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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23491 “Scalable Graph
Mining and Learning”. The event brought together leading researchers and practitioners to discuss
cutting-edge developments in graph machine learning, massive-scale graph analytics frameworks,
and optimization techniques for graph processing. Besides the executive summary, the report
contains abstracts of the 18 scientific talks presented, descriptions of three open problems, and
preliminary results of three working groups formed during the seminar. In summary, the seminar
successfully fostered discussions that bridged theoretical research and practical applications in
scalable graph learning, mining, and analytics. Several potential outcomes include writing position
and research papers as well as joint grant submissions.
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1 Executive Summary

Danai Koutra (University of Michigan – Ann Arbor, US & Amazon, US, dkoutra@umich.edu)
Henning Meyerhenke (Humboldt-Universität zu Berlin, US, meyerhenke@hu-berlin.de)
Ilya Safro (University of Delaware, Newark, US, isafro@udel.edu)
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This Dagstuhl Seminar demonstrated a comprehensive exploration of the latest advancements
and research directions in the field of scalable graph analytics and learning. The seminar
featured a diverse array of talks that spanned foundational theory, innovative algorithms, and
real-world applications. This event brought together leading researchers and practitioners to
discuss cutting-edge developments in graph machine learning, massive-scale graph analytics
frameworks, and optimization techniques for graph processing.

The seminar highlighted significant contributions to graph neural networks and represent-
ation learning, emphasizing such discussions as the problems related to the development of
scalable algorithms, a proper benchmarking of the algorithms, several types of data reduction
on graphs and various models including static, dynamic, and streaming graph data.
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On the algorithmic front, several participants presented frameworks and algorithms
designed for efficient graph analytics at massive scales in regular and streaming contexts.
The topics included such broad problems as graph sparsification, various versions of graph
partitioning, and matchings in big graphs. They highlighted the ongoing efforts to address the
scalability challenges inherent in processing large-scale graph data. Notably, some emphasis
was on accelerating optimization on graphs by machine learning.

The seminar also served as a platform for discussing the practical implications and
applications of graph mining and learning in various domains. Examples of talks and
discussions included such topics as the role of knowledge graphs, causal discovery and
inference from social networks, as well as industry level graph mining. All these topics
illuminated the broad applicability of graph analytics in social science, industry, and beyond.
Moreover, these case studies provided valuable insights into how theoretical advancements
translate into applications.

One of the working groups explored using graph neural networks for smaller kernels with
an example of the maximum weighted independent set problem, focusing on understanding
GNNs’ ability to learn existing reduction rules, discovering new rules through GNN insights,
and potentially enhancing graph reduction beyond current capabilities. Another working
group discussed the ways of formulating the FAIR (Findable, Accessible, Interoperable, and
Reusable) principles in an algorithmic context and promoting the ways to generalize future
algorithm developement to bridge the gap between specialized practical applications and
fundamental algorithms. Another working group focused on causal representation learning,
aiming to identify high-level causal variables from observational data within graphs. This area
is important for improving machine learning models and understanding causal mechanisms in
various networks like social and protein interaction networks. Despite the importance, there’s
limited research on applying causal representation learning to graph data, a gap that hinders
our ability to discern causal relationships in complex systems. The group emphasized the
need for advancements in graph representation learning to address this challenge effectively.

In summary, the “Scalable Graph Mining and Learning” Dagstuhl Seminar successfully
fostered discussions that bridged theoretical research and practical applications in scalable
graph learning, mining, and analytics. Several potential outcomes include writing position
and research papers as well as joint grant submissions.
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3 Overview of Talks

3.1 Graph Machine Learning and Neural Network Research
George Karypis (University of Minnesota – Minneapolis, US, karypis@umn.edu)

License Creative Commons BY 4.0 International license
© George Karypis

This talk surveys recent accomplishments in graph machine learning and graph neural network
research.

3.2 Arachne: An Open-Source Framework for Interactive Massive-Scale
Graph Analytics

David A. Bader (NJIT – Newark, US, bader@njit.edu)

License Creative Commons BY 4.0 International license
© David A. Bader

Joint work of David A. Bader, Oliver Alvarado Rodriguez, Zhihui Du, Joseph Patchett, Naren Khatwani,
Fuhuan Li

A real-world challenge in data science is to develop interactive methods for quickly analyzing
new and novel data sets that are potentially of massive scale. In this talk, Bader will discuss
his development of graph algorithms in the context of Arkouda, an open-source NumPy-like
replacement for interactive data science on tens of terabytes of data. Massive-scale analytics is
an emerging field that integrates the power of high-performance computing and mathematical
modeling to extract key insights and information from large-scale data sets. Productivity in
massive-scale analytics entails quick interpretation of results through easy-to-use frameworks,
while also adhering to design principles that combine high-performance computing and
user-friendly simplicity. However, data scientists often encounter challenges, especially
with graph analytics, which require the analysis of complex data from various domains,
such as the cybersecurity, natural and social sciences. To address this issue, we introduce
Arachne, an open-source framework that enhances accessibility and usability in massive-scale
graph analytics. Arachne offers novel algorithms and implementations of graph kernels for
efficient data analysis, such as connected components, breadth-first search, triangle counting,
k-truss, among others. The high-performance algorithms are integrated into a back-end
server written in HPE/Cray’s Chapel language and can be accessed through a Python
application programming interface (API). Arachne’s back-end server is compatible with
Linux supercomputers, is easy to set up, and can be utilized through either Python scripts
or Jupyter notebooks, which makes it a desirable tool for data scientists who have access to
high performance computers. In this talk, Bader presents an overview of the algorithms his
research group has implemented into Arachne and, if applicable, the algorithmic innovations
of each. Further, Bader will discuss improvements to our graph data structure to store extra
information such as node labels, edge relationships, and node and edge properties. Arachne
is built as an extension to the open-source Arkouda framework and allows for graphs to be
generated from Arkouda dataframes.

The open-source code for Arachne can be found at https://github.com/Bears-R-Us/
arkouda-njit. This is joint work with Oliver Alvarado Rodriguez, Zhihui Du, Joseph
Patchett, Naren Khatwani, Fuhuan Li, Bader is supported in part by the National Science
Foundation award CCF-2109988.
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3.3 Data Reductions in Combinatorial Optimization
Ernestine Großmann (Universität Heidelberg, DE, e.grossmann@informatik.uni-heidelberg.de)

License Creative Commons BY 4.0 International license
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Combinatorial optimization problems play a pivotal role in various domains, challenging
researchers to find optimal solutions within large solution spaces. One key strategy to tackle
the complexity of these problems is data reduction, where instances are simplified to facilitate
more efficient algorithms. In this talk, we delve into the world of combinatorial optimization,
exploring classic data reduction techniques and their impact on problem-solving efficiency.

Additionally, we will explore different strategies of utilizing machine learning to reduce
problem instances in the context of combinatorial optimization and ask how machine learning
and exact data reductions can be combined more effectively. In particular, in future work we
want to explore potential synergies between these approaches, considering the strengths of
each and the challenges in their integration.

3.4 Targeted Branching for the Maximum Independent Set Problem
Using Graph Neural Networks

Kenneth Langedal (University of Bergen, NO, kenneth.langedal@uib.no)

License Creative Commons BY 4.0 International license
© Kenneth Langedal

Identifying a maximum independent set is a fundamental NP-hard problem. This problem
has several real-world applications and requires finding the largest possible set of vertices not
adjacent to each other in an undirected graph. Over the past few years, branch-and-bound
and branch-and-reduce algorithms have emerged as some of the most effective methods for
solving the problem exactly. Specifically, the branch-and-reduce approach, which combines
branch-and-bound principles with reduction rules, has proven particularly successful in
tackling previously unmanageable real-world instances. This progress was largely made
possible by the development of more effective reduction rules. Nevertheless, other key
components that can impact the efficiency of these algorithms have not received the same
level of interest. Among these is the branching strategy, which determines which vertex to
branch on next. Until recently, the most widely used strategy was to choose the vertex of
the highest degree. In this work, we present a graph neural network approach for selecting
the next branching vertex. The intricate nature of current branch-and-bound solvers makes
supervised and reinforcement learning difficult. Therefore, we use a population-based genetic
algorithm to evolve the model’s parameters instead. Our proposed approach results in a
speedup on 73% of the benchmark instances with a median speedup of 24%.
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3.5 What is the role of Knowledge Graphs in Graph Mining and
Learning?

Davide Mottin (Aarhus University, DK, davide@cs.au.dk)

License Creative Commons BY 4.0 International license
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A knowledge graph (KG) represents a unique convergence of graph structures and natural
language. On one side the graph structure is well defined by connection among entities. On
the other hand, each entity and each relationship has a type and convey semantic meaning.
Over time, research has emphasized different facets – while the machine learning community
favors semantic and semi-structured information, the Data Mining and Database community
views KGs as labeled graphs. Recently, the raise of Language Models and multimodal
learning, seem to have found a new space for KGs to enhance the interpretability and improve
the accuracy of models. This talk will survey some research on all sides of the coin and
challenge the audience in finding a unification framework for KGs.

3.6 Causal Discovery from Social Networks
Elena Zheleva (University of Illinois – Chicago, US, ezheleva@uic.edu)

License Creative Commons BY 4.0 International license
© Elena Zheleva

Social network data breaks a fundamental assumption of existing causal inference techniques,
known as the Stable Unit Treatment Value Assumption (SUTVA), which states that the
treatment of one unit cannot influence the outcome of other units. In real-world scenarios,
it is common for related units to interact with each other which leads to interference (also
known as spillover, or peer effects), in which the outcomes of units are interdependent. For
example, the opinion of one person can influence the opinion of their friends, and the health
status of one individual can impact the health status of others they interact with. In this
talk, I will focus on recent work and problems related to discovering causal insights from
social network data.

3.7 Topologies of Reasoning: Demystifying Chains, Trees, and Graphs
of Thoughts

Maciej Besta (ETH Zürich, CH, maciej.besta@inf.ethz.ch)

License Creative Commons BY 4.0 International license
© Maciej Besta

The field of natural language processing has witnessed significant progress in recent years,
with a notable focus on improving language models’ performance through innovative prompt-
ing techniques. Among these, structure-enhanced prompting has emerged as a promising
paradigm, with designs such as Chain-of-Thought (CoT) or Tree of Thoughts (ToT), in
which the LLM reasoning is guided by a structure such as a tree. We refer to these structures
as reasoning topologies, because their representation becomes to a degree spatial, as they
are contained within the LLM context. In the first part of the talk, we overview this recent
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field, focusing on fundamental classes of harnessed structures, the representations of these
structures, algorithms executed with these structures, relationships to other parts of the gen-
erative AI pipeline such as knowledge bases or Graph Neural Networks, and others. Second,
we introduce Graph of Thoughts (GoT): a framework that advances prompting capabilities
in LLMs beyond those offered by CoT or ToT. The key idea and primary advantage of GoT
is the ability to model the information generated by an LLM as an arbitrary graph, where
units of information (“LLM thoughts”) are vertices, and edges correspond to dependencies
between these vertices. This approach enables combining arbitrary LLM thoughts into
synergistic outcomes, distilling the essence of whole networks of thoughts, or enhancing
thoughts using feedback loops. We illustrate that GoT offers advantages over state of the art
on different tasks such as keyword counting while simultaneously reducing costs. We finalize
with outlining research challenges in this fast-growing field.

3.8 Mining and Learning with Graphs at Google Scale
Bryan Perozzi (Google – New York, US, bperozzi@cs.stonybrook.edu)

License Creative Commons BY 4.0 International license
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For over a decade, the Graph Mining team in Google Research has been working on the
mission to build the world’s most scalable library for graph algorithms and analysis, and
use it to improve Google products. Our goal is to make it easy for developers to use graph
algorithms in their applications, and to provide them with the tools they need to build
scalable and efficient graph processing systems. Our algorithms and systems are used in a
wide array of Google products, such as Search, YouTube, AdWords, Play, Maps, and Social.
The systems developed by our team have had a significant impact on the way that Google
engineers build and deploy graph-based applications.

In this talk I will give an overview of the team, what it works on, and what challenges we
view as fundamental for large scale graph systems.

3.9 Bridging Nodes and Edges: The Interdisciplinary Landscape of
Graph Mining, Complex Networks, Social Network Analysis and
Network Science

Frank Takes (Leiden University, NL, f.w.takes@liacs.leidenuniv.nl)

License Creative Commons BY 4.0 International license
© Frank Takes

Various disciplines, from computer science to physics to sociology to economics, have each
approached “graphs” or “networks” from a different perspective or interest. Each of these
fields has established its specific publishing venues, conferences and societies. Overall, the
talk aims to present what (future) challenges and opportunities this division over disciplines
brings in terms of the exchange of methods and findings. In addition to highlighting how
insights from one field have positively influenced the other, the talk also describes several
instances of “multiple discoveries” of network phenomena.
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3.10 Matchings in Big Graphs: Approximation and Streaming
Algorithms

Alex Pothen (Purdue University – West Lafayette, US, apothen@purdue.edu)

License Creative Commons BY 4.0 International license
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Matchings in graphs are classical problems in combinatorial optimization and computer
science, significant due to their theoretical importance and relevance to applications. Polyno-
mial time algorithms for several variant matching problems with linear objective functions
have been known for fifty years. However, these algorithms fail to compute matchings in
big graphs with billions of edges. They are also not concurrent and thus practical parallel
algorithms are not known.

This has led to work in the last twenty years on designing approximation algorithms
for variant matching problems with near-linear time complexity in the size of the graphs.
Approximation has thus become a useful paradigm for designing parallel matching algorithms
and also streaming algorithms. In this talk I will report on an approach to fast approximation
algorithms and streaming algorithms for the maximization version of edge-weighted matching.
It can be extended to edge-weighted b-matching, and the maximum k-disjoint weighted
matching problems.

Matching and related problems could be applied to graph mining, where the matching
objective is a submodular function.

3.11 Graph sparsification
Richard Peng (University of Waterloo, CA, peng@uwaterloo.ca)

License Creative Commons BY 4.0 International license
© Richard Peng

Graph sparsification is the approximation of dense graphs by sparse ones. Work over the
past two decades have exhibited a wide range of objectives that are sparsifiable, such as cut
structure, dense subgraphs, and eigenvectors, but also objectives that are not sparsifiable,
such as distances and matchings. This talk will overview recent results on sparsification, and
also discuss algorithmic ways of blurring the distinctions between sparse and dense problems.

3.12 Towards Foundation Models for Knowledge Graph Reasoning
Mikhail Galkin (Intel AI Lab – San Diego, US, mikhail.galkin@intel.com)

License Creative Commons BY 4.0 International license
© Mikhail Galkin

Foundation models in graph learning are hard to design due to the lack of common invariances
that transfer across different structures and domains. In this talk, I will give an overview of
ULTRA, our new approach for creating foundation models for knowledge graph reasoning
that captures relation interactions and does not require any input node or edge features.
Experimentally, a single pre-trained ULTRA in the zero-shot inference mode outperforms
supervised SOTA models on 50+ diverse graphs and can generalize to any multi-relational
graph.
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3.13 Improving Generalizability in Link Prediction with Application in
Drug Discovery

Ayan Chatterjee (Northeastern University – Boston, US, chatterjee.ay@northeastern.edu)

License Creative Commons BY 4.0 International license
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State-of-the-art link prediction models leveraging neighborhood topology for node represent-
ation learning underperform in data-scarce regimes involving low-degree nodes and entities
with insufficient metadata. To overcome this challenge, we have proposed a non-end-to-end
training approach leveraging unsupervised pre-training on a corpus significantly different from
and larger than the training graph to enhance the generalizability of link prediction models.
Additionally, we have introduced AI-Bind, a model that combines network science-inspired
negative sampling and unsupervised pre-training on molecular representation. AI-Bind not
only addresses topological shortcuts and the generalization shortcomings of existing models
in predicting drug-target interactions but also excels in identifying binding locations on
proteins for novel molecular structures. Furthermore, its integration with AutoDock Tools
expedites the molecular docking process.

3.14 Partitioning communication streams into graph snapshots
Cynthia Phillips (Sandia National Labs – Albuquerque, US, caphill@sandia.gov)

License Creative Commons BY 4.0 International license
© Cynthia Phillips

Joint work of Jeremy D. Wendt, Richard Field, Cynthia Philips, Arvind Prasadan, Tegan Wilson, Sucheta
Soundarajan, Sanjukta Bhowmick

We give a technique for partitioning streaming communication data into static graph snapshots.
We use combinatorial statistical models to adaptively find when a snapshot is stable, while
watching for significant data shifts – indicating a new snapshot should begin. If snapshots
are not found carefully, they poorly represent the underlying data – and downstream graph
analytics can fail.

We demonstrate the method on several real-world datasets and show its accuracy against
known-answer synthetic datasets. Not surprisingly, snapshot properties change from those
created with other methods. For example, our snapshots do not generally “densify” over
time, contradicting previous influential results that used simpler partitioning methods.

3.15 Mining Small Patterns in Dynamic Graphs
Kathrin Hanauer (Universität Wien, AT, kathrin.hanauer@univie.ac.at)

License Creative Commons BY 4.0 International license
© Kathrin Hanauer

Detecting, counting, or even enumerating the copies of a specific subgraph pattern contained
in a graph is an important tool in the analysis of various kinds of networks, from social
sciences to biology and chemistry, with numerous further applications, e.g. in machine
learning on graphs, building graph generators, or graph partitioning. In many use case
scenarios, the input graphs are almost naturally subject to change, i.e., edges may newly
arrive or disappear, vertices may be introduced or abandoned, or weights may change, which
makes the input graph dynamic.
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In this talk, we will focus on maintaining the number of occurrences of small patterns on
three or four vertices in a dynamic graph that undergoes an a priori unknown sequence of
edge insertions and deletions. In the first part, we will see how this problem can be solved
algorithmically in theory. Afterwards, we will also take a look at the practical side and
discuss how the algorithms behave on real-world instances and how they can be further
improved experimentally.

The talk concludes with some challenges and open questions in algorithm engineering for
dynamic graph problems.

3.16 Architectures, Algorithms, and Applications for Graph Mining and
Learning

Johannes Langguth (Simula Research Laboratory – Oslo, NO, langguth@simula.no)

License Creative Commons BY 4.0 International license
© Johannes Langguth

A major recent development in computer hardware was the rise of dedicated accelerator
hardware for machine learning applications such as the Graphcore IPUs and Cerebras WSE.
These processors have evolved from the experimental state into market-ready products, and
they have the potential to constitute the next major architectural shift after GPUs saw
widespread adoption a decade ago.

A salient feature of these devices is the use of SRAM for memory, which offers very low
latency and high bandwidth, making them attractive for a wide range of graph algorithms.
On the other hand, the wide parallelism employed in these devices makes it difficult to use
them efficiently for irregular computations.

In this talk we will present the new hardware and discuss the programming techniques
that are required to unlock their potential. We present implementations of basic graph
algorithms and show early results on the attainable performance, as well as comparisons to
other architectures. We follow up by discussing the wider implications of the architecture
for algorithm design and programming, along with the wider implications of adopting such
hardware, and we discuss some recent graph mining applications.

3.17 Approximating the Diagonal of a Directed Graph Laplacians’s
Pseudoinverse

Fabian Brandt-Tumescheit (Humboldt Universität zu Berlin, DE, brandtfa@hu-berlin.de)
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The ubiquity of massive graph data sets in numerous applications requires fast algorithms for
extracting knowledge from these data. We are motivated here by three electrical measures for
the analysis of large small-world graphs G = (V, E) – i.e., graphs with diameter in O(log |V |),
which are abundant in complex network analysis. From a computational point of view, the
three measures have in common that their crucial component is the diagonal of the graph
Laplacian’s Pseudoinverse, L†. Computing diag(L†) exactly by pseudoinversion, however, is
as expensive as dense matrix multiplication – and the standard tools in practice even require
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cubic time. Moreover, the Pseudoinverse requires quadratic space – hardly feasible for large
graphs. Resorting to approximation by, e.g., using the Johnson-Lindenstrauss transform,
requires the solution of O(log |V |/ϵ2) Laplacian linear systems to guarantee a relative error,
which is still costly for large inputs.

In the ongoing project, we work on extending a previous approximation algorithm that
requires the solution of only one Laplacian linear system and sampling of uniform spanning
trees, which then are related to diag(L†) via effective resistances. This previous work so far
only supports undirected graphs, and the extension is towards directed graphs. For that,
we introduce a new sampling scheme, which relies on the sampling of escape random walks.
In theory, the converted algorithm obtains an ±ϵ-approximation with high probability in a
time that is nearly linear in |E| and quadratic in 1/ϵ. In addition, the formulation makes
the approximation suitable for GPU-based implementation, leading to massive parallelism.

3.18 Contextualizing protein representations learned on protein
networks and single-cell data

Michelle Li (Harvard University – Boston, US, michelleli@g.harvard.edu)
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Understanding protein function and developing molecular therapies require deciphering the
cell types in which proteins act as well as the interactions between proteins. However,
modeling protein interactions across diverse biological contexts, such as tissues and cell
types, remains a significant challenge for existing algorithms. We introduce PINNACLE, a
flexible geometric deep learning approach that is trained on contextualized protein interaction
networks to generate context-aware protein representations. Leveraging a human multi-organ
single-cell transcriptomic atlas, PINNACLE provides 394,760 protein representations split
across 156 cell type contexts from 24 tissues and organs. PINNACLE’s contextualized
representations of proteins reflect cellular and tissue organization and PINNACLE’s tissue
representations enable zero-shot retrieval of the tissue hierarchy. Pretrained PINNACLE’s
protein representations can be adapted for downstream tasks: to enhance 3D structure-based
protein representations for important protein interactions in immuno-oncology (PD-1/PD-L1
and B7-1/CTLA-4) and to study the effects of drugs across cell type contexts. PINNACLE
outperforms state-of-the-art, yet context-free, models in nominating therapeutic targets for
rheumatoid arthritis and inflammatory bowel diseases, and can pinpoint cell type contexts
that predict therapeutic targets better than context-free models. PINNACLE is a graph-
based contextual AI model that dynamically adjusts its outputs based on biological contexts
in which it operates.
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4 Open Problems

4.1 Open Problems in Benchmarking Graph Learning via Synthetic
Graph Generation

Bryan Perozzi (Google – New York, US, bperozzi@cs.stonybrook.edu)
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Graph learning algorithms have attained state-of-the-art performance on many graph analysis
tasks such as node classification, link prediction, and clustering. It has, however, become
hard to track the field’s burgeoning progress. One reason is due to the very small number of
datasets used in practice to benchmark the performance of graph learning algorithms. This
shockingly small sample size used for standard evaluations allows for only limited scientific
insight into how graph learning models perform.

My group has been working on addressing this deficiency through the use of synthetic graph
generation for evaluating graph learning models [1]. This approach consists of generating
synthetic graphs, and contrasting the behavior of different graph learning algorithms in
these controlled scenarios. Our prior work in this area (e.g. GraphWorld [2]) introduced the
“GraphWorld paradigm”

1. Define graph metrics to quantify the “universe” of graphs generated by the framework
2. Define a Task (graph generator, feature generator, and prediction) tuple that fully defines

a graph learning problem
3. Vary the graphs generated, in order to cover the “universe” as well as possible
4. Evaluate a wide range of graph learning models on the Task to characterize the response

surface for each model

Naturally, there is much more to do in the space! For example, our initial investigation
focused on community-aware generators (like the Stochastic Block Model) for this evaluation.
However, this design decision limited the scope of graphs which could be generated. Further
analysis [3], has shown that better control of the degree distribution of the generated graph
creates situations which further differentiate graph learning models. Aside from obvious
improvements to the components of the framework above, this line of research enables
new problem formulations. For example, we also have examined how privacy-aware graph
generative models can generate anonymized graph datasets on which a model has similar
performance to the real datasets [4]. This is a new and interesting regime for both graph
generation and synthetic evaluation. Finally, in very recent work [5], we’ve illustrated how
this style of synthetic analysis can also be used to quantify the reasoning capabilities of
Large Language Models (LLMs), providing an interesting connection to the emerging field of
Artificial Intelligence.

References
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Graph Generation to Benchmark Graph Learning. GLB’21, Graph Learning Benchmarks
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4.2 Causal Representation Learning
Elena Zheleva (University of Illinois – Chicago, US, ezheleva@uic.edu)
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Causal representation learning refers to the discovery of high-level causal variables from
low-level observational data and is an important problem in machine learning and causal
inference. In machine learning, causal representation learning can help with robustness
and learning reusable mechanisms [1]. In causal inference, it can help with discovering
the causal mechanisms that gave rise to the observed data and identifying causal effects of
interest. While initial work has been done in causal representation learning for IID data
(e.g., [1, 2]), little research has been done on causal representation learning for graphs [1].
The proposed discussion is to identify a path towards causal graph representation learning,
including challenges and open problems.
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4.3 Graphs and Matrix accelerators – opportunities and challenges?
Flavio Vella (University of Trento, IT, flavio.vella@unitn.it)
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With the growing computational needs requested by deep learning and AI, new libraries
and architectures have steadily improved the efficiency of dense matrix multiplication in
recent years. Dense-matrix units, such as the Tensor Processing Unit (TPU) (TPU) [1],
TensorCore (TC) [2], or, more recently, Advanced Matrix Extensions (AMX) with TMUL by
Intel [3] among many others, are hardware accelerators designed to handle large volumes of
multiply-accumulate operations efficiently.

The use of such accelerators for other computation is becoming a well-established practice,
not only for designing newer building blocks (e.g, scan and prefix-sum [4]) and mixed-precision
linear solvers for HPC scientific computing [5] but also for various other applications [6]. In
the graph analytics realm, there are also preliminary studies on SRAM-centric architecture [7].
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Focusing on matrix-accelerators is natural to think about graphs algorithms in terms of
matrix operations over semirings [8, 9, 10]. For example, given a fixed semiring ⟨D,

⊕
,
⊗

, e⟩
(where D is the element set,

⊕
,
⊗

the ring operations, and e identity element) and the
adjacency matrix A of a graph G, we can compute connectivity, number of paths, shortest
paths and graph matching as simple tensor operations.1

GraphBLAS potentially provides a suitable abstraction for expressing graph algorithms
in terms of semirings, however, there are several issues and challenges to face in mapping
the algorithm to the matrix accelerator, which range from the sparsity of the graphs to the
algorithms we can express to enabling the usage of these newer architectures.

Challenge 1: Sparsity as usual.

As we delve into the field of graph analytics, the first challenge we encounter is how to
efficiently handle sparsity. This issue remains prevalent in parallel architectures. Graphs are
notoriously sparse or even hyper-sparse while matrix accelerators support dense block-based
data structure or structured sparsity. The practice of blocking the adjacency matrix often
results in suboptimal performance compared to traditional sparse data structures like CSR.

To mitigate this, two approaches are considered. The first aims to leverage the inherent
density found in certain graph components (often hidden by their labelling). The second
approach involves artificially increasing the density within a block through more sophisticated
data structures [11, 12].

Regarding the “inherent density”, reordering algorithms and graph partitioning (see
Table 1) can be used [13]. Trotter et al. [13] found that reordering based on graph partitioning
provides better SpMV performance than the alternatives for the majority of matrices.
However, both approaches are not specific to our purpose: traditional reordering methods
(such as Saad’s rendering method etc. [14]) typically are used for finding dense blocks over
the diagonal which leads to good properties for linear solvers, and partitioning methods find
a cut over the edges by assuming a fixed number of partitions (you want to minimize the
cost among the partitions, that in our context correspond to blocks). Nevertheless, matrix
accelerators need small (e.g., 4 × 4 ) but really dense blocks (order of thousands for medium
matrices) to obtain a significant improvement.

Preliminary works [15, 16] introduce a new family of reordering algorithms based on
clustering where each cluster corresponds to a distinct block. This algorithm requires O(n2)
comparisons among rows in the worst case. The main issue of such an approach is still on
the final density that depends on the graphs, therefore it seems that, for certain graphs, we
need to use ad-hoc data structures that do not allow us to exploit existing vendor-based
routines for tensor accelerators.

P1.1. Find a linear algorithm that provides theoretical guarantees on the final density.
P1.2. Find a reordering that fits a structured sparsity schema.

(To solve P1.1 hashing-based algorithms such as Local-Sensitive Hashing (LSH) may be
considered [16].)

1 connectivity → ⟨{0, 1}, ∨, ∧, 0⟩, number of paths → ⟨N, +, ·, 0⟩, shortest paths → ⟨R ∪
{+∞}, min, +, +∞⟩, matching → ⟨R ∪ {−∞}, max, +, −∞⟩.
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Table 1 State-of-the-art techniques.

Method Parametric Process Rectangular Only symmetric Objective function (target) Archs

Reverse Cuthill–McKee [17] × × × Matrix Bandwidth CPU

Approximate minimum degree [18] × × × Row Degree CPU

Nested dissection[19] × × × Cholesky Factorization CPU

Graph partitioning[19] ✓ × ✓ Edge Cut & Load Balance CPU

Hypergraph partitioning[20] ✓ ✓ × Edge Cut & Load Balance CPU

Gray code ordering[21] × ✓ ✓ Branch Mispredictions & Data Locality CPU

Saad’s algorithm[22] × ✓ ✓ Row Similarity CPU

Challenge 2: Graph Algorithms that can benefit from matrix accelerators.

The second issue is related to what algorithm can exploit matrix accelerators. The
matrix-centric formulation of typical traversal-based algorithms such as the Breadth-first
search (BFS) requires Sparse Matrix-Vector multiplication among A and the source vector B.
On matrix accelerators with large capacity for storing the operands, this is not efficient.
Other algorithms such as Triangle Counting or unweighted Single(Multi)-source shortest
paths fit better (B is this case is the matrix where each column is a search from different
sources). However, the mapping is not as straightforward as it seems to be. Firstly, the second
operand is typically sparse both on triangle-based (especially for the implementation based
on triangular matrices [23]). The consequence is if we apply the reordering to A (adjacency
Matrix of G) we need to apply the same permutation to B to make a coherent product.
Alternatively, B should be represented in its dense blocked format with the consequence of
obtaining poor performance.

Moreover, weighted graphs introduce further difficulties. The issue is the mapping of the
tropical semirings (e.g. the ⟨R ∪ {+∞}, min, +, +∞⟩ and ⟨R ∪ {−∞}, max, +, −∞⟩ required
by the weighted graph computation) on the matrix accelerator that natively only supports a
simple algebra +/· (i.e. ⟨N, +, ·, 0⟩). In the general case, which means we assume G with
arbitrary weights, this could lead to an approximation version of the algorithm. However,
within some constraints (e.g., where the weights are positive integers), it is possible to have
the exact algorithm through a graph subdivision. Formalize this and find the constraints
that have not been solved yet.

So, to summarize, the open problems are:

P2.1. How to design efficient primitives to solve unweighted graph problems by using matrix
accelerators.

P2.2. Weighted graphs do not fit the algebraic properties exposed by matrix accelerators,
the problem is how to “approximate” a semiring over the LA.

For P2.2. we need to explore theoretical foundations on the equivalences between graphs
and matrix [24].

Challenge 3: Dynamic graphs and semirings from a GraphDB perspective.

Modern graph databases employ efficient graph engines to perform queries, with recent
interest growing in matrix-centric graph engines. For example, RedisDB [25] adopts a
GraphBLAS-based engine.
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Databases typically serve multiple queries, including nested ones, and often require or rely
on similar information. Currently, query languages translate operations into linear algebra
expressions and optimize them using fundamental properties, such as the associative and
distributive nature of matrix multiplication. Similarly, can we apply additional optimiza-
tions, akin to those long used in relational algebra? The second problem arises when the
graph’s structure changes. Optimizing in the context of dynamic operations, such as edge
insertion/deletion or weight updates, remains a topic of exploration, as highlighted in various
works by Giuseppe F. Italiano et al. To the best of our knowledge, there have been no
significant enhancements in the processing of dynamic graphs in a truly algebraic form. We
have recently started working on dynamic transitive closure and APSP over semirings.
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5 Working Groups

5.1 Working Group on Causal Representation Learning
Elena Zheleva (University of Illinois – Chicago, US, ezheleva@uic.edu)
Michelle Li (Harvard University – Boston, US, michelleli@g.harvard.edu)
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Causal representation learning refers to the discovery of high-level causal variables from
low-level observational data and is an important problem in machine learning and causal
inference. In machine learning, causal representation learning can help with robustness and
learning reusable mechanisms [1]. In causal inference, it can help with discovering the causal
mechanisms that gave rise to the observed data and with identifying causal effects of interest.
While initial work has been done in causal representation learning for IID data (e.g., [1, 2]),
little research has been done on causal representation learning for graphs [3, 4].

Many real-world systems can be represented as graphs in which nodes represent entities of
interest, which can be of various types, and edges represent interactions between these entities.
Some examples include social networks, protein interaction networks, molecular structure
networks, and drug-protein-disease networks [4]. Graph representation learning has facilitated
discoveries across real-world applications on structured data [4, 6]. However, despite the
prevalence of causal relationships in real-world systems, existing graph representation learning
algorithms are unable to extrapolate causal mechanisms.
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The need for efficient and tailor-made computer applications is dramatically increasing across
all scientific areas. Even if research teams in application domains are acquiring their own
computing expertise, they will still rely on powerful building blocks developed by experts.
This is especially true for the fundamental algorithmic problems behind their applications
– and is even more pronounced when these algorithms ought to exploit special hardware
characteristics. In principle, algorithms research can provide these building blocks, but the
relevant algorithms are often hard to find or understand or do not match the application needs
well. Moreover, implementations are often missing or hard to employ. Users then usually
resort to readily available or ad hoc solutions, often with markedly suboptimal performance.

5.2.1 Discussed Problems

Inspired by and based on ideas of an already ongoing initiative in Germany, this working group
discussed the promotion of the goal to bridge this long-standing gap and make algorithms
research more FAIR = Findable, Accessible, Interoperable, and Reusable; a set of principles
originally defined for research data.

5.2.2 Possible Approaches

We argue that the natural way to achieve this is through problem abstractions with the
following properties. Each abstraction should be lean, yet cover both a large body of
algorithms research and a wide variety of applications. It should be comprehensible to a
non-expert, remain stable over time, and come with an implementation.

5.2.3 Conclusions

It is intended to publish a position paper on the subject which presents success stories of
the past and the main ideas how to achieve FAIRness in algorithmic research at large in the
future.

2 This co-author was not a seminar participant, but was invited to join the working group after the
seminar.

3 This co-author was not a seminar participant, but was invited to join the working group after the
seminar.
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5.3 GNNs for smaller kernels, finding the one rule to reduce them all
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Finding the maximum weighted independent set (MWIS) in a graph is a fundamental NP-
hard problem. Given an undirected graph G = (V, E) with node weights w : V → R+,
MWIS is the problem of finding a set I ⊆ V of pair-wise nonadjacent vertices with the
largest possible weight

∑
u∈I w(u). For both exact and heuristic solvers, reduction rules are

crucial for tackling large instances. These reduction rules reduce the problem instance while
ensuring that an optimal solution on the reduced instance can be lifted to an exact solution
for the original graph.

We consider how graph neural networks (GNNs) can be used for solving the MWIS
problem. In particular, we investigate how GNNs can be used to both design and apply
reduction rules. Our discussions during the Dagstuhl Seminar 23491 mainly focused on three
directions for further work.

What are the capabilities and limitations of current GNN architectures for learning
existing reduction rules? Known reduction rules have a wide range of complexity [2].
The most straightforward rules compare weights between vertices or neighborhoods. More
complicated rules search for patterns such as twins or dominated vertices. Eventually, some
reduction rules even require solving the MWIS problem on a subgraph. As a first step, it
makes sense to investigate what the existing GNN architectures are capable of in terms of
learning known reduction rules. Furthermore, what features should be precomputed as initial
input features?

Can we find new reduction rules with the help of a trained GNN model? Reduction
rules should be provably exact, meaning we cannot rely on a machine-learning model to
decide which vertices to reduce directly. However, a trained model could highlight interesting
structures in otherwise irreducible graphs, where a human observer could then derive new
reduction rules. We cannot train directly for this task since we do not know what structures
could be interesting. Nevertheless, we could use a pre-trained model for predicting vertices
that known reduction rules can reduce. To be clear, the outputs from the model should be
negative for every vertex here since the graph is irreducible using known reductions. However,
we can still rank the outputs and look into the vertices closest to a positive prediction.
Alternatively, we could also train a model that predicts what vertices are part of some
optimal solution. In this case, we would investigate the vertices that receive the most certain
prediction, as in closest to positive or negative. Such models have been trained previously [3].

Can we train a GNN to reduce graphs further than what is currently possible? As
mentioned earlier, some reduction rules must be applied cautiously due to their computational
cost. Current implementations rely on simple heuristics to decide when to use these rules.
Therefore, letting a GNN model decide instead could be a promising direction.
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In addition to reduction rules that decrease the size of the problem, there are also
transformations that increase the size of the graph [1]. The idea behind these rules is that
alternating between phases where we reduce and expand the graph can eventually lead to
smaller irreducible graphs. Combined with when to apply expensive rules, this becomes its
own search problem. It also fits nicely into the reinforcement learning method with a clear
set of actions, environment, and rewards. More specifically, an action would be a rule and
area of the graph to apply it, and the goal would be to reduce the graph as much as possible.
Alternatively, the goal could be to reduce it with the least amount of work.
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