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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 24062 “Beyond-
Planar Graphs: Models, Structures and Geometric Representations”. The seminar investigated
beyond-planar graphs, in particular, their combinatorial and topological structures, computational
complexity and algorithmics for recognition, geometric representations, and their applications to
real-world network visualization. Compared to the previous two editions of the seminar, we focus
more on aspects of combinatorics and geometry.

The program consists of four invited talks on beyond planar graphs, open problem session,
problem solving sessions and progress report sessions. Specific open problems include ques-
tions regarding the combinatorial structures and topology (e.g., k+-real face graphs, beyond
upward planar graphs, sparse universal geometric graphs, local-crossing-critical graphs), the
geometric representations (e.g., constrained outer string graphs, rerouting curves on surface), and
applications.

The details of the invited talks and progress reports from each working groups are included in
this report.
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Many big data sets in various application domains have complex relationships, which can
be modeled as graphs, consisting of entities and relationships between them. Consequently,
graphs are extensively studied in both mathematics and computer science. In particular,
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planar graphs, which can be drawn without edge crossings in the plane, form a distinguished
role in graph theory and graph algorithms. Many structural properties of planar graphs
are investigated in terms of excluded minors, low density, and small separators, leading to
efficient planar graph algorithms. Consequently, fundamental algorithms for planar graphs
have been discovered.

However, most real-world graphs, such as social networks and biological networks, are
nonplanar. For example, the scale-free networks, which are used to model web graphs,
social networks, and biological networks, are globally sparse nonplanar graphs with locally
dense clusters and low diameters. To understand such real-world networks, we must solve
fundamental mathematical and algorithmic research questions on beyond-planar graphs,
which generalize the notion of planar graphs regarding topological constraints or forbidden
edge crossing patterns.

This Dagstuhl Seminar investigated beyond-planar graphs, in particular, their combinat-
orial and topological structures (i.e., density, thickness, crossing pattern, chromatic number,
queue number, and stack number), computational complexity and algorithmics for recog-
nition, geometric representations (i.e., straight-line drawing, polyline drawing, intersection
graphs), and their applications to real-world network visualization.

Compared to the previous two editions of the seminar, we focus more on aspects of
combinatorics and geometry. Therefore, we included one new organizer and more participants
from the corresponding fields. Thirty-two participants accepted the invitation to participate
and arrived on Sunday afternoon.

On Monday morning, the program started with an introduction of all participants,
followed by four invited talks to provide fundamental background knowledge on related
research fields. We organized an open problems session on Monday afternoon and formed
new working groups for research collaboration.

Many new problems related to combinatorics and geometry of beyond-planar graphs
have been proposed. Specific open problems include questions regarding the combinatorial
structures and topology (e.g., k+-real face graphs, beyond upward planar graphs, sparse
universal geometric graphs, local-crossing-critical graphs), the geometric representations (e.g.,
constrained outer string graphs, rerouting curves on the surface), and applications.

Two progress report sessions were organized on Tuesday and Thursday afternoons to
report progress and plans for future publications and follow-up meetings among researchers.
From the participants’ feedback, the seminar has initiated new research collaboration and
led to new research ideas and directions.

Taking this opportunity, we thank Schloss Dagstuhl for providing an environment for
fruitful research collaboration.
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3 Overview of Talks

3.1 Crossing numbers of crossing-critical graphs
Géza Tóth (Alfréd Rényi Institute of Mathematics – Budapest, HU, geza@renyi.hu)
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Joint work of Géza Tóth, János Barát

A graph G is k-crossing-critical if cr(G) ≥ k, but for any edge e of G, cr(G − e) < k. In 1993
Richter and Thomassen conjectured that for any k-crossing-critical graph G, cr(G) ≤ k +c

√
k

and proved that cr(G) ≤ 5k/2 + 16. We improve it to cr(G) ≤ 2k + 6
√

k + 47.

3.2 The Density Formula for Beyond-Planar Graph Classes
Torsten Ueckerdt (Karlsruhe Institute of Technology, DE, torsten.ueckerdt@kit.edu)
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Main reference Michael Kaufmann, Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder, Torsten
Ueckerdt: “The Density Formula: One Lemma to Bound Them All”, CoRR, Vol. abs/2311.06193,
2023.

URL https://doi.org/10.48550/ARXIV.2311.06193

We introduce the Density Formula for drawings of graphs on the sphere, which can be used
to derive tight upper bounds for the density (maximum number of edges for given number of
vertices) of several beyond-planar graph classes, such as 1- and 2-planar graphs, fan-planar
graphs, k-bend RAC graphs, and quasiplanar graphs. While in some cases we even obtain
the first tight upper bounds, the real strength of the Density Formula is its simplicity and
versatility. In this talk, I showcase the Density Formula with a few examples and mention a
few open problems that seem worth investigating next.

3.3 Connected Dominating Sets in Triangulations
Pat Morin (Carleton University – Ottawa, CA, morin@scs.carleton.ca)
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We show that every n-vertex triangulation has a connected dominating set of size at most
10n/21. Equivalently, every n vertex triangulation has a spanning tree with at least 11n/21
leaves. Prior to the current work, the best known bounds were n/2, which follows from
work of Albertson, Berman, Hutchinson, and Thomassen (J. Graph Theory 14(2):247–258).
One immediate consequence of this result is an improved bound for the SEFENOMAP
graph drawing problem of Angelini, Evans, Frati, and Gudmundsson (J. Graph Theory
82(1):45–64). As a second application, we show that for every set P of ⌈11n/21⌉ points in R2

every n-vertex planar graph has a one-bend non-crossing drawing in which some set of 11n/21
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vertices is drawn on the points of P . The main result extends to n-vertex triangulations
of genus-g surfaces, and implies that these have connected dominating sets of size at most
10n/21 + O(√gn).

3.4 Beyond-planar Euclidean spanners
Csaba D. Tóth (California State University – Northridge, US, csaba.toth@csun.edu)
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Vol. 118, p. 103927, 2024.

URL https://doi.org/10.1016/j.ejc.2024.103927

For a set P of n points in the plane and a parameter t ≥ 1, a t-spanner is a geometric graph
G such that for all pairs u, v ∈ P , the shortest path distance in G (with Euclidean edge
weights) approximates the Euclidean distance between u and v up to a factor of at most t; the
parameter t is the stretch of H. For example, the Delaunay triangulation is 1.998-spanner,
but in general plane graphs on P cannot achieve a stretch less than π/2. If edge crossings are
allowed, the stretch can be arbitrarily close to 1: For every ε > 0 there are (1 + ε)-spanners
with O(ε−1n) edges and Õ(ε−2) · MST (P ) weight. These bounds are the best possible, and
such spanners also have separators of size ε−O(1)√n). However, it remains an open problem
to quantify, in terms of ε > 0, how much (1 + ε)-spanners are beyond planar graphs.

4 Working Groups

4.1 Constrained Outerstring Graphs
Therese Biedl (University of Waterloo, CA, biedl@uwaterloo.ca)
Sabine Cornelsen (University of Konstanz, DE, sabine.cornelsen@uni-konstanz.de)
Jan Kratochvíl (Charles University Prague, CZ, honza@kam.mff.cuni.cz)
Ignaz Rutter (Universität Passau, DE, ignaz.rutter@uni-passau.de)
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In an outer-string representation [6] (implicitly defined and first results obtained in [9]) of
a graph each vertex is drawn as a simple curve ∂(v) within a simple closed region D such
that one end point of ∂(v), called the anchor of v, is on the simple closed curve bounding D.
The curves ∂(v) and ∂(w) of two vertices v and w intersect if and only if v and w are
adjacent. It is NP-hard to decide whether a graph has an outer-string representation [8].
Unfortunately, outer-string representations sometimes need exponentially many crossings [1].
So it is interesting to investigate which graphs allow an outer-string representation with a
restricted number of crossings. In an outer-1-string representation, it is additionally required
that the curves ∂(v) and ∂(w) of two vertices v and w intersect at most once. This is similar
to the intersection graph of pseudosegments [4], however, with the additional constraint
that the anchors still have to be on the boundary of a simple closed region containing
all pseudosegments. Representing chordal graphs as intersections of pseudosegments was
considered in [3].
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x y

yx

Figure 1 Triply interleaved bridge.

In [2], the order of crossings along a string was constrained. We focus on the constrained
version where the cyclic order of the anchors is fixed, i.e., an instance of constrained outer-
(1)-string representation consists of a graph and a cyclic order of the vertices. In addition to
general outer-string and outer-1-string representations, we also consider L-shaped [7, 5] and
U-shaped representations in which the anchors are on a horizontal line and the vertices are
1- or 2-bend orthogonal polylines below that line. I.e., in particular, we also allow Ls. See
Figures 3b and 3c. In the constrained version, the linear order of the anchors is fixed.

▶ Theorem 1 ([9]). The complement of a simple cycle with at least four vertices does not
have a constrained outer-string representation, i.e., if the cyclic order of the vertices is
v1, . . . , vn then the graph with edge set E = {{vi, vj}; |i − j| /∈ {1, n − 1}} does not have a
constrained outer-string representation.

4.1.1 Summary of Results

We say that two sets V1 and V2 of vertices are interleaved if in the (cyclic) order no two
vertices of V1 nor two vertices of V2 are consecutive. Observe that the complement of a
4-cycle consists of two interleaved independent edges.

▶ Theorem 2. A chordal graph with a fixed cyclic order of the vertices admits a constrained
outer-string representation if and only if it contains no two interleaved independent edges.

The following instances do not admit a constrained outer-1-string representations: (a)
a triply interleaved bridge, i.e., a bridge e of the graph G, such that the two connected
components of G − e containing the end vertices of e each contain a set X and Y of three
vertices such that X and Y are interleaved. See Figure 1. (b) An X-obstruction; see Figure 2.

▶ Theorem 3. A tree with a fixed cyclic order of the vertices admits a constrained outer-
1-string representation if and only if it contains no two interleaved independent edges, no
triply interleaved bridge, nor an X-obstruction. Moreover, for trees there is a certifying
polynomial-time recognition algorithm, which either outputs a constrained outer-1-string
representation or an obstruction.

An extended complement of a 5-cycle is either the complement of a 5-cycle or a subpath
w1v′vuu′w2 of a cycle whose anchors are in the order w1uv′u′vw2. See Figure 3a.

▶ Theorem 4. Let G = (V, E) be a simple cycle and let ≺ be a cyclic order of V . Then the
following are equivalent.
1. (G, ≺) has a constrained outer-1-string representation
2. For every edge {u, v} of G one of the following sequences uv, uu′v′v, uu′v, or uv′v, or

their reverse is a subsequence of ≺, where u′ and v′ are the neighbors of u and v other
then v and u, respectively.
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(a) graph
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v4
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(b) forbidden cyclic ordering

Figure 2 An X-obstruction contains the vertices i, ai, bi, ci, di and the edges iai, aibi, ici for
i = x, y as well as an x-y path x = v0, v1, . . . , vℓ−1, vℓ = y of arbitrary length, including zero. For
any k = −1, . . . , ℓ, the set {v0, . . . , vk, ax, bx, cx} of vertices appears consecutive (not necessarily in
this order) in the cyclic order ≺ and for i = x, y the pairs {ai, bi} and {i, ci} are interleaved.

u

v′
u′

v

w1

w2

(a) extended compl. of 5-cycle

1 2 5 43

(b) L-shaped

2 3 4 51

(c) U-shaped

Figure 3 An obstruction and two representations of a 5-cycle.

3. (G, ≺) does not contain two interleaving independent edges nor an extended complement
of a 5-cycle.

Observe that a path has a constrained L-shaped outer-1-string representation if there
are no two independent edges that are interleaved. Every simple cycle with a fixed linear
order of the vertices that admits a constrained outer-1-string representation also admits a
constrained U-shaped outer-1-string representation.

▶ Theorem 5. It can be tested in polynomial time whether a graph with a given ordering of
the vertices admits a constrained L-shaped outer-1-string representation.

4.1.2 Open Problems

What is the complexity of testing whether a graph has an outer-1-string, a constrained outer-
1-string, or a constarined outer-string representation? What if the instances are restricted to
graphs with bounded treewidth?

References
1 Therese Biedl, Ahmad Biniaz, and Martin Derka. On the size of outer-string representations.

In 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, volume
101 of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPICS.SWAT.2018.10.

2 Therese Biedl and Martin Derka. Order-preserving 1-string representations of planar graphs.
In SOFSEM 2017: Theory and Practice of Computer Science, volume 10139 of Lecture Notes
in Computer Science, pages 283–294. Springer, 2017. doi:10.1007/978-3-319-51963-0\
_22.
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4.2 Universal Geometric Graphs
Vida Dujmović (University of Ottawa, CA, vida.dujmovic@uottawa.ca)
Fabrizio Frati (Roma Tre University, IT, fabrizio.frati@uniroma3.it)
Michael Hoffmann (ETH Zürich, CH, hoffmann@inf.ethz.ch)
Pat Morin (Carleton University, CA, morin@scs.carleton.ca)
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4.2.1 Problem statement

A drawing of a graph is a mapping of each vertex to a point in the plane and of each edge to a
Jordan arc between its endvertices. A drawing is straight-line if each edge is represented by a
straight-line segment and it is planar if no two edges intersect, except at common endvertices.
A planar graph is a graph that admits a planar drawing. An embedding of a graph is a planar
straight-line drawing of it. Every planar graph admits an embedding [15, 23].

A geometric graph is a graph whose vertices are points and whose edges are straight-line
segments. A geometric graph is planar if it defines an embedding of the underlying (abstract)
graph. A geometric graph is universal for a family F of planar graphs if it contains an
embedding of every graph in F . That is, for every graph G ∈ F , there exists a subgraph of
the universal graph which is isomorphic to G and is planar.

The question we study is the following.
▶ Problem 1. Let f(n) be the minimum number of edges of any geometric graph that is
universal for the family of the n-vertex planar graphs. What is the asymptotic growth of
f(n)?

4.2.2 Related results

Universality has long been studied from a graph-theoretic perspective, starting from a paper
by Rado in the 1960s [21]. An (abstract) graph is universal for a family F of graphs if it
contains every graph in F as a subgraph. Clearly, the complete graph Kn with n vertices
is universal for any family H of n-vertex graphs. Henceforth, research has been conducted
on determining upper and lower bounds on the number of edges that universal graphs for
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notable families of n-vertex sparse graphs must have. Babai et al. [4] proved that a universal
graph with O(m2 log log m/ log m) edges exists for the family of all graphs with m edges,
whereas any such a universal graph has Ω(m2/ log2 m) edges. Alon et al. [1, 2] proved that
there exists a universal graph with O(n2−2/k) edges for the n-vertex graphs with maximum
degree k; such a bound is tight in the worst case.

A special attention has been devoted to planar graphs and their subclasses. It has long
been known [4] that there exists a graph with O(n3/2) edges that is universal for the family
of the n-vertex planar graphs. This bound was recently improved to n · 2O(

√
log n·log log n)

by Esperet et al. [14]. For bounded-degree planar graphs, there exists an (optimal) O(n)
bound, due to Capalbo [9]. Böttcher et al. [7, 8] proved that every n-vertex graph with
minimum degree Ω(n) is universal for the n-vertex planar graphs of bounded degree. Chung
and Graham [11, 12] constructed a universal graph with O(n log n) edges for the n-vertex
trees. This bound is the best possible, apart from constant factors.

Universal geometric graphs were first defined and studied by Frati, Hoffmann, and
Tóth [17]. They strengthened Chung and Graham result [11, 12] by proving that there
exists an n-vertex geometric graph with O(n log n) edges that is universal for the n-vertex
trees. They also proved that every n-vertex convex geometric graph that is universal for the
n-vertex outerplanar graphs has Ωh(n2−1/h) edges, for every positive integer h, which almost
matches the trivial O(n2) upper bound given by a convex complete geometric graph.

The study of universal geometric graphs has a strong relationship with the study of
universal point sets. A set P of points is universal for a family F of planar graphs if every
graph in F has an embedding in which the vertex set is mapped to a subset of P. The
question is then, for a family F of n-vertex planar graphs, what is the asymptotic growth
of the function representing the minimum number of points of a universal point set for the
graphs in F . Answering such a question for the family of all n-vertex planar graphs is perhaps
the most famous graph drawing open problem. It is has been known for a long time that there
exists a universal point set for the n-vertex planar graphs with O(n2) points [13], see also [5],
while the currently best known lower bound is only linear, namely (1.293 − o(1))n [22]; see
also [10, 20]. Universal point sets with sub-quadratic size are known for the 2-outerplanar
graphs and the simply nested graphs [3], and for the n-vertex stacked triangulations [18].
Linear-size universal point sets are known for the n-vertex outerplanar graphs [6, 19], as well
as for the cubic planar graphs and the bipartite planar graphs [16].

Consider a point set P which is universal for a family F of planar graphs. Then the
complete geometric graph with vertex set P is universal for F . This connection, together
with the existence of a quadratic-size universal point set for the n-vertex planar graphs, gives
us an O(n4) upper bound on the number of edges of a universal geometric graph for the
n-vertex planar graphs, which is the best known upper bound we are aware of for Problem 1.
On the other hand, the best known lower bound is only Ω(n log n), which comes from the
described graph-theoretic setting [11, 12].

4.2.3 Our research

Our research aimed at finding an upper bound better than O(n4) for Problem 1. We now
explain the strategy we pursued in order to achieve such a goal.

As already mentioned, de Fraysseix, Pach, and Pollack proved the existence of a universal
point set P with O(n2) points (in fact, a 2n × n section of the integer lattice) for the n-vertex
planar graphs [13]. The embedding of any n-vertex planar graph G on P can be constructed
incrementally as follows. First, one can assume without loss of generality that G is a
maximal plane graph. Indeed, maximality can be guaranteed by an initial edge-augmentation.
Furthermore, a maximal planar graph has a unique combinatorial embedding (this is the
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circular order of the incident edges in an embedding); this, together with a choice of the outer
face, enhances G to a maximal plane graph. Second, every maximal plane graph G with
n ≥ 3 vertices and with outer face (u, v, z) admits a canonical ordering. This is a labeling of
the vertices v1 = u, v2 = v, v3, . . . , vn−1, vn = z meeting the following requirements for every
k = 3, . . . , n:

The plane subgraph Gk ⊆ G induced by v1, v2, . . . , vk is 2-connected; let Ck be the cycle
bounding its outer face;
vk is in the outer face of Gk−1, and its neighbors in Gk−1 form an (at least 2-element)
subinterval of the path Ck−1 − (u, v).

A canonical drawing of G can be constructed from a canonical ordering of G in n − 2
steps. At step 1, a planar straight-line drawing Γ3 of G3 is constructed with v1 at (0, 0), with
v2 at (2, 0), and with v3 at (1, 1). Auxiliary sets M3(v1) := {v1, v2, v3}, M3(v3) := {v2, v3},
and M3(v2) := {v2} are also defined. For k = 4, . . . , n, at step k − 2, a planar straight-line
drawing Γk of Gk is constructed from Γk−1, as follows. Let w1 = u, w2, . . . , wr = v be the
clockwise order of the vertices along the outer face of Gk−1, where wp, wp+1, . . . , wq are the
neighbors of vk in Gk−1, for some 1 ≤ p < q ≤ r. Then Γk is constructed from Γk−1 by
“shifting” the vertices in Mk−1(wp+1) by one unit to the right, by shifting the vertices in
Mk−1(wq) by one additional unit to the right, and by placing vk at the intersection point of
the line through wp with slope +1 and of the line through wq with slope −1. Step k − 2 is
completed by defining the sets:

Mk(wi) = Mk−1(wi) ∪ {vk}, for i = 1, . . . , p;
Mk(vk) = Mk−1(wp+1) ∪ {vk}; and
Mk(wi) = Mk−1(wi), for i = q, . . . , r.

Note that the above described construction maintains the x-monotonicity of the boundary
of the drawing at every step. The shifting of the vertices in the sets Mk−1(wp+1) and
Mk−1(wq) makes room for drawing the edges incident to the newly inserted vertex vk in a
planar way.

The starting observation of our approach is that a canonical ordering of G can be used
in a much simpler way to obtain a planar straight-line drawing of G, entirely avoiding the
shifting phase and the definition of the sets M·(·). Indeed, because of the x-monotonicity of
the boundary of the drawing, one can simply place vk at a “sufficiently high” point in the
interior of the x-interval spanned by its neighbors wp, wp+1, . . . , wq. This ensures planarity
and maintains the x-monotonicity of the boundary of the drawing. We call generalized
canonical drawing a drawing constructed in this way.

Now, consider an n × n stretched grid. This is a point set obtained from an n × n section
of the integer lattice by translating grid rows upwards, in such a way that each point is above
the line through any two points in lower rows that are not vertically aligned. Stretched
grids were used in [18]. It can be proved that every n-vertex maximal plane graph G has a
generalized canonical drawing in which the vertex set is mapped to a subset of any n × n

stretched grid S; thus, S is a universal point set for the n-vertex planar graphs. This can be
proved as follows. First, compute a canonical ordering v1, v2, . . . , vn of G. Second, define a
partial order Y of the vertices of G iteratively, so that each vertex vk follows all its neighbors
wp, wp+1, . . . , wq in Gk−1. Third, define a partial order X of the vertices of G iteratively, so
that each vertex vk follows its first neighbor wp and precedes its last neighbor wq in Gk−1.
It is easy to see that any assignment of the vertices of G to the points of S such that:

if a vertex u precedes a vertex v in Y , then u is assigned to a lower row than v; and
if a vertex u precedes a vertex v in X, then u is assigned to a column to the left of the
one of v

results in a generalized canonical drawing of G whose vertex set lies at S.
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Our intuition is that a universal geometric graph G with o(n4) edges that is universal for
the n-vertex planar graphs can be constructed so that its vertex set is an n × n stretched grid
S, possibly slightly perturbed so that each row defines a convex point set. Our approach for
defining G consists of connecting the points on each column of S to all the points on a number
of adjacent columns which depends on the index of the column. More specifically, consider
the sequence πi which is inductively defined as follows: (i) π0 := 1; (ii) πi := πi−1 ◦ 2i ◦ πi−1.
For example, π3 = 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1. Let i be sufficiently large so that πi has
at least n elements. For j = 1, . . . , n, assign the j-th element of πi to the j-th column of
S. Then the points on the j-th column of S are connected to all the points on a number
of adjacent columns which is equal to the element of πi assigned to the column times some
integer constant c > 0. Since the sum of the elements assigned to the columns of S is in
O(n log n), the number of edges of the resulting geometric graph G is in O(n3 log n). Whether
G is actually a universal geometric graph for the n-vertex planar graphs however remains to
be proved.
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Abstract. A nonplanar drawing Γ of a graph G divides the plane into topologically connected
regions, called faces (or cells). The boundary of each face is formed by vertices/crossings
and edges. Given a positive integer k, we say that Γ is a k+-real face drawing of G if the
boundary of each face of Γ contains at least k vertices of G. The study of k+-real face
drawings started in a paper by Binucci et al. (WG 2023), where edge density bounds and
results about the relationship with other beyond-planar graph classes are given. In this
seminar we have investigated the complexity of recognizing k+-real face graphs, i.e., graphs
that admit a k+-real face drawing. We have studied both the general unconstrained scenario
and the 2-layer scenario in which the graph is bipartite, the vertices of the two partite sets
are placed on two distinct horizontal layers, and the edges are drawn as straight segments
(or equivalently as vertical monotone curves).

4.3.1 Introduction

The study of k+-real face drawings of (nonplanar) graphs started in a recent paper by Binucci
et al. [1]. In a k+-real face drawing, the boundary of each face contains at least k vertices of
the graph, where k ≥ 1 is a given integer. In particular, for any positive integer k, a k+-real
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face drawing forbids faces formed only by crossing points and edges. From the practical side,
the interest in k+-real face graphs is motivated by the intuition that faces mostly consisting
of crossing points make the graph layout less readable. From the theoretical side, k+-real
face drawings can be regarded as a generalization of planar drawings whose face sizes are
above a desired threshold [2, 3, 4].

Basic Notations and Terminology. Let G be a graph. We assume that G is simple, that
is, it contains neither multiple (i.e., parallel) edges nor self-loops. We also assume, without
loss of generality, that G is connected, as otherwise we can just consider each connected
component of G independently. We denote by V (G) and E(G) the set of vertices and the set
of edges of G, respectively. A drawing Γ of G is a geometric representation of G that maps
each vertex v ∈ V (G) to a distinct point of the plane and each edge (u, v) ∈ E(G) to a simple
Jordan arc between the points corresponding to u and v. We always assume that Γ is a
simple drawing, that is: (i) adjacent edges do not intersect, except at their common endpoint;
(ii) two independent (i.e., non-adjacent) edges intersect in at most one of their interior points,
called a crossing point; and (iii) no three edges intersect at a common crossing point.

A vertex of Γ is either a point corresponding to a vertex of G, called a real-vertex, or a
point corresponding to a crossing point, called a crossing-vertex. Since the drawing is simple,
a crossing-vertex has always degree four. We denote by V (Γ) the set of vertices of Γ. An
edge of Γ is a curve connecting two vertices of Γ; an edge of Γ whose endpoints are both
real-vertices coincides with an edge of G; otherwise it is just a proper portion of an edge of G.
We denote by E(Γ) the set of edges of Γ. Drawing Γ subdivides the plane into topologically
connected regions, called faces (or cells). The boundary of each face consists of a circular
sequence of vertices and edges of Γ. The set of faces of Γ is denoted by F (Γ). Exactly one
face in F (Γ) corresponds to an infinite region of the plane, called the external face (or outer
face) of Γ; the other faces are the internal faces of Γ. When the boundary of a face f of Γ
contains a vertex v (or an edge e), we also say that f contains v (or e).

Given an integer k ≥ 1, a k+-real face drawing of a graph G is such that each face contains
at least k real-vertices. If G admits such a drawing, then we call G a k+-real face graph. If G

is bipartite, then a 2-layer k+-real face drawing of G is a k+-real face drawing Γ of G such
that the vertices of the two parts of its vertex partition are drawn on two distinct horizontal
lines, called layers, and each edge is a straight-line segment. If G admits such a drawing,
then we call G a 2-layer k+-real face graph.

4.3.2 Contribution

During the seminar we investigated the complexity of recognizing k+-real face graphs, that
is, the complexity of testing whether, given a graph G and a positive integer k, there exists a
k+-real face drawing of G. We studied both the general (unconstrained) scenario and the
2-layer drawing scenario. A summary of the main contributions is given below.

In the general case, we are able to show that recognizing k+-real face graphs for values
of k ∈ {1, 2} is NP-complete. For the hardness proof we exploit a reduction from the
well-known 3-Partition problem. Note that, for k ≥ 3, optimal k+-real face graphs (i.e.,
k+-real face graphs with the maximum possible edge density) are always planar graphs
with all faces of degree k (see [1]). Hence, recognizing optimal k+-real face graphs when
k ≥ 3 is equivalent to testing whether the graph admits a planar embedding where all
faces have size at least k, a problem studied in [5].
We proved tights upper bounds on the maximum number of edges in a 2-layer k+-real face
graph, for every value of k. These types of results can help in the design of recognition
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algorithms. Specifically, we established that 1+-real face and 2+-real face graphs with n

vertices have at most 2n − 4 and 1.5n − 2 edges, respectively. Also, for k ≥ 3, optimal
2-layer k+-real face graphs are caterpillar graphs, and therefore have n − 1 edges.
We believe that it is possible to efficiently recognize 2-layer 2+-real face graphs. In
particular, during the seminar we designed a testing algorithm that seems to work in
linear time in the size of the graph. We plan to give a formal description and a proof of
correctness of this algorithm in a near future article.
For 2-layer 1+-real face graphs, we characterized the structure of optimal graphs (i.e.,
2-layer 1+-real face graphs with exactly 2n − 4 edges) and of biconncted graphs. These
characterizations should lead to efficient recognition algorithms. Recognizing 2-layer
1+-real face graphs that are not biconnected seems to be more difficult; we are still
working on establishing whether a polynomial-time algorithm exists in this case, even if
the graph is a tree.
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4.4.1 Local-crossing-critical graphs

The crossing number of a graph G, cr(G) is the minimum number of edge crossings of G

over all its drawings on the plane. G is called k-crossing-critical if cr(G) ≥ k, but for any
edge e of G, cr(G \ e) < k. Richter and Thomassen [6] proved that the crossing number of a
k-crossing-critical graph cannot be arbitrarily large, if G is a k-crossing-critical graph, then
cr(G) ≤ 5k/2 + 16. It was improved by Barát and Tóth [2], [4] to cr(G) ≤ 2k + 6

√
k + 47. It

is conjectured that for any such graph G we have cr(G) ≤ k + c
√

k.
We worked on the following related problem. The local crossing number of a graph G,

lcr(G) is the minimum number l with the property that G can be drawn in the plane with at
most l crossings on each edge. In other words, lcr(G) is the minimum number l such that
G is l-planar. A graph G is k-local-crossing-critical if lcr(G) ≥ k, but for any edge e of G,
lcr(G \ e) < k.
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Is there a function f(k) with the property that for any k-local-crossing-critical graph G,
lcr(G) ≤ f(k)?

1-local-crossing critical graphs are easy to describe, removing any edge we get a planar
graph, but the graph itself is not planar. It follows from Kuratowski’s theorem, that these
graphs are the topological K5 and K3,3 graphs, therefore, f(1) = 1.

Observation. If f(2) exists, then f(k) exists for all k, and f(k) ≤ (k − 1)f(2).

Proof. Suppose that we know that f(2) = f exists. That is, if G is a graph with the
property that for any edge e of G, the graph G − e is 1-planar, then G is f -planar.

Let k > 2 and suppose that G is a k-local-crossing-critical graph. Replace each edge of G

by a path of length k − 1 (that is, (k − 1 edges, k − 2 subdividing vertices), let H be the
resulting graph. Remove an edge e from H. It follows from the assumption on G that that
H − e an be drawn such that each path that replaces an edge of G contains at most k − 1
crossings. But then the subdividing vertices can be arranged so that there is at most one
crossing on each edge. Therefore, H is 2-local-crossing-critical. Consequently, H is f -planar.
Consider an f -planar drawing of H. In the corresponding drawing of G, there are at most
f(k − 1) crossings on each edge. This finishes the proof.

We are left with the case k = 2: Is there an f > 0 so that the following satement holds?
Suppose that G is a graph with the property that for any edge e of G, the graph G − e is
1-planar. Is there a number f then G is f -planar.

We tried to use the ideas of Richter and Thomassen and other related papers on crossing-
critical graphs, but there were some unexpected and very exciting difficulties.

4.4.2 Covering complete geometric graphs with plane trees and forests

Definition. A geometric graph is a graph drawn in the plane with possibly crossing straight-
line edges. A plane star-forest is a geometric graph in which each component is a star (a
tree with exactly one non-leaf vertex) and no two edges the graph cross. A complete convex
geometric graph is a geometric graph whose vertex set is a set of points in the plane in
strictly convex position, where every pair of vertices are connected by an edge.

Answering a question of Dujmović and Wood [3] Pach, Saghafian, and Schnider [5] proved
that the edge set of a complete convex geometric graph on n vertices cannot be covered by
fewer than n − 1 plane star-forests. This bound is tight. They made the following

Conjecture. No complete geometric graph can be covered with less than 3n/4 plane star
forests.

This was proved to be false [1]

Theorem. (Antić, Glǐić, Milivojčević): There are infinitely many even values of n, for
which there exists a complete geometric graph with n vertices whose edges set can be covered
by n/2 + 1 plane star-forests.

We studied the analogous problem where instead of star-forests, we are allowed to use
any plane trees. It appears to be true that there exists a constant c > 0 such that the edge
set of every complete geometric graph can be covered by (1 − c)n plane trees. We verified
this conjecture in some special cases.
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4.5.1 The Problem

We study the problem of reconfiguring graph embeddings on an orientable surface, where
the vertices are fixed and each reconfiguration step redraws one edge curve. Consider a set
of points S on an orientable surface Σ, and two embeddings P and Q of the same graph
G on vertices S. Here an embedding means that each edge is drawn as a curve, which we
call an edge curve, on the surface and no two edge curves intersect except at a common
endpoint. Note that the edge curves of P may cross the edge curves of Q. We assume
that the correspondence between edge curves of P and Q is given. A reconfiguration step
or move replaces one edge curve γ of an embedded graph G by a new curve γ′ to obtain a
new embedding of G – in other words, γ′ may not cross any of the other edge curves of the
embedded graph, though we allow γ and γ′ to intersect. The question we address is whether
P can be reconfigured to Q via a sequence of moves.

The special case where the graph is a matching consisting of two disjoint edges was
considered by Ito, Iwamasa, Kakimura, Kobayashi, Maezawa, Nozaki, Okamoto, and Ozeki [8].
In this restricted situation, they showed that reconfiguration is not always possible in the
plane (see Fig. 4), but is always possible on a surface Σ of genus g ≥ 1. (Note that their
paper is primarily about reconfiguration in a more discrete setting where P and Q consist of
disjoint paths in a fixed graph.)
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Our main result is that if the graph G is a matching and the surface Σ is a torus, then
reconfiguration is always possible. This immediately extends to any orientable surface of
genus g ≥ 1 and nonorientable surface of genus g ≥ 2. The only open case remains the
projective plane. We extend the result to the case where G is a tree. The result does not
extend to general embeddings of a graph on the torus, as we show by an example. However,
we conjecture that reconfiguration is possible if we restrict to plane embeddings, and we
prove this for the special case of series-parallel graphs.

(a) (b)

Figure 4 (a) Two embeddings of a matching of two edges (red and blue) that cannot be
reconfigured on the plane. (b) Reconfiguration of the two embeddings on the torus using 4 steps.

4.5.2 Related Work

The problem of morphing graph drawings on a torus [1, 7] is different in that the vertices
are allowed to move but the edges must remain straight segments on the flat torus. The
problem of tightening or untangling curves on a surface [2, 3, 4, 6] is also different in that
they consider drawings with possible crossings (i.e., immersions rather than embeddings),
and deform the edge curves continuously via so-called homotopy moves (local moves that
modify the topology of the immersion). We also point the interested reader to Colin de
Verdière’s survey [5] on graphs on surfaces.

4.5.3 Rerouting of Matchings on the Torus

We have a set P of n non-crossing blue paths on the torus that form a matching of 2n points,
and we have a set Q of n non-crossing red paths that form the same matching of the points.
Our algorithm consists of the following three steps:
1. Draw the torus as a flat torus with all the red paths inside (i.e., none of them cross the

torus boundary).
2. Re-draw the blue paths so that none of them cross the torus boundary.
3. Use the top/bottom boundary of the flat torus which now forms a clean handle (i.e., a

closed non-separating curve not crossed by any red or blue path) to solve the problem.

We remark that for the third step, it would be enough to re-draw the blue paths so that
none of them cross the top/bottom boundary. Curiously, however, our proof for the second
step will establish the stronger property of clearing the entire boundary.

4.5.3.1 Draw the torus as a flat torus with all the red paths inside

In this step, we begin with an arbitrary projection of the red paths on the flat torus. We now
seek a closed non-separating curve σ that avoids all red paths. Note that σ necessarily exists
as the red paths form a non-crossing matching. We use σ as the new horizontal boundary of
the flat torus. The argument can be repeated to obtain a new vertical boundary of the flat
torus; see Fig. 5.
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Figure 5 Illustration for Step 1.

Induction

Figure 6 Illustration for Step 2.

4.5.3.2 Re-draw the blue paths so that none of them cross the torus boundary

In this step, we focus on the blue paths. The high-level idea (also see Fig. 6) is to pick one
of the blue paths p ∈ P that crosses the flat torus boundary and reduce the number of times
that it crosses the flat torus boundary. To this end, we find a shortcut γ such that

γ lies in the torus boundary,
the endpoints of γ lie in p, and there are no other intersections between γ and p,
let p′ be the piece of p that makes a cycle with γ,
rerouting p′ to γ reduces the number of times the path crosses the torus boundary,
the cycle p′ ∪ γ is a non-separating cycle on the torus.

The proof that γ exists requires a careful argument. Our goal is to reroute p′ to γ but
note that γ may cross other blue paths. Thus we must first clear all the crossings where
other blue curves cross γ. This is done by induction on an appropriate (different) flat torus.
After that we can reroute p along γ which reduces the number of times that p crosses the flat
torus boundary. Observe that this comes at the expense of possibly increasing the number of
times that other blue curves cross the torus boundary.

4.5.3.3 Use the clean handle to solve the problem

Once the clean handle is established, we can solve the problem similarly to the example
shown in Fig. 4. To this end, we redraw one blue path p ∈ P at a time and resolve one of
the crossings of its corresponding red path q ∈ Q which is closest to one of its endpoints in
each step; see Fig. 7. We can use one boundary (say the vertical) to reroute p from its first
crossing. Then, we reroute the crossing path c such that it avoids the crossing using the
other boundary (say the horizontal). Now we can redraw p so to follow the trajectory of q

until q’s second crossing. Finally, we redraw c so that it does not cross the boundary of the
flat torus, avoiding p.

4.5.3.4 Extension to forests

Finally, we remark that our result can be generalized to the case where P and Q are toroidal
embeddings of a forest. While our strategy remains the same, this requires a slightly more
careful analysis.



Vida Dujmović, Seok-Hee Hong, Michael Kaufmann, and János Pach 89

Figure 7 Illustration for Step 3.

Figure 8 Two toric embeddings P (blue) and Q (red) that cannot be reconfigured into each other
using a sequence of moves.

4.5.4 Non-Reroutable Toric Graph Embeddings

Following our previous positive result, one may wonder if it is always possible to reconfigure
a given toric embedding P with a sequence of moves into another given toric embedding Q.
Unfortunately, this is not always possible as the example in Fig. 8 demonstrates.

For this example, it can be easily verified that a single curve of P can only be replaced by
a topologically equivalent curve, i.e., it is impossible to change the embedding by replacing
a single edge per move. Moreover, observe that both embeddings correspond to a quad-
rangulation of the torus where the embedding Q differs from P by a twist of the torus. This
observation implies that we can generalize this result easily to a surface Σ of higher genus,
i.e., one can use a suitably rigid tessellation of Σ for P and then perform a twist along a
non-separating curve to obtain another embedding Q into which P cannot be reconfigured.

4.5.5 Rerouting of Plane Graphs on the Torus

While we showed that not all toric graphs can be reconfigured on the torus one may still
wonder what happens if we restrict the embeddings P and Q of the graph to be plane. We
remark that one may ask the same question for a surface Σ of higher genus g by requiring
embeddings P and Q to be embeddable on a surface of genus g − 1.

In particular, we can show that a plane embedding P can be reconfigured into another
plane embedding Q on the torus if the input graph G is series-parallel. To this end, recall
that the family of series-parallel graphs can be defined recursively as follows:
1. The graph consisting of a single edge st is a series-parallel graph with poles s and t.
2. Given two series-parallel graphs G1 with poles s1 and t1 and G2 with poles s2 and t2,

the series composition obtained by identifying t1 and s2 is a series-parallel graph with
poles s1 and t2.

3. Given two series-parallel graphs G1 with poles s1 and t1 and G2 with poles s2 and
t2, the parallel composition obtained by identifying s1 and s2 as well as t1 and t2 is a
series-parallel graph with poles s1 = s2 and t1 = t2.

Notably, all plane embeddings of series-parallel graphs differ only in the order in which
parallel subgraphs are sorted at their common poles. We schematically show in Fig. 9 how
two consecutive parallel components can be resorted at their common poles. Transforming P
into Q then reduces to a sequence of such reorderings.
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Figure 9 Reordering of two parallel components (red and blue) in a plane embedding on the
torus.

4.5.6 Next Steps

As a follow-up to the above results found at the Dagstuhl Seminar, we intend to work on the
following aspects:
1. Most importantly, we want to formalize our approaches further and provide reasonable

bounds on their run times.
2. Our result on plane embeddings on series-parallel may be generalizable to plane em-

beddings of general planar graphs on the torus. The missing link is the analysis of
triconnected planar graph whose embedding we have to be able to mirror.

3. Finally, we want to consider additional types of surfaces. With respect to our results
on matchings, we want to attempt to achieve a similar result on the projective plane.
Moreover, our results on plane embeddings motivates to study embeddings embeddable
on surfaces of genus g − 1 on a surface of genus g.
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4.6.1 Summary of Results

It is known that not every directed acyclic graph whose underlying undirected graph is
planar admits an upward planar drawing. We are interested in pushing the notion of upward
drawings beyond planarity. We investigate the “price of upwardness” for drawing planar
directed acyclic graphs upwards – in terms of the maximum number of crossings per edge.
More formally, we say that the drawing of a directed graph is upward k-planar if each edge is
a y-monotone curve that is crossed at most k times by other edges. Our aim is to give good
bounds on this parameter k for classes of planar directed acyclic graphs. For example, it is
easy to see that every tree, no matter how its edges are directed, admits a planar upward
drawing. On the other hand, Papakostas [2] showed that there is a directed acyclic 8-vertex
outerpath that does not admit a planar upward drawing. (An outerpath is an outerplanar
graph whose weak dual is a path.)

We have studied the problem both from a combinatorial and an algorithmic perspective.
While this is still work in progress, we briefly summarize our results below. Let a fan be
an outerpath in which there is a vertex, the apex of the fan, that is adjacent to all other
vertices. We first show that every directed fan has an upward 2-planar drawing with specific
properties (see Theorem 1). We then use this to show that every outerpath has an upward
2-planar drawing (see Theorem 2).

The edges incident to the apex are the inner edges of the fan. The other edges are the
outer edges of the fan. Observe that the outer edges of a fan induce a path.

▶ Lemma 1. Let c be the apex of a directed acyclic fan G, and let P = ⟨v1, v2, . . . , vn−1⟩ be
the path of the remaining vertices in G. Let P1, P2, . . . , Pk be an ordered partition of P into
maximal subpaths such that, for every i ∈ {1, 2, . . . , k}, the edges between Pi and c are either
all directed towards c or are all directed away from c. Then there is an upward 2-planar
drawing of G with the following properties.
1. No inner edge is crossed.
2. Vertex v1 has x-coordinate 1, the apex c and the vertex vn−1 have x-coordinate n − 1, and

the x-coordinates of v2, v3, . . . , vn−2 are distinct values in the set {2, 3, . . . , n − 2}.
3. For all edges all x-coordinates of the curves are at most n − 1. All inner edges and all

edges of the subpaths P1, . . . , Pk are in the vertical strip between 1 and n − 1.
4. The edge between P1 and P2 is crossed at most once if P1 is a directed path.
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c1

c2

c3

c4

c5
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(a) a directed outerpath G′

c1
c2 c3 c4 c5

x

vi

(b) upward drawing of G′ with at most two crossings per edge

Figure 10 Example input and output of our algorithm for drawing outerpaths upward (edge
crossings are highlighted in yellow).

We use Theorem 1 to prove the following.

▶ Theorem 2. Every directed acyclic outerpath admits a upward 2-planar drawing.

Proof. We assume that the given outerpath is maximal. If the outerpath has interior faces
that are not triangles, we triangulate them using additional edges, which we direct such
that they do not induce directed cycles. After drawing the resulting maximal outerpath, we
remove the additional edges.

Let G′ be such a graph; see Figure 10a. Let c1, c2, . . . , ck be the vertices of degree at
least 4 in G′ (marked red in Figure 10). These vertices form a path (light red in Figure 10);
let them be numbered along this path, which we call the backbone of G′. We draw the
backbone in an x-monotone fashion, with very small slopes, going up and down as needed; see
Figure 10b. For i ∈ {1, 2, . . . , k − 1}, we set x(ci+1) to x(ci) plus the number of inner edges
incident to ci+1. For i ∈ {1, 2, . . . , k}, we place the vertices incident to backbone vertex ci

using the algorithm for drawing a fan as detailed in the proof of Theorem 1. The vertices
above (below) ci are placed above (below) the backbone. If i < k, then the last vertex in
the fan of ci is connected to ci+1 and ci is connected to the first vertex vi in the fan of ci+1.
These two edges may cross each other. If the edge civi goes, say, up but the following outer
edges go down until a vertex vk below ci+1 is reached, then the edge ei between ci and vi

may be crossed a second time by the edge e between vk−1 and vk – as the crossing labeled x

on the edge c3v3 in Figure 10b – but, due to our invariant for drawing fans, e had been
crossed only once within its fan. Also, the edge ei cannot have a third crossing. Thus, in
total no edge is crossed three times. ◀

Theorem 2 naturally raises the question about whether we can extend the proof to any
graph having pathwidth 2. This is not the case, as we can prove the following.
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▶ Lemma 3. For every k ≥ 1, there exists a directed acyclic graph with pathwidth 2 and
O(k) vertices that does not admit an upward k-planar drawing.

Another research direction motivated by Theorem 2 is whether the result about outerpaths
can be extended to any outerplanar graph. Also this question has a negative answer. Namely,
we can prove the following.

▶ Lemma 4. For every k ≥ 1, there exists an outerplanar directed acyclic graph that does
not admit an upward k-planar drawing.

We have also studied the complexity of testing upward k-planarity of directed acyclic
graphs. An st-graph is a directed acyclic graph with only one source and only one sink.
Every planar st-graph with the source and the sink on the same face is upward planar, that
is, it admits an upward drawing where no edge is crossed [1]. Leaving the domain of planar
st-graphs, we can prove the following.

▶ Theorem 5. Testing upward 1-planarity is NP-complete even for st-graphs both with and
without a fixed rotation system.

On the positive side, we are working on proving the following recognition result concerning
outer upward 1-planar graphs, that is, graphs that admit an upward 1-planar drawing where
all vertices lie on the outer face.

▶ Theorem 6. Outer upward 1-planarity can be tested in polynomial time for single-source
graphs.

4.6.2 Open Problems

The research activity in Dagstuhl has also identified a list of related problems that can be
the subject of future studies. Among them are the following questions.
1. Is there a directed outerpath that does not admit an upward 1-planar drawing?
2. Consider the class O∆ of outerplanar graphs (or even 2-trees) of maximum degree ∆. Is

there a function f such that every graph in O∆ admits an upward f(∆)-planar drawing?
3. For which families of biconnected directed acyclic graphs is testing upward 1-planarity

tractable?
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