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Abstract
What is the computational content of proofs? This is one of the main topics in mathematical logic,
especially proof theory, that is of relevance for computer science. The well-known foundational
solutions aim at rebuilding mathematics constructively almost from scratch, and include Bishop-
style constructive mathematics and Martin-Löf’s intuitionistic type theory, the latter most recently
in the form of the so-called homotopy or univalent type theory put forward by Voevodsky.

From a more practical angle, however, the question rather is to which extent any given proof
is effective, which proofs of which theorems can be rendered effective, and whether and how
numerical information such as bounds and algorithms can be extracted from proofs. Ideally,
all this is done by manipulating proofs mechanically and/or by adequate metatheorems (proof
translations, automated theorem proving, program extraction from proofs, proof mining, etc.).

A crucial role for answering these questions is played by coherent and geometric theories
and their generalizations: not only that they are fairly widespread in modern mathematics and
non-classical logics (e.g., in abstract algebra, and in temporal and modal logics); those theories
are also a priori amenable for constructivisation (see Barr’s Theorem, especially its proof-theoretic
variants, and the numerous Glivenko–style theorems); last but not least, effective theorem-proving
for coherent theories can be automated with relative ease and clarity in relation to resolution.

Specific topics that substantially involve computer science research include categorical se-
mantics for geometric theories up to the proof-theoretic presentation of sheaf models and higher
toposes; extracting the computational content of proofs and dynamical methods in quadratic form
theory; the interpretation of transfinite proof methods as latent computations; complexity issues
of and algorithms for geometrization of theories; the use of geometric theories in constructive
mathematics including finding algorithms, ideally with integrated developments; and coherent
logic for obtaining automatically readable proofs.
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1 Executive Summary

Ingo Blechschmidt (Universität Augsburg, DE)
Hajime Ishihara (Toho University – Chiba, JP)
Peter M. Schuster (University of Verona, IT)

License Creative Commons BY 4.0 International license
© Ingo Blechschmidt, Hajime Ishihara, and Peter M. Schuster

The Dagstuhl Seminar 24021 emerged as a response to the challenges faced by its predecessor,
Dagstuhl Sminar 21472, which grappled with pandemic-induced travel restrictions that
hindered in-person attendance. The tireless efforts of the Dagstuhl staff notwithstanding,
the earlier seminar relied on remote participation, limiting the depth of engagement and
interaction among attendees. Many participants advocated for a follow-up seminar on a
related topic, which materialized in the form of the present gathering.

Freed from the constraints of travel restrictions, this seminar hosted a dynamic environ-
ment characterized by extensive interactions, both structured and informal. Evening sessions
provided a platform for casual discussions, enabling participants to delve deeper into topics
of interest and forge meaningful connections across different communities within the field.
Most notably, the seminar structure allowed ample time for spontaneous working groups.

As compared to the Dagstuhl Seminars the organisers attended in the past, this seminar
stands out for an intense interaction between the participants. In the few months after we have
already observed push effects to current research in several directions, e.g. strong negation
in constructive mathematics and proof systems, synthetic algebraic geometry especially in
the context of homotopy type theory, and topos theory. According to our humble opinion
these effects can also be traced back to our stressing of interactive communication formats
during the week in Dagstuhl, as there are the lightning talks sessions (one-hour slots of short
talks of 5 minutes each) and especially the working groups, unusual both in number and
participation.

As a pity, one of the four organisers, Thierry Coquand, could not attend this Dagstuhl
Seminar. He still played a decisive role in forming the programme, especially concerning
the crucial topics of geometric logic, topos theory and synthetic algebraic geometry with
homotopy type theory.

An experimental addition to this year’s seminar was the integration of an informal
Discord server, serving as a digital hub for participant engagement. This platform not only
facilitated pre-seminar planning and coordination but also granted participants a stronger
sense of ownership over the seminar proceedings. Through features such as photo-sharing of
blackboards and solicitation of talk topics, many participants actively shaped the agenda
and direction of discussions.
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3 Overview of Talks

3.1 Geometric classes for the lazy topos theorist
Peter Arndt (Heinrich-Heine-Universität Düsseldorf, DE)

License Creative Commons BY 4.0 International license
© Peter Arndt

Any geometric morphism between Grothendieck toposes factors as a surjection followed by
a dense inclusion, followed by a closed inclusion. If the given geometric morphism f goes
from the classifying topos Set[T ] of a geometric theory T to the classifying topos Set[S]
of a geometric theory S, then the two new toposes showing up in the factorization can
be described as follows: The first one is the classifying topos of S′, the geometric theory
consisting of all sequents that are valid in f∗(MS), the S-model in Set[T ] classified by f .
And the second one is the classifying topos of S′′, the geometric theory consisting of S and
all geometric sequents of the form φ ⊢ ⊥ that are valid in f∗(MS).

Computing the intermediate toposes can be very hard for general geometric theories.
However, the followi ng three observations point to a way of making the factorization usable
for real mathematical situations:
1. The factorization still works for κ-geometric morphisms, and the intermediate toposes are

the classifying toposes for the corresponding κ-geometric theories (i.e. geometric theories,
but with infinitary conjunctions of size < κ)

2. Any accessible category is the category of Set-models of a κ-geometric presheaf theory.
3. Any accessible functor between accessible categories arises from an essential κ-geometric

morphism between classifying presheaf toposes.

Thus, if we are willing to introduce the extra cardinal κ, we can place ourselves into the
world of presheaf κ-toposes and essential κ-geometric morphisms. Here everything becomes
rather easily computable:

Theorem: For an essential κ-geometric morphism between presheaf κ-toposes, induced
by a functor f : C → D between the small index categories, the intermediate toposes of the
factorization are the presheaf toposes on the full subcategory of D whose objects are in the
essential image of f , and the full subcategory of D whose objects admit a morphism into the
essential image of f , respectively.

Sample applications:
A. The theory of 3-colorable graphs can be axiomatized by adding to the theory of

graphs all those geometric negations that are valid for the triangle graph. This can be seen
by factorizing the geometric morphism from Set to the classifying topos of graphs, that
chooses the triangle graph. The domain of the closed inclusion part is the classifying topos
of 3-colorable graphs, because a graph is 3-colorable if and only if it admits a morphism to
the triangle graph.

B. There are geometric sequents allowing to distinguish free finitely generated groups
with different numbers of generators. This can be seen by considering the two geometric
morphisms from Set to the classifying topos of groups that pick free groups on different
numbers n, m (both ≥ 2) of generators. The surjection-inclusion factorizations yield the
classifying toposes of the geometric theories of these free groups. By the theorem, they
are the presheaf toposes over the full subcategories whose object are the free group with
m, resp. n, generators. Explicit computation shows that their idempotent completions are
non-equivalent, hence the presheaf toposes are non-equivalent, hence the classified geometric
theories are different.

24021
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C. There are no negated κ-geometric formulas that are satisfied by all Special groups (a
notion from quadratic form theory) coming from von Neumann-regular rings, but not by
general special groups. This can be seen by considering the morphism from the classifying
κ-topos of von Neumann-regular rings to the classifying κ-topos of special groups (κ ≥ ℵ1),
and using the result that every special group admits a morphism the special group of a von
Neumann-regular ring.

3.2 The Countable Reals
Andrej Bauer (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Andrej Bauer

Joint work of Andrei Bauer, James E. Hanson
Main reference Andrei Bauer, James E. Hanson: “The Countable Reals”, CoRR, Vol. abs/2404.01256, 2024.

URL https://arxiv.org/abs/2404.01256

In 1874 Georg Cantor published a theorem stating that every sequence of reals is avoided by
some real, thereby showing that the reals are not countable. Cantor’s proof uses classical
logic. There are constructive proofs, although they all rely on the axiom of countable choice.
Can the real numbers be shown uncountable without excluded middle and without the axiom
of choice?

In this evening session, we have a tour of the recent result that, perhaps astoundingly,
higher-order intuitionistic logic cannot show the reals to be uncountable. The result rests
on the construction of a certain sequence of reals, shown to exist by Joseph S. Miller from
University of Wisconsin–Madison, with a strong counter-diagonalization property, and a
novel variant of realizability making use of oracles with a certain uniformity restriction.

3.3 Quantified Boolean Formulas: Proofs, Solving and Circuits
Olaf Beyersdorff (Friedrich-Schiller-Universität Jena, DE)

License Creative Commons BY 4.0 International license
© Olaf Beyersdorff

Main reference Olaf Beyersdorff, Benjamin Böhm: “Understanding the Relative Strength of QBF CDCL Solvers and
QBF Resolution”, Log. Methods Comput. Sci., Vol. 19(2), 2023.

URL http://dx.doi.org/10.46298/LMCS-19(2:2)2023

This talk gives an overview on connections between proof complexity and algorithms for
propositional satisfiability (SAT) and quantified Boolean formulas (QBF). We particularly
cover the correspondence between conflict-driven clause learning algorithms (CDCL) for SAT
and QBF to resolution proof systems. These connections enable the analysis of SAT/QBF
algorithms through proof complexity. While in SAT there is a tight relation between
propositional resolution and (non-deterministic) CDCL, the picture is more complex as we
can show the incomparability of Q-Resolution and (non-deterministic) QCDCL. Nevertheless,
lower bounds on QBF resolution systems yield run-time lower bounds for different QCDCL
variants. Such lower bounds can be obtained via strong relations between QBF proof systems
and circuit classes.

https://creativecommons.org/licenses/by/4.0/
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3.4 Skolem’s Theorem in Coherent Logic
Marc Bezem (University of Bergen, NO)

License Creative Commons BY 4.0 International license
© Marc Bezem

Joint work of Marc Bezem, Thierry Coquand
Main reference Marc Bezem, Thierry Coquand: “Skolem’s Theorem in Coherent Logic”, Fundam. Informaticae,

Vol. 170(1-3), pp. 1–14, 2019.
URL http://dx.doi.org/10.3233/FI-2019-1853

After a brief introduction to skolemization and to coherent logic, we discuss three possible
research directions, relevant for automated reasoning.

Generalization of skolemization from (properly quantified) atoms to coherent sentences.
Due to the implication in the latter, one could call this conditional (or hypothetical)
skolemization.
More efficient proof systems for coherent logic. Ground forward reasoning is conceptually
very simple and therefore attractive, but it leads to exponentially longer proofs as
compared to non-ground rules.
Comparison of the length of skolemized and non-skolemized proofs. The latter are known
to be (much) longer in the case of first-order logic, but this is unknown for the coherent
fragment.

3.5 A primer to realizability theory
Ingo Blechschmidt (Universität Augsburg, DE)

License Creative Commons BY 4.0 International license
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Main reference Andrej Bauer: “Realizability as the connection between computable and constructive mathematics”,
2005.

URL https://math.andrej.com/asset/data/c2c.pdf

Realizability theory provides a bridge between constructive and computable mathematics.
In its basic form, the fundamental result is that there is a mechanical way to extract from
any given constructive number-theoretic proof a computable witness, a so-called “realizer”
for instance, a realizer for the infinitude of primes is a Turing machine computing larger and
larger prime numbers.

From this basic picture, originally due to Kleene, gradually several enhancements emerged:
to higher-order statements and proofs; to proofs set in flavors of classical set theory; and to
different machine models.

24021
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This evening talk featured a leisurely introduction to realizability theory. For building
intuition, we focused on the following examples, exploring for each its status in classical
mathematics, constructive mathematics, ordinary realizability and realizability based on
infinite time Turing machines:
1. Every number is prime or not prime.
2. Every map N → N has a zero or not.
3. Every map N → N is (Turing-)computable.
4. Every map R → R is continuous.
5. Markov’s principle holds.
6. Countable choice holds.
7. Heyting arithmetic is categorical.
8. A statement holds iff it is realized.
9. There is an injection R ↪→ N.

Our decision to approach our exploration in a constructive metatheory allowed us to
discuss inheritance of classical principles. For instance, Markov’s principle is realized if and
only if it holds in the metatheory, while countable choice is realized even if it fails in the
metatheory.

3.6 Geometric Type Theory
Ulrik Buchholtz (University of Nottingham, GB)

License Creative Commons BY 4.0 International license
© Ulrik Buchholtz

This was an exploratory talk, outlining the structure of an envisioned geometric type theory.
The idea is to have a type theory capable of formalizing geometric reasoning, proving

results such as ((ϕ → ⊥) → ⊥) = 1 for the generic proposition ϕ, and similarly other non-
geometric properties of generic objects; and also capable of constructing common geometric
maps and bundles.

The intended model is based on (small) toposes (or (∞, 1)-toposes for a homotopical
version), where

contexts are such toposes X
and with two different type judgments:

X ⊢ A étalei corresponding to sheaves over X in Ui (classified by the usual univalent
universes Ui)
X ⊢ Y spacei corresponding to geometric morphisms p : Y → X in Ui.

We mentioned that maybe we should allow Y itself to be in Uj , necessitating two indices,
spacei,j .

Correspondingly, there should be two different element judgments:
X ⊢ a : A corresponding to sections of sheaves,
X ⊢ y : Pti(Y ) corresponding to geometric sections y : X → Y in Uj .

We also need to consider two fragments:
A geometric fragment (Σ,Id,finitary HITs) stable under all geometric morphisms, and
A full fragment (Π,W,universes) stable only under étale morphisms.

An inspiration is Mike Shulman’s observation that in the (∞, 1)-world atomic=logical=étale.
A question arose as to whether we prove that spaces are exponentiable, or whether we

need a separate judgment for that. If we write [Y, Z] for the exponential, then if A, B are
étale, the Π-type A → B should be the discrete coreflection (A → B) → [A, B].

For the generic proposition (and hence all propositions) ϕ, we should get [[ϕ, 0], 0] = ϕ.

https://creativecommons.org/licenses/by/4.0/
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3.7 Making predicative sense of impredicative foundations
Ulrik Buchholtz (University of Nottingham, GB)

License Creative Commons BY 4.0 International license
© Ulrik Buchholtz

Main reference Solomon Feferman: “Does reductive proof theory have a viable rationale?” Erkenntnis 53: 63–96,
2000.

URL https://doi.org/10.1023/A:1005622403850

Although classical principles such as the law of excluded middle or the axiom of choice are
not available in constructive mathematics, constructive mathematics can make sense of them:
The double-negation translation interprets classical logic in intuitionistic logic, and Gödel’s L

translation embeds zfc in zf. In this way, proofs in classical mathematics can be understood
as blueprints for constructive proofs; classical proofs can be decrypted to unearth obscured
constructive content. Several other techniques for making constructive sense of classical
proofs exist as well. Adding the law of excluded middle or the axiom of choice typically does
not increase the consistency strength at all.

In contrast, there is no similar translation from impredicative mathematics to predicative
mathematics; indeed, impredicative foundations are typically much stronger than their
predicative counterparts. Hence it seems that predicative foundations cannot make sense of
impredicative systems.

The evening talk explored that, fantastically, in some cases it is still possible to extract
predicative content from impredicative proofs. As direct translations are no longer possible,
the talk offered a whirlwind tour of the required tool, ordinal analysis, including a discussion
of the true limits of predicative reasoning.

3.8 Introduction to synthetic algebraic geometry
Felix Cherubini (Chalmers University of Technology – Göteborg, SE) and Matthias Hutzler
(University of Gothenburg, SE)

License Creative Commons BY 4.0 International license
© Felix Cherubini and Matthias Hutzler

Joint work of Felix Cherubini, Thierry Coquand, Matthias Hutzler

Algebraic Geometry is about studying shapes given by polynomial equations. Systems of
polynomial equations are mapped to some “space” of solutions (the common zeros). It turns
out that we can just use sets as “spaces” if we do not insist on the axiom of choice or the
law of excluded middle. In their absence we can ask that the SQC axiom (of Blechschmidt)
holds: The map A → RSpec(A) is an isomorphism for all finitely presented R-algebras
A = R[X1, . . . , Xn]/(P1, . . . , Pℓ) and Spec(A) := { x ∈ Rn | ∀i. Pi(x) = 0 }. Together with
two other axioms, this is the start of a well-working synthetic version of algebraic geometry
which is modeled by a sheaf topos, the Zariski topos.

In the talk we also mentioned the topic of finite schemes in the synthetic setting, hoping
to spark new ideas in connecting the geometric-algebraic notion of a finite scheme with
finiteness notions in constructive mathematics.

References
1 Felix Cherubini, Thierry Coquand, Matthias Hutzler. A Foundation for Synthetic Algebraic

Geometry. arXiv:2307.00073, 2023
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3.9 Defining subsets of rational numbers using first-order logic
Nicolas Daans (Charles University – Prague, CZ)

License Creative Commons BY 4.0 International license
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Joint work of Becher, Karim Johannes; Daans, Nicolas; Dittmann, Philip; Fehm, Arno
Main reference Nicolas Daans: “Existential first-order definitions and quadratic forms”. Phd thesis. Universiteit

Antwerpen, 2022. Under the supervision of Karim Johannes Becher and Philip Dittmann.
URL https://hdl.handle.net/10067/1903760151162165141

In 1970, building on work of Davis, Putnam, and Robinson, Matiyasevich established a
complete classification of subsets of the integers which can be described by an existential
first-order formula in the language of rings, in terms of their computability by a Turing
machine. After Gödel’s (in)famous Incompleteness Theorems, this marks one of the major
milestones in the study of computability in number theory, and it has inspired continued
research into (existential) first-order definability of subsets of rings.

This evening talk offers a lighthearted initiation into the realm of first-order and existential
definability within fields, with a focus on the field of rational numbers. Through various
examples, I highlight the intricacies surrounding the classification of definable subsets of
the rationals and associated decidability problems, while showcasing the diverse array of
methodologies drawn from algebra, number theory, quadratic form theory, and model theory
that have been employed to tackle them. To align with the theme of this week’s seminar,
particular attention is devoted to contrasting constructive and non-constructive approaches to
these problems. Nonetheless, the talk remains accessible to audiences with classical training
and assumes no prior background knowledge.
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3.10 Hierarchy of Σn-fragments of logical principles over HA and
hierarchy of intermediate propositional logics

Makoto Fujiwara (Tokyo University of Science, JP)

License Creative Commons BY 4.0 International license
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Joint work of Makoto Fujiwara, Hajime Ishihara, Takako Nemoto, Nobu-Yuki Suzuki, Keita Yokoyama
Main reference Makoto Fujiwara, Hajime Ishihara, Takako Nemoto, Nobu-Yuki Suzuki, Keita Yokoyama: “Extended

Frames and Separations of Logical Principles”, Bull. Symb. Log., Vol. 29(3), pp. 311–353, 2023.
URL http://dx.doi.org/10.1017/BSL.2023.29

We investigate seven natural variations of the linearity axiom

LIN : (p → q) ∨ (q → p)

and the following principles in the context of intermediate propositional logic and arithmetic:

PEM (the principle of excluded middle) : p ∨ ¬p;
WPEM (the weak principle of excluded middle) : ¬p ∨ ¬¬p;
DML (the De Morgan law) : ¬(p ∧ q) → ¬p ∨ ¬q;
WDML (the weak De Morgan law) : ¬(¬p ∧ ¬q) → ¬¬p ∨ ¬¬q;
DNE (the double negation elimination) : ¬¬p → p.

In fact, the hierarchy of Σn-fragments of the logical principles over Heyting arithmetic HA
is quite different from that of the intermediate propositional logics induced by the logical
principles. For a separation result on the Σn-fragment of

LIN7 : (p → ¬¬q) ∨ (¬¬q → p)

in arithmetic, we employ a meta-theorem with respect to extended frame to an appropriate
propositional Kripke model which refutes LIN7.

3.11 Proof Mining: Logical Foundations and Recent Applications
Ulrich Kohlenbach (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Ulrich Kohlenbach

In the Proof Mining paradigm one applies proof-theoretic transformations to extract new
computational information (e.g. programs or effective bounds) as well as qualitative im-
provements (e.g. by weakening of assumptions) from given prima facie noneffective proofs in
different areas of core mathematics. In this talk, we will

discuss recent extensions (mainly due to [8] but see also [5]) of the existing framework
for logical bound extraction metatheorems to cover set-valued monotone and accretive
operators in Hilbert and Banach spaces;
indicate the potential of generalizing mined proofs such as the quantitative analysis
of a Halpern-type proximal point algorithm in suitable Banach spaces given in [3] to
new geodesic settings ([7, 10]) as well as to the context of so-called Bregman strongly
nonexpansive mappings ([8], [9]);
show how a rate of convergence for the Dykstra algorithm in convex optimization which
recently has been obtained in [6] under a metric regularity assumption can be explained
in terms of a novel extension of the concept of Fejér monotonicity ([4]);
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prove the first linear rates of asymptotic regularity for the
Tikhonov-Mann algorithm in geodesic spaces as an application of proof mining ([1]);
present the first effective rate of convergence for the asymptotic regularity of ergodic
averages of iterations of nonexpansive mappings in uniformly convex Banach spaces ([2]).
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3.12 Geometric theories from the point of view of constructive
mathematics

Henri Lombardi (University of Franche-Comté – Besancon, FR)

License Creative Commons BY 4.0 International license
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1) Constructive mathematics.
Gauss, Kronecker, Poincaré, Bishop.
Intuitive mathematics, (no need of formalisation) using basic, undefined tools :

natural numbers, constructions,
proofs : a proof is a convincing proof,
predicativity,
Poincaré: Never lose sight of the fact that every proposition concerning infinity must be
the translation, the precise statement of propositions concerning the finite.

2) Why using geometric theories ?
Formalisation is about a piece of intuitive informal mathematics. It can help to understand

and analyse this piece of mathematics.
Geometric theories are interesting because they use only very simple kinds of asser-

tions, geometric assertions, managed without using logic: they are purely computational
machineries.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Ingo Blechschmidt, Hajime Ishihara, and Peter M. Schuster 13

Precursor: recursive arithmetic by Goodstein.
My undestanding :
sorts in a geometric theories correspond to sets in Bischop constructive mathematics
(BCM)
geometric theories are to be used and anlysed in the external world given by BCM

This is very different of the usual understanding of geometric theories where the external
world is a world of classical mathematics, using categorical logic, LEM and Choice, perhaps
also power sets and other uggly things à la ZFC.

The underlying logic of geometric theories is a small part of minimal logic and natural
deduction: no negation, no connector ⇒, no complicate sentences using forall exists forall.

No conflict between classical and constructive understanding of mathematics used inside
geometric theories. Adding formally negation and ⇒ does not add new valid rules in the
former language.

3) Dynamic versus geometric theories.
The dynamic view of geometric theories is purely computational, logic free
no new formulas: only atomic formulas given in the language
no logical implication: only deduction rules
connector “or” is replaced by “open branches of computations”
quantification “exists y such that P (y)” is replaced by “introduce a new fresh variable y

satisfying P (y)”
a deduction rule is valid when you have constructed a deduction tree:
at the root you have your constext and your hypothesis,
at each node you use axioms as previously explained,
and the conclusion is to be valid at each leaf.

4) Strength of geometric theories.
A large part of usual abstract algebra can be formalised in finitary geometric theories,

which corresponds to usual coherent furst order theories in logic.
E.g., groups, lattice groups, local rings, residually discrete local rings, Prüfer domains,

finitely presented modules, gcd rings, f-rings, discrete fields, discrete ordered fields, real
closed discrete fields, discrete valued fields, henselian fields, ...

Some concepts need infinitary geometric theories. E.g. flatness, Krull dimension,
coherence, Dedekind domains, Krull rings, projectively resoluble modules, ...

Some concepts, as Noetherianity, are outside the scope of geometric theory.
Infinitary geometric theories allow infinite disjunctions in the conclusion of a dynamic

rule. The external world becomes crucial when constructing deduction trees.

5) Grothendieck toposes.
In classical mathematics, Grothendieck toposes are more aor less “the same objects” as

geometric theories. Grothendieck coherent toposes correspond to finitary geometric theories.
This important fact has to be understood in the context of constructive mathematics

with an external world à la BCM.
Particularly important is to interpret geometric functors between Grothendieck toposes

as corresponding to some kinds of morphisms between geometric theories, with an external
world à la BCM.
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3.13 Joyal’s Arithmetic universes via the pure existential completion
Maria Emilia Maietti (University of Padova, IT)

License Creative Commons BY 4.0 International license
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Joint work of Maria Emilia Maietti, Davide Trotta

Arithmetic universes were built by A. Joyal in the seventies in some lectures, all still
unpublished, to provide a categorical proof of Gödel’s incompleteness theorems. They
amount to be exact completions of the lex category of predicates of a given Skolem theory.
In [1] we proposed the notion of list-arithmetic pretopos as the general abstract notion of
arithmetic universe.

In our talk, we report recent results obtained in joint work with Davide Trotta in [3]. We
show that each arithmetic universe is the exact completion of the pure existential completion
of the doctrine of its Skolem predicates. The notion of existential completion was introduced
by D. Trotta in [4] and further analyzed in [2] in terms of existential free objects relative
to an existential doctrine. In particular, we show in [3] that the Skolem predicates of an
arithmetic universe provide a projective cover of the exact completion of their free pure
existential completion. As a byproduct, we conclude that the initial arithmetic universe is
the exact completion of the doctrine of recursively enumerable predicates.
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3.14 Structural proof theory for logics of strong negation
Sara Negri (University of Genova, IT)

License Creative Commons BY 4.0 International license
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Joint work of Norihiro Kamide, Sara Negri

Gurevich logic is an extended constructive three-valued logic obtained from intuitionistic
logic by adding a connective ∼ of strong negation, with the following axiom schemata, where
¬ is intuitionistic negation:
1. ∼∼A ⊃⊂ A,
2. ∼¬A ⊃⊂ A,
3. ∼A ⊃ ¬A,
4. ∼(A ∧ B) ⊃⊂ ∼A∨ ∼B,
5. ∼(A ∨ B) ⊃⊂ ∼A∧ ∼B,
6. ∼(A ⊃ B) ⊃⊂ A∧ ∼B.

Nelson logic, also known as Nelson’s constructive three-valued logic N3, is the intuitionistic
negation-less fragment of Gurevich logic.
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The primary formal difficulty in developing a natural deduction system for logics of strong
negation lies in the requirement of having rules for ¬ and ∼ without ⊥. This is solved using
the rules of explosion, of ¬-introduction, and of excluded middle:

The following are presented:
Natural deduction and G3-style sequent calculi systems for Gurevich and Nelson logic.
A translation between the natural deduction and sequent calculi introduced, with an
indirect proof of normalization as a consequence of cut elimination.
A syntactic embedding of Gurevich logic into intuitionistic logic.
A classical sequent calculus with strong negation, used as a platform for obtaining classical
logics of strong negation, such as Avron and De-Omori logics.
A Glivenko theorem for embedding classical logic with strong negation into Gurevich
logic.

References
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3.15 König’s lemma, Weak König’s lemma and Σ0
1 induction

Takako Nemoto (Tohoku University – Sendai, JP)

License Creative Commons BY 4.0 International license
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Joint work of Takako Nemoto, Makoto Fujiwara

It is known that weak König’s lemma (WKL) is strictly weaker than König’s lemma (KL)
in Friedman-Simpson’s reverse mathematics ([2]). Then a natural question is how we can
characterise the difference between WKL and KL. In Simpson’s book, it is stated:

WKL does not imply Σ0
1 induction.

WKL is equivalent to KL for trees with height-wise bounded functions over RCA0.
It is also known that Fan theorem, a classical contraposition of KL, yields Σ0

1 induction over
RCA∗

0 ([1]). In this talk, we consider the difference between WKL and KL in the context of
constructive reverse mathematics and the relationship between KL and Σ0

1 induction.
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3.16 From a Constructive Logic to a Contradictory Logic
Satoru Niki (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
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The negation in intuitionistic logic has sometimes been criticised as problematic. One
reason for this is the alleged lack of witness for negated conjunctions: not-(A and B) may
hold without one of not-A and not-B being so. As a remedy, David Nelson introduced an
alternative notion of “constructible falsity”, which promises such a witness. Nelson’s negation
can even be made paraconsistent, which also encouraged the abandonment of intuitionistic
negation altogether. However, such a move may obscure the notion of negation from the
viewpoint of an intuitionistic logician. In this talk, I am going to give an overview of some
different views for constructive negation. Then I will suggest another solution to the problem
of negated conjunction. This solution, which leads to a variant of Heinrich Wansing’s logic
C, hints that intuitionistic negation and paraconsistent constructible falsity may be seen as
complementary, once we accept some contradictions to be provable.

3.17 Topologies of open complemented subsets
Iosif Petrakis (University of Verona, IT)

License Creative Commons BY 4.0 International license
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We present cs-topologies, or topologies of complemented subsets, as a new approach to
constructive topology that preserves the duality between open and closed subsets of classical
topology. Complemented subsets were used successfully by Bishop in his constructive
formulation of the Daniell approach to measure and integration. We use complemented
subsets in topology, in order to describe simultaneously an open set, the first-component of
an open complemented subset, and its complement as a closed set, the second component of
an open complemented subset. We analyse the canonical cs-topology induced by a metric,
and we introduce the notion of a modulus of openness for a cs-open subset of a metric space.
Pointwise and uniform continuity of functions between metric spaces are formulated with
respect to the way these functions inverse open complemented subsets together with their
moduli of openness. The addition of moduli of openness in the concept of an open subset,
given a base for the cs-topology, makes possible to define the notion of uniform continuity of
functions between csb-spaces, that is cs-spaces with a given base. In this way, the notions of
pointwise and uniform continuity of functions between metric spaces are directly generalised
to the notions of pointwise and uniform continuity between csb-topological spaces.
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3.18 Looking for the ideal background theory
Michael Rathjen (University of Leeds, GB)

License Creative Commons BY 4.0 International license
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Proofs in mathematics often have a narrative quality to them, taking the reader on a long
journey. Sometimes the reader has to wait for new mathematical characters (like imaginary
numbers) to be created so the journey can be continued. Hilbert called these novel characters
ideal elements. His conservation program was the idea that, while being important for the
advancement of mathematics, ideal elements should be eliminable from proofs of concrete
mathematical theorems.

Investigations by a long list of mathematicians/logicians (e.g. Weyl, Hilbert, Bernays,
Lorenzen, Takeuti, Feferman, Friedman, Simpson to name a few) have shown that large
swathes of ordinary mathematics can be undergirded by theories of fairly modest consistency
strength. This confirms what Hilbert surmised in his program, namely that elementary results
(e.g. those expressible in the language of number theory) proved in abstract, non-constructive
mathematics can often be proved by elementary means.

The best known program for calibrating the strength of theorems from ordinary math-
ematics is reverse mathematics (RM). RM’s scale for measuring strength is furnished by
certain standard systems couched in the language of second order arithmetic. However, its
language is not expressive enough to be able to talk about higher order objects, such as
function spaces, directly.

Richer formal systems, in which higher order mathematical objects can be directly
accounted for, have been suggested. The price for maintaining conservativity over elementary
theories, however, is that one has to use different logics for different ontological realms,
allowing classical logic to reign at the level of numbers whereas higher type mathematical
objects are merely answerable to intuitionistic logic. In the talk, I’d like to present some of
these semi-intuitionistic systems, give a feel for carrying out mathematics within them, and
relate them to systems considered in RM.

3.19 A topos for continuous logic
Benno van den Berg (University of Amsterdam, NL)

License Creative Commons BY 4.0 International license
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Main reference Daniel Figueroa, Benno van den Berg: “A topos for continuous logic”. Theory Appl. Categ. 38,

1108-1135 (2022)
URL http://www.tac.mta.ca/tac/volumes/38/28/38-28.pdf

Continuous model theory is an area of model theory in which one studies structures where
the truth values of sentences can be any element of the unit interval. This branch of model
theory has applications in areas where metric structures are pervasive, such as in analysis
and probability theory.

In this talk we propose an analysis of continuous model theory based on ideas from
categorical logic, in particular Lawvere’s notion of a hyperdoctrine. We propose a hyperdoc-
trine for continuous model theory and show that this hyperdoctrine can be embedded in the
subobject hyperdoctrine of a topos. This means that continuous logic can be understood as
the internal logic of a suitable topos.

24021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.tac.mta.ca/tac/volumes/38/28/38-28.pdf
http://www.tac.mta.ca/tac/volumes/38/28/38-28.pdf
http://www.tac.mta.ca/tac/volumes/38/28/38-28.pdf


18 24021 – From Proofs to Computation in Geometric Logic and Generalizations

3.20 Is geometric logic constructive?
Steven J. Vickers (University of Birmingham, GB)

License Creative Commons BY 4.0 International license
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Joint work of Ming NG

For point-free topology (locales, etc.) we can reason validly in a natural manner using points,
provided we restrict ourselves to constructions that are geometric – preserved by pullback
along geometric morphisms. This style has now been applied in some results of real analysis,
including exponentiation and logarithms (joint with Ming Ng) and the Fundamental Theorem
of Calculus.

Are such constructions constructive in the strong sense of yielding algorithms? This is
very unclear. My talk discusses some aspects of the question.
1. Some constructive taboos are true geometrically! But that is because they have to be

interpreted topologically.
2. Geometric maths can be understood via an ontology of observations rather than con-

structions.
3. Point-free surjections, which embody conservativity principles, allow us to reason as if

certain constructions can be done, even when they can’t.

3.21 The Fundamental Theorem of Calculus, point-free
Steven J. Vickers (University of Birmingham, GB)

License Creative Commons BY 4.0 International license
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Main reference Steven Vickers. The Fundamental Theorem of Calculus point-free, with applications to exponentials
and logarithms. arXiv:2312.05228, 2023

URL https://arxiv.org/abs/2312.05228

The Fundamental Theorem of Calculus is so fundamental that, once it has been proved
point-free, much subsequent development can be more or less standard. In a 5 minute
minitalk I summarized the main features in [1] by which this was achieved.

1. Lower and upper integrals, valued as lower and upper reals, were described in [2]. After
this, it is necessary only to show how they can be combined to give Dedekind reals.

2. Differentiation is treated in a Carathéodory style, with limits replaced by the existence of
continuous slope maps. This was used in [3], where also Rolle’s Theorem was proved.

3. For the derivative of an integral, the slope map can be defined as an integral with respect
to the uniform valuation on [x0, x]. Geometricity guarantees that this is continuous even
at the limiting case x = x0.
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4 Working groups

4.1 Finiteness in synthetic algebraic geometry
Ingo Blechschmidt (Universität Augsburg, DE), Andrej Bauer (University of Ljubljana, SI),
Felix Cherubini (Chalmers University of Technology – Göteborg, SE), Martín H. Escardó
(University of Birmingham, GB), and Matthias Hutzler (University of Gothenburg, SE)

License Creative Commons BY 4.0 International license
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Joint work of Ingo Blechschmidt, Andrej, Felix Cherubini, Martín H. Escardó, Hugo Moeneclaey, Matthias Hutzler,
David Wärn

Main reference Ingo Blechschmidt, Felix Cherubini, Hugo Moeneclaey, Matthias Hutzler, David Wärn: “Finite
Schemes in Synthetic Algebraic Geometry”, 2024

URL https://felix-cherubini.de/finite.pdf

In the related talk of Cherubini and Hutzler, the recent foundations for synthetic algebraic
geometry were discussed [1]. One important step in improving synthetic calculations is
understanding what notions of finiteness can help to move from geometric problems to
numbers of interest. Ingo Blechschmidt presented a proof that finite schemes satisfy the
finiteness notion of “Noetharian” from constructive mathematics [1]. This notion captures the
intuition that there is no infinite sequence in a set. However, we found out in the group, that
there are Noetherian sets in our language, which are not finite schemes. We discussed results
on compactness of finite schemes which are currently expanded in [2] and Ingo Blechschmidt
found a candidate for the synthetic version of the notion of “quasi-finite” from classical
algebraic geometry. In a discussion with Martín Escardó and Andrej Bauer we checked if it
is possible that the base ring of our theory is overt (a notion from synthetic topology). This
turned out to be true, for example in the case where the external base ring is an algebra
over an infinite field. To our surprise, overtness has a strong implications: non-empty open
subsets of the base ring are inhabited.

References
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4.2 Formalizing infinite time Turing machines
Ingo Blechschmidt (Universität Augsburg, DE), Andrej Bauer (University of Ljubljana, SI),
Karim Johannes Becher (University of Antwerp, BE), and Martín H. Escardó (University of
Birmingham, GB)
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URL https://agdapad.quasicoherent.io/ Dagstuhl2024/html/ittm.html

Infinite time Turing machines provide an exotic model of computation where the the operation
of Turing machines is extended to infinite ordinal time. They have been devised by Joel
David Hamkins and Andy Lewis and offer an intriguing connection between computability
theory and set theory. Among their special features is that the realizability model they give
rise to validates the peculiar statement “there is an injection R ↪→ N”, contradicting both
classical mathematics and ordinary Turing realizability.
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In the working group, we explored possible avenues for formalizing the notion of infinite
time Turing machines in proof assistants based on dependent type theory. To the best of
our knowledge, infinite time Turing machines have not been object of constructive scrutiny
before.

In a constructive setting, a fundamental question is whether the cell contents should
be Booleans or general truth values. The latter seem to force their inclusion as limsups
of sequences of Booleans, but are at odds with the envisioned mechanical flavor of the
computational model. We tentatively resolved this tension by sticking to Booleans, but
weakening the transition function to a transition relation. Arbitrary infinite time Turing
machines can then not be expected to have a well-defined execution trace, but many machines
of interest will.

The working group concluded with a first sketch of the basic definitions in Agda, para-
metrized by the choice of ordinals used for indexing the time steps.

4.3 Tutorial on Agda, the dependently typed proof assistant
Ingo Blechschmidt (Universität Augsburg, DE)
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Agda is one of the commonly-used dependently typed proof assistants, facilitating collab-
orative verification and development of mathematical proofs. The strategic decision to
schedule this tutorial on the first day of the seminar allowed participants to explore Agda
during the week. The tutorial was a joint session of several people already well-versed in
Agda, and profited greatly from numerous questions and comments from people with varying
backgrounds, including familiarity with other different proof assistants and those new to the
realm of computer formalization of mathematics.

References
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4.4 Proof systems for geometric axioms and beyond
Sara Negri (University of Genova, IT), Giulio Fellin (University of Verona, IT), Eugenio
Orlandelli (University of Bologna, IT), Edi Pavlovic (LMU München, DE), and Elaine
Pimentel (University College London, GB)
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This working group presented an informal overview of the basics of the proof theory for
geometric axioms together with recent developments.

Sara Negri presented and introduction to the method of “axioms as rules” applied to
coherent and geometric axioms. By the method, cut- and contraction-free sequent calculi
of the G3 family are extended while maintaining their structural properties [3, 5, 4]. One
can go beyond geometric axioms by a change of basic notions (such as apartness instead of
equality), by the method of systems of rules, and by the method of “geometrization” [1].
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Elaine Pimentel showed how focusing and polarities can be applied for the construction
of synthetic inference rules. In particular, we showed how this method can be applied for
generating sequent rules for geometric axioms, advancing the work developed by Sara Negri
and colleagues.

Edi Pavlović discussed the application of these methods in formal metaphysics. In
particular, he discussed a four-sided sequent calculus for neutral free logic, how it simplifies
quantifier rules for quantified weak Kleene, and what that can tell us.

Eugenio Orlandelli presented a terminating calculus for monadic first-order logic. The
calculus has all rules invertible without relying on (implicit) contraction. The decision
procedure based on this calculus has optimal complexity.

Giulio Fellin presented an infinitary version of Orevkov’s theorems about the Glivenko
sequent classes [2].
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4.5 Maps as bundles for point-free spaces
Steven J. Vickers (University of Birmingham, GB)
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Main reference Steven Vickers. Generalized point-free spaces, pointwise. arXiv:2206.01113, 2022
URL https://arxiv.org/abs/2206.01113

In the geometric style of point-free reasoning, just from the existence and nature of classifying
toposes S[TX ], we can say that

space X = geometric theory TX (point = model of the theory),
map = geometric construction of points from points.

I explained how one further gets
bundle = geometric construction of spaces from points.

This is the essence of dependent type theory. We also get pullbacks of bundles as
substitution. I focused on the case of localic bundles, but it does go through more generally
for bounded geometric morphisms.

So: how is a map p : Y → X a bundle?
Joyal and Tierney [2] showed that localic maps p are equivalent to internal frames in the

topos of sheaves over X. In [3] I showed how to replace an internal frame by a presentation
T of it, and then for a map f : Z → X the pullback f∗Z can be obtained from f∗(T), where
now f∗ is the inverse image functor. This amounts to substitution.

24021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2206.01113
https://arxiv.org/abs/2206.01113


22 24021 – From Proofs to Computation in Geometric Logic and Generalizations

If X already corresponds to a theory TX , then the internal T amounts externally to an
extension TY , a process that is easier to work with if one uses “geometric type theory” rather
than forcing theories into a standard form such as sites or first order theories.

For more discussion, see [1].
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5 Open problems

5.1 On the status of Zorn’s lemma
Ingo Blechschmidt (Universität Augsburg, DE)
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Over classical Zermelo-Fraenkel set theory, the axiom of choice (AC) and Zorn’s lemma (ZL)
are well-known to be equivalent. Dropping the law of excluded middle (LEM) allows us to
distinguish these two principles: A refined analysis shows that AC = ZL + LEM. While
AC implies LEM and is hence a constructive taboo, ZL can be regarded as constructively
neutral.

In fact, assuming ZL in the metatheory, there are plenty of models of constructive
mathematics which validate ZL, and even more which validate all bounded first-order
consequences of ZL: All localic Grothendieck toposes respectively all Grothendieck toposes.

That said, in mathematical practice, applications of ZL are often followed by an appeal
to LEM, and without LEM, ZL loses much of its power. But there are important results
which use only ZL and not LEM, such as in commutative algebra the existence of maximal
ideals, the equivalence of divisible and injective abelian groups, and the existence of enough
injectives.

The talk gave a summary of this circle of ideas and invited discussion on open questions:
Is there a way to extract constructive content from ZL-powered results? Are there models of
constructive mathematics which validate ZL, have strong ties to a given standard model and
which do not require ZL in the metatheory?

5.2 Remarks on predicativity
Stefan Neuwirth (University of Franche-Comté – Besancon, FR)
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The talk by Laura Crosilla on predicativity has triggered a special interest for the “classical
approach to predicativity” that culminated in the determination of the so-called limit of
predicativity. This approach has much to offer in terms of technical sophistication, but it
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leads to the following question, both an epistemological and a sociological one: does the
fascination for technique do justice to the very concept of predicativity? Predicativity is
about the open-endedness of the process of mathematical creation; how could it be given a
definite limit?
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