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Abstract
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This seminar was a followup to the Dagstuhl Seminars “Applications of Topology to the
Analysis of 1-Dimensional Objects” (17072), “Computation in Low-Dimensional Geometry and
Topology” (19352), and “Computation and Reconfiguration in Low-Dimensional Topological
Spaces” (22062). The common idea behind all of these seminars is to bring together researchers
from different communities (such as computational geometry, graph drawing, or geometric
topology) with a shared interest in low-dimensional objects (e.g., curves, embedded graphs,
knots, or surfaces). The goal of this approach is to foster collaborative work and synergies: The
mathematical study of low-dimensional objects has a rich and old history, but research into
their algorithmic and combinatorial properties and the underlying computational questions
is still young. This makes for a vibrant research situation, giving strong opportunities for
interdisciplinary work involving our multiple communities.
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The focus of this Dagstuhl Seminar was placed on triangulations: partitions of the
plane into triangles, or, more generally, of a space into simplices, which are required to meet
face-to-face. Triangulations are typically constrained to use a given set of points as vertices
and are fundamental tools in many applications such as computer graphics or geographic
information systems. Alternatively, a triangulation can be defined on a topological space as a
simplicial complex together with a homeomorphism from this simplicial complex to the space.
These triangulations play an important role in the study of metrics on surfaces and their
moduli space. The multiple facets of triangulations make them an essential and ubiquitous
object of study in the combinatorial, algorithmic, geometric and topological properties of
low-dimensional spaces, and thus they constitute a fertile ground for collaborations.

The seminar started with a quick introduction of all the participants, and four keynote
talks on different aspects of triangulations.

Lionel Pournin gave an overview of flip graphs and their combinatorial and algorithmic
properties.
Saul Schleimer surveyed the use of triangulations in 3-manifold topology and the numerous
computational challenges that arise from them.
Linda Kleist presented two snapshots on triangulations, first on the computational
complexity of linearly embedding simplicial complexes, and then on some hamiltonicity
properties of polytopes arising from flipping triangulations.
Mikkel Abrahamsen explained new hardness proofs for algorithmic problems related to
packing, covering and partitioning simple polygons with unit squares.

We refer to the abstracts later in this report for more details on these contributions.
These keynote introductory talks were followed with an extended open problem session

where we gathered a large collection of open problems. Some of these were circulated in
advance of the meeting, many of them were new. The remainder of the week was spent
working in small groups actively trying to make progress on the most popular open problems.
We made extensive use of the tool “Coauthor,” designed by Erik Demaine (MIT). This
allowed for a very efficient recording of the progress made in the different groups. Regular
progress reports allowed participants to easily switch between groups during the week, or to
start new groups, leading to a very dynamic working environment.

We now quickly survey the different problems that have been worked on during this very
productive week:

Computational complexity of problems in 3-manifold topology. This group
discussed computational complexity for important algorithmic problems from 3-manifold
topology. Examples of problems include showing that a knot is ribbon, and testing
0-efficiency in a 3-manifold triangulation (lead: Eric Sedgwick).
Veering triangulations and the flip graph. This group studied the effect on
flip distances of surface triangulations if a veering structure in the associated layered
triangulation is (lead: Saul Schleimer).
Flip distances. This group investigated distances in the flip graphs of triangulated
convex n-gons or annuli, both theoretically and algorithmically (lead: Jonathan Spreer).
Hardness for simple polygons. The group considered NP-hard problems on polygons
with holes, and how to show that these are also NP-hard on simple polygons. (lead: Lena
Schlipf)
Catching balls on Curves. This group considered the problem of characterising curves
for which there exist a strategy to catch a ball from any initial configuration. (lead:
Maarten Löffler)
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122 24072 – Triangulations in Geometry and Topology

Computing geodesic paths using edge flips. This group investigated the FlipOut
algorithm defined by Crane and Sharp to compute geodesics on intrinsic geometric
triangulations and its possible variants. (lead: Hsien-Chih Chang)
Rendering a knot without self-intersections. This group focused on using topological
data analysis techniques to produce instructive 3D models of link diagrams (lead: Clément
Maria)
Shortest cycle separating k objects from n − k. This group investigated the
complexity of, given a collection of n objects, computing the shortest cycle separating k

objects from n − k objects, and how it behaves with respect to the parameter k. This was
explored in the setting of the plane with obstacles and then planar graphs with obstacles,
with an eye towards separating k handles in graphs embedded on surfaces. (lead: Éric
Colin de Verdière)

In summary, this Dagstuhl Seminar provided a very fruitful research environment, allowing
participants from very different backgrounds to work together on important open problems.
Survey feedback from the participants highlighted how much the emphasis on intensive work
in small groups was appreciated. In several of the working groups, significant progress was
made, and the results are currently prepared to be submitted for publication. As in the
previous meetings, the excellent quality of the Dagstuhl infrastructure and the impeccable
support of the Dagstuhl staff provided a seamless experience for all the participants. We are
hopeful that this successful experience will lead to follow-up Dagstuhl Seminars on related
topics.
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3 Overview of Talks

3.1 Packing, Covering and Partitioning Simple Polygons with Unit
Squares

Mikkel Abrahamsen (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
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Main reference Mikkel Abrahamsen, Jack Stade: “Hardness of Packing, Covering and Partitioning Simple Polygons
with Unit Squares”, CoRR, Vol. abs/2404.09835, 2024.

URL https://doi.org/10.48550/ARXIV.2404.09835
Main reference Mikkel Abrahamsen, Nichlas Langhoff Rasmussen: “Partitioning a Polygon Into Small Pieces”,

CoRR, Vol. abs/2211.01359, 2022.
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We show that packing axis-aligned unit squares into a simple polygon P is NP-hard, even
when P is an orthogonal and orthogonally convex polygon with half-integer coordinates. It
has been known since the early 80s that packing unit squares into a polygon with holes is
NP-hard [Fowler, Paterson, Tanimoto, Inf. Process. Lett., 1981], but the version without
holes was conjectured to be polynomial-time solvable more than two decades ago [Baur and
Fekete, Algorithmica, 2001].

Our reduction relies on a new way of reducing from Planar-3SAT. Interestingly, our
geometric realization of a planar formula is non-planar. Vertices become rows and edges
become columns, with crossings being allowed. The planarity ensures that all endpoints
of rows and columns are incident to the outer face of the resulting drawing. We can
then construct a polygon following the outer face that realizes all the logic of the formula
geometrically, without the need of any holes.

This new reduction technique proves to be general enough to also show hardness of
two natural covering and partitioning problems, even when the input polygon is simple.
We say that a polygon Q is small if Q is contained in a unit square. We prove that it is
NP-hard to find a minimum number of small polygons whose union is P (covering) and
to find a minimum number of pairwise interior-disjoint small polygons whose union is P

(partitioning), when P is an orthogonal simple polygon with half-integer coordinates. This is
the first partitioning problem known to be NP-hard for polygons without holes, with the
usual objective of minimizing the number of pieces.

We also describe a 13-approximation algorithm for the partitioning problem, and O(1)-
approximation algorithms for several related problems.
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3.2 2 Snapshots – Geometric Embedding of Complexes &
Facet-Hamiltonian Cycles in Generalized Associahedra

Linda Kleist (TU Braunschweig, DE)
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Joint work of Part 1: Mikkel Abrahamsen and Tillmann Miltzow; Part 2: Jean Cardinal, Stefan Felsner, Robert
Lauff

Main reference Mikkel Abrahamsen, Linda Kleist, Tillmann Miltzow: “Geometric Embeddability of Complexes Is
∃R-Complete”, in Proc. of the 39th International Symposium on Computational Geometry, SoCG
2023, June 12-15, 2023, Dallas, Texas, USA, LIPIcs, Vol. 258, pp. 1:1–1:19, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023.
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Permutohedra and Generalized Associahedra. (in preparation)

In this talk, we will consider two snapshots of triangulations in geometry and topology.
In the first part, we consider the decision problem of determining whether a given (abstract

simplicial) k-complex has a geometric embedding in Rd. In particular, we consider the case
d = 3 and k = 2, i.e., a geometric embedding corresponds to a set of triangles in 3D, and
show that this problem is complete for the Existential Theory of the Reals (ETR). As a
matter of fact the result can be extended to all d ≥ 3 and k ∈ {d − 1, d}. We note that
ETR-hardness implies NP-hardness and that our work constitutes the first hardness result
for the algorithmic problem of geometric embedding of (abstract simplicial) complexes. This
complements recent breakthroughs for the computational complexity of piece-wise linear
embeddability. This part is based on joint work with Mikkel Abrahamsen and Tillmann
Miltzow.

In the second part, we investigate facet-Hamiltonian cycles of polytopes, i.e., cycles in
the skeleton such that every facet of the polytope is visited exactly once. These cycles can
be understood as shortest tours that guard the facets of a polytope. Among other polytopes,
we consider associahedra of type A where the 1-skeletons correspond to the flip graphs of
triangulations of points in convex position. The skeletons of their generalizations, known as
associahedra of type B/C and D, also allow for models involving triangulations which help
to construct facet-Hamiltonian cycles. This part is based on ongoing joint work with Jean
Cardinal, Stefan Felsner, and Robert Lauff.

3.3 Flips and surface triangulations
Lionel Pournin (Université Paris 13 – Villetaneuse, FR)

License Creative Commons BY 4.0 International license
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Joint work of Lionel Pournin, Hugo Parlier, Zili Wang

A triangulation of a topological surface Σ is a set of pairwise non-crossing arcs in Σ that
decompose Σ into triangles and whose endpoints belong to a prescribed finite set of vertices.
The flip-graph F(Σ) of Σ is the graph whose vertices are these triangulations and whose
edges connect two triangulations when they differ by a single arc. This graph is always
connected and, except for a few surfaces, it is infinite. By the S̆varc–Milnor lemma, F(Σ)
provides a combinatorial model for the mapping class group of Σ. More precisely, F(Σ) is
quasi-isometric to the Cayley graphs of the mapping class group of Σ. When Σ is a Euclidean
polygon whose vertex set is the vertex set of the triangulations, F(Σ) is finite and already
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interesting: it is the edge-graph of a polytope – the associahedron – and computing distances
in this graph is a major open problem in computer science. This talk reviews the results
obtained over the last few decades on the geometry of F(Σ).

In a first part, the case when Σ is a Euclidean polygon is reviewed. The focus is on
diameter estimates for F(Σ) and on the computational problem of determining the distance
of two given triangulations T1 and T2 of Σ. A popular heuristic for this problem, based
on the number of arcs crossings between T1 and T2 is presented and discussed. The higher
dimensional case and associated open problems are also mentioned.

In a second part, the general case when Σ is an arbitrary topological surface is reviewed.
In that case, quotienting F(Σ) by the homeomorphisms of Σ results in a finite graph MF(Σ)
whose diameter allows to estimate the constants of the quasi-isometry between F(Σ) and
the mapping class group of Σ. The known results on the diameter of MF(Σ) [1, 2, 3] are
presented and a number of open problems are given.

The third part focuses on the 3-dimensional model for the paths in F(Σ) due to Daniel
Sleator, Robert Tarjan, and Wiliam Thurston in the case when Σ is a polygon and the vertex
set of the triangulations coincides with that of Σ. In their seminal 1988 article [5], these
authors prove that, if the path is a geodesic, then this model is a simplicial complex. The
proof [4] that this simplicial complex is flag is presented. Several consequences are discussed
as for instance, a proof that the arc crossings based flip distance estimation heuristic is, at
best, a 1.5-approximation algorithm.

References
1 Hugo Parlier and Lionel Pournin, Flip-graph moduli spaces of filling surfaces, Journal of

the European Mathematical Society 19 (2017), no. 9, 2697–2737.
2 Hugo Parlier and Lionel Pournin, Modular flip-graphs of one holed surfaces, European

Journal of Combinatorics 67 (2018), 158–173.
3 Hugo Parlier and Lionel Pournin, Once punctured disks, non-convex polygons, and pointi-

hedra, Annals of Combinatorics 22 (2018), 619–640.
4 Lionel Pournin and Zili Wang, Strong convexity in flip-graphs, arXiv:2106.08012 (2021).
5 Daniel Sleator, Robert Tarjan and William Thurston, Rotation distance, triangulations,

and hyperbolic geometry, Journal of the American Mathematical Society 1 (1988), no. 3,
647–681.

3.4 The homeomorphism problem
Saul Schleimer (University of Warwick – Coventry, GB)

License Creative Commons BY 4.0 International license
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We discuss the homeomorphism problem for manifolds, mostly in dimension three, from an
algorithmic point of view. We give a few definitions, a bit of history, and a selection of open
problems.

This is an edited, and slightly expanded, version of my talk. I have assumed a certain
amount of background in computational complexity. I have not attempted to trace the open
problems back to their original posers.

3.4.1 Manifolds

A basic object of study in topology is the n–manifold (with boundary): a (second countable
and Hausdorff) topological space M which is locally modelled on Rn−1 ×R≥0. The boundary
of M , denoted ∂M , is the subset of points of M which do not have charts in Rn. We call a
manifold M closed if M is compact and ∂M is empty.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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As a few simple, but relevant, initial examples we have the n–sphere, the n–ball, and the
n–torus:

Sn = {x ∈ Rn+1 | |x| = 1}
Bn = {x ∈ Rn | |x| ≤ 1}
T n = S1 × S1 × . . . × S1 (n copies)

We write M ∼= N if the manifolds M and N are homeomorphic. By invariance of domain if
M ∼= N then M and N necessarily have the same dimension. Here, then, is the foundational
homeomorphism problem:

Homeo(n)
Instance: A pair of n–manifolds M and N .
Question: Is M ∼= N?

Note that the homeomorphism problem immediately reduces to the connected case.
Suppose that N is a connected n–manifold. We may simplify the homeomorphism problem

to the recognition problem:

Recog(N)
Instance: An n–manifold M .
Question: Is M ∼= N?

The recognition problem should, “morally speaking”, be easier than the homeomorphism
problem. This is because we may use properties particular to N when constructing our
algorithm.

3.4.2 PL-triangulations

To give a connected manifold M (say, as input to a decision problem) we require a uniform
and finitary way to describe it. Note that there are uncountably many homeomorphism
types of non-compact n–manifolds (for n ≥ 2); thus, they do not admit finitary descriptions.
Accordingly, we henceforth restrict our attention to compact and connected manifolds.

Freedman and Zuddas (2018) prove that compact n–manifolds (in the categories TOP,
PL, and DIFF) admit uniform and finitary descriptions. The most difficult case occurs
in dimension four. To avoid these subtleties, we will restrict our attention to manifolds
presented via PL-triangulations. We begin as follows.

▶ Definition 1. The standard n-simplex is defined by

∆n =
{

x ∈ Rn+1 | xi ≥ 0 and
∑

i xi = 1
}

A model simplex is simply a copy of ∆n. A face-pairing is an affine isomorphism between two
(co-dimension one) faces of two (possibly equal) model simplices. A triangulation T is a finite
collection of model simplices together with finitely many face-pairings. The realisation of T ,
denoted |T |, is obtained by taking the disjoint union of the model simplices and quotienting
by the face-pairings.

Suppose that M is an n-manifold. Suppose that T is a triangulation. We say that T is a
triangulation of M if M ∼= |T |.

Next we give the (necessarily recursive) definition of a PL-triangulation.

24072
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▶ Definition 2. Suppose that M is an n-manifold. Suppose that T is a triangulation of M .
We say that T is a PL-triangulation of M if the vertex links in T are PL-triangulations of
Sn−1.

Two PL-triangulations of M are PL-homeomorphic if they have isomorphic subdivisions.

All manifolds in dimensions three and below have triangulations, all such triangulations
are PL, and any two such PL-triangulations on a single manifold are PL-homeomorphic
(Radó 1925 and Moise 1953). On the other hand, work of Freedman, Casson, and Donaldson
(and also Kirby-Siebenmann) gives

four-manifolds that have no triangulation at all and
four-manifolds that have many distinct PL-structures.

Note, however, that a triangulation of a four-manifold is necessarily a PL-triangulation. 1 In
dimension five and above the situation is even more complicated.

To avoid these subtle points, we will essentially restrict our attention to the PL category.

3.4.3 Away from dimension three

Recall our standing hypotheses: the n–manifold M is assumed to be connected, compact,
and given via a PL-triangulation.

Thus the only zero-manifold allowed is a single point; this has a unique triangulation
and so Homeo(0) has a constant-time solution. The only one-manifold allowed is the circle;
so Homeo(1) amounts to recognising when a finite graph is a cycle. This can be done in
polynomial time.

The two-dimensional case is more difficult. By the classification of surfaces a pair of
compact, connected two-manifolds are homeomorphic if and only if they

have the same Euler characteristic,
have the same number of boundary components, and
are either both orientable or both non-orientable.

This gives a polynomial-time solution to Homeo(2).
In higher dimensions (again working in the PL category) there are many negative results.
For n ≥ 4 the problem Homeo(n) is not decidable (Markov 1958).
For n ≥ 5 the problem Recog(Sn) is not decidable (Novikov).
Thus, in dimensions six and higher, there is no algorithm to decide if a triangulation is
PL.

In dimension four there are many well-known, and widely open, algorithmic questions.

Recog(S4)
Instance: A four–manifold M , given by a PL-triangulation.
Question: Is M PL-homeomorphic to S4?

This relates to, but would not be answered by, the last remaining part of the Poincaré
conjecture: namely, is there a unique smooth (and thus PL) structure on the four-sphere?

Bounding
Instance: A PL three-sphere M , as a submanifold of S4.
Question: Is M PL-isotopic to a great three-sphere?

This is solved by the trivial algorithm (printing Yes) if the Schoenflies problem has an
affirmative answer in dimension four.

1 This relies on the resolution of the three-dimension Poincaré conjecture (Hamilton, Perelman).
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UnknotRecog(4)
Instance: A PL two-sphere M , as a submanifold of S4.
Question: Is M PL-isotopic to a great two-sphere?

Note that the fundamental groups arising from two-knots in the four-sphere are not well
understood.

PromoteHomeomorphism
Instance: A pair of PL four-manifolds M and N which are TOP-homeomorphic.
Question: Is M PL-homeomorphic to N?

This is closely related to the problem of classifying the PL-structures on a given closed TOP
four-manifold.

3.4.4 Homeo(3)

It is a “folklore result” (Kuperberg, 2019) that the geometrisation theorem (Perelman,
2002-3) implies that Homeo(3) is decidable. Kuperberg sharpens this result by proving that
there is an elementary recursive algorithm (for closed, connected, oriented three-manifolds).
Improving this upper bound seems possible.

▶ Question 3. Does Homeo(3) lie in NP?

We suggest approaches to this problem below.

▶ Question 4. Does Homeo(3) lie in coNP?

This second question seems much more doubtful. For example, there is a polynomial-
time reduction of GraphIso (graph isomorphism) to Homeo(3) (Lackenby 2022). While
GraphIso is now known to be quasi-polynomial time (Babai 2016), it is not yet known to
lie in coNP.

In the other direction, Burton asks for lower bounds.

▶ Question 5. Is Homeo(3) NP-hard?

The three questions above are in tension, due to the standard conjectures in computational
complexity. There is evidence that Homeo(3) is difficult: for example knot genus in arbitrary
manifolds is NP-complete (Agol, Hass, Thurston 2006) and various diagrammatic problems
for links are NP-complete or NP-hard (Lackenby 2017; Koenig, Tsvietkova 2021). There are
other candidate problems which may be NP–complete.

HeegaardGenus
Instance: A three-manifold M and an integer g.
Question: Does M have Heegaard genus at most g?

This is known to be decidable (Li 2011) and NP–hard (Bachman, Derby-Talbot, Sedgwick
2017). It seems that showing this lies in NP requires a delicate control of the normal tori in
a triangulation.

Embed(S3)
Instance: A three-manifold M .
Question: Does M embed in S3?

Again, this is decidable (Matoušek, Sedgwick, Tancer, Wagner 2018) and NP–hard (de
Mesmay, Rieck, Sedgwick, Tancer 2020).
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3.4.5 Triangulations for their own sake

Suppose that T is a triangulation; let c(T ) be the number of tetrahedra of T . For any
compact connected three-manifold M we define its complexity as follows.

c(M) = min{c(T ) | M ∼= |T |}

The complexity of M is morally similar to, but finer than, the Heegaard genus of M .

Complexity
Instance: A three-manifold M and an integer n.
Question: Is c(M) ≤ n?

This problem is decidable, because Homeo(3) is decidable. However, we do not have
efficient algorithms to solve this question. We do not even know how, in general, to estimate
c(M) within any fixed factor K ≥ 1. The exact computation of c(M) is only known for a
finite number of examples (coming from various censuses) and some special families (Jaco,
Rubinstein, Spreer, Tillmann). Estimating c(M) to within a constant factor is known in
some special families (Lackenby, Purcell, Jackson). In another other direction we have a
question of Gromov:

▶ Question 6. How many triangulations does S3 have with at most n tetrahedra?

The growth is at least exponential and at most exp-poly. We end this section with a question
which feels, paradoxically, related to the above.

▶ Question 7. How many finite-volume hyperbolic, closed, connected three-manifolds M

are there with c(M) ≤ n?

As a closely related problem, we should ask for a count of finite-volume cusped hyperbolic
three-manifolds with complexity at most n. It may be possible to relate the counts, in the
closed and cusped cases, by understanding how the complexity c(M) changes under Dehn
filling.

3.4.6 The graph of triangulations

Suppose that ∆ is the four-simplex. We divide ∂∆ combinatorially into a pair of triangulated
three-balls, say B and B′. Let k and k′ be the number of tetrahedra in B and B′ respectively.
Note that k + k′ = 5.

Suppose that T is a triangulation of a three-manifold M . Suppose that a copy of B

appears as a subtriangulation of T . Then we may produce a triangulation T ′, again of M ,
by replacing the copy of B in T by a copy of B′. This move, from T to T ′, is called a k-k′

bistellar flip.
Suppose that M is a compact connected three-manifold. We now define GT(M) to be

the graph of triangulations of M : vertices are (isomorphism classes of) triangulations of M

and edges are bistellar flips. Note that GT(M) is connected (Pachner 1991). Navigation in
the graph GT(M) is important both in theory and in practice.

▶ Question 8. Suppose that M is a compact connected three-manifold. Let dM be the
distance function in GT(M). Is dM (T , T ′) is bounded above by a some polynomial fM in
c(T ) and c(T ′)?

If we restrict ourselves to geometric triangulations of hyperbolic manifolds M (with a lower
bound on injectivity radius) then fM is at worst cubic (Kalelkar, Phanse 2021). Supposing
that such polynomials fM exist, we may ask the following.
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▶ Question 9. Does fM depend on M? Are there manifolds M where fM is linear?

▶ Question 10. Suppose that M is a compact connected three-manifold. Let hM be the
height function in GT(M); that is, hM (T , T ′) is the smallest possible maximal complexity
appearing in a path (in GT(M)) from T to T ′. Is there a polynomial upper bound on the
height?

One problem related to the above is as follows: fix a manifold M and a number k and then
try to find a random triangulation T of M with k = c(T ). Another is as follows: fix a
number k and try to find a random manifold M with c(M) ≤ k.

3.4.7 Recognition

Suppose that C is a class of three-manifolds.

Recog(C)
Instance: A triangulation T of a three–manifold.
Question: Does |T | belong to the class C?

When C is the class of a single manifold M then this reduces to Recog(M). For example,
recognising the three-sphere lies in the class NP (Schleimer 2011). More generally, recognising
elliptic manifolds lies in the class NP (Lackenby, Schleimer 2022). The same holds for torus
bundles over the circle (folklore) and Seifert fibred spaces with boundary (Jackson 2023).

▶ Question 11. Is the problem of recognising small Seifert fibred spaces in NP?

This problem is decidable (Rubinstein 2004, Li 2006). One possible NP-certificate might
start by finding a fibre circle with length at most linear (in the complexity of the given
triangulation).

▶ Question 12. Is the problem of recognising closed hyperbolic three-manifolds in NP?

This problem is decidable (Casson, Manning 2002). One possible NP-certificate might start
by finding a systole with at most linear length (in the complexity of the given triangulation).

▶ Question 13. Suppose that M is a surface bundle over the circle, given via a triangulation
T . Suppose that H1(M,Z) = Z. Is there a uniform description, with complexity at most
polynomial in c(T ), of the monodromy of the surface bundle structure?

This is a delicate question; the genus of the fibre may be exponentially large in the complexity
of the given triangulation.
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Let T be a triangulation embedded on a surface M, which comes with a metric ℓ equipped
where every triangle is flat. The pair (M, ℓ) is called an intrinsic triangulation. We view T

as a ∆-complex in the sense of Hatcher, as well as an embedded (multi-)graph on M with
possibly loops and multiedges. A geodesic on an intrinsic triangulation (M, ℓ) is a locally
shortest path (in the sense that small perturbation cannot make the curve shorter). One
way to characterize the geodesics on an intrinsic triangulation is that the path consists of
straight segments on the triangles and never passes through a positive-curvature vertex;
when a subpath [abc] passes through a negative-curvature vertex b, the two angles on the
two sides of the consecutive segments ab and bc are both at least degree π (half a circle).

Computing geodesics is an important question due to its applications in many areas
including path planning [1], surface partitioning [2] and terrain navigation [3]. In this report
we focus on an algorithm that computes geodesics quickly and accurately in practice using
the idea of “edge flip”, which is the replacement of one diagonal in a convex quadrilateral by
the other. Consider the FlipOut algorithm, designed by Nick Sharp and Keenan Crane
[4]: The input is a triangulation T , and a flexible2 joint [abc] in a given walk W on T , where
∠abc < π and segments ab and bc are distinct. The output is a shorter edge path connecting
a to c in an updated triangulation T .

FlipOut(T, [abc]):
while any βi < π:

j ← min i such that βi < π

FlipEdge(T, bnj)

return (T, [a, n1, . . . , nk−1, c])

FlipOut iteratively modifies the triangulation T and the walk W on the triangulation
in a way that shortens the walk. Sharp and Crane proved that the algorithm terminates
in finitely many steps if the input walk W is a path with two fixed endpoints. They also
provided a modification of the FlipOut algorithm so that it can be applied to free closed
loops on the surface. However they could not prove termination of the algorithm with this
modification.

▶ Question 1. Does the FlipOut algorithm terminate when the input walk is a free closed
loop?

We can also ask the question about efficiency.

2 See [4] for definition. Intuitively a joint is flexible if we can safely shortens it using edge flips without
causing the curve to self-intersect.

https://creativecommons.org/licenses/by/4.0/
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▶ Question 2. How many edge flips does the FlipOut perform to turn the input walk into
a geodesic?
Termination. Our group mostly focused on investigating the first question. The technical
challenge can be summarized as follows. When applied to a loop, the FlipOut algorithm
can get stuck in the specific case where it reduced the input curve to a single edge of the
intrinsic triangulation (which is thus a loop) while still not being geodesic because there is
an angle less than π at the unique vertex of that edge. In this situation, the flip specified by
the algorithm might be impossible. Crane and Sharp propose a work-around in this case:
they apply an edge-move, which has the effect of slightly pushing the loop and replacing it
with another loop with more edges. While they provide a proof that this makes progress
locally (in the sense that the FlipOut algorithm will not immediately revert back to the
offending loop), this edge-move hinders the proofs of termination of the algorithm. Indeed,
in the case of walks, one of the main ingredients in the proof that the FlipOut algorithm
terminates is that the length of the walk is monotonically decreasing throughout the process.
In contrast, here, the edge move might increase the length of the curve, thereby rendering
the monotonicity argument invalid.

In the case where the curve to be reduced is separating, it seems that strong constraints
on the local geometry of the situation when the reduced curve consists of a single edge of
the triangulation can help and provide a positive answer to the termination question. The
rationale is as follows. Let us denote by γ the curve that we are reducing. Throughout
the algorithm, either γ never gets reduced to a single edge, in which case, the proof of
termination for walks applies. Otherwise, let us denote by γ1 the first occurrence in time
where it becomes a single edge. Then, applying an edge-move pushes γ on one side of γ1,
without loss of generality let us choose an orientation on γ1 so that this push is to its right.
Then Crane and Sharp prove that the following move will once again push to the right. At
this stage, the curve γ is disjoint from γ1. And the same proof shows that no subsequent
move in the algorithm will ever move the curve so that it hits back γ1 from the right. But
by the assumption that γ is separating, so is γ1, and thus this means that γ will forever stay
disjoint from γ1. So γ1 acts as some sort of barrier for the FlipOut algorithm, removing a
portion of the intrinsic triangulation from consideration. Since the triangulation is finite,
this is a definite measure of progress, which we can use to prove termination.

Let us observe that on a topological sphere, all the closed loops are separating, so this
observation is already of wide applicability. The case of surface of genus larger than one
could also be amenable to such an analysis, since even though it could a priori happen that
the curve γ comes back to hit one of the barrier curves γi from the left, it will do so without
being homotopic to it. The case of the torus however remains impervious to this analysis, as
it cannot rule out a curve γ infinitely looping around the torus, always going to the right,
jumping from one barrier curve to the next. A significant effort was spent investigating
other reasons why the algorithm terminates in that case, as well as in designing variants and
alternatives to the edge-move for which termination can be proved, and we are hopeful that
these efforts will coalesce into definite progress in follow-up work after the seminar.

Efficiency. The question of the complexity of the algorithm seems delicate, and we began
exploring various approaches to it. Of course, without a proof of termination for surfaces, it
seems necessary to consider additional restrictions on the input triangulation. Here, a case
familiar to computational geometers which is of wide utility, could be the one of polyhedral
terrains, so we began by investigating this setting and attempting to give a polynomial bound.
However, the property of being a terrain is not preserved by the FlipOut algorithm, which
makes this hypothesis quite at odds with the philosophy of this algorithm. It seems necessary
to consider more general triangulated but simply connected settings to make further progress.
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4.2.1 Introduction

We investigate the problem of enclosing a subset of objects in the plane using a cycle of
minimum total length. More specifically, given n disjoint polygons in the plane, of total
complexity N , and a number k, the problem is to find a minimum-perimeter weakly simple
polygon containing exactly k of the polygons. We also consider a variant of the problem
where the k polygons to be enclosed are specified as part of the input (see Figure 1). We are
interested in the case where k is small with respect to n, and aim for efficient algorithms in
this fixed parameter setting.

We also consider a different, less geometric, setting where we are given as input a plane
graph G of total complexity N , a set of n marked faces, an integer k, and we have to compute
a shortest weakly simple closed walk in the graph that encloses exactly k of the n marked
faces. As above, we also consider the variant where the k faces to be enclosed are given
as part of the input. The graph setting is more general than the polygon setting, via the
following polynomial time reduction, which is based on the observation that the desired cycle
walks on visibility edges: given a set of disjoint polygons, construct a plane graph by finding
all visibility segments in the free space and adding vertices at their intersections to create a
plane graph.

Other variants include the problem of enclosing at least k objects (rather than exactly k),
and – in the geometric setting – dealing with the presence of polygonal obstacles that may
freely be included in, or excluded from, (but not cut by) the desired cycle.

These enclosure problems look very natural but seem rather unexplored, and are related
to many well-studied problems, in particular Steiner tree and subset TSP. Our goal is to
nail down the computational complexity of the problem and its many variations. We first
survey related previous work and simple observations, and then present our results and other
promising directions.

https://doi.org/10.1145/3414685.3417839
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Figure 1 An instance of our geometric problem in which one looks for a minimum perimeter
weakly simple polygon containing the blue polygons but none of the red ones. Note that the polygon
“runs along itself” naturally, in other words it is weakly simple but not simple.

4.2.2 Related Previous Work and Simple Observations

Both in the graph setting and in the geometric setting, we must allow the cycle or the
boundary of the solution polygon to use the same edge more than once. Such a cycle, which
may touch itself but must not cross, is called weakly simple. Figure 1 shows a symbolic
drawing where the two copies of an edge are visually separated.

Point objects. A natural special case of our problem is when each polygon is actually a
point. Given a set of n points in the plane and an integer k, a minimum-perimeter polygon
enclosing exactly k points is convex, and can thus be found in polynomial time using a result
by Eppstein et al. [10, Corollary 5.3(3)]. Here the run-time depends only on n, i.e., k need
not be restricted to a constant.

On the other hand, if we are given the k points to enclose, then the problem is NP-hard
if k is not restricted, by a result by Eades and Rappaport [8]. However, this NP-hardness
proof breaks down if k is small, say k = O(1).

Separation by fences. In a recent work, Abrahamsen et al. [1] studied a variation of the
problem in which one is given a set of disjoint colored polygons, and the goal is to compute
a graph H embedded in the free space (the plane minus the interior of the polygons) such
that the polygons inside any face of H all have the same color. The desired solution is a
graph, which is not necessarily a weakly simple cycle, and may even be disconnected. This
gives the problem a very different character. The problem is related to minimum cut (in the
case of two colors) and multicut (in the general case). In contrast, our problem does not
seem to have a direct relation to cuts, although it does relate to homology tools used for cut
problems.

Computational topology. Enclosure problems have a topological flavor, so computational
topology tools may help. Shortest homotopic cycles can be computed in polynomial time,
both in the geometric setting [2, 9] and the graph setting [6, 5]. Thus, our problem boils
down to finding the correct homotopy class of the solution polygon.
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Homology is a coarser relation than homotopy that is more closely related to our problem.
In particular, when the k objects to be enclosed are specified, our problem boils down to
computing a shortest cycle in a given homology class (over Z2, in the plane minus the objects
to be enclosed). The best known algorithm for this purpose [4] implies a 2n · NO(1)-time
algorithm, and the question is whether we can do better for small k.

Finally, the problem of computing a shortest weakly simple cycle that encloses a given
set of k objects, and possibly more, is solvable in polynomial time (even for unrestricted k),
using techniques for shortest k-essential cycles [11, Section 5].

Steiner tree. The graph version of the enclosing problem has a flavor similar to the Steiner
tree problem. Marx et al. [12] proved that, in an unweighted planar graph of size N , Steiner
tree with k terminals cannot be solved in 2o(k) · NO(1) time, assuming the Exponential Time
Hypothesis (ETH). This immediately implies a hardness result for our problem if we force
the cycle to behave like a Steiner tree.

▶ Lemma 1. The following problem cannot be solved in 2o(k) · NO(1) time assuming ETH:
Given an unweighted connected planar graph G of size N , a set F of k marked faces, compute
a shortest weakly simple cycle enclosing F but no other face of G.

4.2.3 Exact Algorithm for the Geometric Setting

We have promising strategies to solve the following problem.

▶ Problem 2. Given as input a set P of n disjoint convex polygons in the plane, of total
complexity N , and a subset Q ⊆ P of k polygons, compute a shortest weakly simple polygon
in R2 \ P that encloses each polygon in Q but no polygon in P \ Q.

Note that if we only want to enclose k polygons, without specifying the subset Q, we
may enumerate each of the nO(k) subsets Q of P of size k and apply the above result to each
such subset Q in turn.

We mimic the dynamic programming algorithm of Dreyfus and Wagner [7] that computes
Steiner trees in graphs. We aim for an algorithm with running time 3k · NO(1). The basic
idea is to compute, for each subset Q′ of Q and each line segment uv, where u and v are
input vertices, a shortest cycle c(Q′, uv) having uv on its boundary and such that a polygon
has odd winding number with respect to the cycle if and only if the polygon lies in Q′. No
edge of c(Q′, uv) may cross a polygon of P except that uv may cross polygons of Q. We
expect to be able to compute the values of c(Q′, uv) by increasing size of Q′ by merging
smaller solutions in the same spirit as the Dreyfus–Wagner approach. At the root of the
recursion, we untangle the cycle to make it weakly simple without making it longer, and
prove that it encloses precisely Q by the condition on the winding numbers.

Possible improvements include removing the convexity assumption.

4.2.4 An Approximation Algorithm for the Graph Setting

▶ Problem 3. Given as input a connected plane graph G with N vertices, edges, and faces,
a positive weight w(e) for each edge e, a subset P of n marked faces and a subset F ⊆ P of
k faces, compute a minimum-weight weakly simple cycle in G that encloses the faces of F

but no other face in P .

▶ Proposition 4. There is an approximation algorithm for Problem 3 that runs in time
NO(k) and computes a (k + 2 − 2

k )-approximation.

Lemma 1 implies that solving the problem exactly cannot be done in 2o(k) · NO(1) time
assuming ETH.
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Proof sketch. We can assume that k < n, for otherwise it suffices to compute a weakly simple
cycle homotopic to the outer face, which can be done in polynomial time. Let X = P \ F be
the set of faces that we want to exclude, and let F = {f1, . . . , fk}.

Let (r1, . . . , rk) ∈ {0, . . . , N}k. Below, we describe a procedure that will return a feasible
solution to the problem (if it returns anything at all). If, for every i ∈ {1, . . . , k}, ri equals
the distance (in terms of the number of edges of a shortest path) from each face fi to cOPT,
the procedure will return a solution, and it will be a (k + 2 − 2/k)-approximation of the
optimal solution. Our overall algorithm returns the shortest solution found by the procedure,
over all choices of (r1, . . . , rk) ∈ {0, . . . , N}k.

The procedure for a given k-tuple (r1, . . . , rk) is the following.

1. For each i = 1, . . . , k, we remove all vertices at distance less than ri from fi (where the
“distance” is the number of edges), enlarging fi to a larger face f ′

i . If some f ′
i contains

some face in X, we exit without returning anything. Let G′ be the resulting graph.
2. We describe a subroutine that computes a set Γ of cycles in G′ satisfying, at each step of

the subroutine, the following invariants:
the cycles in Γ are weakly simple and weakly pairwise disjoint;
they are pairwise non-nested;
no cycle in Γ encloses a face in X;
(*) for each cycle γ in Γ, there is a face f ∈ F such that γ is, in R2 \ (X ∪ f ′), a
shortest cycle homotopic to the boundary of f ′ (in G′).

At the end of the subroutine, each face of F is enclosed by a (unique) cycle in Γ.
Here is the subroutine. Initially, Γ is empty. While some face f of F is enclosed by no
cycle in Γ, we do the following:
a. Let γ be the shortest cycle in G′ among those that are weakly disjoint from Γ and

homotopic, in R2 \ {X ∪ f ′}, to the boundary of f ′. We can compute γ in near-linear
time as follows: Remove the interior of each cycle in Γ, and then compute a shortest
cycle homotopic, in R2 \ {X ∪ f ′}, to the boundary of f ′, using, e.g., [3, Lemma 4.1];
γ will automatically be weakly simple.

b. Add γ to Γ, and then remove from Γ all cycles enclosed by γ, if any.
The process clearly terminates after at most k steps. The invariants are clearly satisfied,
except the last one (*), which we can prove separately. (It suffices to prove that some
shortest cycle homotopic, in R2 \ {X ∪ f ′}, to the boundary of f ′ is weakly simple and
weakly disjoint from Γ, and we omit the proof here.)

3. We compute a minimum spanning tree T̂ in an auxiliary graph Ĝ, which is a complete
graph with a node for every cycle in Γ. The edge weights are the shortest distances
between the corresponding cycles in G′. Every edge of T̂ corresponds to a path in G′.
When we overlay these paths they form a subgraph T̄ that connects the cycles in Γ. We
remove multiple edges from T̄ and (conceivably) edges that create cycles in T̄ , until we
end up with a forest T that still connects the cycles in Γ. (T is a Steiner tree in the
graph where each cycle in Γ and its interior is contracted into a single vertex.)

4. We combine T and the cycles in Γ to obtain a weakly simple cycle of length 2w(T ) + w(Γ)
enclosing the faces of F but no face of X; see Figure 2.

The running time of the overall algorithm is clearly NO(k).
It remains to bound the length of the output. Let cOPT be a shortest weakly simple

cycle enclosing F but no face of X. We consider the cycle c obtained in the previous
procedure in the case where ri is the graph distance from cOPT to fi. It suffices to prove that
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Figure 2 Illustration for the proof of Proposition 4. Faces in F are denoted by blue dots, faces
in P \ F are denoted by red stars. Left: The cycles in Γ are connected using a minimum spanning
tree in an auxiliary graph. Middle: The spanning tree is turned into a Steiner tree T . Right: We
assemble the cycles in Γ and the Steiner tree T to form a cycle enclosing F .

w(c) ≤ (k + 2 − 2
k )w(cOPT). We have w(c) = 2w(T ) + w(Γ), where T and Γ are obtained in

the iteration computing c. Moreover, by the choice of the ri’s:
Each of the at most k cycles γ in Γ is no longer than cOPT. Indeed, by Property (*), γ is
a shortest cycle homotopic to the boundary of f ′ in R2 \ (X ∪ f ′), for some f ∈ F , and
cOPT is homotopic to the boundary of f ′ in R2 \ (X ∪ f ′), for each f ∈ F .
w(T ) ≤ w(cOPT)k−1

k , because cOPT is connected and intersects the boundary of each
cycle in Γ (perhaps unless Γ is a single cycle, in which case the claim is still true). Let
p1, . . . , pk′ be intersection points between cOPT and the k′ ≤ k cycles of Γ, in the order in
which they are visited by cOPT. Then the sections of cOPT from p1 to p2, from p2 to p3,
etc, from pk′−1 to pk′ , whose total length is bounded by w(cOPT), yield an upper bound
on the weight of the minimum spanning tree T̂ in Step 3, and hence w(T ) ≤ w(cOPT). By
cyclically shifting the sequence p1, . . . , pk′ such that the omitted section from pk′ for p1 is
the longest among the k′ segments, the bound is improved by the factor k′−1

k′ ≤ k−1
k . ◀
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Figure 3 Catching a iron ball with a magnet on a curve.

10 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding minimum area k-gons.
Discrete Comp. Geom., 7:45–58, 1992. doi:10.1007/BF02187823.

11 J. Erickson and P. Worah. Computing the shortest essential cycle. Discrete Comput. Geom.,
44(4):912–930, 2010. doi:10.1007/s00454-010-9241-8.

12 D. Marx, M. Pilipczuk, and M. Pilipczuk. On subexponential parameterized algorithms for
Steiner tree and directed subset TSP on planar graphs. In Proc. 59th Ann. IEEE Symp.
Foundat. Comput. Sci. (FOCS), pages 474–484, 2018. doi:10.1109/FOCS.2018.00052.
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4.3.1 Problem Statement

We are given a smooth closed curve in the plane, described by a function γ : S1 → R2, and
two points a and b on the curve. Here a is the attractor (think of a magnet) and b is a ball
(think of an iron or nickel ball). Then b always moves closer to a if possible while staying on
the curve. We can directly control the position a, but we have no direct control over b. We
assume that b moves infinitely faster than a. Our goal is to move a along the curve in such a
way that a meets b (see Figure 3). Note that a bit of care is required to properly define this
problem and make sure γ is generic enough for the conversation to hold. For more details
and a careful description of the setting, see [1, 3.1].

It is known that for every simple curve γ (that is, without self-intersections), there always
exists strategy to catch the ball from every initial configuration [1].

It is also known that there exist curves for which this is not possible; the simplest such
curve is the “doubled circle”, and in fact any curve that is “doubled” or “multipled” is an
example of such a curve, since a and b will always stay close to each other on different “copies”
of the curve. Refer to Figure 4 for some examples; for proper definitions and proofs see [1].

A natural question is then to see whether one can characterise those curves for which
there does exist a strategy to catch the ball from every initial configuration. Perhaps the first
and simplest invariant of a curve is the rotation number (also called the index or Whitney

24072

https://doi.org/10.1007/BF02187823
https://doi.org/10.1007/s00454-010-9241-8
https://doi.org/10.1109/FOCS.2018.00052
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPICS.SOCG.2021.5
https://doi.org/10.4230/LIPICS.SOCG.2021.5
https://doi.org/10.4230/LIPICS.SOCG.2021.5
https://doi.org/10.4230/LIPICS.SOCG.2021.5
https://doi.org/10.4230/LIPICS.SOCG.2021.5
https://doi.org/10.4230/LIPICS.SOCG.2021.5


140 24072 – Triangulations in Geometry and Topology

×2 ×3 ×2

Figure 4 Any curve can by “multiplied” by taking multiple copies of it at (almost) the same
location, cutting it at an arbitrary point, and switching endpoints before reconnecting.

index). This is defined as the number of revolutions a tangent vector completes as it traverses
the curve once. It is related to the number of left-to-right and the number of right-to-left
crossings of the curve. [3]

A question posed in [1] is:

▶ Question 1. Is it true that, for every curve of rotation number 1, there always exists a
way to catch the ball?

Experimental evidence suggests the answer should be yes. You can play around with an im-
plementation here to try for yourself: https://github.com/viglietta/Chasing-Puppies

4.3.2 Progress

Rotation number

We answer Question 1 negatively: there do exist curves of rotation number 1 for which there
are starting configurations from which we can never catch the ball.

▶ Theorem 2. There exists a curve γ of rotation number 1 and a pair of points (a, b) on γ

such that, no matter how a moves on γ, a will never reach b.

Proof (sketch). The idea is to first construct a family of curves c1, c2, . . . , c7 that satisfy
some properties:
1. All ci start somewhere at x-coordinate −1 with a tangent vector (1, 0), and end somewhere

at x-coordinate 1 with a tangent vector (1, 0).
2. The rest of the curves are contained in the strip −1 < x < 1.
3. All except 1 of the curves make a net 0 rotations, while the final curve makes one full

rotation.
4. When a is on curve ci, and b is on curve ci+1 (indices wrap around), b will locally follow

a as we move from left to right on the curve; in particular, when a is on the left end then
so is b and when a is on the right end then so is b.

Then, we connect these 7 curves into a single closed curve by looping the curves around,
as in Figure 5. To make sure that the total rotation number is 1, we must also add an
additional counter-clockwise loop. ◀

While our counterexample answers the question as posed, the curve used in the proof has
108 self-intersections and is arguable not very close to being simple.

Instead, we can also try to use a more fine-grained classification of curves.

https://github.com/viglietta/Chasing-Puppies
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When a is on purple, b follows on blue.
When a is on blue, b follows on turquoise.
When a is on turquoise, b follows on green.
When a is on green, b follows on yellow.
When a is on yellow, b follows on orange.
When a is on orange, b follows on red.
When a is on red, b follows on purple.

A curve of rotation number 1 (with 108 crossings).

Figure 5 A single curve of rotation number 1, for which there exist configurations from which
the ball can never be caught; for example, start with a on the the lowest point of the curve (on the
purple strand) and b just above it (on the blue strand).

Curve classifications

Working towards the goal of characterising which curves admit winning strategies for all
starting configurations, it is natural to wonder which characteristics and invariants of a curve
might have repercussions on this problem. While the rotation number is a fundamental
invariant of plane curves, it is also quite coarse: it merely characterises the connected
components in the space of immersions (see [4]). It is thus perhaps not so surprising that
two curves sharing that invariant would behave very differently regarding our problem. In
fact, the classification of curves based on the rotation number is up to homotopy in the class
of closed curves, but not up to diffeomorphisms of the whole plane and therefore ignores all
about how the curves are situated in the plane. See Figure 6 for an example of two very
different curves with the same rotation number.

Figure 6 Two curves with the same rotation number but very different geometries.

24072
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Various finer classifications and invariants have been introduced to address this. Most
notably, Arnold’s three invariants classify generic curves in much finer details ([2]; see
Figure 7). Together with his use of Gauss diagrams (see [2, p28]), Arnold’s classification for
a fixed number of crossings now differentiates many curves previously bundled in the same
class and might help provide finer insights into the behaviour of each class of curve with
respect to our problem.

Figure 7 A classification of curves with crossing number 4 based on Arnold’s three invariants,
J+, J−, St, the index and the Gauss diagrams; image taken from [2].
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Regardless of our preferred choice of curve classification, we can study the behaviour of
the problem at hand on the different members of each class.

A priori, there are three possibilities for each class:
1. for every curve in the class, and for every initial configuration on the curve, there exists a

strategy to catch the ball; or
2. there is at least one curve in the class such that for every initial configuration there is

a strategy to catch the ball, and at least one curve in the class for which there exists a
starting position from which we cannot catch the ball; or

3. for every curve in the class, there is a starting position from which we cannot catch the
ball.

However, it is easy to see that the third option cannot occur.

▶ Lemma 3. In every class, there is at least one curve such that for every starting position
we can catch the ball.

Proof (sketch). Take any (geometric) curve in the class. Now find a point on the convex
hull, and make a small opening. Attach a huge loop to this opening (radius at least twice
the diameter of the original curve).

We claim that on this adapted curve, we can catch the ball by simply keeping walking in
one direction. The reason is that, while we are in the original curve, the ball will never go
“around” the big loop, since the farthest point on the loop is always too far away. So, we
might walk around the big loop once while the ball is somewhere in the original curve, but
by the time we enter the big loop for the second time, we must have encountered the ball
along the way. ◀

Because of this observation, there are only two possible states for each class: “always yes”
or “depends on the geometry”.

To conclude this report, we believe it would be important to understand this classification
in more detail; as a small first step towards this goal we present a table with the known
behaviours of a few classes of curves (grouped in a coarser 2-parameter table with respect to
index and crossing number) in Figure 8.
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Figure 8 What we know. For green curve classes, the answer is always yes; for red curve classes,
there are known counter-examples. For blue classes, we do not know. Blue dots mean that we did
not draw all curves in the cell. Note that the curve in Figure 5 would also be red in this table, and
would sit at coordinates (1, 108).

4.4 A practical implementation of the link thickening problem
Clément Maria (INRIA – Sophia Antipolis, FR) and Benjamin Burton (The University of
Queensland – Brisbane, AU)
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We give a practical solution to the link thickening problem: Given a collection of embedded
closed curves L in R3, compute the maximal value r > 0 such that the r-thickening of L and
L have the same homotopy type.

By r-thickening, we mean the neighborhood of L in R3, made of all points at distance at
most r from L. We call r∗ the supremum of r for which the r-thickening of L and L have
same homotopy type.

The main goal is to implement an experimentally fast rendering algorithm to visualize
knots and links in the Regina [3] library. Our main constraint is that our solution to the
link thickening problem should be close to real time in practice.
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4.4.1 Persistent homology approach

Persistent homology [4] studies the evolution of the homology of the level-sets(
f−1((−∞; r])

)
r∈R

of a continuous function f : X → R on a topological space X. A most studied situation is
when the space X is the Euclidean space Rd, and the function f is the Euclidean distance
function to some compact subset of Rd. Available implementations, such as in the Gudhi
library [5], essentially work with finite point set approximations of compacts.

In our framework, the ambient space is the 3-dimensional Euclidean space R3, the compact
subset is the collection of closed polygonal curves L forming the link, and an r-thickening of
L is the level set f−1((−∞; r]) of the function f assigning to any point x ∈ R3 the distance
from x to L.

We propose a heuristic solution to the link thickening problem with good practical
performance, based on persistent homology. For implementation reasons, it is easier to work
with neighborhoods of point clouds, instead of polygonal curves. We start by subsampling
the polygonal curves of L with a collection of regularly spaced points P ⊂ L. Let ϵ be the
density of P in L, i.e., the maximal distance between L and P :

ε := sup
x∈L

inf
p∈P

d(x, p).

Heuristically, we assume 0 < ε ≪ r∗ by subsampling sufficiently.
Call dP : R3 → R the distance function to the point cloud. Let n be the cardinality of P ,

and k the number of connected components of the link L.
In practice, the topology of the level sets d−1

P ((−∞; r]), consisting of the union of balls
of radius r centered at the points in P , follows several phases for r > 0:
Phase 1 for 0 < r < ε, the level set d−1

P ((−∞; r]) is a collection of strictly more than k

connected components,
Phase 2 for ε < r < r∗, the level set d−1

P ((−∞; r]) has the homotopy type of L,
Phase 3 for r∗ < r, the level set d−1

P ((−∞; r]) does not have the homotopy type of L.

Intuitively, the phase 0 < r < ε consists of n disjoint radius r-balls centered at the points
in P when r is close to 0, that eventually merge into a regular neighborhood of the link L,
once ε < r < r∗.

For ε < r < r∗, and under valid density assumptions [1], the level set d−1
P ((−∞; r]), or

equivalently the union of balls of radius r centered at the points of P , is guaranteed to have
the same homotopy type as the link L, i.e.,, a collection of k circles.

When passing the critical value r = r∗, the topology of d−1
P ((−∞; r]) changes by definition,

which happens in three possible ways: generically,
Case 1 either one component K of the link L fills up, in which case a solid torus neighborhood

of K turns into a 3-ball,
Case 2 or a component K of the link L self intersects, in which case a solid torus neighborhood

of K turns into a genus 2 handlebody,
Case 3 or two distinct components K1, K2 of the link L connect to form a genus 2 handlebody.

All three cases are captured by the homology of d−1
P ((−∞; r]). Indeed, in case 1, the

dimension of the first homology group H1(d−1
P ((−∞; r]) ,Z2) is reduced by 1. In case 2, the

dimension of H1(d−1
P ((−∞; r]) ,Z2) increases by 1. Finally, in case 3, the number of connected

components, which is equal to the dimension of the homology group H0(d−1
P ((−∞; r]) ,Z2),

decreases by 1.

24072



146 24072 – Triangulations in Geometry and Topology

Figure 9 Three possible changes of homotopy type at r = r∗ ; the change of topology happens at
the red crosses. From left to right: a solid torus fills up into a 3-ball, a solid torus self intersects into
a genus 2 handlebody, two distinct solid tori intersect to form a genus 2 handlebody.

All cases are readily available from the persistent diagrams of the level sets of the function
d−1

P .

4.4.2 Implementation with Gudhi

The Cech complex based on P and of threshold r is a simplicial complex which has the
same homotopy type as the level set d−1

P ((−∞; r]). However, it is challenging and relatively
slow to implement its construction, in comparison to the Rips complex [4]. Rips complexes
can be interpreted as an approximation of the Cech complex, and are generally preferred
in software implementation. When their construction is extremely fast [2], they result into
noisier persistence diagrams. However, in our context where P is a noiseless subsample
of a link in R3, we do not observe experimentally significant differences in the persistence
diagrams of the two filtered complexes.

We interface the Gudhi library with Regina to implement the algorithm above. For
efficiency reasons, we stop the computation when the change of homology at r = r∗ is
detected. First experiments show a close to real time performance on simple knots and links.
See Figure 10 for an example of rendering.
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Figure 10 Trefoil knot, sampled, and thickened up to r∗.

4.5 Complexity of Reconfiguration Problems
Lena Schlipf (Universität Tübingen, DE), Mikkel Abrahamsen (University of Copenhagen,
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Numerous NP-hardness proofs for polygons use a reduction from (a version of) planar
3SAT. An instance ϕ of planar 3SAT (or a version thereof) is given and a polygon P

is build on top of ϕ, but then the bounded faces of ϕ turn (most of the times) into holes
in the polygon. Thus, most proofs work only for polygons with holes. However, there are
quite some problems that seem to be hard even for simple polygons. But for proving their
hardness new ideas are needed. New insights and techniques for such hardness proofs for
simple polygons were recently presented by Abrahamsen and Stade [1]. They show that
packing unit squares in a simple polygon is NP-hard by a reduction from monotone planar
3SAT. This working group focuses on how to extend their result to other similar problems.

The first problem that we investigate is motion planning for unit square robots. Given a
set of unit squares (robots) in a workspace and a set of target positions, the goal is to move
the robots such that (i) each target position is occupied by some robot (unlabeled version), or
(ii) each target position is occupied by a specific robot (labeled version). If the workspace is a
domain with obstacles, the problem is known to be PSPACE-hard for both variants, labeled
and unlabeled [3, 7]. Building on the result of [1], we could show the following.

▶ Theorem 1. Motion planning for labeled unit square robots in a simple polygon is NP-hard.

Proof-Sketch. The proof follows quite easily from the NP-hardness result of packing unit
squares in a simple polygon [1]. The basic idea is to add a small tunnel to the polygon of a
packing instance. The robots are then initially placed in the tunnel on the target positions
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Figure 11 Mapping an NCL-Instance to an embedding of a planar 3-SAT formula. Variable
nodes are drawn as squares, Clause nodes are drawn as disks.

but need to be reordered. The robots can only be reordered if all of them move into the
original polygon and then move back into the tunnel in the required reordered manner. Hence,
the reordering is only possible if the robots can be packed into the original polygon. ◀

We also investigate PSPACE-hardness. Many SAT reconfiguration problems are known
to be PSPACE-complete: Given a SAT formula and two satisfying assignments, the question
is whether it is possible to find a sequence of flips that takes us from one assignment to the
other where a flip allows to change the value of exactly one variable. This is equivalent to
the problem of deciding whether the two satisfying assignments are connected in the flip
graph of the given SAT formula. We denote this problem by SAT-Reconfiguration; and
analogously, we denote the problem for other SAT variants.

The proof for Theorem 1 uses a reduction from monotone planar 3SAT, thus, using
the reconfiguration problem of the same version of 3SAT seems like a good choice for
proving PSPACE-hardness of the problem of Theorem 1. It was not known whether the
reconfiguration problem of monotone planar 3SAT is PSPACE-complete, hence, we first
show the following result.

▶ Theorem 2. Deciding whether two satisfying assignments are connected in the flip graph
of a monotone planar 3SAT formula is PSPACE-complete.

Proof-Sketch. The proof is a reduction from Nondeterministic Constrained Logic
(NCL) [5, 6]. An NCL instance is given by a directed planar graph G and an edge er of G.
The edges are colored blue or red, where every vertex is either incident to three blue edges or
to one blue and two red edges. A feasible orientation must respect an indegree of at least two
at every vertex, where blue edges count with multiplicity 2. An NCL-instance is positive, if
and only if there is a sequence of edge-reversals that finally reverses er and any intermediate
orientation is feasible.

We first describe a mapping from G to a planar 3-SAT formula ϕ with embedding by
substituting every vertex with incident half edges as shown in Figure 11. For every oriented
edge e = uv in G we introduce one variable xe in the formula. This variable appears as xe

at the clause nodes induced by v and as ¬xe at the clause nodes induced by u. The truth
assignment of the formula decodes, which edges are reversed (false variables are the reversed
edges). The reversal of an edge in G is represented by flipping a variable.

It remains to show that ϕ can be turned into a monotone planar 3-SAT formula; for an
illustration, consider Figure 12. In a first step, we subdivide the edges in G and replace every
edge e = uv by edges uw and wv. We then substitute u and v as before, but the variable
node at u is called xe− and the (now distinct) variable node at v is now called xe+. The new
vertex w will be associated with a clause node (¬xe+ ∨ ¬xe−). In the clauses defined by the
original nodes of G all variables are nonnegated.

We can now derive a truth assignment from the orientation of G as follows: If the edge
e = uv is not reversed in G, we set xe− = false and xe+ = true. If the edge e = uv is reversed
in G we set xe− = true and xe+ = false. In order to get an orientation from a satisfying truth
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Figure 12 Mapping between a graph G of an NCL instance (left) and an embedded monotone
3-SAT formula ϕ (right).

Table 1 Overview of computational complexity for the satisfying and reconfiguration problems
of important SAT variants.

Satisfying Reconfiguration
3SAT NP-complete PSPACE-complete
planar 3SAT NP-complete PSPACE-complete
mon. planar not-all-equal 3SAT P PSPACE-complete
mon. planar 3SAT NP-complete PSPACE-complete
positive 1-in-3SAT NP-complete P
positive not-all-equal 3SAT NP-complete PSPACE-complete

assignment we use the same mapping but we could also have xe+ = false and xe− = false as
a satisfying assignment for ϕ. In this case the edge e would not contribute to the indegree
constraint at neither u nor v in G. Thus, we can orient e arbitrarily, say in the original
orientation.

Our construction yields faces (for the embedding ϕ) of even degree. Hence the dual
graph is Eulerian and supports an Euler tour. This tour can be selected such that it can
be shortcutted to a cycle that visits all variable nodes without crossing any edge of the
embedding of ϕ (see Figure 12(b)). ◀

We believe that using Theorem 2 and exploiting the ideas of Abrahamsen and Stade [1] leads
to a PSPACE-hardness proof of the problem of Theorem 1.

In Table 1, we give a summary of some variants of 3SAT and the complexity of their
satisfying and reconfiguration problems. Interestingly, most satisfying and reconfiguration
problems are hard, but there are some surprising exceptions.

Additionally, we consider the motion planning problem for unit disk robots. Recently, it
was proven that the unlabeled motion planning problem for disk robots with two different
radii in a domain with obstacles is PSPACE-hard [2]. We turn our attention to unit disk
robots and have some ideas of showing that the problem remains PSPACE-hard.

▶ Theorem 3. Reconfiguration of unit disk robots in an arc-gon/polygon with holes is
PSPACE-complete.

Proof-Sketch. We reduce from Constrained Logic. For this we need gadgets to represent
two types of vertices (AND and OR gadgets), and edge gadgets that connect them.

Our construction closely follows Brocken et al. [2]; that is, vertices are represented by
rooms and edges are represented by tunnels that are filled with disks. The main difference is
that we require a gadget that ensures an edge can only have one orientation at a time.

Our new edge gadget is illustrated in Figure 13. Note that the tunnel is shaped (i.e. has
small dents) such that the middle three discs cannot move too far out. We claim that:

24072



150 24072 – Triangulations in Geometry and Topology

Figure 13 A sequence of moves that imitates the reorientation of an edge.

▶ Claim. An edge gadget can have all disks “pushed towards the right”, or all disks “pushed
towards the left”, or it can have the left half pushed towards the left and the right half
pushed towards the right; this is required as an intermediate state when we reconfigure from
one state to the other (this corresponds to reorienting the edge in the constraint logic graph).
But it is not possible to have all disks in the middle.

The AND and OR gadgets are similar to the ones from Brocken et al. [2]. ◀
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This working group was formed to discuss the complexity of testing the 0-efficiency of a
3-manifold triangulation. This problem appears to be quite challenging, and the group ended
up discussing, and making progress on a number of related problems.

Each of these problems concern normal surface theory, a frequently used technique
for 3-manifold decision problems. In normal surface theory, a 3-manifold is given via a
triangulation, and conclusions about the manifold can be drawn by understanding the normal
surfaces, those properly embedded surfaces that intersect each tetrahedron in triangles and/or
quadrilaterals.

Figure 14 A normal surface meets each tetrahedron in triangles and/or quadrilaterals.

4.6.1 0-Efficiency, Non-vertex linking normal surfaces

A connected normal surface is vertex linking if it contains only triangles. In a closed 3-manifold,
a vertex linking surface will be sphere that is the boundary of a regular neighborhood of
some vertex of the triangulation. Each vertex of a triangulation has a vertex linking sphere
surrounding it, are there any other normal spheres? A 3-manifold triangulation is 0-efficient
if there are none, i.e., all of its normal spheres are vertex linking. Almost all 3-manifolds have
a 0-efficient triangulation and working with one yields significant computational advantages
[5, 2].

The working group was formed to consider the computational complexity of the following
problem:

▶ Problem 1. Given a 3-manifold triangulation, is it 0-efficient?

Alternatively, we can consider the complementary problem:

▶ Problem 2. Given a 3-manifold triangulation, does it contain a non-vertex linking 3-sphere?

The work of Hass, Lagarias, and Pippenger [4] shows that if there is a non-vertex linking
normal sphere, then there is one with an (exponentially) bounded number of triangles and
quadrilaterals. This determines a coordinate vector with linear bit-length which is sufficient
to certify that the underlying normal surface is a non-vertex linking sphere. It follows that
Problem 2 is in NP (and Problem 1 is in co-NP).
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The working group endeavored to show that Problem 2 is also NP-hard, primarily by
demonstrating a reduction from a problem such as 3-SAT. One possible model is the work
of Agol, Hass and Thurston [1], who used a reduction from 3-SAT to show that the problem
3-Manifold Knot Genus is NP-hard. Unfortunately, it seems quite challenging to adapt
their approach to Problem 2. In particular, their reduction yields surfaces with large genus,
whereas Problem 2 would require a reduction that always produced a sphere.

The group also considered various analogues and/or variations on Problems 1 and 2, see
the sections below. Towards the end of the group’s meetings, a proposal was made to weaken
Problem 2 to allow surfaces of higher genus:

▶ Problem 3. Given a 3-manifold triangulation, does it contain a normal surface that is not
subcomplex linking?

A subcomplex linking surface is a normal surface that links a subcomplex of the triangula-
tion. Vertex linking spheres are the simplest case, and always exist, but it is also possible
that a normal surface links an edge or even a larger subcomplex of the triangulation.

It seems possible that Problem 3 is NP-hard. This appears easier to approach than
showing that Problem 2 is NP-hard.

4.6.2 Composite Knot Recognition

The working group also considered the computational complexity of deciding whether a given
knot is composite. In particular, we believe that the following problem is in NP:

▶ Problem 4. Given a knot K ⊂ S3, is K composite, i.e., can K be expressed as a sum of
non-trivial knots K = K1#K2?

Typically a knot is specified by providing a knot diagram, a projection of the knot into
the plane, with its over and under crossings indicated. A few observations are helpful:
1. A composite knot is characterized by the existence of an decomposing annulus, a meridional

essential annulus that is properly embedded in the knot exterior, X = S3 − η(K), where
η(K) is an open tubular neighborhood of K. The knot exterior is a compact manifold
with a single torus boundary component. Cutting the exterior X along the decomposing
annulus, cuts the knot exterior into the exteriors of the knots K1 and K2.

2. Given a diagram of a knot drawn in the plane with c crossings, it is straightforward to
produce a triangulation of the knot exterior with at most O(c) tetrahedra [4].

Using these observations we can recognize a composite knot by decomposing along this
annulus. In particular, we need to
1. Produce the decomposing annulus A, and
2. Show that when X is cut along A, each of the resulting components is a non-trivial knot

exterior.

We may assume that the knot exterior X is given by a 0-efficient triangulation. Then,
some decomposing annulus A is realized as a fundamental normal surface. In particular, this
means that its coordinates (number of triangles and quadrilaterals) are bounded exponentially
and the bit size of the coordinate vector is linear in the number tetrahedra. The coordinate
vector of this annulus will serve as the NP certificate. Indeed, using the coordinate vector,
we can verify that it represents an incompressible annulus.

It remains to show that when X is cut along A, the two knot exteriors produced are
non-trivial (equivalently, that the annulus A is not peripheral in X). For this we can
use Lackenby’s result that the unknotting problem is in co-NP [8]. Unfortunately, naively
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cutting X along A will not be sufficient as the resulting triangulation is only exponentially
bounded. Three alternatives were proposed to mitigate this complication:
1. Cut in a smarter way so that the resulting triangulation (or handle structure) has

polynomial (linear?) complexity in terms of the original.
2. Crush X along the annulus A instead of cutting along it [5, 2]. This is equivalent to

Dehn filling the meridian (producing S3) and then crushing along a capped off sphere.
This reduces the number of tetrahedra, but we would need to prove that knowledge of
the summands can be tracked through the crushing procedure.

3. Work with a spun normal annulus in an ideal triangulation. We would need to show that
a peripheral annulus would not occur as a spun normal annulus.

Each of these approaches holds promise and would require working out some significant
details. Regardless, this result appears to be the most attainable considered by the group.

4.6.3 Ribbon Knot Recognition

The working group also discussed the complexity of ribbon knot recognition with the aim of
showing that this problem is in NP for small knots:

▶ Problem 5. Given a small knot K ⊂ S3, is K a ribbon knot?

A small knot is a knot with no closed essential surfaces in its exterior. Every knot K ⊂ S3

bounds an immersed disk. A knot K is a ribbon knot, if it bounds a ribbon disk an immersed
disk D with only ribbon singularities. A ribbon singularity is an arc of self intersection whose
pre-image in the disk consist of two arcs, one arc in the interior of the disk (a slit) and one
arc with both endpoints in the boundary of the disk (the ribbon passing through the slit).

Given a ribbon knot, choose a ribbon disk that minimizes the number of ribbon singular-
ities. Each of the, say n, ribbon singularities can be desingularized, in two distinct ways,
by a cut and paste of the two sheets that meet the singularity. Resolving all n singularities
produces a Seifert surface for the knot with Euler characteristic 1 − 2n.

▶ Question 6. Among the 2n choices for desingularization, is there always one that produces
an incompressible surface?

While there are clear cases where bad choices produce a compressible surface, an affirmative
answer yields an approach to ribbon knot recognition.

Suppose that there is a desingularization producing an incompressible surface F . When
the knot K is small, F will be realized by a fundamental normal surface. (If F is a normal
sum, then one of the summands is a closed essential surface contradicting that K is small
[7, 6]).

The goal would then be to exhibit an NP certificate consisting of the fundamental normal
surface F along with a collection of n disks in its complement that demonstrate how to
resingularize the surface to produce a ribbon disk for K.

Currently, resolving Question 6 is the main obstacle to this approach. A first step could
be gathering evidence using Burton’s Regina [3].

References
1 Ian Agol, Joel Hass, and William Thurston. 3-manifold knot genus is NP-complete. In

Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages
761–766. ACM, New York, 2002.

2 Benjamin Burton. A new approach to crushing 3-manifold triangulations. Discrete Comput.
Geom., 51(4):864–892, 2014.

24072



154 24072 – Triangulations in Geometry and Topology

3 Benjamin A. Burton. Introducing Regina, The 3-Manifold Topology Software. Experimental
Mathematics, 13(3):267 – 272, 2004.

4 Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of
knot and link problems. Journal of the ACM (JACM), 46(2):185–211, 1999.

5 William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differential
Geom., 65(1):61–168, 2003.

6 William Jaco and Eric Sedgwick. Decision problems in the space of Dehn fillings. Topology,
42(4):845–906, 2003.

7 William Jaco and Jeffrey L. Tollefson. Algorithms for the complete decomposition of a
closed 3-manifold. Illinois Journal of Mathematics, 39(3):358 – 406, 1995.

8 Marc Lackenby. The efficient certification of knottedness and Thurston norm. Advances in
Mathematics, 387:107796, 2021.

4.7 Two problems on flip distances
Jonathan Spreer (University of Sydney, AU), Jean Cardinal (ULB – Brussels, BE), Francis
Lazarus (CNRS – Grenoble, FR), Lionel Pournin (Université Paris 13 – Villetaneuse, FR),
Günter Rote (FU Berlin, DE), Saul Schleimer (University of Warwick – Coventry, GB), and
Birgit Vogtenhuber (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Jonathan Spreer, Jean Cardinal, Francis Lazarus, Lionel Pournin, Günter Rote, Saul Schleimer,
and Birgit Vogtenhuber

These are the notes of the working group looking into flip distances. They contain two initial
findings. The first one is a family of pairs of triangulations of the convex 2k-gon, where k

is at least 5, that produces flip paths of worst possible length between them for a natural
heuristic. The second one consists of upper and lower bounds on the flip distances in the
modular flip graph of the annulus with arbitrary numbers of marked points on its boundary
components.

4.7.1 Introduction

Flip graphs – graphs whose vertices are the triangulations of a geometric or topological
space and whose edges correspond to a local operation between them called a flip – appear
naturally in computational geometry [15, 20, 24] and in low-dimensional topology [2, 9, 17].
When the triangulated space is a convex polygon, that graph is also relevant to algebraic
combinatorics since in that case, it is precisely the edge graph of the associahedron [14], a
polytope that has been generalized in a number of ways [5, 10, 11, 21].

The geometry of flip graphs has attracted considerable attention because it is intimately
connected to the complexity of balancing binary trees [27], provides a dissimilarity measure
between these trees [7], serves as a combinatorial model for the mapping class group of a
surface [9, 17], or can be used as a tool to optimize triangulations [1, 3, 4]. The diameter
of the associahedron is known exactly [23], but the complexity of computing the distance
between two of its vertices is still an open problem [15, 20].

This note has two parts. In Section 4.7.2, we discuss two natural heuristics to find
short paths between triangulations of the convex n-gon and show how they are linked. The
heuristics use what is called shadow vertex paths and crossing-monotone flip sequences. We
then present a family of pairs of triangulations for which one of these heuristics performs
worst possible, up to a constant factor, and discuss implications for the other heuristics. In
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Section 4.7.3 we prove upper and lower bounds on flip distances in the modular flip graph of
triangulations of the annulus with n1 and n2 marked points on its boundary components,
n = n1 + n2. More specifically, we prove that the diameter of this flip graph must lie between
9
4 n and 10

4 n, see Lemmas 9 and 10.

4.7.2 Negative results for flip path heuristics

In this section, we consider the flip graph F(P ) of a Euclidean convex n-gon P . A triangulation
of P is a set of pairwise non-crossing arcs between the vertices of P that decompose P into
triangles. In this context, an arc is just a straight line segment. The vertices of F(P ) are the
triangulations of P and its edges link and pair of triangulations that differ by exactly one arc.
It is well-known that F(P ) is the edge graph of the (n − 3)-dimensional associahedron [14].

We consider two natural heuristics for computing short flip sequences between two given
triangulations T1 and T2 of a convex n-gon:
1. Shadow vertex paths are obtained by projecting the associahedron onto a plane. The two

directions defining the projection (the shadow) are chosen such that vertices corresponding
to T1 and T2 are both extremal. Then, the projection is used to describe a sequence
of flips turning T1 into T2. The resulting flip path depends on the chosen realization
of the associahedron and on the choice of directions for T1 and T2 in their respective
normal cones. A natural choice of realization of the associahedron is the realization as a
secondary polytope for a regular n-gon.

2. Superimpose T1 and T2. A crossing-monotone path is a sequence of flips, strictly reducing
the number of crossing pairs of arcs between T2 and the intermediate triangulations
obtained from T1 at each step.

We show how these two heuristics are linked, obtain negative results for the first heuristic,
and discuss the implications on the second. More precisely, we present pairs of triangulations,
where the path constructed by the first heuristic is of length O(n2). This path realizes the
worst case asymptotics and is much longer than the actual shortest path of length O(n).

4.7.2.1 Crossing-monotone paths

It is known that crossing-monotone paths exist for all pairs of triangulations of a set of
points in R2 [12]. The same holds for topological surfaces [2, 9, 16]. In this section we give a
short proof of this fact in the special case of a convex n-gon. Given are two triangulations
T1 and T2 of the convex n-gon. We start with T1 and flip edges until we reach the target
triangulation T2. We refer to T1 and all intermediate triangulations as the red triangulation
and to T2 as the blue triangulation.

We start by superimposing T1 and T2. We enumerate the set of red edges with the
maximum number of blue intersections. Each of these edges splits the n-gon into two pieces.
We call such an edge outermost, if one of the two pieces does not contain any red edge with
maximum number of intersections.

▶ Lemma 1. Flipping an outermost red edge decreases the number of intersections between
the red and blue triangulations by at least one.

Proof. Let e be an outermost red edge with maximum number of blue intersections, and
let B and D be its endpoints. Let t1 and t2 be the two red triangles containing e with
vertices B, C, D, and A, B, D respectively. Without loss of generality, let C be the vertex
on the outermost side. Denote the number of blue edge segments separating one of the four
corners A, B, C, and D of the quadrilateral t1 ∪ t2 from the other three by a, b, c, and d,
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respectively. The quadrilateral may also have x transversing edge segments in one of two
directions. Without loss of generality, let these intersect the edges running between B and
C, and A and D, respectively. See Figure 15 for an illustration.

 

Figure 15 An outermost red edge e with the maximum number of blue intersections.

We then have for the number of intersections of the 5 edges of t1 and t2: e is intersected
x + b + d = m times. The edge between B and D is intersected x + b + c < m times (note
that outermost edges must have strictly fewer than m intersections by construction). It
follows that we have c < d. Similarly, the edge between A and D is intersected x + a + d ≤ m

times and hence a ≤ b. It follows that flipping e creates an edge which is intersected
x + a + c < x + b + d = m times and the overall number of intersections between the red and
blue triangulations has strictly decreased. ◀

From Lemma 1 the existence of crossing-monotone paths immediately follows: iteratively
flip an outermost red edge with maximum number of crossings, until the red and blue
triangulations coincide. Since T1 and T2 initially have O(n2) crossings, this is also an upper
bound for the length of such a path.

4.7.2.2 Shadow vertex paths

Secondary polytopes and regular triangulations. Regular triangulations of point sets in Rd

are projections of the lower convex hulls of lifted point sets, in which every point is assigned
an arbitrary height as (d + 1)th coordinate. It is well-known that regular triangulations are
one-to-one with vertices of the secondary polytope [11]. The latter is realized as the convex
hull of points whose coordinates are the combined volume of the simplices incident to each
point in the triangulation. The edges of the secondary polytopes are one-to-one with bistellar
flips. Note that, in the general case, flips are no longer always edge flips and a more general
definition is needed for them (see for instance [24, Definition 4]). In particular, flips can
remove or introduce a vertex in a triangulation, provided that this vertex is not a vertex of
the convex hull of the considered set of points. For a comprehensive introduction to flips and
flip graphs in arbitrary dimensions, see [8].

The method. A shadow vertex paths on the secondary polytope is obtained by linearly
interpolating between height functions of the two triangulations corresponding to the two
endpoints. A height function can be interpreted as a direction in space, such that the lower
convex hull defines the triangulation associated with the optimal vertex of the secondary
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polytope in this direction. Recall that a path in the edge graph of a polytope P is non-
revisiting when the vertices of that path that belong to any given facet of P are consecutive.
In other words, such a path never re-enters a facet of P after it leaves it.

▶ Lemma 2. Shadow vertex paths on the secondary polytope of a set of points in general
position are non-revisiting. This implies that a shadow vertex path on the secondary polytope
of a set of n points in convex position in the plane always has length at most (n − 2)(n − 3)/2.

Proof. This follows from the known fact that, when a face of a triangulation disappears
along a shadow vertex path, this face cannot reappear later in that path [24, Theorem 8].
Facets of secondary polytopes are one-to-one with subdivisions that can only be coarsened
by the trivial subdivision [8]. Consider such a subdivision S that corresponds to a facet F

of the secondary polytope. When the point set that gives rise to the secondary polytope is
in general position, a face of S that is not full-dimensional must be a simplex. The shadow
vertex path leaves F precisely when one of these simplices disappears. As they cannot
reappear later along the path, F cannot be revisited.

For the secondary polytope P of n points in convex position in the plane, the facets
correspond to the n(n − 3)/2 diagonals of the polygon. Since a vertex of P is incident to
n − 3 facets and the shadow vertex paths on P are non-revisiting, such a path has length at
most

n(n − 3)
2 − (n − 3) = (n − 2)(n − 3)

2
as desired. ◀

Implications and scope of the method. We recall that a polytope is Hirsch when the
diameter of its edge graph is at most the number of its facets minus its dimension [13, 26].

▶ Theorem 3. Secondary polytopes of point sets in general position are Hirsch.

Proof. The existence of a non-revisiting path between every pair of vertices implies Hirsch’s
bound on the diameter [13, 26]. ◀

Recall that a polytope is non-revisiting if all the geodesics paths between its vertices are
non-revisiting (this is called the non-leaving face property in [6]).

▶ Lemma 4. There exist secondary polytopes of d-dimensional point sets, for some d, that
are not non-revisiting.

Proof. This is obtained with the so-called mother of all examples [8]: point sets consisting
of two homothetic simplices one of whose is contained in the interior of the other. Their
secondary polytope is known as the stellohedron [22], and is known to have revisiting geodesics
[6]. ◀

This shows that for higher-dimensional regular triangulations, there exist geodesics that
are not shadow vertex paths.

▶ Lemma 5. There exist secondary polytopes and geodesics on those, that are not shadow
vertex paths. Hence there does not exist any height function whose interpolation yields a
shortest flip sequence.
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4.7.2.3 A family of examples producing long paths

In this section we present a family of pairs of triangulations of the n = 2k-gon (E1
k , E2

k)k≥5 for
which the methods described in Sections 4.7.2.1 and 4.7.2.2 produce paths of asymptotically
worst possible length Θ(n2).

Figure 16 shows four members of our family of examples, each consisting of a start and
a target triangulation. They consist of triangulations of a n = 2k-gon, obtained by gluing
fan-triangulations of two (k + 1)-gons in a point-symmetric way. Start and end triangulations
are identical, except for a rotation of one 2kth of a full twist.

Figure 16 Our family of examples for k = 5, 6, 7, 8. Top row: start triangulations E1
k . Bottom

row: target triangulations E2
k .

▶ Lemma 6. There exist shadow vertex paths transforming triangulations of the n = 2k-gon
E1

k into E2
k in (n/2 − 1)2 steps.

In particular, there exist shadow vertex paths of length Ω(n2) on the (secondary polytope
realization of the) associahedron, hence the upper bound n(n − 3)/2 from Lemma 2 is tight,
up to a factor of 2.

Sketch of the proof. It is enough to provide a pair of height functions for every pair (E1
k , E2

k)
of triangulations with the desired properties.

We pick vertices of the 2k-gon with coordinates (cos(jπ/k), sin(jπ/k)), 0 ≤ j < 2k, and
label them from 0 to 2k − 1 accordingly. For 0 ≤ j < k, vertices j and k + j start with
heights −j2 and end with heights 2kj − j2, linearly interpolating between these to values
to flip from E1

k to E2
k . The heights can be perturbed by small amounts to ensure general

position throughout the procedure.
We claim without proof that the shadow vertex paths obtained in this way have the

desired property. ◀

▶ Remark. Gradually adding small, random perturbations to the height functions proposed
in the proof of Lemma 6 allows us to find other flip sequences using the shadow vertex
path method. For instance, a guided search based on iteratively performing small random
permutations, finds flip sequences between E1

5 and E2
5 of length 10 (a geodesic) and 17.

▶ Lemma 7. There exist crossing-monotone sequences of flips between triangulations of a
convex n-gon that are of quadratic size (and hence worst possible).

Proof. The flip sequence from the proof of Lemma 6 is crossing-monotone. ◀
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The crossings based heuristics described at the beginning of the section is implemented
in practice by selecting at each step a flip that makes the number of crossings decrease the
most. In that case, it is known that the heuristics is, at best a 1.5-approximation algorithm
[25]. However, computational evidence suggests that it is accurate most of the time [7].
This implementation works very well on the examples that we describe here and we ask the
following.

▶ Question 8. Is the greedy crossing heuristic, in which we flip an arc that decreases the
number of crossings the most, an approximation algorithm?

4.7.3 The modular flip graph of the annulus

Consider an orientable surface Σ equipped with a finite set of points such that each boundary
component of Σ contains at least one of these points. By a triangulation of Σ, we mean an
inclusion-wise maximal set of pairwise non-crossing arcs on Σ between two of these prescribed
points. Note that the arcs are considered up to isotopy, so in particular, when we say that
two arcs are non-crossing, this means that two representatives in the corresponding isotopy
classes are non-crossing. The flip graph F(Σ) of Σ is the graph whose vertices are the
triangulations of Σ and whose edges correspond to flipping arcs.

The modular flip graph MF(Σ) of Σ is obtained by quotienting F(Σ) by the homeo-
morphisms of Σ that fix the vertices of the triangulations pointwise [17]. It is known that
when Σ is an annulus with n points on one boundary and a single point on the other, the
diameter of the modular flip graph of Σ is exactly ⌊5n/2⌋ − 2 [17, Theorem 1.4]. In this
section, we consider the slightly more general case when Σ is an annulus with n1 points on
one boundary and n2 on the other, with n = n1 + n2. We aim at bounding the worst-case
diameter of the modular flip graph of Σ as a function of n.

4.7.3.1 Upper bounds

In this section we prove the following statement.

▶ Lemma 9. Let Σ be an annulus with a total of n marked points on its two boundary. The
diameter of MF(Σ) is ⌊5(n − 1)/2⌋ − 2.

Proof. Let T1 and T2 be two arbitrary triangulations of the annulus Σ. Let v be a vertex on
the inner boundary of Σ such that in T2, v is adjacent to at least one vertex w on the outer
boundary of Σ. (Note that each triangulation of Σ has at least one such vertex v). Let n1
and n2, n1, n2 ≥ 1 and n1 + n2 = n, be the number of vertices on the outer and on the inner
boundary component of Σ, respectively.

We start by flipping T1 to a common target. For this we iteratively increase the vertex
degree of v in T1 until it is adjacent to all other vertices. Note that, as long as v is not yet
adjacent to all other vertices, it is always possible to find a flip that strictly increases the
degree of v: every edge that is not a boundary edge is flippable, and the vertex link of v

contains a non-boundary edge if and only if v is not yet adjacent to all other vertices. Since
there are n non-boundary edges, and v may initially not be adjacent to a single one, this can
always be done in at most n flips.

The result is a triangulation T ′
1 with – necessarily – the following properties:

there exists a unique vertex u on the other boundary with two edges running between v

and u, enclosing this inner boundary and forming a heart shape
every other vertex on the outer boundary has exactly one edge running between it and v

there is a loop edge running from v to v and encircling the inner boundary
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there exists a unique vertex x on the inner boundary with two edges running between v

and x

every other vertex on the inner boundary has exactly one edge running between it and v

 

Figure 17 The triangulation T ′
1 of the annulus with n1 = 6 vertices on the outer, and n2 = 5

vertices on the inner boundary components.

Note that the vertices u, v, and x in the above properties uniquely determine T ′
1 . See

Figure 17 for an illustration.
For T2, we cut Σ along the edge vw to obtain a “rectangle” (cycle with n + 2 vertices),

whose corners are two copies of each of v and w. Two opposite sides of the rectangle contain
the outer and inner boundary points of Σ, respectively, and the other two sides are the two
copies of the edge vw.

 

Figure 18 The triangulation T ′
2 , again with n1 = 6 vertices on the outer, and n2 = 5 vertices on

the inner boundary components. Note that x is only one flip away from being twice adjacent to v.

Note that the edges of T2 form a triangulation of this rectangle and that flips between
triangulations in the rectangle correspond to flips between triangulations of the annulus Σ.
Using at most n − 1 flips, we can flip in this rectangle from T2 to a fan at any of the two
copies of v. Gluing the resulting triangulation along edge vw yields a triangulation T ′

2 of Σ
where v has maximum degree,

Note that we can arbitrarily choose, which copy of v we use as the center of the fan.
We make this choice in the following way: Consider the number d1 of vertices of Σ that lie
between one copy v and x along the inner boundary part of the rectangle, and the number
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d2 of vertices of Σ that lie between the other copy of v and x along the inner boundary part
of the rectangle. For the centre of the fan, we choose the copy of v for which this number is
greater. Note that since d1 + d2 = n2 − 2, we have min{d1, d2} ≤ ⌊n2 − 2/2⌋ = ⌊n2/2⌋ − 1.

We can now flip T ′
1 to T ′

2 in the following way: Along the outer boundary of Σ, we keep
on flipping one of the two edges between v and (initially) u until there are two edges running
between v and w. Since we can choose the direction around the outer circle in which we
travel, this can be done in at most ⌊n1/2⌋ flips. Next we turn to the inner boundary of Σ:
here, similarly as before, we can flip x to be twice adjacent to v in at most ⌊n2/2⌋ − 1 flips.
This is possible because of how we chose the centre of the fan. After these additional at most
⌊n1/2⌋ + ⌊n2/2⌋ − 1 flips, the triangulations now coincide.

Altogether, the flip sequence described above is of length ⌊5n/2⌋ − 2. ◀

4.7.3.2 Lower bounds

The tools to prove lower bounds on the diameter of flip-graphs of surfaces can be found in
[17, 18, 19, 23].

The best introduction to the lower bound techniques would be to read [17] first, though
the case of the annulus with n points on a boundary and one point on the other (matching
lower and upper bounds for the diameter of the flip-graph) is treated in [17]. Note also that
a general upper bound of 4n+K (K is a constant) on the diameter of the flip-graph is given
in [17] in the case when there’s a boundary containing n points and the rest of the surface is
arbitrary but fixed. These techniques were introduced in [23] in the special case of convex
polygons.

▶ Lemma 10. There exist triangulations T1 and T2 of the annulus with n = n1 + n2 points
on their boundaries that are 2.25n + O(1) flips apart.

Proof. Start with the diameter realising pair of triangulations of the case n1 = n − 1, n2 = 1.
This requires a flip sequence of length at least ≈ 5n1/2 [17].

Next we think of the inner boundary to have more than one point. Since there is a loop
edge encircling the inner boundary (see [17] for details), the space bounded by the inner
boundary together with the loop edge is an n2-gon of diameter ≈ 2n2. Since, according to
[27], a geodesic between triangulations having a common edge, preserves this edge, the loop
edge of these examples remains intact in a shortest path from one to the other. It follows
that these triangulations require at least 5n1/2 + 2n2 + O(1) flips to be connected. Since
inner and outer boundary are symmetric, this bound is lowest for n1 ≈ n2 and hence we
obtain a lower bound of 2.25n + O(1). ◀
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