 millisecond.

3.12 Rowhammer: Learnings from Designing Defenses and Outlook For
the Future

Gururaj Saileshwar (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Gururaj Saileshwar

Rowhammer is a vulnerability affecting newer generations of DRAM (DDR3,DDR4,LPDDR4)
where rapid activations of DRAM rows causes bit-flips in neighboring rows. Moreover, recent
victim focused mitigation (refreshing victims neighboring aggressor rows) implemented in
DDR4 have also been defeated by new attacks.

This talk discusses three recent Rowhammer mitigations proposing new aggressor-focused
mitigations – Randomized Row Swap (RRS) [1], Scalable & Secure Row Swap (SRS) [2],
and AQUA [3]. Based on learnings from these defenses, this talk summarizes the outlook for
Rowhammer mitigations going forward.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/usenixsecurity23/presentation/katzman
https://www.usenix.org/conference/usenixsecurity23/presentation/katzman
https://www.usenix.org/conference/usenixsecurity23/presentation/katzman
https://www.usenix.org/conference/usenixsecurity23/presentation/katzman
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 163

References
1 Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, Prashant J. Nair. Randomized Row-

Swap: Mitigating Row Hammer by Breaking Spatial Correlation between Aggressor and
Victim Rows. ASPLOS 2022. https://dl.acm.org/doi/10.1145/3503222.3507716

2 Jeonghyun Woo, Gururaj Saileshwar, Prashant J. Nair. Scalable and Secure Row-Swap:
Efficient and Safe Row Hammer Mitigation in Memory Systems. HPCA 2023. https:
//www.computer.org/csdl/proceedings-article/hpca/2023/10070999/1LMbzYX6Uww

3 Anish Saxena, Gururaj Saileshwar, Prashant J. Nair, Moinuddin Qureshi. AQUA: Scalable
Rowhammer Mitigation by Quarantining Aggressor Rows at Runtime. IEEE MICRO 2022.
https://ieeexplore.ieee.org/document/9923789

3.13 Verified Software Security Down to Gates
Caroline Trippel (Stanford University, US)

License Creative Commons BY 4.0 International license
© Caroline Trippel

Hardware-software (HW-SW) contracts are critical for high-assurance computer systems
design and an enabler for software design/analysis tools that find and repair hardware-related
bugs in programs. E.g., memory consistency models define what values shared memory loads
can return in a parallel program. Emerging security contracts define what program data is
susceptible to leakage via hardware side-channels and what speculative control- and data-flow
is possible at runtime. However, these contracts and the analyses they support are useless if
we cannot guarantee microarchitectural compliance, which is a “grand challenge.” Notably,
some contracts are still evolving (e.g., security contracts), making hardware compliance
a moving target. Even for mature contracts, comprehensively verifying that a complex
microarchitecture implements some abstract contract is a time-consuming endeavor involving
teams of engineers, which typically requires resorting to incomplete proofs.

Our work takes a radically different approach to the challenge above by synthesizing HW-
SW contracts from advanced (i.e., industry-scale/complexity) processor implementations. In
this talk, I present our work on: synthesizing security contracts from processor specifications
written in Verilog; designing compiler approaches parameterized by these contracts that
can find and repair hardware-related vulnerabilities in programs; and updating hardware
microarchitectures to support scalable verification and efficient security-hardened programs.

3.14 Interrupt-Driven Attacks and Defenses for Microarchitectural
Security

Jo Van Bulck (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Jo Van Bulck

Microarchitectural side-channel attacks often face challenges due to limited temporal res-
olution. Researchers have innovatively employed timer and inter-processor interrupts to
temporarily halt victim programs, allowing precise probing of microarchitectural buffers. This
technique, while not exclusive to Trusted Execution Environments (TEEs), has demonstrated
particular efficacy in such environments.

23481

https://dl.acm.org/doi/10.1145/3503222.3507716
https://www.computer.org/csdl/proceedings-article/hpca/2023/10070999/1LMbzYX6Uww
https://www.computer.org/csdl/proceedings-article/hpca/2023/10070999/1LMbzYX6Uww
https://ieeexplore.ieee.org/document/9923789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

164 23481 – MAD: Microarchitectural Attacks and Defenses

In this presentation, I share my experiences developing SGX-Step, an open-source frame-
work enabling precise interrupt capabilities within Intel’s SGX TEE. I outline specific attack
applications of SGX-Step in recent years and its significant impact on the design of effective
defenses. Drawing from a thorough root-cause analysis, I explain our collaboration with
Intel to devise a hardware-software co-design effectively countering SGX-Step’s ability to
single-step a victim enclave. Additionally, I highlight our efforts in designing defenses across
the system stack for embedded MSP430 Sancus TEE processors. The talk aims to provide
insights into interrupt-driven attack evolution and key design choices for mitigating their
effects.

3.15 Hardware attacks and defenses: intro and setting the scene
Ingrid Verbauwhede (KU Leuven, BE) and Jesse De Meulemeester (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Ingrid Verbauwhede and Jesse De Meulemeester

In this presentation, we introduce hardware, i.e. physical attacks on electronic circuits. With
physical security, we mean sensitive information that can be obtained by monitoring or
disturbing the physical behavior of the electronic circuit. A first class of attacks are based
on passive observation of the data-dependent variations in timing, power consumption or
EM emanation. The strength of these attacks is that the device under attack is not aware
that it is being observed. A second class of attacks, called fault attacks, actively manipulate
the behavior of the integrated circuits. Examples are clock or power glitching, cooling or
heating, laser or EM injection, row hammering and more. The effect of these attacks could
be transient or permanent. In a second part of the presentation, we give an overview of the
effort and lab set-up which is needed to perform these attacks, ranging from simple cheap
power probes to laser and FIB set-ups, both for passive and active attacks. In the last part
we discussed countermeasures to protect against passive side-channel and active fault attacks
against crypto implementations. Countermeasures are split into two main classes. One is
hiding, where the goal is to reduce the signal-to-noise ratio of sensitive data. Examples are
logic styles as WDDL, clock jitter, instruction shuffling, etc. The second is masking, where
sensitive data is randomly split in shares. Operations then work on randomized data and
the signal traces do not contain sensitive data that can directly be correlated to the sensitive
data. Higher order attacks require higher order masking, i.e. split in a larger number of
shares. Countermeasures against fault attacks include on-chip sensors at the circuit level,
redundance and error correcting codes at the algorithm level. Unfortunately, countermeasures
against one class of attacks might make the circuit vulnerable to the other class of attacks.
Countermeasures resistant to both classes of attacks remain a big research challenge.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

C. W. Fletcher, M. Guarnieri, D. Kohlbrenner, and C. Maurice 165

4 Working groups

4.1 Tools for Program Analysis
Billy Brumley (Rochester Institute of Technology, US), Steve Kremer (INRIA Nancy –
Grand Est, FR), Moritz Lipp (Amazon Web Services – Wien, AT), Nicky Mouha (NIST –
Gaithersburg, US), Alastair Reid (Intel – London, GB), and Jan Reineke (Universität des
Saarlandes – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Billy Brumley, Steve Kremer, Moritz Lipp, Nicky Mouha, Alastair Reid, and Jan Reineke

A prerequisite to identify microarchitectural attacks and protect against them is to explore
various tools that are available to understand program properties. This working group
focused on getting some hands-on experience with two specific tools: KLEE and CodeQL.

KLEE is a dynamic symbolic execution engine that can be used to automatically reason
about software programs. For example, a programmer can add the klee_assert(a + b
>= a) statement to determine if there exist values that would cause the addition a + b to
overflow (thereby making the assertion fail). As an example, KLEE was used to analyze a
possible integer overflow in code that was present in OpenSSL’s HKDF implementation.

CodeQL is a static analysis tool that can perform SQL-like queries to look for specific
patterns in source code. An application of CodeQL was explored to detect the pattern
that caused a buffer overflow vulnerability in an earlier version of the “official” SHA-3
implementation.

5 Open problems

5.1 Microarchitectural Side-Channel Mitigations for Serverless
Applications

Aastha Mehta (University of British Columbia – Vancouver, CA)

License Creative Commons BY 4.0 International license
© Aastha Mehta

Joint work of Yayu Wang, Aastha Mehta

Most of the prior work has focused on microarchitectural side-channel mitigations for
cryptographic applications. While cryptography is an important class of applications,
we explore microarchitectural side-channel vulnerabilities in other application domains.
Specifically, we develop automatic mitigations for serverless applications hosted in cloud
platforms. Serverless platforms rely on resource multiplexing among tenants for economies
of scale and therefore, coarse-grained resource-partitioning based mitigations are inefficient.
Instead, we investigate constant-time execution technique as a principled solution.

23481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

166 23481 – MAD: Microarchitectural Attacks and Defenses

Participants

Gilles Barthe
MPI-SP – Bochum, DE

Thomas Bourgeat
EPFL – Lausanne, CH

Billy Brumley
Rochester Institute of
Technology, US

Sunjay Cauligi
MPI-SP – Bochum, DE

Chitchanok Chuengsatiansup
The University of Melbourne, AU

Jesse De Meulemeester
KU Leuven, BE

Thomas Eisenbarth
Universität Lübeck, DE

Michael Flanders
University of Washington –
Seattle, US

Christopher W. Fletcher
University of Illinois –
Urbana-Champaign, US

Anders Fogh
Intel – Neubiberg, DE

Daniel Gruss
TU Graz, AT

Marco Guarnieri
IMDEA Software Institute –
Madrid, ES

Boris Köpf
Microsoft Research –
Cambridge, GB

David Kohlbrenner
University of Washington –
Seattle, US

Steve Kremer
INRIA Nancy – Grand Est, FR

Anil Kurmus
IBM Research-Zurich, CH

Moritz Lipp
Amazon Web Services –
Wien, AT

Aastha Mehta
University of British Columbia –
Vancouver, CA

Nicky Mouha
NIST – Gaithersburg, US

Onur Mutlu
ETH Zürich, CH

Hamed Nemati
CISPA – Saarbrücken, DE

Yossi Oren
Ben Gurion University –
Beer Sheva, IL

Riccardo Paccagnella
Carnegie Mellon University –
Pittsburgh, US

Kaveh Razavi
ETH Zürich, CH

Alastair Reid
Intel – London, GB

Jan Reineke
Universität des Saarlandes –
Saarbrücken, DE

Tamara Rezk
INRIA – Sophia Antipolis, FR

Eyal Ronen
Tel Aviv University, IL

Gururaj Saileshwar
University of Toronto, CA

Michael Schwarz
CISPA – Saarbrücken, DE

Mark Silberstein
Technion – Haifa, IL

Caroline Trippel
Stanford University, US

Jo Van Bulck
KU Leuven, BE

Ingrid Verbauwhede
KU Leuven, BE

Hugo Vincent
Arm – Cambridge, GB

	Executive Summary (Christopher W. Fletcher, Marco Guarnieri, David Kohlbrenner, and Clémentine Maurice)
	Table of Contents
	Overview of Talks
	Microarchitectural defenses in software (Sunjay Cauligi)
	Ciphertext Side Channels and their Mitigation (Thomas Eisenbarth)
	How can we improve analysis and software mitigation of data-at-rest and value-dependent leakages? (Michael Flanders)
	Attacks from Software Leveraging Microarchitectural Features (Daniel Gruss)
	Software Defenses: What is the correct interface for a hardware ``configuration bit''? (David Kohlbrenner)
	What can speculative execution learn from exploitation? (Anil Kurmus)
	Modeling and Detecting Microarchitectural Leaks (Boris Köpf)
	RowHammer, RowPress and Beyond: Can We Be Free of Bitflips (Soon)? (Onur Mutlu)
	Security of PIM (Processing-in-Memory) Systems (Onur Mutlu)
	Practical Rowhammer Attacks and Defenses (Kaveh Razavi)
	The Gates of Time: Improving Cache Attacks with Transient Execution (Eyal Ronen)
	Rowhammer: Learnings from Designing Defenses and Outlook For the Future (Gururaj Saileshwar)
	Verified Software Security Down to Gates (Caroline Trippel)
	Interrupt-Driven Attacks and Defenses for Microarchitectural Security (Jo Van Bulck)
	Hardware attacks and defenses: intro and setting the scene (Ingrid Verbauwhede and Jesse De Meulemeester)

	Working groups
	Tools for Program Analysis (Billy Brumley, Steve Kremer, Moritz Lipp, Nicky Mouha, Alastair Reid, and Jan Reineke)

	Open problems
	Microarchitectural Side-Channel Mitigations for Serverless Applications (Aastha Mehta)

	Participants

