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Abstract
This report documents the program and outcomes of Dagstuhl Seminar “The Emerging Issues
in Bioimaging AI Publications and Research” (24042) held on January 21–24, 2024. The fast
advancement of computational techniques, particularly those based on artificial intelligence (AI),
has significantly propelled the field of computational biology. With the rapid development, new
issues are emerging in bioimaging AI publications and research. For example, how can we properly
validate the AI methods used in quantitative biological analysis? Also, the ethical aspects of
these developments remain underexplored, lacking clear definitions and recognition within the
community. The goal of this interdisciplinary seminar was to bring together experts from various
fields, including experimental biology, computational biology, bioimage analysis, computer vision,
and AI research, to identify, discuss and address the emerging issues in current bioimaging AI
research and publications.
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Seminar Structure and Organization
The seminar was divided into three specific directions: ethical considerations in bioimaging AI
research and publications, performance reporting on bioimaging AI methods in publications
and research, and future research directions of bioimaging AI focusing on validation and
robustness. The seminar was structured into two parts: the first half focused on presentations
and information sharing related to these three major directions to align experts from different
fields, and the second half concentrated on in-depth discussions of these topics.
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Given the highly interdisciplinary nature of the seminar, we took two specific steps to
facilitate smooth communication and discussion among researchers with diverse backgrounds.

First, about six to eight weeks before the seminar, we sent out a survey to gather
potential topics each participant could present within the seminar’s overarching theme.
We collaborated with several participants to choose or adjust their presentation topics to
ensure the effectiveness in this interdisciplinary setting. Based on the survey responses,
the presentation and information-sharing portion (the first half) of our seminar began with
two keynotes from editors who handle bioimaging AI papers, sharing their insights and the
existing efforts by publishers. We then organized all presentations to progress from a focus
on biology to bioimaging AI, and finally to AI, ensuring coverage of the full spectrum of
necessary knowledge for our in-depth discussions in the second half.

Second, at the beginning of the seminar, we allocated two minutes for each participant
for a quick introduction and to briefly rate their experience and expertise on a scale in the
range of [B5, B4, B3, B2, B1, 0, A1, A2, A3, A4, A5], with B5 representing pure biology
and A5 representing pure AI. Participants could select a single value, multiple values, or
a range of values. This was not intended to stereotype participants but to facilitate easier
communication. For example, if a participant with experience in the range of B5 to B3
spoke with two others during a coffee break, one with experience from B3 to A1 and the
other from A3 to A5, different communication strategies would be necessary for effective
discussions. The distribution of self-identified experience is summarized in the histogram
below (see Fig. 1).

Figure 1 Histogram of the distribution of expertised self-identified by seminar participants.
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Presentations, discussions and outcomes
Overview of the scientific talks

The seminar began with presentations by editors from Nature Methods and Cell Press,
who shared their insights on existing and emerging issues in bioimaging AI publications.
Following this, general bioimage analysis validation issues were discussed from both a
biological application perspective and an algorithmic metric perspective. These presentations
were succeeded by specific application talks demonstrating how AI-based bioimage analysis
is utilized and validated in high-throughput biological applications [1]. The remainder of
day one focused on bioimaging AI validation through explainable AI [2], [3], [4] and existing
tools [5], as well as community efforts in deploying FAIR (Findable, Accessible, Interoperable,
Reusable) AI tools for bioimage analysis [6].

The second day commenced with several theoretical AI talks introducing key concepts
related to model robustness, fairness, and trustworthiness [7]. These were followed by two
presentations showcasing state-of-the-art AI algorithms applied in bioimaging [8], [9], and
an overview of the application of foundation models in bioimaging [10]. The scientific
presentation portion of the seminar concluded with a talk about the pilot work initiated by
the EMBO (European Molecular Biology Organization) Press on research integrity and AI
integration in publishing and trust. This talk also served as a transition into the in-depth
discussions that comprised the second part of the seminar.

Summary of discussions and key outcomes

After the scientific presentation part of the seminar, the participants naturally reach the
agreement on doing the discussion in a four-quadrant manner, as illustrated below in Fig. 2.

Figure 2 The four-quandrant for organizing the in-depth discussion.

Here are some examples of what emerges from discussions in each quadrant.
I. What are some technical considerations that users of AI should pay attention
to?
When using a specific bioimage analysis model, it is crucial for users to have clear biological
questions that align with the technical limitations of the bioimaging AI models. This is
known as application-appropriate validation [11]. For example, the trustworthiness or validity
of an AI-based microscopy image denoising model may differ significantly between a study
that requires merely counting the number of nuclei in an image and one that aims to quantify
the morphological properties of the nuclei.
II. What are some technical considerations that makers of AI should pay attention
to?
When developing a bioimaging AI model, comprehensive evaluations and ablation studies are
essential to explicitly demonstrate the model’s limitations or potential failures. For instance,
evaluating a cell segmentation model under different conditions, such as various magnifications,
signal-to-noise ratios, cell densities, and possibly different microscope modalities, is highly
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beneficial. Providing a clear and detailed definition of the conditions under which the model
has been evaluated helps users determine whether the model can be directly applied to their
images or if it needs retraining or fine-tuning.
III. What are some important things the users of AI should make sure the makers
of AI are aware of or should make clear to the makers of AI?
One example is the inherent presence of batch effects in biology, such as variations in
fluorescence microscopy image quality due to different batches of dyes or slight morphological
differences in cells from different colony positions. For effective interdisciplinary collaboration,
it would be very helpful if biologists can clearly describe data acquisition processes and
potential batch effects. This enables AI developers to consider these factors in their training
sets, validation strategies, and model designs.
IV. What do the makers of AI need to make sure the users of AI know?
There is a lot of information that AI method developers need to help biologists think together.
For example, in some collaborative projects, AI researchers need to guide their biologist
collaborators how to best provide their data. For instance, the data to be analyzed to answer
biological questions can be different from special data acquired merely for training the AI
models, which could be referred to as a “training assay” [12], i.e., special experimental assays
only made for effective model training.

The discussions highlighted in the four quadrants are only examples from the seminar. A
follow-up “white paper”-like manuscript based on the full discussions is being planned as a
resource for the bioimaging AI community.

A specific topic that emerged from the seminar was the interpretability and explainability
of bioimaging AI models. This is evident from the word cloud generated during the discussions,
as shown in Fig. 3. A follow-up seminar specifically focusing on this topic is being planned
for the bioimaging AI community in the coming years.

Figure 3 Word cloud generated during the discussion about the emerging issues in bioimaging
AI publications and research.

Besides the science program, the seminar provided valuable opportunities for social
connections and networking. Due to the pandemic, many researchers had previously only met
virtually, making the in-person interactions feel like a reunion. The diversity of research fields
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among participants, including wet-lab biologists and machine learning theorists with little
biology experience, created unique networking opportunities. They would otherwise have rare
opportunities to meet in traditional conferences. Biologists expressed that they gained new
insights into the theories behind machine learning methods they had used, motivating them
to rethink their future research designs. Conversely, machine learning researchers showed
strong interest in collaborating with the bioimaging community to address fundamental
challenges such as robustness and explainability.

Conclusions
This Dagstuhl Seminar on “The Emerging Issues in Bioimaging AI Publications and Research”
successfully united a diverse group of experts from experimental biology, computational
biology, bioimage analysis, computer vision, and AI research. The seminar facilitated in-
depth discussions on ethical considerations, performance reporting, and future research
directions in bioimaging AI, highlighting the crucial need for interdisciplinary collaboration
and communication.

Through structured presentations and interactive discussions, participants underscored
the importance of clear communication between AI developers and users, comprehensive
model validation, and awareness of biological batch effects. The seminar emphasized the
necessity for application-appropriate validation and detailed reporting of AI model conditions
to enhance the trustworthiness and applicability of bioimaging AI methods. Furthermore,
the seminar provided a valuable platform for social interactions and networking, bridging
gaps between researchers from different fields and fostering new collaborations.

In conclusion, the seminar not only advanced discussions on critical issues in bioimaging
AI publications but also laid the foundation for ongoing collaboration and innovation in
the field. Planned follow-up activities will further contribute to the development and
ethical application of AI in bioimaging research. The success of this seminar underscores
the importance of continuous communication and cooperation in addressing the emerging
challenges in bioimaging AI publications and research.
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3 Overview of Talks

3.1 Topological Uncertainty and Representation in Biomedical Image
Analysis

Chao Chen (Stony Brook University, US)
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Modern analytics is facing highly complex and heterogeneous data. While deep learning
models have pushed our prediction power to a new level, they are not satisfactory in
some crucial merits such as transparency, robustness, data-efficiency, etc. To address these
challenges, I am generally interested in incorporating mathematical modeling of topology,
geometry and dynamics seamlessly into the learning pipeline. Such model-informed learning
approach will be more transparent, steerable and less annotation-hungry.

In this talk, I will focus on our recent work on combining topological reasoning with
learning to solve problems in biomedical image analysis. With advanced imaging techniques,
we are collecting images of various complex structures such as neurons, vessels, tissues and
cells. These structures encode important information about underlying biological mechanisms.
To fully exploit these structures, we propose to enhance learning pipelines with topology, the
branch of abstract mathematics that deals with structures such as connections, loops and
branches. Under the hood is a formulation of the topological computation as a robust and
differentiable operator, based on the theory of persistent homology. This inspires a series of
novel methods for segmentation, uncertainty estimation, generation, and analysis of these
topology-rich biomedical structures.
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3.2 Application-appropriate validation matters for quantitative bioimage
analysis

Jianxu Chen (ISAS – Dortmund, DE), Matheus Palhares Viana (Allen Insitute for Cell
Science – Seattle, US), and Susanne Rafelski (Allen Insitute for Cell Science – Seattle, US)
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A critical step towards biologically reliable analysis of microscopy image-based assays is
rigorous quantitative validation with metrics and measurements appropriate for the particular
biological application. Currently, however, no community standards or publication guidelines
exist on how to conduct the appropriate validation of work involving quantitative analysis
of microscopy images, including deep-learning based approaches. In this presentation, we
discussed this challenge for both classical and modern deep-learning based image analysis
approaches as well as possible solutions for automating and streamlining the validation
process. First, to introduce the concept of “application-appropriate validation”, we showed
a true story of how inappropriate validation of segmentations in a quantitative analysis of
mitochondrial network morphology led to wrong biological conclusions. Second, besides
segmentation, we showed another example of application-appropriate validation for label-free
predictions. The commonly used metrics, e.g., Pearson correlation or structure similarity,
could be misleading when not taking the downstream biological application into account.
Finally, we discussed a list of key considerations for interpretable quantification of microscopy
image-based assays, from understanding the underlying biological questions, understanding
the limits of assays, understanding the validation requirement for interpretation, to the
estimation of time and effort one could afford, with an emphasis on future community efforts
in standardization, dissemination and interdisciplinary connections.

3.3 Metrics reloaded: Recommendations for image analysis validation
Evangelia Christodoulou (DKFZ – Heidelberg, DE)
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Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an
underestimated global problem. Particularly in automatic biomedical image analysis, chosen
performance metrics often do not reflect the domain interest, thus failing to adequately
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measure scientific progress and hindering translation of ML techniques into practice. To
overcome this, our large international expert consortium created Metrics Reloaded, a compre-
hensive framework guiding researchers in the problem-aware selection of metrics. Following
the convergence of ML methodology across application domains, Metrics Reloaded fosters
the convergence of validation methodology. The framework was developed in a multi-stage
Delphi process and is based on the novel concept of a problem fingerprint – a structured
representation of the given problem that captures all aspects that are relevant for metric
selection, from the domain interest to the properties of the target structure(s), data set and
algorithm output. Based on the problem fingerprint, users are guided through the process of
choosing and applying appropriate validation metrics while being made aware of potential
pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as a
classification task at image, object or pixel level, namely image-level classification, object
detection, semantic segmentation, and instance segmentation tasks. To improve the user
experience, we implemented the framework in the Metrics Reloaded online tool, which also
provides a point of access to explore weaknesses, strengths and specific recommendations
for the most common validation metrics. The broad applicability of our framework across
domains is demonstrated by an instantiation for various biological and medical image analysis
use cases.

3.4 Working towards pick 5: strategies for scaling and distributing
user-friendly containers

Beth Cimini (Broad Institute of MIT & Harvard – Cambridge, US)

License Creative Commons BY 4.0 International license
© Beth Cimini

In the current scientific software environment, we have identified 5 axes that should be
measured for any software or code distribution system with which one plans to share code.
Reproducible – can you tell what went in there and why and how?
Easy to create – how much extra work/knowledge is needed on the developer side to package?
Easy to run – how much extra work/knowledge is needed on the user side to run?
Long lasting – will the thing I made today work tomorrow?
Scalable – if my experiments get bigger (in terms of individual image size and/or parallelization
of many images, can I still use my solution?

In this talk, we discuss the merits of packaged applications, virtual environment spec
files, online workflow tools like Galaxy, as well as software containers. We discuss strategies
that can be used alongside software containers to make them maximally user friendly, and
discuss possible strategies to make containers score high on all 5 axes.
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3.5 Implicit Neural Representation (INR) for Biological Image
Compression and Neural Plasticity Learning

Gaole Dai (Peking University, CN)

License Creative Commons BY 4.0 International license
© Gaole Dai

The presentation introduces Implicit Neural Representation (INR), which is employed for
various tasks such as image compression and 3D reconstruction. Specifically, we explore the
distinctive attributes of INR in bioimage data compression. Additionally, we investigate the
integration of the coordinate-to-value learning approach of INR into conventional Artificial
Neural Networks (ANNs). By assigning specific coordinates to each cell/synapse in the ANN
and integrating them with the INR network, we obtain tailored adjustment values for each
location. We find that this type of adjustment exhibits neural plasticity, a characteristic
unique to biological networks, making it highly valuable in Parameter Efficient Fine-Tuning
(PEFT) tasks.

3.6 An overview of Cell Press policies on image presentation, data and
code sharing, and AI use

Andrew Hufton (Patterns, Cell Press – Würzburg, DE)

License Creative Commons BY 4.0 International license
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The Cell Press journals, including Patterns (https://www.cell.com/patterns/), have high
standards for the transparency and reproducibility of research presented at our journals. In
my talk, I presented a brief overview of our policies on image presentation, data and code
sharing, and the use of AI tools in research and manuscript preparation. I then discussed
how these policies apply to cutting-edge bioimaging research and some of the challenges
editors and our authors commonly face during the peer-review and publication process.
Notably, I made the case that authors should think critically about the openness, ethics and
transparency of AI models and training datasets used in their research, and should keep in
mind that reliance on closed-source commercial models could impact the transparency and
publishability of their work. I also highlighted some of the dangers of poorly-designed AI
detection tools, and argued that while we must be vigilant against AI-enabled fraud, our
main focus as a community should be on positively promoting and rewarding innovative,
rigorous and open research. A selection of papers mentioned in my talk are included below.
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3.7 Discovering interpretable models of scientific image data with deep
learning

Alan Lowe (The Alan Turing Institute – London, GB)
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Joint work of Christopher Soelistyo, Alan Lowe
Main reference Christopher J. Soelistyo, Alan R. Lowe: “Discovering interpretable models of scientific image data

with deep learning”, CoRR, Vol. abs/2402.03115, 2024.
URL https://doi.org/10.48550/ARXIV.2402.03115

Deep learning (DL) is now a powerful tool in microscopy data analysis, routinely used for
image processing applications such as segmentation and denoising. However, it is rarely
used to directly learn scientific models of a biological system, owing to the complexity of
the internal representations. Here, we present our recent attempts to learn interpretable
DL-based models of complex cell biological phenomena directly from a large corpus of
time-lapse imaging data. In particular, we implement disentangled representation learning,
causal time series models, network sparsity and symbolic methods, and assess their usefulness
in forming interpretable models of complex data. We find that such methods can produce
highly parsimonious models that achieve ∼ 98% of the accuracy of black-box benchmark
models, with a tiny fraction of the complexity. We explore the utility of such interpretable
models in producing scientific explanations of the underlying biological phenomenon.
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3.8 Improving trustworthiness of ML in bioimaging through
experimentally testable explanations

Axel Mosig (Ruhr-Universität Bochum, DE)
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Main reference David Schuhmacher, Stephanie Schörner, Claus Küpper, Frederik Großerüschkamp, Carlo
Sternemann, Celine Lugnier, Anna-Lena Kraeft, Hendrik Jütte, Andrea Tannapfel, Anke
Reinacher-Schick, Klaus Gerwert, Axel Mosig: “A framework for falsifiable explanations of machine
learning models with an application in computational pathology”, Medical Image Anal., Vol. 82,
p. 102594, 2022.

URL https://doi.org/10.1016/J.MEDIA.2022.102594

The black box nature of neural networks is commonly regarded as the main source why pre-
dictions obtained from deep neural networks, despite their often unpredecedented predictive
accuracy, are often considered untrustworthy. In this contribution, I argue that the lack
of trustworthiness of machine learning in general is due to its inductive nature: Machine
learning models are obtained from inductive inferences, where specific observations in the
form of training data are used to infer a general model that can classify data points beyond
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the training data. From this perspective, machine learning is subject to the problem of
induction, which has been brought to the point by the no-free-lunch theorem: Since there
is no justification to assume that future events will resemble the past, all machine learning
algorithms perform equal in terms of their out-of-training error.

Our further reasoning follows two interpretations, a global and a local interpretation, of
the no-free-lunch theorem, which have been formulated recently by Sterkenburg and Grünwald.
The global interpretation is in a sense the pessimistic interpretation, stating that no universal
learning algorithm exists, since across the domain of all possible learning problems, all
classifiers are identical in terms of their out-of-training error. The local interpretation is more
constructive towards applied machine learning: When dealing with one specific problem, some
learning algorithms do perform better on this specific task than other learning algorithms.
This can be understood in terms of the inductive bias of different learning algorithms: As
a direct implication of the no-free-lunch theorem, each learning algorithms must involve
an either implicit or an explicit set of assumptions about how to generalize to data points
beyond the training data. This set of assumptions is referred to as the inductive bias of a
learning algorithm. From the perspective of one specific learning task, one can now ask what
learning algorithm has an inductive bias that matches the underlying learning problem. This
local interpretation of the no-free-lunch theorem essentially leads to considering machine
learning as an inductive bias modeling problem.

The question that follows the local interpretation of the no-free-lunch theorem is how to
justify inductive bias. I argue that our recently proposed framework for falsifiable explanations
of artificial intelligence, or FXAI framework for short, addresses this question: The FXAI
framework builds on the concept of explainability methods for neural networks, which usually
provide an explainable output along with the classification of an input item. In the case of
image classification, for example, the interepretable output is often a heat map that indicates
which input variables have been relevant for obtaining the classification result of a specific
image. In the FXAI framework, this explainable extension of the output is referred to as the
interepretable space, or I-space for short. It is important to realize that an I-space, while
being interpretable, can usually not be considered an interpretation in itself. The role of an
interpretation (or, synonymously, an explanation) is rather assigned to a hypothesis that,
in the sense of a scientific hypothesis, is required to be experimentally testable. The latter
criterion is of crucial importance: Now, the explanation – and along with it, the I-space and
hence the machine learning model – can be tested experimentally.

Experimental testability has relevant consequences: First of all, since the experiment that
tests the explaining hypothesis is a different experiment than the experiment that yielded
the data that were input to the machine learning model, the FXAI framework yields an
experimental, deductive path to validate a machine learning model that is fully independent
of cross validation. Second, the testable hypothesis suggests what should guide the inductive
bias of a learning algorithm: namely an experimentally testable hypothesis.

We can now finally argue why experimentally testable explanations improve the trustwor-
thiness of machine learning models. My argument lies in the nature of scientific hypotheses,
which usually do not refer to one specific experiment. Rather, a strong hypothesis will
usually suggest a wide range of different experiments through which the hypothesis can be
tested. The more experiments a hypothesis invites for it to be tested, the more vulnerable
the hypothesis becomes, because each experiment potentially falsifies the hypothesis. If,
on the other hand, the hypothesis withstands all experimental attempts to falsify it, then
the trustworthiness of the hypothesis and with it the associated machine learning model is
undermined.
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3.9 Segment Anything for Microscopy
Constantin Pape (Universität Göttingen, DE)
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Main reference Anwai Archit, Sushmita Nair, Nabeel Khalid, Paul Hilt, Vikas Rajashekar, Marei Freitag, Sagnik
Gupta, Andreas Dengel, Sheraz Ahmed, Constantin Pape: “Segment Anything for Microscopy”,
bioRxiv, Cold Spring Harbor Laboratory, 2023.

URL https://doi.org/10.1101/2023.08.21.554208

The segmentation of cells in light microscopy or organelles in electron microscopy is one of the
fundamental tasks in microscopy image analysis. While deep learning based approaches have
improved segmentation qualities for a wide array of tasks, these solutions require specialized
architectures and, unless very similar training data is publicly available, a significant amount
of manual annotation. Recently versatile models that can be applied to a wider set of vision
tasks – commonly referred to as foundation models – have been introduced. These models
promise to bridge this gap and enable readily available solutions for many vision tasks. The
foundation model “Segment Anything” developed by Meta implements this paradigm for
segmentation tasks and can be applied for interactive and automatic segmentation in a
large variety of image modalities. Our work builds on Segment Anything and evaluates and
improves it for microscopy data. In particular, we implement a fine-tuning methodology that
significantly improves the quality for microscopy and a software plugin for fast interactive
data annotation., showing the promise of vision foundation models for microscopy image
analysis.

3.10 High-volume, label-free imaging for quantifying single-cell
dynamics in iPSC colonies

Anne Plant (NIST – Gaithersburg, US)
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Joint work of Anthony Asmar, Zackery Benson, Adele Peskin, Mylene Simon, Michael Halter
Main reference Anthony Asmar, Zack Benson, Adele P. Peskin, Joe Chalfoun, Mylene Simon, Michael Halter, Anne

Plant: “High-volume, label-free imaging for quantifying single-cell dynamics in induced pluripotent
stem cell colonies”, bioRxiv, Cold Spring Harbor Laboratory, 2023.

URL https://doi.org/10.1101/2023.09.29.558451

To facilitate the characterization of unlabeled induced pluripotent stem cells (iPSCs) during
culture and expansion, and to be able to address gene expression in individual living cells over
time, we developed an AI pipeline for nuclear segmentation and mitosis detection from phase
contrast images of individual cells within iPSC colonies. The analysis uses a 2D convolutional
neural network (U-Net) plus a 3D U-Net applied on time lapse images to detect and segment
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nuclei, mitotic events, and daughter nuclei to enable tracking of hundreds of thousands of
individual cells over long times in culture. The analysis uses fluorescence data to train models
for segmenting nuclei in phase contrast images. The use of classical image processing routines
to segment fluorescent nuclei precludes the need for manual annotation and provides hundreds
of thousands of cell objects for training. We explored reproducibility and generalizability
of the pipeline, and how pipeline parameters influenced metrics of accuracy. The model is
generalizable in that it performs well on different datasets with an average F1 score of 0.94,
on cells at different densities, and on cells from different pluripotent cell lines. The method
allows us to assess, in a non-invasive manner, rates of mitosis and cell division which serve as
indicators of cell state and cell health. We assess these parameters in culture for more than
36 hours, at different locations in the colonies, and as a function of excitation light exposure.

3.11 Publishing microscopy and AI in Nature Methods
Rita Strack (Nature Publishing Group, US)

License Creative Commons BY 4.0 International license
© Rita Strack

Reporting microscopy data and metadata are critical for data reproducibility, sharing, and
reuse, and journals can have a key role in improving reporting standards. This talk discussed
a methodological reporting crisis in microscopy, published works seeking to address this issue,
and standards that are being implemented at Nature Methods. It also discussed the unique
challenges associated with publishing reproducible AI for use in bioimage analysis and why
this is crucial for the field moving forward. The goal was to inspire researchers to develop
and implement best practice to promote reproducibility and growth within the field.

3.12 Frequency shortcuts learning and generalization in computer vision
Nicola Strisciuglio (University of Twente – Enschede, NL)
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Neural networks trained through optimization techniques based on variants of stochastic
gradient descent (SGD) present a spectral bias. Model training dynamics are biased towards
learning features related to low-frequency components of the input data at early stages
of training, and subsequently focusing on high-frequency features. Another important
phenomenon in training dynamics is the emergence of shortcut learning, that is learning
spurious correlations between the input data and prediction target. This results from
the tendency of SGD-based training to find solutions that simplify the minimization of
a loss function used as target of the training optimization problem. Shortcuts harm the
generalization abilities of neural networks, especially in out-of-distribution (OOD) settings,
and thus require particular attention during model validation.
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We investigate the relationship between spectral bias and shortcut learning in image
classification and expose the existence of shortcuts learned by vision models in the Fourier
domain, which we call frequency shortcuts. We propose a method to detect possible
frequency shortcuts, based on the importance that single frequency components have in
the classification task, and construct dominant frequency maps (DFM). We demonstrate
that frequency shortcuts can be learned at low or high-frequency and potentially harm the
generalization capabilities in out-of-distribution settings, showing that shortcuts presents in
OOD data can cause an illusion of strong generalization. In order to mitigate their impact
on model performance, we also investigate the use of DFMs in a negative data augmentation
strategy that improves adversarial robustness. However, extensive analysis of shortcuts
learned by vision models is necessary and requires substantial attention to validate model
performance and transferability to real-world tasks.

3.13 Visual interpretability of deep learning models in cell imaging
Assaf Zaritsky (Ben Gurion University – Beer Sheva, IL)
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classification models by generative latent space disentanglement applied to in vitro fertilization”,
bioRxiv, Cold Spring Harbor Laboratory, 2023.
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With the rapid growing volume and complexity of modern biomedical visual data, we
can no longer rely on humans’ amazing capacity to identify visual patterns in biomedical
images. Deep learning has emerged as a powerful technique to identify hidden patterns
that exceed human intuition in complex cell imaging data. Extracting a deeper biological
understanding, such as mechanistic description of complex phenotypes, require human
interpretable explanation of the deep learning model’s decision process, however, the non-
linear entanglement of image features makes deep learning models a “black box” that lacks
straightforward explanations of which biologically meaningful image properties are important
for the models’ decision. In my talk I presented a new generalized method toward systematic
visual interpretability of deep learning image-based classification models that relies on
counterfactual visual explanations using a disentangled latent representation. This method
enables visually intuitive traversal of the latent space and we applied it to decipher blastocysts
morphological quality properties in the context of in vitro fertilization.

3.14 Foundation models for biomedical image analysis
Shanghang Zhang (Peking University, CN)

License Creative Commons BY 4.0 International license
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In this presentation, we delve into the potential of Foundation Models (FMs), which encompass
Large Language Models (LLMs), Large Vision Models (VLMs), and Multimodal Large
Language Models (MLLM). These models have demonstrated promising outcomes in various
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scenarios. However, integrating FM capabilities into professional domains remains an
unresolved inquiry. We present some recent relevant research endeavours to address emergent
challenges during this transition. The initial query pertains to efficiently aligning data from
specialized domains with non-specific FMs. Parameter Efficient Fine-tuning (PEFT) offers a
viable approach, and to adapt PEFT more suitably for medical data in our case, we have
devised a tree-like structured adapter that hierarchically incorporates medical knowledge into
the Segment Anything (SAM) model. Secondly, we illustrate how quantization techniques can
accelerate FM performance for biological tasks. Subsequently, we demonstrate the fine-tuning
process of an MLLM using medical data to generate medical reports and accomplish vision-
based question-answering tasks. This process leverages methods such as in-context learning
to align training data across different modalities with retrieval augmentative generation to
support our model giving a more comprehensive report.

3.15 Algorithmic Fairness, Robust Generalization and Trustworthy
Machine Learning

Han Zhao (University of Illinois – Urbana-Champaign, US)
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Joint work of Han Zhao, Haoxiang Wang, Haozhe Si, Gargi Balasubramaniam, Bo Li

In this talk, I will discuss two important aspects of machine learning: algorithmic fairness
and robust generalization under the common framework of invariant causal prediction. I will
first provide some motivating examples of these two problems in the context of biomedical
and healthcare applications. I will then introduce our recent work [1, 2] on invariant feature
recovery to address the above two problems. I will conclude the talk with a discussion of
some open problems and future research directions.
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