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Abstract
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1 Executive Summary
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Our goal for this Dagstuhl Seminar was to find approaches that leverage fault diagnosis to
build resilient cyber-physical systems through combinations of symbolic, sub-symbolic, and
control theoretic approaches.

Cyber-Physical Systems (CPSs), i.e. systems in which mechanical and electrical parts
are controlled by computational algorithms, are not only continuously increasing in size and
complexity, but they are also required to operate in evolving and uncertain environments,
subject to frequent changes and faults. Detecting and correcting faulty behavior is a highly
complex task that needs the help of computational algorithms. The constant advances in
sensing technology and computational power, as well as the increase in data recording options,
enables and also requires us to rely more and more on methods from Artificial Intelligence
(AI) for these tasks, i.e. symbolic AI such as planning and reasoning engines, as well as
subsymbolic AI like Machine Learning (ML). Sub-symbolic approaches are primarily used to
detect symptoms; symbolic reasoning on the other hand provides diagnosis algorithms to
identify root causes (from symptoms or observations) or reason about repairs. Furthermore,

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Fusing Causality, Reasoning, and Learning for Fault Management and Diagnosis, Dagstuhl Reports, Vol. 14, Issue 1,
pp. 25–48
Editors: Alessandro Cimatti, Ingo Pill, and Alexander Diedrich

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cimatti@fbk.eu
mailto:ingo.pill@gmail.com
mailto:diedrica@hsu-hh.de
https://www.dagstuhl.de/24031
https://doi.org/10.4230/DagRep.14.1.25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


26 24031 – Fusing Causality, Reasoning, and Learning for Fault Management and...

control engineering methods guide the system back to normal operation (based on the
identified root cause). Since these methods come from different fields, they do not always
work together in practice.

The research challenge at hand is to combine symbolic a-priori knowledge and learned
data, as well as to develop an integrated concept taking both symbolic and sub-symbolic
approaches into account. The leading research questions of this seminar are summarised as
follows:

How can a-priori knowledge be combined with data-centric, machine learning-based
algorithms?
Can we integrate a-priori knowledge such as background knowledge about functions,
interfaces and operation modes into ML-algorithms to improve model performance?
Can we use data to learn parts of the symbolic models?
And can we develop new algorithms which are a synthesis of both worlds, symbolic and
subsymbolic?

All of these research questions must be addressed to practical and resilient cyber-physical
systems. To tackle these questions, we invited researchers from symbolic AI, sub-symbolic
AI, and control engineering to develop a common notion of fault detection and fault handling
tasks that takes also the practical needs from industry-scale problems into account. In this
regard the seminar also had a secondary function: Traditional symbolic AI diagnosis is
located within the Diagnostics community (DX), while sub-symbolic fault diagnosis was
traditionally associated with the fault-detection and isolation (FDI) community within the
control theory research field. More recently, also the research field of machine learning
has created advances with regard to fault diagnosis. Since this seminar brought together
researchers from all of these fields, we hope that the seminar created fertile ground for some
cross-domain research initiatives.

Besides the individual contributions to the seminar, we used four breakout sessions to
brainstorm ideas and next steps following from this seminar:

1) Breakout Session on Coupling Symbolic and Sub-symbolic Methods for
Model Acquisition: Fusing symbolic methods with sub-symbolic methods is both directions
is essential for the creation of resilient systems. The research gap that has been identified
is that so far most approaches integrate some symbolic knowledge into the majority of
sub-symbolic knowledge, or a small part of sub-symbolic knowledge into a large symbolic
knowledge base. But both of these directions have drawbacks and do not automatically
lead to models that are well-suited for resilient systems that can be used in practice. One
takeaway is the idea to organise a competition that incentivises researchers to develop novel
modelling formalisms and diagnosis algorithms that mitigate some of the current drawbacks.

2) Breakout Session on Causality – How to Generate Knowledge from Data:
The breakout session detailed the importance of high-level causal models in capturing causal
relationships within systems. It was discussed where the difficulties in manually crafting
these models lie due to their complexity and the even greater challenge of learning causal
models directly from data. Crafting causal models manually, one needs a deep understanding
of the dependencies. For learning causal models, a large amount of data even for situations
which barely occur is needed.

3) Breakout Session on LLMs for DX – Integrating Large Language Models
for Root Cause Diagnosis: The breakout session featured a comprehensive exploration
and discussion on the potential and challenges of using Large Language Models in the topics
of the “DX” community. The central aspects that were discussed, revolved around (i) the
models themselves and their current and potential future capabilities, (ii) the training data
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for training and refining LLMs for diagnosis tasks, (iii) potential application areas, as well as
(iv) current, and (v) future trends and topics that should be monitored or covered by the
DX community. As a result, the attendees agreed on writing a position paper, which will
capture the current potential and drawbacks of LLMs within DX domains.

4) Breakout Session on Resilient Systems: For resilient systems we saw that the
application and scenario play a significant role when aiming to assess what would be “good”
and “bad” behavior for some system. The same goes for the question of whether we would
assess the performance of a system in a local or a global context. To this end we identified a
set of such relevant scenarios ranking from an energy management scenario at a local home,
via the operation of an electric grid, via agents/robots in a collaborative disaster or military
scenario, to supply chain management. We also discussed and converged to a definition of
resilience that would tailor to all the expressed needs.

24031
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3 Overview of Talks

3.1 Keynote on Reinforcement Learning for Control of Cyber Physical
Systems

Gautam Biswas (Vanderbilt University – Nashville, US)

License Creative Commons BY 4.0 International license
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Joint work of Gautam Biswas, Marcos Quinones-Grueiro, Austion Coursey, Avisek Naug
Main reference Avisek Naug, Marcos Quinones-Grueiro, Gautam Biswas: “Deep reinforcement learning control for

non-stationary building energy management”, Energy and Buildings, Vol. 277, p. 112584, 2022.
URL https://doi.org/10.1016/j.enbuild.2022.112584

The resilience of complex cyber-physical systems (CPS) or systems of systems that combine
cyber and physical components and often include humans in the loop is critical for the safe
and cost-effective operations of these systems. Moreover, these systems often operate in
environments whose parameters are often not known in advance, therefore, these systems
have to be robust to disturbances and changes that occur in their operating environment. In
other words, these systems often operate in non-stationary environments, making traditional
control methods less effective for operating these systems safely and reliably.

In my presentation, I discussed the use of Reinforcement Learning (RL) methods to
design controllers for complex CPS that operate in non-stationary environments. In the
first third of this talk, I presented a quick introduction to RL, covering basic topics, such
as Markov Decision Processes (MDPs), reward signals, value and policy functions, and the
Bellman optimality criterion. I will also cover very briefly the basic RL methods of value and
policy iteration, Monte Carlo and TD-learning methods, Q-learning, and Policy Gradient
approaches.

In the rest of the presentation, I detailed two studies we have conducted in developing RL
controllers for real-world non-stationary problems. The first is Building energy management,
where we used RL to develop a supervisory controller that has been deployed on a real
building for the heating, ventilation, and air conditioning (HVAC) system. Given the non-
stationarities in the operating environment (e.g., sudden weather changes), we monitored for
performance degradation by tracking an aggregate metric that was derived from the overall
accumulated reward. Degradation in performance triggered a relearning loop. Then, a set of
data-driven models of the building behavior was updated with the latest data on the building
operations. Subsequently, we returned the deployed controller by letting it interact with
the model and was then redeployed on the system. The approach has resulted in significant
energy savings for the deployed building.

As a second case study, we developed a hybrid control framework that combines a well-
established cascade control architecture and data-driven methods to accommodate varying
wind conditions and payloads for unmanned aerial vehicles (UAVs). We reframed the role of
the data-driven methods to compensate for the limited adaptability of the traditional control
approaches by dynamically modifying the reference velocities to account for disturbances
that manifest as adverse wind and payload changes. We demonstrated the advantage of
the proposed framework using a Tarot T18 octocopter simulation (validated with real data)
under aggressive wind field changes and payload changes mid-flight. We also showed that our
learned disturbance rejection controller generalized to a different octocopter, the DJI-S1000.

The talk concluded, by discussing future work in developing continual and safe RL schemes
to further enhance RL-based control and make it applicable to real-world control problems.

https://creativecommons.org/licenses/by/4.0/
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3.2 Diagnosability of Fair Transition Systems
Marco Bozzano (Bruno Kessler Foundation – Trento, IT)

License Creative Commons BY 4.0 International license
© Marco Bozzano

Joint work of Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario, Stefano Tonetta, Viktória
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Main reference Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario, Stefano Tonetta, Viktória
Vozárová: “Diagnosability of fair transition systems”, Artif. Intell., Vol. 309, p. 103725, 2022.

URL https://doi.org/10.1016/J.ARTINT.2022.103725

The integrity of complex dynamic systems often relies on the ability to detect, during
operation, the occurrence of faults, or, in other words, to diagnose the system. The feasibility
of this task, also known as diagnosability, depends on the nature of the system dynamics,
the impact of faults, and the availability of a suitable set of sensors. Standard techniques
for analyzing the diagnosability problem rely on a model of the system and on proving the
absence of a faulty trace that cannot be distinguished by a non-faulty one (this pair of traces
is called critical pair).

In this talk, we tackled the problem of verifying diagnosability under the presence of
fairness conditions. These extend the expressiveness of the system models enabling the
specification of assumptions on the system behavior such as the infinite occurrence of
observations and/or faults.

We adopt a comprehensive framework that encompasses fair transition systems, temporally
extended fault models, delays between the occurrence of a fault and its detection, and rich
operational contexts. We show that in presence of fairness the definition of diagnosability has
several interesting variants, and discuss the relative strengths and the mutual relationships.
We proved that the existence of critical pairs is not always sufficient to analyze diagnosability,
and needs to be generalized to critical sets. We defined new notions of critical pairs, called
ribbon-shape, with special looping conditions to represent the critical sets.

Based on these findings, we provide algorithms to prove the diagnosability under fairness.
The approach is built on top of the classical twin plant construction, and generalizes it to
cover the various forms of diagnosability and find sufficient delays.

The proposed algorithms are implemented within the xSAP platform for safety analysis,
leveraging efficient symbolic model checking primitives. An experimental evaluation on a
heterogeneous set of realistic benchmarks from various application domains demonstrates
the effectiveness of the approach.

References
1 B. Bittner, M. Bozzano, A. Cimatti, M. Gario, S. Tonetta, V. Vozarova, Diagnosability of

fair transition systems, Artificial Intelligence 309.

24031

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/J.ARTINT.2022.103725
https://doi.org/10.1016/J.ARTINT.2022.103725
https://doi.org/10.1016/J.ARTINT.2022.103725


32 24031 – Fusing Causality, Reasoning, and Learning for Fault Management and...

3.3 Tree-based diagnosis enhanced with meta knowledge
Elodie Chanthery (LAAS – Toulouse, FR) and Louise Travé-Massuyès (LAAS – Toulouse,
FR)
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enhanced with meta knowledge”, in Proc. of the 34th International Workshop on Principles of
Diagnosis (DX’23), 2023.
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This talk presents an online data and knowledge based diagnosis method. It leverages decision
trees in which decisions are made based on diagnosis meta knowledge, namely knowledge
about the properties of diagnosis indicators. This knowledge is used at the level of each node
to set a symbolic classification problem that brings out discriminating functions. This results
in a multivariate decision tree that produces a compact model for diagnosis. The use of
decision trees increases the explicability of the results found, all the more so as one discovers
the explicit formal expressions of diagnosis indicators in the process. The method has been
tested on static systems. On the well-known polybox, the three diagnosis indicators known
as analytical redundancy relations, that are generally computed from the model, are found.

3.4 Tutorial on Runtime verification and monitor synthesis
Alessandro Cimatti (Bruno Kessler Foundation – Trento, IT)
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Runtime Verification (RV) is a lightweight verification technique that aims at checking
whether a run of a system under scrutiny (SUS) satisfies or violates a given correctness
specification. The tutorial first gave an overview about the general framework of RV, and the
techniques to synthesize run-time monitors that can be efficiently executed in combination
with the SUS. Then, we will cover the relationship between RV and the field of Fault Detection
and Isolation (FDI). In FDI, runtime monitors are built taking into account models of the
SUS, in order to monitor the occurrence of internal (faulty) conditions that are not directly
observable.

3.5 AI for predictive maintenance: domain adaptation, MLOps, and
Edge computing. A case study

Marco Cristoforetti (Bruno Kessler Foundation – Trento, IT)

License Creative Commons BY 4.0 International license
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Joint work of Andrea Gobbi, Mario Pujatti, Diego Calzà, Piergiorgip Svaizer, Marco Cristoforetti

In recent years, data-driven artificial intelligence (AI) has acquired relevance in diagnostics.
Traditional methodologies are being complemented and, in some cases, supplanted by AI-
powered solutions, suggesting a possible paradigm shift. AI algorithms have demonstrated
remarkable capabilities in analyzing vast amounts of data with speed and precision, enabling
early detection of anomalies and predictive insights into potential faults.
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The necessity of monitoring the condition of devices with diverse characteristics, each of
which may exhibit unique features, behaviors, and failure modes, makes it challenging to
develop a universally applicable monitoring solution based on AI that usually necessitates
extensive training data. This is even more true when considering classical predictive main-
tenance tasks such as Remaining Useful Life (RUL) estimation, with the typical scarcity of
data covering the life of the monitored system until failure. Consequently, a critical need
arises for methodologies that enable these algorithms to effectively perform on unseen cases,
ensuring their reliability and accuracy in practical scenarios.

Domain adaptation techniques try to solve this problem by bridging the gap between the
source domain (where the model is trained) and the target domain (where it is deployed),
allowing for effective knowledge transfer and adaptation to specific contexts.

This contribution presents a comprehensive, modular, and scalable solution for data-driven
diagnosis and prognosis that integrates deep learning algorithms and adversarial domain
adaptation to permit transfer learning and increase generalization. The pipeline starts with
the data acquisition and preprocessing steps, with a configurable feature extraction phase
that produces a compressed latent representation of the input samples, computed using
feature extraction techniques from multiple channels of raw signals. Additional features
are calculated from the latent space of deep autoencoders. This latent space is deliberately
composed of only a few variables, enforcing the compression of the information contained in
the input. Domain adaptation based on adversarial learning uses the features extracted from
all the samples available for the source and only the first few samples from the target system.
This is to align the Deep Learning regressor responsible for estimating the health index of
the target necessary to compute the RUL.

In our solution, the setup includes a communication system via MQTT, enabling an
online data stream for real-time monitoring and maintenance. The overall infrastructure was
deployed in an industrial setting and tested in a real-time experiment, demonstrating the
validity of the proposed approach.

3.6 Keynote on Analogy for Diagnosis by and within Cognitive
Architectures

Kenneth D. Forbus (Northwestern University – Evanston, US)

License Creative Commons BY 4.0 International license
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This talk described two big ideas:
1. Analogy plays key roles in human diagnosis It provides reasoning from experience and

detection of novel situations Analogical generalization constructs probabilistic relational
schema Provides a source of priors for model-based diagnosis Analogical learning is
incremental, inspectable, and data/training efficient

2. Cognitive architectures need diagnosis
Goal: Software social organisms instead of tools Systems need to manage their own
learning Achieving agency needs internal diagnostic capabilities How to build software
that never blue-screens?

24031
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3.7 Keynote on Understanding Resilience
Johan de Kleer (c-infinity – Mountain View, US)

License Creative Commons BY 4.0 International license
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Joint work of Johan de Kleer, Alex Feldman, Ion Matei, Saigopal Nelaturi, Morad Behandesh, Ingo Pill, Jan
VanderBrande, Shiwali Mohan, Wiktor Piotrowski, Sachin Grover, Sookyung Kim, Jacob Le, Roni
Stern

Main reference Ion Matei, Wiktor Piotrowski, Alexandre Perez, Johan de Kleer, Jorge Tierno, Wendy Mungovan,
Vance Turnewitsch: “System Resilience through Health Monitoring and Reconfiguration”, ACM
Trans. Cyber Phys. Syst., Vol. 8(1), pp. 7:1–7:27, 2024.

URL https://doi.org/10.1145/3631612

The real world is made up of cyber-physical systems – we want them not to fail, to be
invisible. How can we improve the resilience of our CPSs? Recently, a space craft designer
said to me “all failures are failures of imagination.” By that he meant that it’s the designers’
responsibility to imagine all the things that could possibly go wrong with the space craft
and design around or compensate for them. With the advances in AI including planning and
ML we can now put AIs inside of our systems which can address the designer’s unknown
unknowns. To make significant advances we need to define what resilience is and how to
measure it. I will describe a number of definitions of resilience. In this talk I will describe a
comprehensive approach to achieving certain types of resilience with examples ranging from
printers to unmanned ships.

3.8 Data-driven diagnosis from an FDI practitioner’s perspective
Daniel Jung (Linköping University, SE)

License Creative Commons BY 4.0 International license
© Daniel Jung

Joint work of Daniel Jung, Arman Mohammadi, Matthias Krysander
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Structural Models and Causal Information”, in Proc. of the Learning for Dynamics and Control
Conference, L4DC 2022, 23-24 June 2022, Stanford University, Stanford, CA, USA, Proceedings of
Machine Learning Research, Vol. 168, pp. 8–20, PMLR, 2022.

URL https://proceedings.mlr.press/v168/jung22a.html

A diagnosis system can be described as a function that uses observations from the monitored
system to compute diagnoses. Because of its industrial and scientific relevance, the fault
diagnosis problem has been approached in many different communities. A popular approach is
data-driven fault diagnosis which refers to methods that use historical data from different fault
scenarios to learn the relation between observations and diagnoses. Compared to model-based
diagnosis, which uses physically based models that have a long theoretical foundation, data-
driven fault diagnosis is often treated as a general classification problem. This presentation
has looked at data-driven fault diagnosis from a model-based diagnosis perspective. It is
shown that central model-based concepts, like redundancy, can be interpreted in a data-driven
framework and it is also illustrated how these ideas can be used to develop new data-driven
fault diagnosis methods.
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3.9 The Rayleigh-Ritz Autoencoder architecture for Machine Learning
with hard Physical Constraints

Manfred Mücke (Material Center Leoben, AT)

License Creative Commons BY 4.0 International license
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Main reference Anika Terbuch, Paul O’Leary, Dimitar Ninevski, Elias Jan Hagendorfer, Elke Schlager, Andreas
Windisch, Christoph Schweimer: “A Rayleigh-Ritz Autoencoder”, in Proc. of the IEEE International
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I present the Rayleigh-Ritz Autoencoder (RRAE) architecture [1] for unsupervised hybrid
machine learning. It is suitable for applications where the system being observed by multiple
sensors is well modeled as a boundary value problem. The embedding of the admissible
functions in the decoder implements a truly physics-informed machine learning architecture.
The RRAE provides an exact fulfillment of Neumann, Cauchy, Dirichlet or periodic constraints.
Only the encoder needs to be trained; the RRAE is numerically more efficient during training
than traditional autoencoders.

We extended the RRAE architecture [2] to distribution-free statistics to achieve stability
with respect to non-Gaussian data. This provides consistent results for sensor data with
both Gaussian and non-Gaussian perturbations. The necessity for handling non-Gaussian
data in sensor applications is documented by the behavior of inclinometer sensors where
the perturbations are characterized by Cauchy-Lorentz distribution. In such cases variance
does not provide a reliable measure for uncertainty; consequently, 1-norm error measures are
investigated thoroughly.
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3.10 Learning what to monitor: pairing monitoring and learning
Angelo Montanari (University of Udine, IT)
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Monitoring is a runtime verification technique that can be used to check whether an execution
of a system (trace) satisfies or not a given set of properties. Compared to other formal
verification techniques, e.g., model checking, one needs to specify the properties to be
monitored, but a complete model of the system is no longer necessary. In the talk (uploaded
slides), we first introduce the notion of monitoring and display a simple architecture of
a monitoring system. Then, we provide a characterisation of positively and negatively
monitorable properties, and we define the safety and cosafety fragments of Linear Temporal
Logic (LTL). We complete the picture by showing that monitorability goes behind safety and
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cosafety LTL fragments, and that there are natural properties which are not monitorable.
Next, we proceed by pointing out that monitoring suffers from some significant limitations.
In particular, modern systems have such a level of complexity that it is impossible for a
system engineer to specify in advance all properties to be monitored, and even minor changes
to the system to be monitored can introduce unforeseen bugs. To overcome these limitations,
we provide a multi-objective genetic programming algorithm to automatically extend the
set of properties to monitor on the basis of the history of failure traces collected over time.
The monitor and the learning algorithm are then integrated in a unifying framework, whose
distinguishing features are (i) interpretability (the machine learning methods manipulate
and produce only formulae, that can be easily inspected by a system engineer), (ii) formal
guarantees on monitorability (every formula produced during the learning phase is guaranteed
to be monitorable), and (iii) generality (different monitoring and machine learning backends).
The framework has been experimentally validated on various public datasets, and the
outcomes of the experimentation confirm the effectiveness of the proposed solution.

3.11 Tutorial on Diagnosing Cyber-Physical Systems
Oliver Niggemann (Helmut-Schmidt-Universität – Hamburg, DE)
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The transition from sub-symbolic representation in artificial intelligence such as time series
to symbolic representations such as expressions in formal logic or in language is crucial to
creating resilient cyber physical systems. The first step for this is often the discretization,
i.e. the identification of symbolic concepts that come true at certain points in time. The
tutorial presents typical discretization algorithms for time series, especially with a focus on
engineering and scientific applications. In the last step, a brief overview of possibilities to
further develop the identified concepts into causalities is given.

3.12 Tutorial on Basics of Model-Based Diagnosis
Ingo Pill (Silicon Austria Labs – Graz, AT)
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For Seminar 24031, we aimed to invite a diverse audience from a variety of fields connected
to the seminar’s focus. For us organizers it was thus important to provide the attendees with
some basic knowledge, common grounds concerning well-established techniques in the field,
and also a basic context and terminology. In this introductory talk, I focused on providing
some brief basics about model-based diagnosis (MBD), also known as consistency-based
diagnosis or DX approach. Due to its attractive features, MBD is such a central technology
in the scope of this seminar, and I covered the following aspects in my presentation:

the basic underlying approach of reasoning from first principles
the standard scenario of explaining some unexpected behavior like a failed test case
connections to verification tasks and techniques
the very basic definitions of diagnoses, conflicts and minimal hitting sets
the impact of using a weak fault model or strong fault models
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two basic algorithmic concepts for MBD: conflict-driven and direct
MBD’s flexibility in terms of application and deployed algorithm
diagnosing multiple scenarios at the same time (e.g. like results from a test suite) and
the resulting opportunity to characterize a system (when using a representative test suite,
e.g., obtained with combinatorial testing)
diagnosing static scenarios and sequential behavior
improving the basic algorithmic concepts via algorithmic optimizations (example RC-Tree)
and structural, diagnosis problem-specific information (like exploiting its parse tree when
diagnosing some LTL description)
completeness and soundness of MBD in relation to the model and the scenario(s)
information about which authors of the covered papers participated in the seminar.

3.13 Designing Fault-Tolerant Control Systems using Topological
Systems Theory

Gregory Provan (University College Cork, IE)
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Given information about (a) the desired operating conditions for a system and (b) the tasks
the system must carry out, the fault-tolerant control design (FD) task is to design a set of
controllers to ensure that conditions (a) and (b) are guaranteed, even when faults and/or
external disturbances occur.

Designing control systems from requirements and model specifications is a challenging
task, and has been addressed from many perspectives, most notably design optimization and
multi-controller tuning. Our approach extends both design optimization and multi-controller
tuning. Multi-controller tuning adopts a “divide and conquer” approach, decomposing the
system’s operating range into smaller local sub-spaces, each associated with a “local” model.
These local models are then combined to create the global system response. The primary
advantage of the (MM) approach lies in its simplification of complex modeling through the
use of these local models.

We develop an optimisation-based approach to designing systems with fault-tolerance and
resilience capabilities, i.e., it enables multi-mode operation. Standard design optimisation
approaches assume a single nominal mode; in contrast, we explicitly define an approach that
generalises this framework to enable the design of systems that operate in multiple modes.
Multi-controller tuning methods typically use methods to compute the set of possible modes,
and then tune a controller for each mode. In contrast to multi-controller tuning methods, this
new approach does not optimize just performance of individual controllers, but task-centric
performance, based on topological transformations from plant spaces to control spaces.
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3.14 Root Cause Analysis via Anomaly Detection and Causal Graphs
Josephine Rehak (KIT – Karlsruher Institut für Technologie, DE)
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In industrial processes, anomalies in the production equipment may lead to expensive failures.
To avoid and avert them, the identification of the right root cause is crucial. Ideally, the
search for a root cause is backed by causal information like causal graphs. We presented an
extension of a framework that fuses causal graphs with anomaly detection to infer likely root
causes in a process setup. The causal graph is required to contain measurement and root
cause variables and causal relations with annotations for process steps. The framework uses
this graph to compute for each root cause variable which measurement variable it might
affect in which process step. Thereby, it considers that a cause must always precede its effect.
Independently, an anomaly detection algorithm is performed on given sensor measurements
to provide information about anomalies and the corresponding process step. Finally, the
framework computes the likelihood of each potential root cause by comparing the results from
the graph preprocessing and the anomaly detection using the Jaccard similarity to identify
the most likely root cause. We demonstrated the use of this framework on a simulated
robotic gripping process. Future research might investigate how to learn the causal graph
from the provided data using causal discovery methods and how to apply the framework in
an online fashion on given process data.

3.15 Hybrid Model Learning for System Health Monitoring
Pauline Ribot (LAAS – Toulouse, FR) and Elodie Chanthery (LAAS – Toulouse, FR)
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Health monitoring approaches are usually either model-based or data-based. This work
aims at using available data to learn a hybrid model to profit from both the data-based and
model-based advantages. The hybrid model is represented under the Heterogeneous Petri
Net formalism. The learning method is composed of two steps: the learning of the Discrete
Event System (DES) structure using a clustering algorithm (DyClee) and the learning of the
continuous system dynamics using two regression algorithms (Support Vector Regression or
Random Forest Regression). The method is illustrated with an academic example.
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3.16 Tutorial on Bridge DX / FDI
Louise Travé-Massuyès (LAAS – Toulouse, FR)
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Main reference Marie-Odile Cordier, Philippe Dague, François Lévy, Jacky Montmain, Marcel Staroswiecki, Louise
Travé-Massuyès: “Conflicts versus analytical redundancy relations: a comparative analysis of the
model based diagnosis approach from the artificial intelligence and automatic control perspectives”,
IEEE Trans. Syst. Man Cybern. Part B, Vol. 34(5), pp. 2163–2177, 2004.
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Two distinct and parallel research communities have been working along the lines of the
Model-Based Diagnosis approach: the FDI community and the DX community that have
evolved in the fields of Automatic Control and Artificial Intelligence, respectively. This talk
clarifies and links the concepts and assumptions that underlie the FDI analytical redundancy
approach and the DX consistency-based logical approach. A formal framework is proposed to
compare the two approaches. It is shown that by adopting the same assumptions regarding
fault exoneration, they produce the same diagnostic results.

3.17 Fault Detection, Diagnosis, and Mitigation for Space Propulsion
Systems

Günther Waxenegger-Wilfing (Universität Würzburg, DE), Kai Dresia (DLR – Hardthausen,
DE), and Ingo Pill (Silicon Austria Labs – Graz, AT)
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Space propulsion systems continue to be a significant source of faults in space activities,
necessitating dedicated fault management strategies to meet stringent safety requirements.
The operational nature of these systems, pushed to the limits of technical feasibility to
minimize weight, makes them susceptible to a diverse set of faults, with abnormal behavior
having potentially catastrophic consequences. The substantial costs associated with the loss
of a launch vehicle or spacecraft underscore the critical need for effective fault detection,
diagnosis, and mitigation functionalities. Real-time detection and assessment of faults based
on available sensor data are imperative to initiate emergency shutdowns or reconfigurations,
further compounded by the constraint of limited computing resources.

The German Aerospace Center (DLR), in collaboration with various partners, has long
been engaged in exploring the application of AI methods for the operation of space propulsion
systems. While past efforts primarily focused on intelligent control in the absence of faults,
recent initiatives, such as the collaboration with Silicon Austria Labs (SAL) within the
SUNRISE project, mark the initial strides towards fault management. The SUNRISE project
is dedicated to researching dependable sensor concepts for resilient control.

The first segment of this presentation unveils preliminary findings, showcasing how
trained virtual sensors can effectively estimate critical quantities, such as combustion mixture
ratios, and detect faults with high accuracy. In the second part, we introduce the LUMEN
demonstrator engine, currently in development, serving as an ideal test bed for diverse control
and diagnosis approaches. This includes intentionally injecting faults into the system and
utilizing the platform for generating training data for machine learning algorithms.
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3.18 Quality Assurance Methodologies for Resilient (Model-based)
Systems

Franz Wotawa (TU Graz, AT)
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Deploying systems requires to show that the system complies with its requirements and
specifications. Hence, quality assurance is an essential part of any system development, which
also holds for systems with attached resilience functionality utilizing model-based reasoning.
In my talk, I discuss the general challenge of quality assurance applied to systems with
monitoring and diagnosis functionality and the importance of residual risks. In particular,
I mention which faults that come when introducing monitoring and diagnosis have to be
considered and their effects on residual risks. Afterward, I present early work on using
testing for quality assurance for models used for diagnosis and challenges. In particular, I
discuss the challenge of coming up with methods for checking the quality of the tests and its
consequences. Finally, I summarize the findings and present open challenges.

4 Working groups

4.1 Breakout Session on coupling symbolic and sub-symbolic methods
for model acquisition

Rene Heesch (Helmut-Schmidt-Universität – Hamburg, DE)
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The discussion within this breakout session built upon the outcomes of the previous day,
focusing on integrating prior knowledge with data to enhance model development and refine-
ment. A critical insight from the session was the importance of creating a unified language
or framework to facilitate the integration of diverse knowledge types. Additionally, it was
proposed that utilizing two distinct languages or foundational models, along with a mapping
between them, could also bridge the divide between symbolic and sub-symbolic methods.
The session explored model checking for continuous systems and discussed algorithms for
learning hybrid automata, leading to discussions on the generalizability of results from
specific applications, such as ECG diagnoses, and the feasibility of learning hybrid automata
directly from data. This process entails aligning a known hybrid automaton with new data
and modifying the automaton based on discrepancies between the model predictions and
the actual data. This method is currently being investigated by a PhD student at Laas.
Furthermore, Signal Temporal Logic (STL) was discussed as a tool for applying logical sys-
tems to continuous signals or variables, demonstrating the adaptability of symbolic methods
to continuous data streams. The session finally revisited the DX competition held in 2010,
proposing a new competition for 2024 focusing on the development of new diagnostic models.
Unlike the previous competition, which focused on algorithms, the proposed DX competition
aims to challenge participants to integrate data with parts of knowledge to discover new
models. Emphasis was placed on using real data from technical processes, with a focus on
incorporating both nominal and faulty data into the dataset. The faulty data labels would
be part of the knowledge provided to participants, allowing for a nuanced approach to model
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learning and improvement. The idea is to first learn a model based on data and subsequently
refine this model through the integration of additional knowledge. The session suggested not
to frame this as a conventional competition but rather as a kind of special session where
results could be compared and discussed, potentially leveraging past PHM (Prognostics and
Health Management) challenges to minimize the preparatory work required.

4.2 Breakout Session on coupling symbolic and sub-symbolic methods
in both directions

Rene Heesch (Helmut-Schmidt-Universität – Hamburg, DE)
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The discussion within this session was focused on exploring two main pathways for integration:
a predominantly symbolic combination approach and a mainly sub-symbolic combination
approach. Additionally, the concept of neuro-symbolic integration was discussed. It was
clarified that sub-symbolic AI encompasses more than just Machine Learning (ML), although
ML approaches were predominantly considered within the session as examples of sub-symbolic
AI methods. Regarding the first pathway, the predominantly symbolic approach, which
primarily utilizes sub-symbolic AI to generate models for the symbolic components, the
discussion was brief. It was concluded that this topic would not be the focus due to potential
overlap with another breakout session titled “Model Acquisition (Suitable for Diagnosis)
from Real-World Observation”. Consequently, the discussion within in this breakout session
concentrated on a primarily ML-based combination approach, outlining different key strategies.
One strategy was the use of outputs from symbolic systems as inputs for ML models, providing
context-rich information that is not available in raw data. This not only addresses the lack
of data but also reduces reliance on large datasets by supplementing them with symbolic
insights. Furthermore, the session explored incorporating logical formalisms to describe
model phenomena, which enhances the interpretability and transparency of ML models in
terms of their explainability. The integration of background knowledge into ML models was
discussed as a crucial strategy for influencing model architecture and improving performance,
particularly in data-limited scenarios or those requiring a nuanced understanding. This
approach uses existing knowledge to guide the design process and boost model effectiveness.
Lastly, the potential of neuro-symbolic approaches that combine neural networks with the
reasoning capabilities of symbolic AI was discussed. These approaches aim to create AI
systems that are not only powerful in analysis but also capable of human-like reasoning. No
further steps have been defined so far, as this session merged into the session “Coupling
symbolic and sub-symbolic Methods for model acquisition” later.
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4.3 Breakout Session on Causality – How to generate knowledge from
data?

Lukas Moddemann (Universität der Bundeswehr – Hamburg, DE) and Kaja Balzereit (Hoch-
schule Bielefeld, DE)

License Creative Commons BY 4.0 International license
© Lukas Moddemann and Kaja Balzereit

The breakout session on causality, held during the Dagstuhl Seminar 24031, provided
a deep dive into the complexities and methodologies surrounding the identification and
analysis of causal relationships within systems, especially cyber-physical systems. Several
approaches to represent causality such as fault propagation graphs [Trave], causal orderings
of equations [Bozzano], or causal graphs were discussed. The discussion focussed especially
on fault propagation graphs, as a foundational formalism used to understand the sequential
dependencies among components. These graphs are crucial for determining which components
must be operational for subsequent components to function correctly, illustrating the direct
causal links within a system.

A significant portion of the discussion focused on the challenges presented by cycles within
fault propagation graphs. These cycles can complicate the analysis by introducing feedback
loops where components influence each other in a cyclic manner, making the isolation of
causal paths more complex. The session also highlighted the application of Hidden Markov
Models (HMMs) as a method to model similar structures causing responses in other structures,
offering a statistical approach to understanding how components influence one another even
when not directly observable. The relevance of causal models for diagnosis tasks and recent
work in this area [Rehak] have also been discussed.

A key takeaway from the session was the importance of high-level causal models in
capturing the overarching causal relationships within systems. However, the attendees were
reminded of the difficulties in manually crafting these models due to their complexity and the
even greater challenge of learning causal models directly from data. When manually crafting
causal models, one needs a deep understanding of the dependencies between a – usually
high – number of system variables which is often not available. For learning causal models,
a large amount of data even for situations which barely occur is needed. Furthermore, the
distinction betweeen correlation and causality cannot be done purely data-driven.

In conclusion, the causality breakout session provided valuable insights into the current
state of causal analysis, emphasizing both the potential and the limitations of existing
methodologies. The discussions underscored the need for continued research and innovation
in the field to overcome the challenges of acquiring data and constructing models that can
effectively capture the intricate web of causality in complex systems.

References
1 Trave-Massuyes, Louise, and Renaud Pons. “Causal ordering for multiple mode systems.”

Proceedings of the eleventh international workshop on qualitative reasoning. 1997.
2 Rehak, Josephine, et al. “Counterfactual Root Cause Analysis via Anomaly Detection

and Causal Graphs.” 2023 IEEE 21st International Conference on Industrial Informatics
(INDIN). IEEE, 2023.

3 Bozzano, Marco, et al. “SMT-based validation of timed failure propagation graphs.” Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 29. No. 1. 2015.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Alessandro Cimatti, Ingo Pill, and Alexander Diedrich 43

4.4 Breakout Session on LLMs for DX – Integrating Large Language
Models for Root Cause Diagnosis

Lukas Moddemann (Universität der Bundeswehr – Hamburg, DE) and Jonas Ehrhardt
(Universität der Bundeswehr – Hamburg, DE)
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The breakout session on “Large Language Models for Root Cause Diagnosis” featured a
comprehensive exploration and discussion on the potential and challenges of using Large
Language Models in the topics of the “DX – Principles of Diagnosis” community. The central
aspects that were discussed, revolved around (i) the models themselves and their current
and potential future capabilities, (ii) the training data for training and refining LLMs for
diagnosis tasks, (iii) potential application areas, as well as (iv) current, and (v) future trends
and topics that should be monitored or covered by the DX community. As a result, the
attendees agreed on writing a position paper, which will capture the current potential and
drawbacks of LLMs within DX domains.

The beginning of the session included a brief introduction into the principles of LLMs.
Introducing the capability of state-of-the art LLMs and their capability on simple diagnostic
benchmark problems like the Polybox. Subsequently, the prerequisites for current LLMs
were discussed to effectively perform diagnoses, including necessary data, semantics, and
specialized training. The capabilities of current LLMs and LLM-ensembles were discussed,
highlighting the capability of formulating programming code for simple, testable and traceable
reasoning, as well as the capability of understanding image data, like circuits or technical
drawings, for an easier and more precise recognition of concepts of diagnosable systems.
Extending the capability of pre-trained LLMs for diagnosis by fine-tuning them on diagnosis
problems, as well ensemble approaches of different Expert-LLMs for different diagnostic
tasks, were highlighted as low-hanging fruits. Lastly, the capability of continuous training of
LLMs for their application on changing systems was identified as a challenge.

Regarding the training data for LLMs that perform diagnostic tasks, a broad field was
identified, reaching from image data, to time-series data from system observations, natural
language, technical documentations, or structured knowledge graphs. The discussion came to
the consensus that for training from ground up general world-knowledge should be included,
whereas for fine-tuning models only specific information would be needed.

Identifying causality with LLMs was considered as a fundamental aspect of LLMs for
fostering applications in diagnosis, like root cause analysis or root cause identification.
Additionally, the ability to capture causality and contradiction was identified as a major
aspect that should not only be considered and researched on a phenomenological level which
considers LLMs as black-boxes, but also by looking into the functioning of the models.

Current trends and topics that should be monitored by the DX community revolve
around the short term perspective of current LLMs in the application field of diagnosis. This
includes understanding the immediate capabilities and limitation of current models, as well
as application scenarios in which LLMs could already perform diagnostic tasks or at least
pose as a component within a diagnosis framework.

Future trends and topics include the long term perspective of LLMs in the DX context.
These trends revolve around enhancing the accuracy of LLMs and should be driven by
autonomy research for structuring the requirements for LLMs in diagnostic roles.

The session concluded in writing a statement paper toward the current state of LLMs in
diagnostic applications, highlighting aspects that LLMs already can achieve, and limitation
they occur. The claims will be proven with empirical evaluations, like testing LLMs for
creating causal graphs or evaluating on standard diagnosis problems.
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4.5 Breakout Sessions on Resilience
Ingo Pill (Silicon Austria Labs – Graz, AT)

License Creative Commons BY 4.0 International license
© Ingo Pill

In respect of these specific questions we saw that the application and scenario play a significant
role when aiming to assess what would be “good” and “bad” behavior. The same goes for
the question of whether we would assess the performance of a system in a local or a global
context, an example for the latter being a system of resilient systems context. To this end
we identified a set of such relevant scenarios ranking from an energy management scenario
at a local home, via the operation of an electric grid, via agents/robots in a collaborative
disaster or military scenario, to supply chain management. We also discussed and converged
to a definition of resilience that would tailor to all the expressed needs. Enabled by our
discussions, we identified also some follow-up actions:

Authoring a white paper on resilience by a group of the attendees of this seminar (in
2024)
Submitting a proposal for a follow-up Dagstuhl Seminar proposal that focuses on resilience,
and where we will invite scientists from more relevant fields as well as relevant stakeholders
(agency, psychology and societal sciences, security & safety, law and public regulations,
. . . )

Please note that the discussions led in an interdisciplinary context at Dagstuhl will also
contribute to the evolution of the Int. Workshop on Principles of Diagnosis to International
Conference on Principles of Diagnosis and Resilient Systems that we are implementing in
2024.

5 Panel discussions

5.1 Panel on Current and Future Challenges in Resilient System Design
Ingo Pill (Silicon Austria Labs – Graz, AT)
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Joint work of Ingo Pill, Gautam Biswas, Alessandro Cimatti, Johan De Kleer, Ken Forbus, Oliver Niggemann,
Franz Wotawa

Directly in succession to Johan de Kleer’s keynote on Resilience discussed in an additional
report, we organized this panel discussion to which we invited panelists with diverse back-
grounds such as to cover topics like software engineering, intelligent agent design, automation
in production and manufacturing, AI-based control, rigorous system design, formal verifica-
tion, run-time verification and monitoring, intelligent sensing, and other related topics that
are related to the diverse challenges connected to designing resilient systems. Similar to the
term “artificial intelligence”, there seems to be an intuitive understanding of the concept’s
purpose and the meaning of resilience on an abstract level. As we saw in our discussions,
there are, however, also differences in how to interpret the concept and what to expect
from a resilient system. As an initial characterization, let us thus describe resilience as a
system’s intrinsic ability of sustaining its operation also when impacted by anticipated and
unexpected contingencies. In this context, we would like to distinguish between basic and
extreme resilience as follows: Basic resilience would allow a system to cope with anticipated
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issues, while extreme resilience would enable a system to deal also with challenges that
were not anticipated when the system was designed. While resilience could relate also to
resilient design concepts that would allow a designer or developer to react more easily react
to design/requirement changes (or that certain components are resilient to changes in other
components). In contrast, we consider the major focus of resilience to be on maintaining
expected operation during its operation, no matter the circumstances. It is important to
note though that we have to design a system such as to add the capabilities of dealing with
(unexpected) issues (faults, threats, environmental changes, ...) at design time – it is only
the effects achieved that we are experiencing at run-time. To the end of discussing relevant
technologies, we invited our panelists to give short lightning talks where we tasked them to
provide some background information about resilience aspects in their individual expertise to
the audience, and to comment on the most recent questions and thoughts covered by frontier
research. Including the discussion among the panelists, with the moderator and also the
entire audience, the lightning talks inspired the following discussions:

Gautam Biswas brought up in his statement the fact that designing resilience into a
system can be thought about in two directions. That is, we can anticipate issues and
design a system in a way that it would be “robust enough” against certain problems by
design. The second concept would be to allow a system to assess and consider a situation
at run-time, reason about an appropriate mitigation strategy and then take mitigation
actions – all done at run-time. We can emphasize on the second option when using
the term operational resilience. There are several stages that a system goes through in
the context of such operational resilience, in that a system would suffer from degraded
performance before the mitigation strategy’s effects manifest and the system’s desired
performance is restored (to the degree to which this is possible).
Alessandro Cimatti focused in his statement on the challenge of defining resilience, and he
referred to multiple example domains for showcasing relevant questions. He brought up
the implicit connection to fail-operational concepts, to the operation of adaptive systems,
to planning in the context of non-determinism and uncertain duration, and he observed
that such planning alone won’t go far on its own. That is, it is a combination of techniques
that will be necessary to tackle the challenges faces when aiming for resilience in a system’s
behavior (like the ability to extract models for evolving dynamic environments). A specific
question of interest is that of enabling resilience from a short- and a long-term perspective
Ken Forbus focused in his statement titled “Analogy and Cognitive Architecture as Sources
of Software Resilience” on the importance of the concept of analogy, as well as the design
of a cognitive architecture propelling the performance in resilient, intelligent systems.
Especially in the context of extreme resilience, a system faces incomplete information (not
only in terms of the environment, but also referring to domain knowledge) like when we
initially did not know how to deal with Covid-19 as a society. Drawing on analogies and
exploiting earlier expertise for analogous situations could be one fundamental technology
to drive solutions for achieving resilience. This will require us to enable agency in a
system, such that systems will elevate from being simple tools to becoming intelligent
and evolving agents. The cognitive architectures that would allow us in implementing
such agency (that then enables a system to efficiently come up and effectively execute
appropriate mitigation strategies) are among the currently most relevant challenges.
Oliver Niggemann discussed the necessity of considering backloading instead of frontload-
ing when designing a resilient system, and that we need to adapt our design processes
as well as the education of engineers accordingly. In particular we see that, while a
well-engineered system is a prerequisite for a system to be trustworthy, the complexity and
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dynamics of applications requires us to come up with trustworthy AI-based solutions for
operating a system. Designers and engineers thus will need to think about the operation
phase in more detail when developing future systems. Our education and engineering
concepts have to be adapted in order to support and being able to leverage resilient
system design in practical designs. This includes also addressing the fact that we have
currently a set of technologies available that are promising in being able to address one
or the other resilience aspect from a scientific perspective. We lack, however, integrated
approaches and methodologies that we can then deploy in practice and transfer to an
industrial context, so that a big challenge in this context of resilience is to develop those.
Franz Wotawa discussed in his statement three fundamental questions, considering
resilience not only from a design perspective but also from the perspective of evaluating
a resilient system design: What is the best resilient system design? What are desired
properties of resilient systems? How do we ensure the correctness of resilient systems?
Addressing those questions requires us to think about architectural aspects but also about
our development processes that now have to facilitate resilience in a design. This entails
the need to establish not only a common understanding of the purpose and meaning of
resilience, but also of the degrees of freedom a resilient system is allowed to operate within.
This is crucial not only from a design perspective, but especially so in an evaluation and
verification context. Enabling the latter, we need to come up with concrete evaluation
metrics, and we need to define exact bounds of acceptable autonomy in resilience.

From the discussions we had in the panel and two break-out sessions, we can immediately
conclude that achieving resilience is a very complex task. Aside apparent technical and
technological questions, there are also legal ones, like who would be responsible if the required
autonomy to achieve operational resilience causes harm, damage, or the loss of revenue.
Psychological and societal questions are also relevant, like in the sense that they influence the
definition of acceptable behavior or are of interest in a technological context when we think
of human-machine collaboration or also systems of resilient systems where we could have
humans in the loop or where we are (at the very least) operating in a shared environment.
While some resilience can be achieved with anticipating challenges and making a design
resilient by default to those, it is especially the extreme resilience where we equip a system
with the intelligence to overcome unexpected issues at run-time that requires us to rethink
our current design, development, evaluation and verification processes. Due to the complexity
of the discussions, they were led not only in the time-limited context of the panel discussion,
but specific aspects were discussed also in two break-out sessions:

What is resilience and how do we measure it?
Dealing with unknown unknowns in resilience?
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6 Open problems

6.1 LiU-ICE Industrial Fault Diagnosis Benchmark – Anomaly Detection
and Fault Isolation with Incomplete Data

Daniel Jung (Linköping University, SE)
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URL https://vehsys.gitlab-pages.liu.se/diagnostic_competition/

A common challenge of designing diagnosis systems in industrial applications, is limited
data availability from relevant fault scenarios and a lack of knowledge of model uncertainty.
Development of fault diagnosis design techniques in this situation is the theme of the
competition.

The case study is the air-flow of an internal combustion engine. The complexity of
modeling the engine together with noisy measurements makes is a challenging system to
diagnose because of its non-linear dynamic behavior and wide operating range.

Competition Objectives
Design a diagnosis system that can detect and isolate faults.
Handle that availability of representative data from all fault scenarios and fault sizes is
limited.
The diagnosis system should handle faults that are not represented in training data.
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