
Report from Dagstuhl Seminar 24051

Next Generation Protocols for Heterogeneous Systems
Stephanie Balzer∗1, Marco Carbone∗2, Roland Kuhn∗3, and
Peter Thiemann∗4

1 Carnegie Mellon University, USA. balzers@cs.cmu.edu
2 IT University of Copenhagen, DK. carbonem@itu.dk
3 Actyx AG – München, DE. roland@actyx.io
4 University of Freiburg, DE. thiemann@informatik.uni-freiburg.de

Abstract
The emergence of new computing systems, like cloud computing, blockchains, and Internet of
Things (IoT), replaces the traditional monolithic software hardware stack with a distributed
heterogeneous model. This change poses new demands on the programming languages for
developing such systems: compositionality, allowing decomposition of a system into smaller,
possibly heterogeneous, parts and composition of the individually verified parts into a verified
whole, security, asserting end-to-end integrity and confidentiality, quantitative reasoning methods,
accounting for timing and probabilistic events, and, as a cross-cutting concern, certification of
asserted properties in terms of independently verifiable, machine-checked proofs.

Characteristics of this emerging computation model are distribution of the participating
entities and message passing as the primary means of communication. Message passing is also
the communication model underlying behavioral types and programming languages, making
them uniquely fitted for this new application domain. Behavioral types explicitly capture the
protocols of message exchange and have a strong theoretical foundation. Recent applications of
behavioral types include smart contract languages, information flow control, and machine-checked
proofs of safety properties. Although these early explorations are promising, the current state of
the art of behavioral types and programming languages lacks a comprehensive account of the
above-mentioned demands.

This Dagstuhl Seminar aims to gather experts from academia and industry to discuss the use
of programming languages tailored to tackle the challenges posed by today’s emerging distributed
and heterogeneous computing platforms, e.g., by making use of behavioral types. It will focus
on static and possibly dynamic mechanisms to support compositionality, security, quantitative
reasoning, and certification.
Seminar January 28 – February 2, 2024 – https://www.dagstuhl.de/24051
2012 ACM Subject Classification Theory of computation → Process calculi; Theory of compu-

tation → Type structures
Keywords and phrases behavioural types, concurrency, programming languages, session types
Digital Object Identifier 10.4230/DagRep.14.1.108

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Next Generation Protocols for Heterogeneous Systems, Dagstuhl Reports, Vol. 14, Issue 1, pp. 108–129
Editors: Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:balzers@cs.cmu.edu
mailto:carbonem@itu.dk
mailto:roland@actyx.io
mailto:thiemann@informatik.uni-freiburg.de
https://www.dagstuhl.de/24051
https://doi.org/10.4230/DagRep.14.1.108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 109

1 Executive Summary

Stephanie Balzer (Carnegie Mellon University, USA)
Marco Carbone (IT University of Copenhagen, DK)
Roland Kuhn (Actyx AG – München, DE)
Peter Thiemann (University of Friburg, DE)

License Creative Commons BY 4.0 International license
© Stephanie Balzer, Marco Carbone, Roland Kuhn, and Peter Thiemann

This Dagstuhl Seminar followed the earlier Dagstuhl Seminars 17051 “Theory and Applications
of Behavioural Types” and 21372 “Behavioural Types: Bridging Theory and Practice”.
Whereas Seminar 17051 was focusing on theoretical aspects of behavioural types, and
Seminar 21372 focused on bridging the gap with practical application, this seminar was much
broader and aimed at extending to other communities such as security and other areas of
programming languages.

Initial preparations

Based on the ideas of our seminar proposal, we established four key general areas: quantitative
systems, verification, mechanisation, and security. We assigned each area to a day of the
week (from Monday to Thursday) and asked an invitee representative of the area to give
an introductory talk. Then, each of these talks was followed by other talks and breakout
rooms related to the area. Breakout rooms were established during the seminar based on
discussions with the rest of the participants. As a result of this, the first part of the week
consisted primarily of talks, while the second part included more time for breakout sessions.

Activities and outcomes

Throughout the seminar, the participants gathered in focused breakout groups: the findings
of the breakout groups are described in more detail in the last part of the report. The
participants of several breakout groups have agreed to continue their work and collaboration
after the seminar.

In addition to these more structured breakout sessions there were further lively improvised
meetings and discussions (especially after dinner) which are not summarised in the report.

Overall, we believe that the seminar activities were a success. At the end of the seminar
the participants agreed to remain in contact to continue the discussions, and foster new
collaborations. There was strong enthusiasm for organising a follow-up Dagstuhl Seminar
in the future, perhaps taking place in about 1–2 years time. One concrete outcome was
the submission of a position paper (cf. the working group “Typing Across Heterogeneous
Components”) that has been accepted and presented at PLACES 2024 (co-located with
ETAPS).

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

110 24051 – Next Generation Protocols for Heterogeneous Systems

2 Table of Contents

Executive Summary
Stephanie Balzer, Marco Carbone, Roland Kuhn, and Peter Thiemann 109

Overview of Talks
Area talk: Security of Heterogenous Systems: Principles, Practice, and a Case for
Secure Runtimes
Aslan Askarov . 112

Logical Relations for Session-Typed Concurrency
Stephanie Balzer . 112

Area talk: Program Development Tools for Secure Multi-Party Computation
Marina Blanton . 112

Contracts for Session-based Programming with Linear Dependent Types
Luis Caires . 113

Regrading Policies for Flexible Information Flow Control in Session-Typed Concur-
rency
Farzaneh Derakhshan . 113

The Rational Programmer
Christos Dimoulas . 114

Special Delivery: Programming with Mailbox Types
Simon Fowler . 114

Correct orchestration of Federated Learning: formalisation and verification
Silvia Ghilezan . 115

Information-Flow Control in Choreographies
Andrew Hirsch . 115

Actris tool presentation
Jonas Kastberg Hinrichsen . 115

Area talk: Mechanized verification of type systems using Iris
Robbert Krebbers . 116

Behavioural Types for Local-First Software: replicated roles, full availability
Roland Kuhn . 116

Probabilistic Theories of Choreographic Programming
Marco Peressotti . 117

Comparing Process Calculi using Encodings
Kirstin Peters . 117

Mechanizing Session-Types: Enforcing linearity without linearity
Brigitte Pientka . 118

Router-based Analysis of Multiparty Protocols
Jorge Pérez . 118

Behavioural up/down casting for statically typed languages (tool presentation)
António Ravara . 119

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 111

Deciding Subtyping for Asynchronous Multiparty Sessions
Felix Stutz . 119

Area talk: Quantitative techniques
Emilio Tuosto . 120

System fµ
ω with context-free session types

Vasco T. Vasconcelos . 120

STL3: Toward Security via Free Theorems in a Session-Typed Linear Language
with Locations
Andrew Wagner . 120

Area talk: Verification
Nobuko Yoshida . 121

Working groups
Breakout Group: IFC and Noninterference
Aslan Askarov, Stephanie Balzer, Marina Blanton, Christos Dimoulas, Emanuele
D’Osualdo, Farzaneh Derakhshan, Andrew Wagne 121

Breakout Group: Secure Multiparty Computation
Amal Ahmed, Aslan Askarov, Stephanie Balzer, Andrew Wagner, Marina Blanton,
Christos Dimoulas, Emanuele D’Osualdo, Farzaneh Derakhshan, Philipp Haller . . 121

Breakout Group: Logical Relations and Session Types
Amal Ahmed, Stephanie Balzer, Luis Caires, Emanuele D’Osualdo, Farzaneh De-
rakhshan, Adrian Francalanza, Ralf Jung, Robbert Krebbers, Peter Thiemann,
Andrew Wagner . 122

Real-World Applications of Behavioural Types
Kirstin Peters, Silvia Ghilezan, Jesper Bengtson, Christos Dimoulas, Marco Car-
bone, Felix Stutz, Antonio Ravara . 122

Typing Across Heterogeneous Components
Roland Kuhn, Philipp Haller, Sam Lindley, Vasco T. Vasconcelos, Simon Fowler,
Alceste Scalas, Malte Viering, Raymond Hu . 123

Probabilistic Behavioural Types
Emilio Tuosto, Silvia Ghilezan, Emanuele D’Osualdo, Jorge Pérez, Nobuko Yoshida,
Marco Carbone, Marco Peressotti, Kirstin Peters, Alceste Scalas 124

Open World Choreographies
Andrew Hirsch, Lukasz Ziarek, Marco Peressotti, Malte Viering, Raymond Hu,
Roland Kuhn . 125

Mechanisation of Behavioural Types
Jesper, Luis, Kirstin, Robbert, Jonas, Alceste, Ralf 126

Dependent Session Types . 127

Participants . 129

24051

112 24051 – Next Generation Protocols for Heterogeneous Systems

3 Overview of Talks

3.1 Area talk: Security of Heterogenous Systems: Principles, Practice,
and a Case for Secure Runtimes

Aslan Askarov (Aarhus University – Aarhus, Denmark)

License Creative Commons BY 4.0 International license
© Aslan Askarov

The classical computer security principle of the least common mechanism says that resource
sharing creates security problems and should be treated carefully. This talk highlights that
programming language runtimes that handle sensitive information at different confidentiality
levels are such common mechanisms and, therefore, can inadvertently leak information. We
examine runtime aspects such as schedulers and mailboxes and also study mitigating traffic
analysis attacks using information flow techniques.

3.2 Logical Relations for Session-Typed Concurrency
Stephanie Balzer (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Stephanie Balzer

Joint work of Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, Yue Yao

Program equivalence is the fulcrum for reasoning about and proving properties of programs.
For noninterference, for example, program equivalence up to the secrecy level of an observer
is shown. A powerful enabler for such proofs are logical relations. Logical relations only
were adopted for session types relatively recently – but exclusively for terminating languages.
This talk scales logical relations to general recursive session types. It develops a logical
relation for progress-sensitive noninterference (PSNI) for intuitionistic linear logic session
types (ILLST), tackling the challenges non-termination and concurrency pose, and shows
that logical equivalence is sound and complete with regard to closure of weak bisimilarity
under parallel composition, using a biorthogonality argument. A distinguishing feature of
the logical relation is its stratification with an observation index (as opposed to a step or
unfolding index), a crucial shift to make the logical relation closed under parallel composition
in a concurrent setting.

3.3 Area talk: Program Development Tools for Secure Multi-Party
Computation

Marina Blanton (University at Buffalo – Buffalo, US)

License Creative Commons BY 4.0 International license
© Marina Blanton

Secure multi-party computation permits evaluation of a function or a program on protected
private inputs in such a way that the computation participants have no access to the data
in the clear throughout the computation. The security guarantees are such that only the
computation outcome becomes disclosed to the designated parties. In this talk, we discussed
the setup, security definitions, and their differences from the properties of other definitions

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 113

used in the programming languages community. The second part of the talk discussed
PICCO, a compiler for transforming general-purpose programs intended to be executed on
private data into the corresponding secure multi-party computation protocols. We discussed
compiler optimizations and mechanisms for making it easier for programmers to develop
efficient programs in this framework.

3.4 Contracts for Session-based Programming with Linear Dependent
Types

Luis Caires (IST – Lisbon, PT)

License Creative Commons BY 4.0 International license
© Luis Caires

We sketch a novel approach to linear dependent session types based on a Proposition-as-Types
foundation of session-based programs, which targets the development of a linear dependent
type theory with equality types for session behaviour, allowing properties of linear objects to
be expressed.

3.5 Regrading Policies for Flexible Information Flow Control in
Session-Typed Concurrency

Farzaneh Derakhshan (Illinois Institute of Technology – Chicago, US)

License Creative Commons BY 4.0 International license
© Farzaneh Derakhshan

Joint work of Farzaneh Derakhshan, Stephanie Balzer, Yue Yao

Noninterference guarantees that an attacker cannot infer secrets by interacting with a program.
An information flow control type system asserts noninterference by tracking the level of
information learned and disallowing leakage to entities of lesser or unrelated levels. These
restrictions cater to scenarios in which the information learned by an entity monotonically
increases with program progression but are at odds with control flow constructs, permitting
interaction with entities of lower levels in the continuation. Relaxing such restrictions is
particularly challenging in a concurrent setting. This paper utilizes session types to track
the flow of information and develops an information flow control type system for message-
passing concurrent processes that allows downgrading the pc for the next loop iteration upon
recursion. To ensure noninterference, the type system relies on regrading policies, ensuring
that any confidential information learned during the high-security parts of the loop cannot
be rolled forward to the next iteration. To express regrading policies, the type system is
complemented with integrity to ensure that entities with different regrading policies can
be safely composed. The paper develops the type system and proves progress-sensitive
noninterference for well-typed programs, ruling out timing attacks that exploit the relative
order of messages. The type system has been implemented in a type checker, which supports
security-polymorphic processes using local security theories.

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

114 24051 – Next Generation Protocols for Heterogeneous Systems

3.6 The Rational Programmer
Christos Dimoulas (Northwestern University – Evanston, US)

License Creative Commons BY 4.0 International license
© Christos Dimoulas

The productivity of developers depends on the quality of the available programming languages:
their support for adequate testing, for locating and fixing mistakes, and for maintenance
tasks. If a programming language does not support these routine tasks, the developer is
forced to resort to labor-intensive and ineffective workarounds. Put differently, it isn’t about
the syntax, the types, or the semantics, but about the pragmatics of a programming language.
The problem is that the PL research area has so far few tools to evaluate pragmatics.

The Rational Programmer is a new scientific instrument for that purpose. While simula-
tions have a long history in computer science applications, the Rational Programmer method
puts them to new use in PL research. The heart of the method is a simulation, namely
an algorithmic abstraction of information gathering in a work context. The outcome of a
rational programmer simulation is typically a strategy that a developer can employ. It may
also point designers and researchers to a problematic aspect of a language. Finally, it can
inform instructors how to teach students the effective use of a language. In this talk, I will
demonstrate the workings of the Rational Programmer method with examples.

3.7 Special Delivery: Programming with Mailbox Types
Simon Fowler (University of Glasgow, GB)

License Creative Commons BY 4.0 International license
© Simon Fowler

The asynchronous and unidirectional communication model supported by mailboxes is a key
reason for the success of actor languages like Erlang and Elixir for implementing reliable and
scalable distributed systems. While many actors may send messages to some actor, only
the actor may (selectively) receive from its mailbox. Although actors eliminate many of the
issues stemming from shared memory concurrency, they remain vulnerable to communication
errors such as protocol violations and deadlocks.

Mailbox types are a novel behavioural type system for mailboxes first introduced for a
process calculus by de’Liguoro and Padovani in 2018, which capture the contents of a mailbox
as a commutative regular expression. Due to aliasing and nested evaluation contexts, moving
from a process calculus to a programming language is challenging. This paper presents
Pat, the first programming language design incorporating mailbox types, and describes an
algorithmic type system. We make essential use of quasi-linear typing to tame some of the
complexity introduced by aliasing. Our algorithmic type system is necessarily co-contextual,
achieved through a novel use of backwards bidirectional typing, and we prove it sound and
complete with respect to our declarative type system. We implement a prototype type
checker, and use it to demonstrate the expressiveness of Pat on a factory automation case
study and a series of examples from the Savina actor benchmark suite.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 115

3.8 Correct orchestration of Federated Learning: formalisation and
verification

Silvia Ghilezan (Mathematical Institute – Belgrade, RS)

License Creative Commons BY 4.0 International license
© Silvia Ghilezan

Main reference Ivan Prokic, Silvia Ghilezan, Simona Kasterovic, Miroslav Popovic, Marko Popovic, Ivan Kastelan:
“Correct orchestration of Federated Learning generic algorithms: formalisation and verification in
CSP”, CoRR, Vol. abs/2306.14529, 2023.

URL https://doi.org/10.48550/ARXIV.2306.14529

Federated learning (FL) is a machine learning setting where clients keep the training data
decentralised and collaboratively train a model either under the coordination of a central
server (centralised FL) or in a peer-to-peer network (decentralised FL). Correct orchestration
is one of the main challenges. In this paper, we formally verify the correctness of two generic
FL algorithms, a centralised and a decentralised one, using the CSP process calculus and
the PAT model checker. The CSP models consist of CSP processes corresponding to generic
FL algorithm instances. PAT automatically proves the correctness of the two generic FL
algorithms by proving their deadlock freeness (safety property) and successful termination
(liveness property). The CSP models are constructed bottom-up by hand as a faithful
representation of the real Python code and is automatically checked top-down by PAT.

3.9 Information-Flow Control in Choreographies
Andrew Hirsch (University at Buffalo – SUNY, US)

License Creative Commons BY 4.0 International license
© Andrew Hirsch

Information-flow control is an important information-security–enforcement mechanism. It
requires that secret information not be allowed to influence (or be used to compute) public
data. This ensures that no private data will be leaked to the outside world. However, enforcing
information-flow control in the concurrent world has proven incredibly difficult. The only
known versions are incredibly restrictive. In current work, we are adding information-flow
control to choreographic programs, where the extra restrictiveness is not necessary. In this
talk, I will explain what goes wrong with information-flow control in concurrent settings,
and why choreographic programming appears to rescue it.

3.10 Actris tool presentation
Jonas Kastberg Hinrichsen (Aarhus University, DK)

License Creative Commons BY 4.0 International license
© Jonas Kastberg Hinrichsen

URL https://iris-project.org/actris/

Binary sessions, specifying bidirectional exchanges of messages between two processes, has
widely been used to model idealised reliable communication, where messages are never
dropped, duplicated, or arrive out of order. Such sessions allow for sophisticated protocol
structures, as evidenced by the ever expanding work on session types, a behavioural type

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2306.14529
https://doi.org/10.48550/ARXIV.2306.14529
https://doi.org/10.48550/ARXIV.2306.14529
https://doi.org/10.48550/ARXIV.2306.14529
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://iris-project.org/actris/

116 24051 – Next Generation Protocols for Heterogeneous Systems

system for specifying the types of individual messages of a sequence of exchanges. However,
the expressivity of session types is often restricted to a decidable fragment, which prohibits
them from reasoning about functional correctness.

In this tool presentation, I present the ongoing story of Actris tool – a framework for
session type-based reasoning in separation logic – and how it can be used to reason about
reliable communication. In particular, I demonstrate the full verification of a suite of programs
that combine message passing and shared memory concurrency. I additionally briefly cover
the various extensions of Actris; notably how it has been applied to the verification of
distributed systems and deadlock freedom.

3.11 Area talk: Mechanized verification of type systems using Iris
Robbert Krebbers (Radboud University Nijmegen, NL)

License Creative Commons BY 4.0 International license
© Robbert Krebbers

This talk gives an introduction to the “logical approach” to proving type safety. I will first
present a simple version, and then scale up to a small session-typed language. I will show
that this approach is well-suited for mechanization of challenging type systems in the Coq
proof assistant

3.12 Behavioural Types for Local-First Software: replicated roles, full
availability

Roland Kuhn (Actyx AG)

License Creative Commons BY 4.0 International license
© Roland Kuhn

Joint work of Roland Kuhn, Hernán Melgratte, Emilio Tuosto
Main reference Roland Kuhn, Hernán C. Melgratti, Emilio Tuosto: “Behavioural Types for Local-First Software”, in

Proc. of the 37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21,
2023, Seattle, Washington, United States, LIPIcs, Vol. 263, pp. 15:1–15:28, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023.

URL https://doi.org/10.4230/LIPICS.ECOOP.2023.15

In this work we formalise an existing system for high-availability industry automation: the
constraint that availability must be maximised – even at the cost of strong consistency –
poses some interesting challenges. The basis is given by the peer-to-peer, uncoordinated, but
causality-preserving event log replication of the Actyx middleware. Our work resulted in well-
formedness constraints that ensure that a designed interaction protocol will achieve eventual
consensus on the event trace of its execution, without any need for further coordination.
This holds even in a dynamic swarm setting, where any role can be replicated any number of
times and new participants can join and leave the system at any time.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPICS.ECOOP.2023.15
https://doi.org/10.4230/LIPICS.ECOOP.2023.15
https://doi.org/10.4230/LIPICS.ECOOP.2023.15
https://doi.org/10.4230/LIPICS.ECOOP.2023.15
https://doi.org/10.4230/LIPICS.ECOOP.2023.15

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 117

3.13 Probabilistic Theories of Choreographic Programming
Marco Peressotti (University of Southern Denmark – Odense, DK)

License Creative Commons BY 4.0 International license
© Marco Peressotti

Choreographic programming is a paradigm for developing concurrent and distributed systems,
where programs are choreographies that define, from a global viewpoint, the computations and
interactions that communicating processes should enact. Choreography compilation translates
choreographies into the local definitions of process behaviours, given as terms in a process
calculus. In this talk we present the first theory of choreographic programming language that
incorporates probabilistic aspects for local computation, choreographic choice, and scheduling.
We start from an established theory of choreographic programming [1, 2, 3, 4, 5] and integrate
various probabilistic features while maintaining the original syntax. We show that the original
compilation procedure can still be used and establish its correctness in terms of probabilistic
bisimilarity via standard up-to techniques. We discuss how the various probabilistic features
impact the design of the semantics and the lessons learned while integrating them.

References
1 Montesi, F. 2023. Introduction to Choreographies. Cambridge University Press.

DOI:10.1017/9781108981491
2 Cruz-Filipe Luís, Montesi, F. and Peressotti, M. 2023. A Formal Theory of Choreographic

Programming. Journal of Automated Reasoning. 67, 21 (2023), 1–34. DOI:10.1007/s10817-
023-09665-3.

3 Cruz-Filipe Luís, Montesi, F. and Peressotti, M. 2021. Certifying Choreography Compila-
tion. Theoretical Aspects of Computing – ICTAC 2021 – 18th International Colloquium,
Virtual Event, Nur-Sultan, Kazakhstan, September 8-10, 2021, Proceedings (2021), 115–133.
DOI:10.1007/978-3-031-17715-6_15

4 Cruz-Filipe Luís, Montesi, F. and Peressotti, M. 2021. Formalising a Turing-Complete Cho-
reographic Language in Coq. 12th International Conference on Interactive Theorem Proving
(ITP 2021) (Dagstuhl, Germany, 2021), 15:1–15:18. DOI:10.4230/LIPIcs.ITP.2021.15

5 Cruz-Filipe Luís, Graversen, E., Montesi, F. and Peressotti, M. 2023. Reasoning
About Choreographic Programs. Coordination Models and Languages (2023), 144–162.
DOI:10.1007/978-3-031-35361-1_8

3.14 Comparing Process Calculi using Encodings
Kirstin Peters (Universität Augsburg, DE)

License Creative Commons BY 4.0 International license
© Kirstin Peters

Encodings are often used to compare process calculi. To rule out trivial or meaningless
encodings, they are augmented with encodability criteria. This talk is about how to reason
about the quality of encodability criteria and how to set up such criteria.

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

118 24051 – Next Generation Protocols for Heterogeneous Systems

3.15 Mechanizing Session-Types: Enforcing linearity without linearity
Brigitte Pientka (McGill University – Montréal, CA)

License Creative Commons BY 4.0 International license
© Brigitte Pientka

Joint work of Brigitte Pientka, Chuta Sano, Ryan Kavanagh
Main reference Chuta Sano, Ryan Kavanagh, Brigitte Pientka: “Mechanizing Session-Types using a Structural View:

Enforcing Linearity without Linearity”, CoRR, Vol. abs/2309.12466, 2023.
URL https://doi.org/10.48550/ARXIV.2309.12466

Session types employ a linear type system that ensures that communication channels cannot
be implicitly copied or discarded. As a result, many mechanizations of these systems require
modeling channel contexts and carefully ensuring that they treat channels linearly. We
demonstrate a technique that localizes linearity conditions as additional predicates embedded
within type judgments, which allows us to use structural typing contexts instead of linear ones.
This technique is especially relevant when leveraging (weak) higher-order abstract syntax
to handle channel mobility and the intricate binding structures that arise in session-typed
systems.

Following this approach, we mechanize a session-typed system based on classical linear
logic and its type preservation proof in the proof assistant Beluga, which uses the logical
framework LF as its encoding language. We also prove adequacy for our encoding. This
shows the tractability and effectiveness of our approach in modelling substructural systems
such as session-typed languages.

3.16 Router-based Analysis of Multiparty Protocols
Jorge Pérez (University of Groningen, NL)

License Creative Commons BY 4.0 International license
© Jorge Pérez

We are interested in the rigorous verification of message-passing programs, which operate
by exchanging messages across distributed networks. Ensuring that these communicating
programs are correct is important but highly challenging.

Originated from the realms of Concurrency Theory and Programming Languages, Mul-
tiparty Session Types (MPSTs) offer a convenient methodology for the development and
verification of message-passing programs. The methodology of MPSTs offers a structured
approach to the design of advanced verification techniques, both static (via type systems)
and dynamic (via monitoring architectures). Interestingly, these static and verification
techniques can be defined by following principled approaches based on resource-aware logics,
in particular Girard’s Linear Logic.

In this talk, I will overview recent work by my group in this direction, and in particular
I discuss how the concept of router of a multiparty protocol can be effective for runtime
verification.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2309.12466
https://doi.org/10.48550/ARXIV.2309.12466
https://doi.org/10.48550/ARXIV.2309.12466
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 119

3.17 Behavioural up/down casting for statically typed languages (tool
presentation)

António Ravara (NOVA University of Lisbon, PT)

License Creative Commons BY 4.0 International license
© António Ravara

URL https://github.com/jdmota/java-typestate-checker

We provide support for polymorphism in static typestate analysis for object-oriented languages
with upcasts and downcasts. Recent work has shown how typestate analysis can be embedded
in the development of Java programs to obtain safer behaviour at runtime, e.g., absence
of null pointer errors and protocol completion. In that approach, inheritance is supported
at the price of limiting casts in source code, thus only allowing those at the beginning of
the protocol, i.e., immediately after objects creation, or at the end, and in turn seriously
affecting the applicability of the analysis.

We provide a solution to this open problem in typestate analysis by introducing a theory
based on a richer data structure, named typestate tree, which supports upcast and downcast
operations at any point of the protocol by leveraging union and intersection types. The
soundness of the typestate tree-based approach has been mechanised in Coq. The theory
can be applied to most object-oriented languages statically analysable through typestates,
thus opening new scenarios for acceptance of programs exploiting inheritance and casting.
To defend this thesis, we show an application of the theory, by embedding the typestate tree
mechanism in a Java-like object-oriented language, and proving its soundness.

Accepted in ECOOP’24.

3.18 Deciding Subtyping for Asynchronous Multiparty Sessions
Felix Stutz (University of Luxembourg, LU)

License Creative Commons BY 4.0 International license
© Felix Stutz

Joint work of Elaine Li, Felix Stutz, Thomas Wies
Main reference Elaine Li, Felix Stutz, Thomas Wies: “Deciding Subtyping for Asynchronous Multiparty Sessions”,

in Proc. of the Programming Languages and Systems – 33rd European Symposium on Programming,
ESOP 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part I, Lecture Notes
in Computer Science, Vol. 14576, pp. 176–205, Springer, 2024.

URL https://doi.org/10.1007/978-3-031-57262-3_8

Multiparty session types (MSTs) are a type-based approach to verifying communication
protocols, represented as global types in the framework. We present a precise subtyping
relation for asynchronous MSTs with communicating state machines (CSMs) as implementa-
tion model. We address two problems: when can a local implementation safely substitute
another, and when does an arbitrary CSM implement a global type? We define safety with
respect to a given global type, in terms of subprotocol fidelity and deadlock freedom. Our
implementation model subsumes existing work which considers local types with restricted
choice. We exploit the connection between MST subtyping and refinement to formulate
concise conditions that are directly checkable on the candidate implementations, and use
them to show that both problems are decidable in polynomial time. This talk was given by
Felix Stutz (Max Planck Institute for Software Systems). It is based on joint work with Elaine
Li and Thomas Wies (New York University). In April 2024, the corresponding paper was
published in the proceedings of the 33rd European Symposium on Programming (ESOP24).

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/jdmota/java-typestate-checker
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-57262-3_8

120 24051 – Next Generation Protocols for Heterogeneous Systems

3.19 Area talk: Quantitative techniques
Emilio Tuosto (Gran Sasso Science Institute – L’Aquil, IT)

License Creative Commons BY 4.0 International license
© Emilio Tuosto

This talk gives a bird-eye watch of the literature at the intersection between quantitative
techniques and behavioural specifications. More precisely, following the chronological order,
the talk surveys the papers concerned with resource awareness, time, and probabilities. The
talk strives to succinctly highlight the main contributions of each paper and distill some
interesting open problems. Although related to the topic of the talk, data-awareness was
intentionally left out of the exposition in order to maintain the focus centred on quantitative
approaches.

3.20 System fµ
ω with context-free session types

Vasco T. Vasconcelos (University of Lisbon, PT)

License Creative Commons BY 4.0 International license
© Vasco T. Vasconcelos

Joint work of Diogo Poças, Diana Costa, Andreia Mordido, Vasco T. Vasconcelos
Main reference Diogo Poças, Diana Costa, Andreia Mordido, Vasco T. Vasconcelos: “System F µ

ω with Context-free
Session Types”, in Proc. of the Programming Languages and Systems – 32nd European Symposium
on Programming, ESOP 2023, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings, Lecture Notes in
Computer Science, Vol. 13990, pp. 392–420, Springer, 2023.

URL https://doi.org/10.1007/978-3-031-30044-8_15

We study increasingly expressive type systems, from F µ –an extension of the polymorphic
lambda calculus with equirecursive types–to F µ

ω —the higher-order polymorphic lambda
calculus with equirecursive types and context-free session types. Type equivalence is given by
a standard bisimulation defined over a novel labelled transition system for types. Our system
subsumes the contractive fragment of F µ

ω as studied in the literature. Decidability results for
type equivalence of the various type languages are obtained from the translation of types
into objects of an appropriate computational model: finite-state automata, simple grammars
and deterministic pushdown automata. We show that type equivalence is decidable for a
significant fragment of the type language. We further propose a message-passing, concurrent
functional language equipped with the expressive type language and show that it enjoys
preservation and absence of runtime errors for typable processes.

3.21 STL3: Toward Security via Free Theorems in a Session-Typed
Linear Language with Locations

Andrew Wagner (Northeastern University – Boston, US)

License Creative Commons BY 4.0 International license
© Andrew Wagner

Joint work of Andrew Wagner, Amal Ahmed

We present work in progress on a minimal extension to intuitionistic binary session types that
reifies channel names into types. Along with quantification over names, this establishes a
form of name parametricity with which common security properties like authenticity, binding,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://doi.org/10.1007/978-3-031-30044-8_15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 121

and hiding can be expressed as free theorems. We identify some of the key challenges in
proving these free theorems, and more specifically where standard techniques seem to be
insufficient.

3.22 Area talk: Verification
Nobuko Yoshida (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Nobuko Yoshida

I give the overview on verification of session types: (1) Linear Logic-Based Session Types;
(2) Full Abstraction Results of System F; (3) Asynchronous Communication Optimisations
in Rust; (4) Comparison of Performances in Session-Based Rust; and (5) Correspondence
with Communication Automata.

4 Working groups

4.1 Breakout Group: IFC and Noninterference
Aslan Askarov, Stephanie Balzer, Marina Blanton, Christos Dimoulas, Emanuele D’Osualdo,
Farzaneh Derakhshan, and Andrew Wagner

License Creative Commons BY 4.0 International license
© Aslan Askarov, Stephanie Balzer, Marina Blanton, Christos Dimoulas, Emanuele D’Osualdo,
Farzaneh Derakhshan, Andrew Wagne

During this break-out session, the discussion focused on the following points: state of the
art in information flow control, quantitative information flow and its connection to secure
multi-party computation, modern formulation of noninterference policies using the epistemic
(knowledge-based) framework for declassification, and comparison of different noninterference
theorem statements.

4.2 Breakout Group: Secure Multiparty Computation
Amal Ahmed, Aslan Askarov, Stephanie Balzer, Andrew Wagner, Marina Blanton, Christos
Dimoulas, Emanuele D’Osualdo, Farzaneh Derakhshan, and Philipp Haller

License Creative Commons BY 4.0 International license
© Amal Ahmed, Aslan Askarov, Stephanie Balzer, Andrew Wagner, Marina Blanton, Christos
Dimoulas, Emanuele D’Osualdo, Farzaneh Derakhshan, Philipp Haller

During the session, we discussed the security definitions employed in the secure multi-party
computation literature, properties of the resulting protocols, and their relationship to the
definitions and properties achieved in other settings, e.g., in information flow control literature.
Because the model provides powerful guarantees at the level of individual operations, it
becomes possible to achieve properties which otherwise would be difficult to achieve in other
settings. For example, the fact that a computation participant does not see private values
implies that the participant is unable to leak secret data. During the discussion we were
also seeking connections with other PL concepts and recent developments as a way to build
a fruitful collaboration. Topics that came up include concurrency, information flow, and
orchestration.

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

122 24051 – Next Generation Protocols for Heterogeneous Systems

4.3 Breakout Group: Logical Relations and Session Types
Amal Ahmed, Stephanie Balzer, Luis Caires, Emanuele D’Osualdo, Farzaneh Derakhshan,
Adrian Francalanza, Ralf Jung, Robbert Krebbers, Peter Thiemann, and Andrew Wagner

License Creative Commons BY 4.0 International license
© Amal Ahmed, Stephanie Balzer, Luis Caires, Emanuele D’Osualdo, Farzaneh Derakhshan, Adrian
Francalanza, Ralf Jung, Robbert Krebbers, Peter Thiemann, Andrew Wagner

This breakout session gathered people currently employing the advanced proof method of
logical relations and people interested in learning more about it. Of particular concern was
the recent developments that employ logical relations in a session-typed concurrent setting.
As such the session allowed experts to provide an overview of the current state of the art
and latest achievements. A significant portion of the discussion focused on recent logical
relations for session types that are indexed not only with a single type, but a set of types.
These relations are necessitated by program equivalence statements such as noninterference,
demanding observations along possibly several channels. The question came up whether
such relations would also support proofs of free theorems in a linear setting based on a
parametricity argument.

4.4 Real-World Applications of Behavioural Types
Kirstin Peters, Silvia Ghilezan, Jesper Bengtson, Christos Dimoulas, Marco Carbone, Felix
Stutz, and Antonio Ravara

License Creative Commons BY 4.0 International license
© Kirstin Peters, Silvia Ghilezan, Jesper Bengtson, Christos Dimoulas, Marco Carbone, Felix Stutz,
Antonio Ravara

Why were attendees interested real-world applications?
Understanding how behavioural types can help with real-world projects and what is
missing
Justifying need for research in grant proposals

Some problems/examples for behavioural types
JEDIS bug (Java implementation of REDIS): was still trying to use a socket even
though an exception was thrown before
tsunami prediction project

More first-hand experiences
Racket contracts that only specify functional correctness and do not capture artificially
introduced bugs in code; common issue that model is not expressive enough; need for
specifying protocols
Erlang typing for gen_server: practically driven, challenges with failures, gradual
typing

Practical problems with evaluation
How to set up experiments?
What are target measures? How does one show that number of bugs reduce when
using behavioural types?
Getting companies interested in pilot projects

Industrial collaborations
often different interests than research: small steps are enough and there is little
theoretical work needed to support this

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 123

actual porting from theoretical work to practice is a lot of work and proves only worth
it if something is found (risky for PhD projects)
wish for push-bottom technology (e.g. Bedrock systems but fine with writing specifica-
tions)
issue that universities seem to focus quite a bit on funding opportunities with such
collaborations rather than research content (tone down probably?)

Possibilities for case studies/collaborations with more applied domains, even in CS
it is likely that computing-heavy have software that suffers from issues BT solve
hospitals as part of universities: problem with data-privacy and training that is needed
IOT and intermittent computing

4.5 Typing Across Heterogeneous Components
Roland Kuhn, Philipp Haller, Sam Lindley, Vasco T. Vasconcelos, Simon Fowler, Alceste
Scalas, Malte Viering, and Raymond Hu

License Creative Commons BY 4.0 International license
© Roland Kuhn, Philipp Haller, Sam Lindley, Vasco T. Vasconcelos, Simon Fowler, Alceste Scalas,
Malte Viering, Raymond Hu

A large barrier to the widespread adoption of behavioural typing disciplines is that we must,
at present, select a single tool and write our entire system using that tool. In practice at
the very least we want to be able to design our system to make use of different components
that use different, but not completely unrelated, behavioural type disciplines and tools (for
example, having part of the system able to statically verify data constraints using refinement
types, and another part of the system be able to check this using some form of monitoring).

There has been some work on runtime monitoring against local session types, but at
present the results there only state that an invalid incoming message was dropped. There was
a desire to go further than this, for example reporting failures, requesting message re-sends /
reporting rejections to senders, or perhaps doing some message reordering.

Two related topics arose out of the discussion.
The first was a language design issue: what language features should our tools, at a

minimum, support in order to allow interoperability? We thought that some way of handling
failures (e.g., through exceptions) was probably important in this regard, although sometimes
challenging to integrate into tools.

The second issue was about reconciling compatible yet subtly-different protocols, and
a paper by Dezani et al. on session isomorphisms seemed important here. There was an
extensive discussion about the notion of some sort of intermediate representation that could
be used to implement adapters that can for example reorder messages and manipulate data
sent along the wire in order to realise these transformations in practice in a uniform way.

We hope to write a position paper for PLACES in the coming weeks.

24051

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

124 24051 – Next Generation Protocols for Heterogeneous Systems

4.6 Probabilistic Behavioural Types
Emilio Tuosto, Silvia Ghilezan, Emanuele D’Osualdo, Jorge Pérez, Nobuko Yoshida, Marco
Carbone, Marco Peressotti, Kirstin Peters, and Alceste Scalas

License Creative Commons BY 4.0 International license
© Emilio Tuosto, Silvia Ghilezan, Emanuele D’Osualdo, Jorge Pérez, Nobuko Yoshida, Marco
Carbone, Marco Peressotti, Kirstin Peters, Alceste Scalas

Why probabilistic behavioural types?
Emilio: the answer is not obvious. My coauthors and I started working on

them as a specification of a desired probabilistic process behaviour, that we use
for monitoring https://doi.org/10.1016/j.scico.2022.102847,https://doi.org/10.
1007/978-3-030-78142-2_7. I also have a work on probabilistic analysis of session types
https://doi.org/10.4230/LIPIcs.CONCUR.2020.14.

Silvia Ghilezan: my interest comes from the connection between probabilistic lambda
calculus and probabilistic logic

Emanuele D’Osualdo: my interest comes from my work on hyperproperties, I would like
to look at systems that are probabilistic in nature

Jorge Perez: I am not sure I understand the meaning of probabilistic session types. Even
if we have a probabilistic calculus (like e.g. probabilistic pi-calculus) what do we gain by
putting probabilities in types?

Nobuko Yoshida: I am interested in understanding how to encode probabilistic lambda
calculus in a session typed calculus, and it seems we need probabilistic (multiparty) session
types

Marco Peressotti: My main motivation is understand how to extend choreographic
programming to express and reason about randomness (e.g., randomness in algorithms, in
the underlying communication model etc.) and eventually quantum protocols.

Kirstin Peters: I have both practical interest and quantum systems, which have probabil-
istic LTSs. We may use probabilistic session types to check that e.g. a program deadlocks
with a certain probability.

Alceste Scalas: I share Jorge’s doubts (in fact I have only worked on probabilistic session
types as specifications for for run-time onitoring, with Emilio et al). I have a bit of difficulty
in seeing the “killer application” where putting probabilities in a session type gives you a
clearly useful verification technique that may not be achieved using other analysis techniques
for probabilistic programs.

Marco Carbone: I am also looking for applications that would clarify my understanding,
like Jorge and Alceste Applications of probabilistic session types.

Emilio: Ugo dal Lago’s paper uses probabilistic session types for modelling ‘cyptographic
experiments: https://doi.org/10.4230/LIPIcs.CONCUR.2022.37.

Marco Peressotti: Self-stabilising algorithms may also be a field of application
Marco Carbone: Tools like Prism allow for writing models with probabilities, but some

models cannot be model-checked due to the state explosion problem. Could a type discipline
like probabilistic session types help?

Nobuko Yoshida, Kirstin Peters, Marco Carbone, Marco Peressotti, Emilio Tuosto: we
could look at probabilistic CCS examples, probabilistic dining philosophers, and see how
probabilistic session types could allow e.g. to abstract and reduce the state space while still
deriving useful probabilistic information (e.g. discarding low-probability events that may not
relevantly impact the result). Probabilistic behavioural types could reduce the amount of
concurrency to verify, and speed up the verification. Kirstin Peters has related work on the
topic https://doi.org/10.1007/978-3-030-32505-3_12.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.scico.2022.102847, https://doi.org/10.1007/978-3-030-78142-2_7
https://doi.org/10.1016/j.scico.2022.102847, https://doi.org/10.1007/978-3-030-78142-2_7
https://doi.org/10.4230/LIPIcs.CONCUR.2020.14
https://doi.org/10.4230/LIPIcs.CONCUR.2022.37
https://doi.org/10.1007/978-3-030-32505-3_12

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 125

Jorge: on the topic of session-based execution optimisation, there is also related work
by Luis Caires and Bernardo Toninho at ESOP 2024. Still, it is not clear whether bringing
these optimisations in a probabilistic setting (e.g. to optimise analysis against PRISM
model checking) would require probability annotations, maybe just having session-structured
interaction is enough We discuss a leader election protocol modelled in PRISM, and the
properties that are verified (e.g. leader eventually elected with probability 1), and queries
(i.e. computing the probability that a property eventually holds).

Everyone: the most popular probabilistic functional programming system should be
Anglican https://probprog.github.io/anglican/. Recent work on quantum computing:
https://doi.org/10.1145/3632885.

Emanuele: there are works proposing type systems for compositional abstraction for reas-
oning about the privacy of programs, with programs able to add noise to the computation (with
some given probability annotations). eg https://doi.org/10.1145/3009837.3009884. We
may do something similar for concurrency, e.g. prove that deadlocks may happen or not
with some probability, depending on some probabilistic information.

Kirstin Peters: I see two lines: Adding probabilities to session types: do we gain anything
from it? Take a program LTS with probabilities as input, but session types have no
probabilities (a bit like probabilistic lambda calculus): how would it work?

Emilio: what if you put probabilities on the payload carried by messages? E.g. I may
send an integer with probability p, or a string with probability 1-p? Can we get something?

Jorge, Alceste: mention work by Padovani at al. on fair termination; uses non-
deterministic choices, what if they are probabilistic? Emanuele believes that even in this
case it may not be necessary to annotate types with probabilities (or probability intervals)
to achieve probabilistic results, because e.g. the work on probabilistic privacy does not do it.

Conclusion

The conclusion of the breakout group is that there is no conclusion: there is no clear direction
for having behavioural types with probabilities, so multiple attempts at exploring different
directions are necessary. It is possible that specific problems may suggest solutions that
naturally lead to probability-annotated session types, but that is not clear yet.

4.7 Open World Choreographies
Andrew Hirsch, Lukasz Ziarek, Marco Peressotti, Malte Viering, Raymond Hu, and Roland
Kuhn

License Creative Commons BY 4.0 International license
© Andrew Hirsch, Lukasz Ziarek, Marco Peressotti, Malte Viering, Raymond Hu, Roland Kuhn

What are “open” choreographies and possible directions

AH: started with a short introduction to the principles of choreographic programming and
what makes the current state of the art “closed world”.

MP: Choreographies are global descriptions of the interactions of a distributed system
but they assume that all participants in the system are fully described by the choreography.

AH: Focus on partially specified choreographies. Starting point to fix the discussion
on a concrete example: DB-WS-Client(s) where a choreography specifies only DB and WS
pushing assumptions on the Client(s) behaviour.

24051

https://probprog.github.io/anglican/
https://doi.org/10.1145/3632885
https://doi.org/10.1145/3009837.3009884
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

126 24051 – Next Generation Protocols for Heterogeneous Systems

RK: Monitors at the boundary seem to be able to address several concerns raised in the
example.

AH, LK: Suggested using some form of MPST to describe the interaction across the
boundary. RK, MP: MPST are not expressive enough there is a need to identify a participant
across multiple endpoints across the boundary.

MP: Asked to clarify the limitations of https://doi.org/10.1007/
978-3-642-40184-8_30 or other existing works.

MV: A safe approach could be to synthesise “minimal” realisations for the unspecified
part and use these to ensure properties.

RK: Example of “pluggable” choreographies used.
AH, MP: ChorLambda, Choral, and Pirouette provide higher-order composition of

choreographies but still the end artefact requires full specification.
MP: Initial work on extension of ChorLambda and Choral with types with existential

and universal quantification over roles. These allow to specify code for roles that join
choreographies dynamically.

RH: Overall, either the choreographies allow for “step inside the boundary” or a monitor.
RH, MP: pointers to works that added compositionality to models initially “closed”. For

instance compositional Petri Nets, Milner’s Bigraphs and IPOs, Graph rewriting DPOs.

Conclusions

From the discussion we identified to overall approaches:
1. Underspecified choreographies that identify participants without providing a full imple-

mentation of their behaviour in the choreography. The boundary between fully specified
and underspecified requires some form of contract and runtime checks.

2. Choreographies provide mechanisms for adding new participants dynamically. In com-
bination with support for cohorts of roles with uniform behaviour this can allow e.g.
program systems with peers that can dynamically join or leave. An approach currently
under exploration in Choral and ChorLambda are role quantifiers.

4.8 Mechanisation of Behavioural Types
Jesper, Luis, Kirstin, Robbert, Jonas, Alceste, Ralf

License Creative Commons BY 4.0 International license
© Jesper, Luis, Kirstin, Robbert, Jonas, Alceste, Ralf

Jesper: defining a logic into a proof assistant is hard. Because of adequacy.
Again: depending on what you need to do, you need to pick the right proof assistant and

techniques
Binders seem to be the main issue. Robert: avoid binders, but not clear how.
Discussion on nominal => Jesper thinks it’s by far the best way to deal with binders, if

a deep embedding is the goal.
Luis: why hard in pi-calculus and easy in lambda. Coq can do it for you. In a functional

language.
Ok, they are talking about embedding, deep vs shallow. This can make a difference.
- Deep embedding, hard.
- Shallow embedding.
==> Design a framework for working on session type mechanisation. Using Iris as an

example.

https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-642-40184-8_30
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 127

Luis: the use of binders is different from pi to lambda. Substitution: names for names
only.

Jesper & Kirstin: use nominal for deep embedding.
Robbert explains shallow vs deep. A shallow embedding allows to make the language

modular (you can add new stuff).
Jesper: use nominal!
Kirstin: there is a need to reach out to people who are not expert.
Robbert: mechanise for confidence and mechanise for improving the proof assistant.
Jonas: having tutorial material.
Message: write about experiences, people can reuse it.
Ideally we should have a framework where to mechanise behavioural types (and linear

stuff).
Robbert: If you want to build something more traditional, then somebody needs to make

an effort, and perhaps nominal is a good way of doing it. There is also the Iris approach
(shallow embedding) – this is great but (Kirstin says) it is hard to use (given the decoupling
from syntax). (Kirstin says) An explanation of how the embedding allows to model Process
calculi and about the advantages in proving in combination with a tutorial for how to get
things working might allow also non-experts maybe without an understanding of the relation
to logic to use this framework.

Robbert: third approach, intrinsic typing – (Agda?)
Alceste: Concurrency benchmark.
Ralf: The benchmark is excluding semantic approaches (like logical relations).

4.9 Dependent Session Types
Introduction round: what do we want out of the session?

session types are important (send number N , followed by N messages where N = 5)
systems: level-dependent session types, Actris
refinement types: not allowing the highest bidder to bid again until a yet higher bid has
been submitted
what are dependent types in the context of session types? type families? type-level
computation? indexed types?
dependent types are functions from values to types, where values should be behaviours
(which can encode arbitrary data)
should you be able to depend on messages that you haven’t observed?
tracking dependency structures in multi-party sessions is non-trivial (it is intuitive in
binary sessions, however)
logistics auction: only the winning participant can continue the process after the auction

Example discussion:
Simon: sending JSON, not labels

Actris can do this by using Coq “if/else” on the type-level
Roland: factory logistics bidding

Brigitte proposes «Message-aware session types» (ESOP24) as a possible solution
importantly, the continuation may depend on what messages the process got from
other channels prior

Jonas: round-trip example (A → B → C → A)

24051

128 24051 – Next Generation Protocols for Heterogeneous Systems

bind variable x on the first send, then refer to it for the other sends to ensure that all
send the same value
the problem is that B → C has a binder (by duality) at B, but none at C
solution might be to trace who will learn of the value and permit those roles to have
binders when they receive it
even more complicated is when only a location is sent around pointing to a linear
resource
the setting here specifically is that the global type is not known, the endpoint types are
known and need to be combined to figure out whether the composition is well-typed
(basically recovering a global type)

Stephanie Balzer, Marco Carbone, Roland Kuhn and Peter Thiemann 129

Participants

Sören Auer
TIB – Hannover, DE

Piero Andrea Bonatti
University of Naples, IT

Juan Cano de Benito
Technical University of
Madrid, ES

Andrea Cimmino
Polytechnic University of
Madrid, ES

Michael Cochez
VU Amsterdam, NL

John Domingue
The Open University –
Milton Keynes, GB

Michel Dumontier
Maastricht University, NL

Nicoletta Fornara
University of Lugano, CH

Irini Fundulaki
FORTH – Heraklion, GR

Sandra Geisler
RWTH Aachen, DE

Anna Lisa Gentile
IBM Almaden Center –
San Jose, US

Paul Groth
University of Amsterdam, NL

Peter Haase
Metaphacts GmbH –
Walldorf, DE

Andreas Harth
Fraunhofer IIS – Nürnberg, DE

Olaf Hartig
Linköping University, SE

James A. Hendler
Rensselaer Polytechnic Institute –
Troy, US

Aidan Hogan
University of Chile –
Santiago de Chile, CL

Katja Hose
TU Wien, AT

Luis-Daniel Ibáñez
University of Southampton, GB

Ryutaro Ichise
Tokyo Inst. of Technology, JP

Ernesto Jiménez-Ruiz
City – University of London, GB

Timotheus Kampik
Umeå University, SE &
SAP Berlin, DE

Sabrina Kirrane
Wirtschaftsuniversität Wien, AT

Manolis Koubarakis
University of Athens, GR

Luis C. Lamb
Boeing Research & Technology –
Seattle, US

Julian Padget
University of Bath, GB

Harshvardhan J. Pandit
Dublin City University, IE

Heiko Paulheim
Universität Mannheim, DE

Axel Polleres
Wirtschaftsuniversität Wien, AT

Philipp D. Rohde
TIB – Hannover, DE

Daniel Schwabe
Rio de Janeiro, BR

Oshani Seneviratne
Rensselaer Polytechnic –
Troy, US

Elena Simperl
King’s College London, GB

Chang Sun
Maastricht University, NL

Aisling Third
The Open University –
Milton Keynes, GB

Ruben Verborgh
Ghent University, BE

Maria-Esther Vidal
TIB – Hannover, DE

Sonja Zillner
Siemens AG – München, DE

24051

	Executive Summary (Stephanie Balzer, Marco Carbone, Roland Kuhn, and Peter Thiemann)
	Table of Contents
	Overview of Talks
	Area talk: Security of Heterogenous Systems: Principles, Practice, and a Case for Secure Runtimes (Aslan Askarov)
	Logical Relations for Session-Typed Concurrency (Stephanie Balzer)
	Area talk: Program Development Tools for Secure Multi-Party Computation (Marina Blanton)
	Contracts for Session-based Programming with Linear Dependent Types (Luis Caires)
	Regrading Policies for Flexible Information Flow Control in Session-Typed Concurrency (Farzaneh Derakhshan)
	The Rational Programmer (Christos Dimoulas)
	Special Delivery: Programming with Mailbox Types (Simon Fowler)
	Correct orchestration of Federated Learning: formalisation and verification (Silvia Ghilezan)
	Information-Flow Control in Choreographies (Andrew Hirsch)
	Actris tool presentation (Jonas Kastberg Hinrichsen)
	Area talk: Mechanized verification of type systems using Iris (Robbert Krebbers)
	Behavioural Types for Local-First Software: replicated roles, full availability (Roland Kuhn)
	Probabilistic Theories of Choreographic Programming (Marco Peressotti)
	Comparing Process Calculi using Encodings (Kirstin Peters)
	Mechanizing Session-Types: Enforcing linearity without linearity (Brigitte Pientka)
	Router-based Analysis of Multiparty Protocols (Jorge Pérez)
	Behavioural up/down casting for statically typed languages (tool presentation) (António Ravara)
	Deciding Subtyping for Asynchronous Multiparty Sessions (Felix Stutz)
	Area talk: Quantitative techniques (Emilio Tuosto)
	System f^{mu}_omega with context-free session types (Vasco T. Vasconcelos)
	STL3: Toward Security via Free Theorems in a Session-Typed Linear Language with Locations (Andrew Wagner)
	Area talk: Verification (Nobuko Yoshida)

	Working groups
	Breakout Group: IFC and Noninterference (Aslan Askarov, Stephanie Balzer, Marina Blanton, Christos Dimoulas, Emanuele D'Osualdo, Farzaneh Derakhshan, Andrew Wagne)
	Breakout Group: Secure Multiparty Computation (Amal Ahmed, Aslan Askarov, Stephanie Balzer, Andrew Wagner, Marina Blanton, Christos Dimoulas, Emanuele D'Osualdo, Farzaneh Derakhshan, Philipp Haller)
	Breakout Group: Logical Relations and Session Types (Amal Ahmed, Stephanie Balzer, Luis Caires, Emanuele D'Osualdo, Farzaneh Derakhshan, Adrian Francalanza, Ralf Jung, Robbert Krebbers, Peter Thiemann, Andrew Wagner)
	Real-World Applications of Behavioural Types (Kirstin Peters, Silvia Ghilezan, Jesper Bengtson, Christos Dimoulas, Marco Carbone, Felix Stutz, Antonio Ravara)
	Typing Across Heterogeneous Components (Roland Kuhn, Philipp Haller, Sam Lindley, Vasco T. Vasconcelos, Simon Fowler, Alceste Scalas, Malte Viering, Raymond Hu)
	Probabilistic Behavioural Types (Emilio Tuosto, Silvia Ghilezan, Emanuele D'Osualdo, Jorge Pérez, Nobuko Yoshida, Marco Carbone, Marco Peressotti, Kirstin Peters, Alceste Scalas)
	Open World Choreographies (Andrew Hirsch, Lukasz Ziarek, Marco Peressotti, Malte Viering, Raymond Hu, Roland Kuhn)
	Mechanisation of Behavioural Types (Jesper, Luis, Kirstin, Robbert, Jonas, Alceste, Ralf)
	Dependent Session Types

	Participants

