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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 24092 “Applied and
Combinatorial Topology”.

The last twenty years of rapid development of Topological Data Analysis (TDA) have shown
the need to analyze the shape of data to better understand the data. Since an explosion of new
ideas in 2000’ including those of Persistent Homology and Mapper Algorithms, the community
rushed to solve detailed theoretical questions related to the existing invariants. However, topology
and geometry still have much to offer to the data science community. New tools and techniques
are within reach, waiting to be brought over the fence to enrich our understanding and potential
to analyze data. At the same time, the fields of Discrete Morse Theory (DMT) and Combinatorial
Topology (CT) are developed in parallel with no strong connection to data-intensive TDA or to
other statistical pipelines (e.g. machine learning).

This Dagstuhl Seminar brought together a number of experts in Discrete Morse Theory,
Combinatorial Topology, Topological Data Analysis, and Statistics to (i) enhance the existing
interactions between these fields on the one hand, and (ii) discuss the possibilities of adopting
new invariants from algebra, geometry, and topology; in particular inspired by continuous and
discrete Morse theory and combinatorial topology; to analyze and better understand the notion
of shape of the data.

The different talks in the seminar included both introductory talks as well as current research
expositions and proved fruitful for the open problem and break-out sessions. The topics that were
discussed included
1. algorithmic aspects for efficient computation as well as Morse theoretic approximations
2. topological information gain of multiparameter persistence
3. understanding the magnitude function and its relation to graph problems.
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1 Executive Summary

Paweł Dłotko (Polish Academy of Science – Warsaw, PL)
Dmitry Feichtner-Kozlov (Universität Bremen, DE)
Anastasios Stefanou (Universität Bremen, DE)
Yusu Wang (University of California, San Diego – La Jolla, US)
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The Dagstuhl Seminar titled “Applied and Combinatorial Topology” brought together
researchers in mathematics and computer science to engage in active discussions and exchange
of ideas on theoretical, computational, and practical aspects of applied and combinatorial
topology. The seminar has led to further the connections between the Discrete Morse Theory,
Computational Topology, and Statistics communities and identification of open problems
that can be addressed together.

Context

Applied Topology is a new and rapidly increasing research field within applied mathematics.
Its main focus is to utilize topological methods to solve applied problems. The common
emphasis of the methods in Applied Topology is on the computational aspect. Application
areas include: data analysis, computational biology, network analysis, graph visualization
and reconstruction, feature selection, and many more.

Goals

The Dagstuhl Seminar 24092 (February 25–March 1, 2024) brought together three research
communities, namely researchers in discrete Morse theory (DMT), computational topology,
and statistics. The aim was to facilitate collaborations that could strengthen the existing
interactions of the fields (e.g. Reeb graphs, Mappers and discrete vector fields) and collabora-
tions that may lead to the development of new descriptors of data (e.g. persistence invariants,
magnitude functions, etc.), which in turn have the potential to be inputted into statistical
methodologies and to provide their efficient implementations.

Topics

We chose three research topics for which the respective communities will benefit from a
knowledge exchange and mutual discussion.

Discrete Morse theory. The research field of discrete Morse theory, developed by R. Forman,
is a discrete counterpart of a continuous Morse theory. It has recently found many practical
applications both within mathematics (e.g. configuration spaces, and homology computa-
tion) as well as outside mathematics, such as computer science (e.g. denoising and mesh
compression). The target of discrete Morse theory is to construct a discrete vector field that
either simplifies the data at hand, without losing its important features, or to introduce
discrete dynamics on the data. The resulting dynamics can be further analyzed to extract
certain interesting sets, for instance invariant sets. In both cases, the aim is to simplify
the data or to find the important regions of the data. One example of use of Morse theory
in data analysis is the Reeb graph of a Morse function. A discrete adaptation of Reeb
graphs which uses ideas of partial clustering is known as Mapper and has seen a great deal
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of success in data analysis. Another example is an adaptation of discrete Morse theory to
computations of persistent homology in topological data analysis: the machinery of discrete
Morse theory can be used to help reduce the complexity of the evolving topology in the
filtrations of datasets. Moreover, it was recently shown that discrete Morse theory can be
utilized for simplification and complexity reduction also in the multiparameter persistence
setting. Furthermore, discrete Morse theory has been studied in conjunction with persistent
homology theory and has found interesting applications, such as reconstruction of grayscale
digital images and reconstruction of graphs, see for instance 2D road reconstruction and
3D neuron reconstruction. Another powerful application of Discrete Morse theory is in
distributed computing. In both cases, the discrete Morse theory is used to simplify data at
hand, and recover their invariants. We believe that using this machinery, one can do even
more. We would like to take the paradigm of discrete Morse theory further and directly try
to recover certain invariants from the constructed discrete vector fields.

Computational Topology. The research field of combinatorial topology originated from
the study of topological invariants derived from combinatorial decompositions of spaces
(cf. simplicial approximation theorem), known as simplicial complexes. One of the main
examples of such invariants are the Betti numbers. Combinatorial topology was later named
algebraic topology due to the switch of focus of the field on its algebraic aspects (as homology
groups), which is attributed to Emmy Noether. In the research area of computational
topology (also known as topological data analysis), we are interested in studying a single
parameter filtration of complexes associated with a data set (viewed as finite metric space)
such as the Vietoris-Rips filtration, or multiparameter filtrations of complexes associated
to datasets, such as the function-Rips bifiltration and the multicover bifiltration. Those
structures can be simplified with the tools of discrete Morse theory. A homology functor is
then being applied to those filtrations resulting in a single or multiparameter persistence
module. Single-parameter persistence modules are visualized by their persistence diagrams.
A well-known invariant of multiparameter persistence modules is the rank invariant which
captures important persistence information about multifiltrations of datasets. Recently, there
have been some refinements of the rank invariant and also a generalization of the notion of
persistence diagram (induced by the rank invariant). Developing algorithms for the efficient
computation of multiparameter persistence modules and their rank invariants, is one of the
big challenges of computational topology and topological data analysis (TDA).

Statistics in Topological Data Analysis. Persistence invariants such as the persistence
diagram are equipped with a family of metrics, e.g. the ℓp-Wasserstein distances and the
bottleneck distance. To make these signatures applicable, one must interface them with
standard statistical methods. This has already been done e.g. when developing statistics
on persistent diagrams, or other signatures such as persistence landscapes. However, much
remains unknown in the case of limits of persistence diagrams when the number of points
goes to infinity. A good example of a successful synergy between statistics and combinatorial
topology is a process of vectorization of persistence diagrams. This process allowed the
community to build multiple applications of persistent homology into many branches of
science and engineering. We believe that, if new invariants originated from discrete Morse
theory and combinatorial topology are introduced, such as the recently introduced Mapper
graph of datasets, a work needs to be done, to incorporate them into existing statistical
pipelines, hypothesis testing methods and similar. Moreover, a vectorization method for
Mapper graphs needs to be established and their limit behavior (when e.g. the number of
points goes to infinity) need to be studied. Also an application in standard statistics will
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be further explored; It is widely known that one should not rely on summary statistics, but
always attempt to visualize the data. However, oftentimes the data are very high dimensional.
In this case, Mapper type algorithms may serve as a surrogate of a scatter plot in visualization
by providing a graph–based summary of the data. Our aim will be to explore this connection
and look for ways of inputting Mappers into standard statistical pipelines, e.g. including
concepts of averages and central limit theorems. We will also explore the connections between
Mapper and other combinatorial topology concepts via, for instance, discrete Morse theory.

Participants, Schedule, and Organization

The attendees were strongly encouraged to prepare talks that will include open problems and
new research directions. The program for the week consisted of talks of different lengths, open
problem sessions, breakout sessions, and summary sessions with the participants. On Monday,
we started with an 1-hour session where the participants introduced themselves, and then
we had 6 introductory talks, two on Discrete Morse theory, two on computational topology
and two on Statistics in TDA. Then, we had an open problem session where participants
identified certain open problems and directions for research for the breakout sessions.

Participants chose one or more from the following proposed topics for breakout sessions:
1. Can we compute representatives of generators of persistent homology in less than cubic

time? (proposed by Tamal Dey)
2. Optimal Discrete Morse function given a partial matching (proposed by Yusu Wang)
3. Topological information, i.e. “how much topological information remains when going from

one to two dimensional filtrations (or from Reeb graphs to Reeb spaces)” (proposed by
Bei Wang Phillips)

4. Manifold reconstruction guarantees (proposed by Ulrich Bauer)
5. Algorithmic questions on (multiparameter) persistence (proposed by Fabian Lenzen)
6. Can TDA detect planted cliques? (proposed by Bastian Rieck)
7. Monotonicity of magnitude functions of Euclidean metric spaces (proposed by Sara

Kalisnik)
8. General applied topology (proposed by Dmitry Feichtner-Kozlov).
Tuesday to Thursday in the morning we had the lecture talks and we organized breakout
sessions on Tuesday and Thursday afternoon. We reserved three rooms for the breakout
sessions that ran in parallel, the main seminar room for topics (1)–(5), another room for
topics (6)–(7), and a small room for topic (8). On Wednesday afternoon we organized
some groups for hiking near Schloss Dagstuhl. Representatives from the working groups
summarized the discussions during their breakout sessions and presented it to all participants
on Thursday evening and Friday morning.

Results and Reflection

The seminar successfully facilitated a rich exchange of ideas and expertise among participants.
The varied program, including talks, open problem sessions, breakout discussions, and
outdoor activities, created an environment conducive to collaborative exploration. Attendees
expressed satisfaction with the content and structure of the seminar, indicating a strong
interest in future editions. During the breakout sessions, it was encouraging to note that some
participants reported preliminary results related to the open problems presented. These early
findings sparked lively discussions and provided valuable insights into potential directions for
further research. The seminar served as a platform not only for sharing existing knowledge
but also for generating new ideas and approaches.
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3 Overview of Talks

3.1 Discrete Morse theory and persistent homology of geometric
complexes

Ulrich Bauer (TU München, DE)

License Creative Commons BY 4.0 International license
© Ulrich Bauer

I will discuss the interplay between geometry and topology, and between Morse theory and
persistent homology, in the setting of geometric complexes. This concerns constructions
like Rips, Čech, Delaunay, and Wrap complexes, which are fundamental construction in
topological data analysis. The tandem of Morse theory and homology shows the topological
equivalence of several of these constructions, helps in speeding up their computation by a huge
factor (in the software Ripser), reveals thresholds at which homology necessarily vanishes
(with links to a classical result by Rips and Gromov), and relates optimal representative
cycles for persistent homology to the industry-tested Wrap reconstruction algorithm.

3.2 (Discrete) Morse Theory and Inverse Problems
Julian Brüggemann (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Julian Brüggemann

Morse theory and its discrete version are well established toolboxes in pure topology. They
both serve a similar purpose: use the combinatorics of the real numbers via well-behaved real-
valued functions to compute topological invariants of geometric objects. In some instances,
certain collections of topological invariants allow for a complete classification of the given
class of spaces, which in turn might allow for a reconstruction of the original objects from
the computed collection of invariants, most time up to some suitable notion of equivalence.
In this talk, I will give a brief overview over smooth and discrete Morse theory and mention
some classification results in topology as well as solutions to inverse problems in TDA.

3.3 A Statistical Perspective on Multiparameter Persistent Homology
Mathieu Carrière (Centre Inria d’Université Côte d’Azur – Sophia Antipolis, FR)

License Creative Commons BY 4.0 International license
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Multiparameter persistent homology is a generalization of persistent homology that allows for
more than a single filtration function. Such constructions arise naturally when considering
data with outliers or variations in density, time-varying data, or functional data. Even
though its algebraic roots are substantially more complicated, several new invariants have
been proposed recently. In this talk, I will go over such invariants, as well as their stability,
vectorizations and implementations in statistical machine learning.
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3.4 Computational Topology for Zigzag Persistence
Tamal K. Dey (Purdue University – West Lafayette, US)

License Creative Commons BY 4.0 International license
© Tamal Dey

In topological data analysis, zigzag persistence has become an important component because
it enhances the applicability of persistence theory by allowing both insertions and deletions
of simplices in a simplicial filtration. Such filtrations occur in applications where a space
or a function on it changes over time. For example, in network analysis, new connections
appear and existing connections disappear over time. The standard persistence algorithm for
non-zigzag filtrations does not work for the zigzag case. After laying out the background and
earlier work on computations of zigzag persistence, we present a new algorithm FastZigzag
for computing zigzag persistence from an input filtration. We follow it with the discussion of
the well known vineyard problem in the zigzag case. We present a recent efficient algorithm
for computing the zigzag vineyard. Akin to the non-zigzag case, the special but important
case of graphs allow certain optimizations that make the computations of zigzag barcode and
their vineyards more efficient. We go over some of these developments. Finally, we indicate
some of the applications of zigzag persistence, in particular to data analysis in TDA with
multiparameter persistence.

3.5 Hypergraph Barcodes: a way to Link two Different Notions of
Hypergraph Homology

Robert Green (University at Albany, US)

License Creative Commons BY 4.0 International license
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Hypergraphs are a natural data structure to consider when studying networks with multiway
connections. One approach to characterizing the features of these networks involves defining
a form of hypergraph homology and then leveraging these homological traits to delineate the
hypergraphs. There are many different ways however to define hypergraph homology and
different approaches yield different types of features. In this talk I will present two different
approaches to this problem and then connect them by presenting a persistence module they
both live inside of.

3.6 Merge Tree for Periodic Data
Teresa Heiss (Institute of Science and Technology Austria, AT)

License Creative Commons BY 4.0 International license
© Teresa Heiss

Periodic data is abundant in material science, for example the atoms of a crystalline material
repeat periodically. Additionally, periodic boundary conditions are used in many further
applications, for example in cosmology, to remove boundary effects. It is unclear how to deal
with the periodicity of the data when computing topological descriptors, like the merge tree
or persistent homology. A classical approach is to compute the respective descriptor simply
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on the torus. However, this does not give the information needed for many applications and
is in some sense even unstable under noise. Therefore, we suggest decorating the periodic
merge tree gained from the torus with additional information, describing for each connected
component how many components of the infinite periodic covering space map to it. The
resulting periodic merge tree carries the desired information and fulfills all the desired
properties, in particular: stability and efficient computability.

3.7 When Do Two Distributions Yield the Same Expected Euler
Characteristic Curve in the Thermodynamic Limit

Niklas Hellmer (Polish Academy of Science, PL)

License Creative Commons BY 4.0 International license
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Joint work of Tobias Fleckenstein, Niklas Hellmer
Main reference Tobias Fleckenstein, Niklas Hellmer: “When Do Two Distributions Yield the Same Expected Euler

Characteristic Curve in the Thermodynamic Limit?”, CoRR, Vol. abs/2401.04580, 2024.
URL https://arxiv.org/abs/2401.04580

Given a probability distribution F on Rd with density f , consider a sample Xn of n points
sampled from F i.i.d.. We study the Euler characteristic curve (ECC) of the union of balls⋃
x∈Xn

Brn
(x) in the thermodynamic limit. That is, as n → ∞, we let rn → 0 such that

nrd
n approaches a finite, non-zero limit. It turns out that two distributions yield the same

expected ECC in this setting if and only if they have the same excess mass. Whether this
condition is also necessary for the distributions of the ECCs to coincide in the limit remains
an open question.

3.8 Topological descriptors for efficient analysis of electronic structures
Ingrid Hotz (Linköping University, SE)

License Creative Commons BY 4.0 International license
© Ingrid Hotz

In this talk, I will present some of our ongoing work on visual analysis and comparison of
electronic structures in molecules or crystals based on topological analysis. The application
context is to develop novel materials with some desired properties by simulating material
configurations from a large number of possible candidates. Our aim is to characterize such
materials based on their electronic structure, represented by their electron density fields.
Therefore, we have experimented with various multiscale descriptors that support quantitative
and visual comparative analysis to help scientists better understand the differences in their
structures through visual exploration guided by automatic analyzes such as outlier detection,
clustering, and similar structure searches.
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3.9 Magnitude, Alpha Magnitude and Applications
Sara Kalisnik (ETH Zürich – Zürich, CH)

License Creative Commons BY 4.0 International license
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Joint work of Sara Kalisnik, Miguel O’Malley, Nina Otter

Magnitude is an isometric invariant for metric spaces that was introduced by Leinster around
2010, and is currently the object of intense research, since it has been shown to encode
many known invariants of metric spaces. In recent work, Govc and Hepworth introduced
persistent magnitude, a numerical invariant of a filtered simplicial complex associated to a
metric space. Inspired by Govc and Hepworth’s definition, we introduced alpha magnitude.
Alpha magnitude presents computational advantages over both magnitude as well as Rips
magnitude, and is thus an easily computable new measure for the estimation of fractal
dimensions of real-world data sets.

3.10 Graphcodes
Michael Kerber (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Michael Kerber

Joint work of Michael Kerber, Florian Russold

We introduce graphcodes, a novel multi-scale summary of the topological properties of a data
set that is based on the well-established theory of persistent homology. Graphcodes handle
data sets that are filtered along two real-valued scale parameters. Such multi-parameter
topological summaries are usually based on complicated theoretical foundations and difficult
to compute; in contrast, graphcodes yield an informative and interpretable summary and
can be computed as efficient as one-parameter summaries. Moreover, a graphcode is simply
an embedded graph and can therefore be readily integrated in machine learning pipelines
using graph neural networks. We describe such a pipeline and demonstrate that on data
sets with rich topological features, graphcodes achieve better classification accuracy than
state-of-the-art approaches.

3.11 The discriminating power of the generalized rank invariant
Woojin Kim (Duke University – Durham, US & KAIST – Daejeon, KR)

License Creative Commons BY 4.0 International license
© Woojin Kim

Joint work of Woojin Kim, Nathaniel Clause, Facundo Mémoli
Main reference Nate Clause, Woojin Kim, Facundo Mémoli: “The discriminating power of the generalized rank

invariant”, CoRR, Vol. abs/2207.11591, 2022.
URL https://doi.org/10.48550/ARXIV.2207.11591

In topological data analysis, the rank invariant is one of the best known invariants of
persistence modules over posets. The rank invariant of a persistence module M over a given
poset P is defined as the map that sends each comparable pair p ≤ q in P to the rank of the
linear map M(p ≤ q). The recently introduced notion of generalized rank invariant acquires
more discriminating power than the rank invariant at the expense of enlarging the domain of
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rank invariant to a collection I of intervals of P that contains all segments of P . In this talk,
we discuss the tension that exists between computational efficiency and the discriminating
power of the generalized rank invariant, depending on its domain I. The Möbius inversion
formula will assume a significant role in clarifying the discriminating power, even in cases
where the domain I is not locally finite. Along the way, we show that the possibility of
encoding the generalized rank invariant of M over a non-locally-finite I into a multiset of
signed intervals of P depends on how “tame” M is. Such a multiset, if it exists, is obtained
via Möbius inversion of the generalized rank invariant over a suitable locally finite subset of I.

3.12 Barcodes for the topological analysis of gradient-like vector fields
Claudia Landi (University of Modena and Reggio Emilia, IT)

License Creative Commons BY 4.0 International license
© Claudia Landi

Joint work of Clemens Bannwart, Claudia Landi
Main reference Clemens Bannwart, Claudia Landi: “Barcodes for the topological analysis of gradient-like vector

fields”, CoRR, Vol. abs/2401.08466, 2024.
URL https://doi.org/10.48550/ARXIV.2401.08466

Intending to introduce a method for the topological analysis of fields, we present a pipeline
that takes as an input a weighted and based chain complex, produces a tame epimorphic
parametrized chain complex, and encodes it as a barcode of tagged intervals. We show
how to apply this pipeline to the weighted and based chain complex of a gradient-like
Morse-Smale vector field on a compact Riemannian manifold in both the smooth and discrete
settings. Interestingly for computations, it turns out that there is an isometry between
tame epimorphic parametrized chain complexes endowed with the interleaving distance and
barcodes of tagged intervals endowed with the bottleneck distance. Concerning stability, we
show that the map taking a generic enough gradient-like vector field to its barcode of tagged
intervals is continuous. Finally, we prove that the barcode of any such vector field can be
approximated by the barcode of a combinatorial version of it with arbitrary precision.

3.13 Challenges in two- and multi-parameter persistent cohomology
Fabian Lenzen (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Fabian Lenzen

In the last years, research in persistent homology has started to focus on multi-parameter
persistent homology, which studies the homology of a space filtered by multiple parameters
independently. For example, this can be used to overcome the notorious susceptibility of
persistent homology to outliers, to deal with data sats of inhomogeneous density, or to study
filtration types that rely on more than one parameter.

Computing multi-parameter persistent homology is challenging, both algebraically and
algorithmically. In particular, current software is orders of magnitudes slower than common
software for one-parameter persistence.

We will discover why persistent cohomology – a key ingredient in the efficiency of one-
parameter persistence software – is inherently more difficult in multi-parameter persistence,
how this is dealt with in the software package 2pac, and what problems still remain.
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3.14 Models of Subdivision Bifiltrations
Michael Lesnick (University at Albany – New York, US)

License Creative Commons BY 4.0 International license
© Michael Lesnick

Joint work of Michael Lesnick, Kenneth McCabe

We study the size of Sheehy’s subdivision bifiltrations, up to homotopy. We focus in particular
on the subdivision-Rips bifiltration SR, the only density-sensitive bifiltration on metric spaces
known to satisfy a strong robustness property. Given a simplicial filtration F with a total of
m maximal simplices across all indices, we introduce a simplicial model for its subdivision
bifiltration SF whose k-skeleton has size O(mk+1). We also show that the 0-skeleton of
any simplicial model of SF has size at least m. We give several applications: For arbitrary
metric spaces, we introduce a

√
2-approximation to SR with poly-size skeleta, improving on

the previous best approximation bound of
√

3. Moreover, we show that the approximation
factor of

√
2 is tight; in particular, there exists no exact model of SR with poly-size skeleta.

On the other hand, we show that for data in a fixed-dimensional Euclidean space with the
ℓp-metric, there exists an exact model of SR with poly-size skeleta for p ∈ {1, ∞}, as well as
a (1 + ϵ)-approximation to SR with poly-size skeleta for any p ∈ (1, ∞) and fixed ϵ > 0.

3.15 Large Simple d-Cycles in Simplicial Complexes
Roy Meshulam (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Roy Meshulam

Joint work of Roy Meshulam, Ilan Newman, Yuri Rabinovich

Let G = (V, E) be a finite simple graph. A classical result of Erdos and Gallai asserts that
if |E| > k(|V |−1)

2 , then G contains a simple cycle of length > k. We study the analogous
question for higher dimensional simplicial complexes. A set {σ1, . . . , σk} of d-dimensional
simplices in a simplicial complex X is a simple d-cycle over a field F if {∂σ1, . . . , ∂σk} is
a minimal linearly dependent set in the space of d-chains Cd(X; F ). Let fi(X) denote the
number of i-dimensional simplices in X. It is shown that any d-dimensional X contains a
simple d-cycle of size

k ≥

√
2fd(X)

(d + 1)fd−1(X) − 1.

3.16 Bounding the Interleaving Distance for Mapper Graphs with a Loss
Function

Elizabeth Munch (Michigan State University, US)

License Creative Commons BY 4.0 International license
© Elizabeth Munch

Data consisting of a graph with a function to Rd arise in many data applications, encompassing
structures such as Reeb graphs, geometric graphs, and knot embeddings. As such, the ability
to compare and cluster such objects is required in a data analysis pipeline, leading to a need

24092

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


218 24092 – Applied and Combinatorial Topology

for distances or metrics between them. In this work, we study the interleaving distance on
discretizations of these objects, Rd-mapper graphs, where functor representations of the data
can be compared by finding pairs of natural transformations between them. However, in
many cases, computation of the interleaving distance is NP-hard. For this reason, we take
inspiration from the work of Robinson to find quality measures for families of maps that do not
rise to the level of a natural transformation, called assignments. We then endow the functor
images with the extra structure of a metric space and define a loss function which measures
how far an assignment is from making the required diagrams of an interleaving commute.
Finally we show that the computation of the loss function is polynomial. We believe this
idea is both powerful and translatable, with the potential to be used for approximation and
bounds on interleavings in a broad array of contexts.

3.17 Topologically Attributed Graphs
Tom Needham (Florida State University – Tallahassee, US)

License Creative Commons BY 4.0 International license
© Tom Needham

Joint work of Tom Needham, Justin Curry, Washington Mio, Osman Berat Okutan, Florian Russold

I will describe recent work with Curry, Mio, Okutan and Russold which fuses graphical
and persistence invariants of datasets. The basic idea is to attribute the nodes of a Reeb
or Mapper graph of a dataset with persistence diagrams, which encode localized, higher-
dimensional homological features of the data. These enriched graphical summaries can be
used, for example, as inputs to a graph neural network for shape classification tasks. I will
also discuss the (fairly subtle) theoretical stability properties of these invariants.

3.18 Directed paths and duality
Martin Raussen (Aalborg University, DK)

License Creative Commons BY 4.0 International license
© Martin Raussen

An important class of Higher Dimensional Automata (HDA) in concurrency theory arises
from semaphore protocols or PV-programs originally described by Dijkstra. In order to
understand their behaviour, one must analyse the space of all schedules (directed paths)
between (any) start and end state. How can one translate the orders of lock and unlock
commands into a recipe describing this space?

By definition, the space of allowed directed paths is an intersection (limit) of elementary
spaces – each having the homotopy type of a sphere – in the infinite-dimensional space of
all directed paths. There is a homotopy equivalence embedding the (allowed) paths as a
configuration space into a finite-dimensional sphere. The complement of this configuration
space in that sphere is a union (colimit) of elementary spaces. Its topology can therefore be
described as the homotopy colimit of certain spaces for which we have a “low-dimensional”
description arising directly from the PV-encoding. In favourable cases, this homotopy colimit
can be described explicitly. Alexander duality allows then to determine the homology of the
complement, and hence of the space of all allowed directed paths.
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3.19 From Coarse to Fine and Back Again: Geometry and Topology in
Machine Learning

Bastian Grossenbacher-Rieck (Helmholtz Zentrum München, DE)

License Creative Commons BY 4.0 International license
© Bastian Grossenbacher-Rieck

A large driver contributing to the success of deep learning models is their ability to synthesise
task-specific features from data. For a long time, the predominant belief was that ‘given
enough data, all features can be learned.’ However, it turns out that certain tasks require
imbuing models with inductive biases such as invariances that cannot be readily gleaned
from the data! This is particularly true for data sets that model real-world phenomena,
creating a crucial need for different approaches. This talk will present novel advances in
harnessing multi-scale geometrical and topological characteristics of data. I will particularly
focus on how geometry and topology can improve (un)supervised representation learning
tasks. Underscoring the generality of a hybrid geometrical-topological perspective, I will
furthermore showcase applications from a diverse set of data domains, including point clouds,
graphs, and higher-order combinatorial complexes.

3.20 Overview of Discrete Morse Theory
Nick Scoville (Ursinus College – Collegeville, US)
Leonard Wienke (Universität Bremen, DE)

License Creative Commons BY 4.0 International license
© Nick Scoville, Leonard Wienke

This Overview of Discrete Morse Theory is two-fold.
In the first part, we give an introduction to the basic concepts of Discrete Morse Theory.

In particular, we discuss the equivalence of simplicial collapses, acyclic matchings, and poset
maps with small fibers. We then define the Morse complex that computes simplicial homology
and consider examples.

In the second part, we discuss open problems as well as newer directions of research.
We will look at open problems in both random Discrete Morse Theory and the complex of
discrete Morse functions. We will then survey several variations of Discrete Morse Theory,
inluding stratified and Bestvina-Brady, which may prove useful in simplifying a complex.

3.21 Combinatorial Topological Models for Phylogenetic Reconstruction
Networks

Jan F Senge (Universität Bremen, DE & Polish Academy of Science, PL)

License Creative Commons BY 4.0 International license
© Jan F. Senge

Joint work of Paweł Dłotko, Jan Felix Senge, Anastasios Stefanou
Main reference Paweł Dłotko, Jan Felix Senge, Anastasios Stefanou: “Combinatorial Topological Models for

Phylogenetic Networks and the Mergegram Invariant”, CoRR, Vol, abs/2305.04860, 2023.
URL https://arxiv.org/abs/2305.04860

Phylogenetic networks are vital for understanding complex evolutionary processes, where
traditional tree-like structures fall short. The application of topological data analysis (TDA)
has emerged as a powerful approach for exploring such networks, revealing underlying
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geometric and topological structures. This talk focuses on a lattice theoretical approach
of representing such networks and relating them to TDA. We will discuss the applications
of TDA techniques in analyzing phylogenetic networks, aiming to uncover hidden patterns
and gain deeper insights into their evolutionary dynamics. Additionally, we introduce the
facegram, a simplicial lattice model that generalizes the dendrogram model for phylogenetic
trees, which enables an alternative way to visualize filtrations of complexes, and show some
more recent applications of these ideas and connections.

3.22 Reeb Graphs and Their Variants: Theory and Applications
Bei Wang Phillips (University of Utah – Salt Lake City, US)

License Creative Commons BY 4.0 International license
© Bei Wang Phillips

A Reeb graph is a graphical representation of a scalar function on a topological space that
encodes the topology of the level sets. Reeb graphs and their variants are popular tools
in topological data analysis and visualization. As an overview talk for TDA+statistics, I
will review theoretical advances in studying Reeb graphs and their variants, as well as their
applications in data mining and machine learning.

From a theoretical perspective, the questions surrounding Reeb graphs are as follows.
Comparative analysis: What is a reasonable distance or similarity measure between a
pair of Reeb graphs? Desirable properties of a distance/measure is for it to be a metric
or pseudometric, discriminative, and easy to compute (both in terms of computational
complexity and practical implementation). See Yan et al. (2021) [35] and Bollen et al.
(2022) [9] for surveys.
Stability: How stable is a Reeb graph w.r.t. simplification or perturbation of the
underlying function?
Information content: What information is encoded by the Reeb graph? How much
information can we recover about the original data from the Reeb graph by solving an
inverse problem?

The questions surrounding mapper graphs (discrete approximations of Reeb graphs) include
comparative analysis, information content, and additionally:

Stability: What is the structural stability of the mapper with respect to perturbations
of its function, domain and cover?
Convergence: What is an appropriate metric under which the mapper converges to the
Reeb graph as the number of sampled points goes to infinity and the granularity of the
cover goes to zero?
Parameter tuning: How to effectively and automatically tune the parameters that best
capture the topology of the underlying data?

Reeb graphs have many variants, including:
Mapper construction/mapper graph: Singh et al. (2007) [33].
α-Reeb graph that considers the cover of range space with open intervals of length at
most α, see Chazal and Sun (2014) [17].
Multiscale mapper considers a hierarchical family of covers and the maps between them,
see Dey et al. (2016) [18].
Multinerve mapper computes the multinerve of a connected cover, see Carriere and Oudot
(2018) [15].
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Joint Contour Net (JCN) works with a piecewise linear (PL) mapping over a simplicial
mesh with multiple real-valued functions, see Carr and Duke (2013) [14] and Geng et al.
(2014) [22].
Extended Reeb graph uses cover elements from a partition of the domain without overlaps,
see Barral and Biasotti (2014) [4].
Enhanced mapper graph considers additionally the inverse map of intersections among
cover elements, see Brown et al. (2021) [10].
Ball mapper that may not require a filter function, see Dłotko (2019) [20].

Reeb graphs and their variants, in particular, mapper graphs, have seen many applications
in topological data analysis and visualization. They have been used for shape skeletonization
(Pascucci et al., 2007) [29] and symmetry detection (Thomas and Natarajan 2011) [34]. They
have recently been utilized to study artificial neuron activations in deep learning, see the
works by Purvine et al. (2023) [30], and Rathore et al. (2021, 2023) [31, 32]. For applications
in visualization, see Yan et al. (2021) [35] for a survey.

3.23 Persistent cup modules
Ling Zhou (Duke University – Durham, US)

License Creative Commons BY 4.0 International license
© Ling Zhou

Joint work of Facundo Mémoli, Anastasios Stefanou, Ling Zhou

One-dimensional persistent homology is arguably the most important and heavily used
computational tool in topological data analysis. Additional information can be extracted
from datasets by studying multi-dimensional persistence modules and by utilizing cohomo-
logical ideas, e.g. the cohomological cup product. In this work, given a single parameter
filtration, we investigate a certain 2-dimensional persistence module structure associated with
persistent cohomology, where one parameter is the cup-length and the other is the filtration
parameter. This new persistence structure, called the persistent cup module, is induced by
the cohomological cup product and adapted to the persistence setting. Furthermore, we
show that this persistence structure is stable. By fixing the cup-length parameter, we obtain
a 1-dimensional persistence module and again show it is stable in the interleaving distance
sense, and study their associated generalized persistence diagrams.
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4 Open Problems

4.1 Problem 1: Can we compute representatives of bars of persistent
homology in less than cubic time?

Tamal K. Dey (Purdue University – West Lafayette, US)

License Creative Commons BY 4.0 International license
© Tamal Dey

Matrix reduction algorithm for persistent homology: R = DV reduced boundary.

σ

τ1 1

τ2 1

τ3 1

In this example of a reduced matrix, σ is a negative simplex, because it kills the cycle
(τ1 +τ2 +τ3). The representative of a bar can be read off from the column of the corresponding
negative simplex: In this case it would be (τ1 + τ2 + τ3). Similarly, the representatives of
infinite bars can be read off from the columns of the matrix V . The reduced matrix R and
the matrix V , and hence the representatives, can be computed in O(m3) time. On the other
hand, the persistence pairing (in other words, the pivot positions of the reduced matrix)
can be computed even in matrix multiplication time O(mω), with ω < 2.373, for classical
persistent homology and even for zigzag persistent homology. The question is whether this
holds only for the computation of the persistence pairs, or also for the computations of their
representatives.

Questions:
1. Compute homological representative cycles for all bars in O(m<3) time where m is the

size of the input filtration?
2. Zigzag in O(m<4) or O(m3) or even O(m<3) time?

Reference to “Zigzag Persistent Homology in Matrix Multiplication Time”, Milosavljević,
Nikola and Morozov, Dmitriy and Skraba, Primoz, Proceedings of the twenty-seventh
Annual Symposium on Computational Geometry, 216–225, 2011. https://www.mrzv.org/
publications/zzph-mmt/socg11/

During this Dagstuhl Seminar, this question has been investigated by the working group
on algorithms.

Tamal’s comment: The above problem is not open anymore. It turns out that the
algorithm in the paper mentioned above can be utilized to compute a representative for
standard persistence in O(mω) time. The authors of the paper exchanged notes through
email which have convinced us that indeed the algorithm can be adapted to compute the
representatives in the stated time. For zigzag, it is not clear if the algorithm can be adapted
straightforwardly to do the same. However, the proposer of the problem with his students
has gotten an algorithm which can compute the representatives in O(m3) time. Interested
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people may contact the proposer to have a preprint. The paper is currently under some
revision which is planned to be submitted for publication in a near future. The question
of computing the representatives for zigzag in less than cubic time remains open. It is not
entirely clear if it can be done at all because there is no bound better than cubic known for
the output size in this case.

4.2 Problem 2: Optimal Discrete Morse function given a partial
matching

Yusu Wang (University of California, San Diego-La Jolla, US)

License Creative Commons BY 4.0 International license
© Yusu Wang

Base DM (Discrete Morse) Graph Reconstruction algorithm (see e.g., [19])
Input: Triangulation K of domain I ⊂ Rd, function f : K → R, threshold δ

Step 1: persistence computation
Step 2: persistence-guided Morse simplification.

Spanning forest construction based on persistence output
retrieval of 1-stable manifold based on spanning forest for critical edges with persistence
larger than δ

The above algorithm is already known. However, in practical applications, we often need
to have additional constraints as input to the above graph reconstruction algorithm. For
example, in neural bundle reconstruction from 3D images, we may want to add constraints
that there are desired “flow directions” at certain locations. These flow directions could
have been computed locally based on computer vision-based approaches. Hence, the high
level problem we aim to solve is a discrete Morse based graph reconstruction with additional
constraints. As a first step, we encode the “flow direction” constraints simply as a set of
discrete gradient vectors. More precise, see the following description:
Input:

a simplicial complex K with vertices V = V (K)
a function f : V → R
collection of pairs P = {(σ, τ)|σ ⊂ τ, |τ | = |σ| + 1}, indicating desirable “gradient
vectors”

Goal:
1. What would be a good way to define an “optimal” discrete gradient vector field (or a

(generalized) discrete Morse function) that combine both types of input
2. In particular, what theoretical properties can we provide (including properties of the

graph reconstructed using the earlier algorithms)

Idea:
convex polytope solution (together with Linear / Quadratic Programming); space of morse
functions and hyperplanes

During this Dagstuhl Seminar, this question has been investigated by the working group
on algorithms.
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4.3 Problem 3: Algorithmic questions on (multiparameter) persistence
Fabian Lenzen (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Fabian Lenzen

Let M be a matrix where rows carry labels ℓi ∈ Z2, fixed once and for all. If V is invertible,
we let

ℓ(MVj) =
∨

(MV )ij ̸=0

ℓi, where (x, y) ∨ (x′, y′) = (max{x, x′}, max{y, y′}).

We can prove1 that there exists V that minimizes ℓ(MVj) simultaneously for all j. The order
of the columns does not matter.

Algorithm: Let P and Q be permutations such that PM and QM have rows in lexicographic
and colexicographic order w.r.t. ℓ.

1. Compute V ′ such that PMV ′ is reduced
2. Order columns of PMV ′ by pivot
3. Compute upper triangular V ′′ such that QMV ′V ′′ is reduced.

With V = V ′V ′′, the ordering of the columns in step 2 ensures that afterwards, both
PMV and QMV are reduced. See the paper for a proof that this minimizes all ℓ(MVj).

Problem: If M is a coboundary matrix of a two-parameter function-Rips filtration, the
algorithm produces tremendous fill-in in step 3: Out of millions of columns, there are
often 1–10 columns that for which 50–90% of the entries are non-zero.

Question: Can we devise an algorithm that (in most cases) does not produce fill-in?

Motivation: Fill-in in only a few columns is currently a central bottleneck in computing
Vietoris–Rips persistent cohomology. The above task can be seen as a two-parameter
generalization of the clearing-idea. Experiments show that fill-in is an even worse problem
in two-parameter persistence. Solving this problem would be a major step towards efficient
algorithms for multi-parameter persistence.

Besides, Uli also mentioned that matrix fill-in is a central bottleneck in computing image
persistence.

4.4 Problem 4: Manifold reconstruction guarantees
Ulrich Bauer (TU München, DE)

License Creative Commons BY 4.0 International license
© Ulrich Bauer

Manifold reconstruction guarantees for the method described in the talk (exhaustive reduction
method for most persistent top dimensional cycle). Note that the exhaustive reduction
algorithm gives the lexicographically minimal cycle representative.

1 See https://doi.org/10.4230/LIPIcs.SoCG.2023.15 for a proof and for motivation.
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As a motivation, we considered a visualization of the exhaustive reduction method
(eliminate all entries that can be eliminated, not only the lowest ones).
The reduction starts with one d-simplex (in Rd) and its boundary, and you add more
until you reach the reduced cycle.

Under which sampling conditions can we guarantee that this lexicographically minimal
cycle reconstructs the manifold? And does it always make sense to take the most persistent
top-dimensional cycle? If the manifold has multiple components, we would need one cycle
for each component.

As a first step, we would need to investigate: What methods do people use to prove such
results?

4.5 Problem 5: Topological information gain
Bei Wang Phillips (University of Utah – Salt Lake City, US)

License Creative Commons BY 4.0 International license
© Bei Wang Phillips

We are interested in quantifying the information content of multiparameter topological
descriptors, in particular, multiparameter persistence modules [13], Reeb spaces [21], and
mappers [33].

Let X be a topological space equipped with a pair of functions, f, g : X → R. We first
utilize the function f (resp., g) to obtain a 1-parameter topological descriptor, denoted as
P (X, f) (resp., P (X, g)). We then use both f and g to construct a 2-parameter topological
descriptor, denoted as P (X, f, g). For example, if P (X, f) is a Reeb graph, then P (X, f, g)
is a Reeb space. Alternatively, P (X, f) and P (X, f, g) are 1- and 2-parameter persistence
modules, respectively. We ask the following question: how do we quantify the information
gain from a 1-dimensional topological descriptor P (X, f) to a 2-dimensional topological
descriptor P (X, f, g)?

This problem first appeared in the work of Zhou et al. [37], where the authors investigated
a method for stitching a pair of 1-parameter mappers together into a 2-parameter mapper,
quantified and visualized topological notions of information gains during such a process.
While the work in [37] provides some initial thoughts on this problem, including graph
entropy, fiber-wise homology and Euler characteristics, it leaves much to be desired.

During this Dagstuhl Seminar, this question has been investigated by a working group
studying topological information gain.

4.6 Problem 6: Can TDA detect planted cliques?
Bastian Rieck (Helmholtz Zentrum München, DE)

License Creative Commons BY 4.0 International license
© Bastian Rieck

In complexity theory, a classical problem is the so-called planted clique problem. Given natural
numbers n and k, the planted clique problem uses the following procedure:
1. Create an Erdős–Rényi graph G on n vertices with edge creation probability p = 0.5.
2. With probability 0.5, select a subset of k vertices in G and turn them into a k-clique.
3. Return G.

24092

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


226 24092 – Applied and Combinatorial Topology

Given G, the goal is now to detect whether a clique has been planted or not. The planted
clique problem is most interesting – and hard – for a specific range of k, viz.

2 log2(n) ≪ k ≪
√

n. (1)

My open question is whether topological descriptors can detect planted cliques in the
distributional sense, for instance via persistence landscapes, calculated from an appropriately-
selected filtration. (See the working groups section below for the preliminary results).

4.7 Problem 7: Monotonicity of magnitude functions of Euclidean
metric spaces

Sara Kalisnik (ETH Zürich – Zürich, CH)
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Sara Kalisnik posed the open question: Are magnitude functions of Euclidean metric spaces
monotonic? (see working groups section below for the details and preliminary results).

5 Working Groups

5.1 Working Group: Algorithms
Ulrich Bauer (TU München, DE)
Tamal K. Dey (Purdue University – West Lafayette, US)
Teresa Heiss (Institute of Science and Technology Austria, AT)
Fabian Lenzen (TU Berlin, DE)
Nick Scoville (Ursinus College – Collegeville, US)
Bei Wang Phillips (University of Utah – Salt Lake City, US)
Yusu Wang (University of California, San Diego-La Jolla, US)
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Wang

5.1.1 Question 1

Compute the generators for bars in persistent homology in < O(n3) time, where n is the
number of filtration steps, and (by assuming every filtration step adds exactly simplex) also
equals the number of simplices. We also ask the same question for Zigzag persistence. Here,
we assume that the filtration starts and ends with the empty complex, and every filtration
step either adds or removes exactly one simplex. Hence, the number of simplices used overall
is at most n

2 .

As a first step, we contacted Primoz Skraba and Dmitriy Morozov about their paper [28]
which introduces the algorithm to compute persistence barcodes (both for classical persistent
homology and zigzag persistent homology) in matrix multiplication time. We asked them
if they were aware if additionally to the barcode itself, the generators can be computed in
matrix multiplicaiton time. They were confident that for classical persistent homology, the
generators could be read off of a matrix called Z in their paper on this algorithm. After
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further communication, it turned out it seems non-trivial, but indeed possible. However,
that approach does not seem possible/easy to extend to zigzag persistence, where even the
output might be cubic. One possible future direction would be convincing ourselves in detail
that it is indeed possible to read off the generators of classical persistent homology from said
matrix Z. Another possible future direction of research would be finding an explicit example
of a zigzag generator output that is cubic. This would of course disprove the possibility of
less than cubic running time for zigzag generators.

Another question we tried to answer is the following: Given a matrix time algorithm to
compute generators in the classical persistent homology setting (which seems to exist, see
above), can we compute zigzag generators in matrix multiplication time? As we are worried
that the zigzag generator output could be cubic, we were brainstorming for alternative
outputs that would be less than cubic, and from which it would be easy to compute the
(possibly cubic) wanted output. In the specific setting of level-set zigzag persistent homology,
an idea for this is somehow pulling back the generator of ordinary persistence through the
Mayer–Vietoris pyramid [12] and even further (for this we need the relative interlevel set
cohomology [5], which is an extension of the Mayer Vietoris pyramid that also includes maps
between homological degrees) to get to a generator in a node of the relative interlevel set
cohomology from which all the maps to every step of the zigzag module are forward pointing.
If that pull-back operation can be done in matrix multiplication time, or even quadratic time,
which seems plausible, there is hope for some kind of zigzag generator output, computable in
matrix multiplication time, even if that output is not precisely the output needed in many
applications.

5.1.2 Question 2

Given a simplicial complex K along with an acyclic matching P on K and a specified set of
values f on the vertices, find an optimal discrete Morse function g that is compatible with P

and that is as close to f as possible.
We decided that given a function f on the vertices of K and a partial matching P of K

(without assuming any relation between f and P ), we wish to find a monotone function g on
K with the hard constraint of g being (weakly) compatible with P (i.e. g has to map matched
simplices to the same value) that minimizes ∥g − f∥2

2. This is a quadratic optimization over
a convex polytope (because the constraint of being a monotone function compatible with P

is determined by equalities and inequalities), and we can solve it via standard optimization
procedures. Note that the result is only a monotone function (not necessarily discrete Morse),
but we can easily perturb it into a discrete Morse function gϵ satisfying ∥g − gϵ∥ < ϵ for any
ϵ > 0. The gradient of the Morse function could either be P or another matching containing
P as a subset. This construction is entirely elementary, namely adding a discrete Morse
function h that is compatible with P and has a small norm to g, in order to break the tie
between simplices that get mapped to the same function value under g. Note that in some
applications it might not even be necessary to pass to the discrete Morse function gϵ, because
a monotone function g might be enough. In those applications it might be more useful to
use the approach in optimal simplification of discrete functions [6] (see also Ulrich Bauer’s
PhD Thesis) to find the maximal pairing that contains the pairing P and is still compatible
with g.

Note that it is possible to turn the hard constraint of being compatible with P into a
soft constraint. In this case, the monotonicity constraints are the only hard constraints and
the optimization function is ∥g − f∥2

2 +
∑

(a,b)∈P w(a,b)(g(a) − g(b))2 for appropriate weights
(w(a,b))(a,b)∈P .
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An alternative construction was discussed, namely, a modified version of the King–
Knudson–Mramor algorithm. We observed that this algorithm is actually very closely related
to the approach described above.

5.2 Working Group: Topological Information Gain
Julian Brüggemann (Universität Bonn, DE)
Mathieu Carrière (Centre Inria d’Université Côte d’Azur – Sophia Antipolis, FR)
Paweł Dłotko (Polish Academy of Science, PL)
Teresa Heiss (Institute of Science and Technology Austria, AT)
Ingrid Hotz (Linköping University, SE)
Michael Kerber (TU Graz, AT)
Woojin Kim (Duke University – Durham, US & KAIST – Daejeon, KR)
Claudia Landi (University of Modena and Reggio Emilia, IT)
Bei Wang Phillips (University of Utah – Salt Lake City, US)
Yusu Wang (University of California, San Diego-La Jolla, US)
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5.2.1 Introduction

There are a number of multiparameter topological descriptors, such as multiparameter
persistence modules [13], Reeb spaces [21], and mappers [33]. Before utilizing these descriptors
in topological data analysis, a key question is: when does a multiparameter topological
descriptor provide quantifiable benefits in addition to a set of single parameter topological
descriptors derived from the same data?

Simply put, we are interested in studying a topological notion of information gain from a
1-parameter topological descriptor to a 2-parameter one.

Let X be a topological space equipped with a pair of functions f1, f2 : X → R. X

may be a d-dimensional manifold or a point cloud in Rd. We construct a 1-parameter
topological descriptor from f1, denoted as P (X, f1). We then construct a 2-parameter
topological descriptor using both f1 and f2, denoted as P (X, f1, f2). If P (X, f) is a Reeb
graph, then P (X, f1, f2) is a Reeb space. If P (X, f1) is a 1-parameter persistence module,
then P (X, f1, f2) is a 2-parameter one. We pose the following question: how do we quantify
the information gain from a 1-dimensional topological descriptor P (X, f1) to a 2-dimensional
one P (X, f1, f2)?

During the Dagstuhl Seminar, we have discussed many potential approaches to address
this question, some of which are summarized below.

5.2.2 A Lifting Approach

We first consider a simple 2-parameter setting: given f1 and f2, we want to find a single
function g, such that P (X, g) optimally describes P (X, f1, f2). We consider lifting g to a
2-parameter space by replacing P (X, g) with P (X, g, g), and compare the information content
between P (X, f1, f2) and P (X, g, g).

More abstractly, let P1 denote the set of all topological descriptors of the form P (X, f)
(e.g., 1-parameter persistence modules) and P2 the set of all topological descriptors of the
form P (X, f1, f2) (e.g., 2-parameter persistence modules). Let L : P1 → P2 denote a lifting
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operator, for instance, L : P (X, g) 7→ P (X, g, g). Let d : P2 × P2 → [0, ∞) be a distance
measure on P2. Then we are asking for a function g such that

d(P (X, f1, f2), L(P (X, g)))

is minimized. Depending on the constraints imposed on g, the search space of g may be a
linear combination of f1 and f2, or simply the set {f1, f2}.

Depending on the choices of P , L, and d, we might obtain a different set of desirable
properties of the optimizer for g. As an example, consider the situation where g is constrained
to be a convex combination of f1 and f2, and P is the persistence module. Let d := dI denote
the interleaving distance between 2-parameter persistence modules. Let the lifting of P (X, g)
to be the persistence module induced by the sublevel set filtration of g in both directions,
that is, L(P (X, g)) := P (X, g, g). We are looking for a parameter α ∈ [0, 1] such that for
gα := αf1 + (1 − α)f2, the interleaving distance between P (X, f1, f2) and P (X, gα, gα) is
minimized.

Here is an algorithmic sketch, inspired by [7, 23]. We aim to find some α′ such that,
for a fixed ε > 0, the interleaving distance between P (X, f1, f2) and P (X, gα′ , gα′) is at
most ε larger than the optimum. To that end, we need two ingredients. First, we need
to be able to evaluate the interleaving distance dI (P (X, f1, f2), P (X, gα0 , gα0)) for any
α0 ∈ [0, 1]. Second, we need a bound for the variance, that is, the difference between
dI (P (X, f1, f2), (X, gα0 , gα0)) and dI (P (X, f1, f2), (X, gα1 , gα1)) when |α0 − α1| is at most
δ. Such a bound may be obtained through the stability of the interleaving distance (e.g., [16])
and the details have to be worked out. In any case, if we then sample the unit interval
finely enough such that the variance in every subinterval is at most ε, we can evaluate the
interleaving distance at the sample points and take the minimum as our solution.

We can further optimize the above strategy with an adaptive subdivision process. We
keep splitting the unit interval into subintervals, evaluate at the midpoint and compute the
variance of the interval. We also remember the smaller interleaving distance ∆min we have
seen so far. If for a subinterval, the interleaving distance at the midpoint is ∆0 and the
variance is σ and ∆0 − σ ≥ ∆min holds, we can avoid further subdivision in that subinterval.

The interleaving distance is NP-hard to compute and to approximate [8]. However, we
could in practice replace it with any stable distance and the above algorithm should transfer
without any changes. The same algorithm will also work in principle for more than two input
functions, by requiring to search in a high-dimensional simplex. However, it will also require
computing distances between persistence modules with more than two parameters, which is
likely unpractical with current technology.

A potential criticism of the above algorithm is that it has a rather strong assumption
that P (X, f1, f2) should be reasonably similar to P (X, g, g) for some g. It seems reasonable
to imagine the situation that P (X, f1, f2) is similar to P (X, gα, agα + b) for some a, b ∈ R.
Therefore, a possible direction is to explore the distance between these two topological
descriptors, by optimizing parameters α, a and b.

Finally, the lifting approach may be generalized to the setting where we want to find
a single function g to optimally describe the topological descriptor of a set of function
f1, . . . , fp : X → R, for p ≥ 2. For example, let p = 4. We can use the algorithm above to
find some g12 such that the distance between P (X, f1, f2) and P (X, g12, g12) is minimized.
Likewise, we can find g34 such that the distance between P (X, f3, f4) and P (X, g34, g34)
is minimized. As the last step, we can find a function g such that the distance between
P (X, g12, g34) and P (X, g, g) is minimized. In other words, we construct a binary tree, called
a tournament tree, and always combine two functions into another one that is used for
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optimization higher up in the tree. It remains speculative whether the final outcome is a
good proxy for the global optimum of the set of functions. It is also not clear how stable
the outcome is under a permutation of the input functions, which would yield a different
tournament tree.

5.2.3 A Matrix Sketching Approach

Now, we consider the multiparameter setting using a matrix sketching approach. We start
with a topological space X together with a set of functions f1, . . . , fp : X → R. We assume
an operator P is given, which returns for each pair (X, fi) (1 ≤ i ≤ p) a topological descriptor
P (X, fi). Motivated by dimensionality reduction, in particular, principal component analysis
(PCA), the goal is to compute a smaller set of functions g1, . . . , gq : X → R (with q ≪ p) such
that the set of descriptors P (X, g1), . . . , P (X, gq) optimally describes the set of descriptors
P (X, f1), . . . , P (X, fp).

We consider several types of constraints on the functions gj (1 ≤ j ≤ q):
We can require that {g1, . . . , gq} ⊂ {f1, . . . , fp}.
We can require that each gj is an linear combination among the fi.

Li et al. [27] partially addressed the above problem by solving a related one: given a large
set T of merge trees, find a much smaller set of basis trees S such that each tree in T can be
approximately reconstructed from a linear combination of trees in S.

First, we recall the standard PCA. We are given a dataset of p points with ℓ features,
represented as a ℓ × p matrix A (with row-wise zero empirical mean). Pick a parameter q,
PCA finds a q-dimensional subspace H of Rℓ that minimizes the average squared distance
between the points and their projections onto H. Algebraically, PCA tries to approximate the
data matrix A with a matrix Â, that is, A ≈ Â = BY , such that ||A − Â||2F = ||A − BY ||2F is
minimized. B is a ℓ × q matrix whose columns form an orthonormal basis for H, whereas Y

is a q × p coefficient matrix. By construction, each column vector in A is now approximated
by a linear combination of basis vectors in B with coefficients specified in Y . Lin et al. [27]
applied PCA and column subset selection (CSS, another matrix sketching technique) to a
set of vectorized merge trees, and obtains a set of basis vectors that could be converted back
into merge trees.

In our current setting, let V denote a vectorization method that assigns to a topological
descriptor P (X, fi) a vector in some Euclidean space Rℓ. For shorter notation, we write
Vi := V (P (X, fi)). There is a rich literature of such vectorization methods in the context
of persistence diagrams, including persistence landscapes [11], persistence images [1], and
persistence kernels (e.g. [36]), etc. It is also possible to vectorize merge trees (and similarly
contour trees) using techniques from optimal transport [27].

Having fixed a set of vectors V1, . . . , Vp, we can proceed by applying a standard PCA on
the l × p matrix spanned by the vectors and compute the first q principal components. Each
principal direction can be written as a linear combination of the Vi. Let us assume for now
that there is a canonical or good way to choose the weights αi, and let ak = α1V1 + . . .+αpVp

denote the k-th principal component (for 1 ≤ k ≤ q). We can simply set

gk := α1f1 + . . . + αpfp,

meaning that we pull back the PCA solution to the function space we started with. With a
chosen q, this procedure would hopefully yield the functions g1, . . . , gq as desired. The key
question is whether such a pull back produces meaningful solutions.
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5.2.4 Multi-Parameter Persistent Entropy

Another option for comparing P (X, f1, f2) and P (X, g, g) is to develop a multi-parameter
version of the persistent entropy.

Persistent entropy was originally defined as a statistic for persistence diagrams [2]. It
reduces a persistence diagram to a single number, thus discarding a lot of information.
However, it is useful for comparing distributions of diagrams with usual statistical tests.
For a single-parameter persistence diagram consisting of a set I of finite bars of the form
I := [Ib, Id) ⊂ R, the persistent entropy is defined as:

E(dgmI) := −
∑
I∈I

Id − Ib

L
· log

(
Id − Ib

L

)
,

where L is the total persistence (excluding the infinite bars), L :=
∑

I∈I (Id − Ib). It would
be interesting to investigate the extension of this statistic to the multiparameter setting and
its theoretical properties, following [2, 3].

A natural extension may be obtained using the Möbius inversions. Fix a family I of
intervals in Rp (p is the number of parameters), we generate a signed barcode by computing
the Möbius inversion of the generalized rank invariant over I [24]. In practice, this barcode is
simply defined as a set of “birth” and “death” intervals (denoted by I+ or I−, respectively),
which can be seen as a discrete measure with positive and negative signs:

dgmI =
∑

I+∈I+

δI+ −
∑

I−∈I−

δI− .

Intuitively, this signed barcode “agrees” with the generalized rank invariant (GRI) on I:

∀I ∈ I, GRI(I) =
∑

I⊆J,J∈I

dgmI(J).

Then the question becomes how to adapt the persistent entropy to these signed barcodes,
ideally in a way such that E(P (X, f)) = Ẽ(P (X, f, f)), where Ẽ is the extended persistent
entropy. A possibility could be to use, for an interval I, the longest diagonal that is included
in I:

Ẽ(dgmI) = −
∑

I∈supp(dgmI)

ℓI

L
· log

(
ℓI

L

)
,

where ℓI = sup{δ > 0 : x, x + δ · [1, . . . , 1] ⊆ I} and L =
∑

I∈supp(dgmI) ℓI .

5.3 Working Group: Can Topological Descriptors Detect Planted
Cliques?

Niklas Hellmer (Polish Academy of Science, PL)
Bastian Rieck (Helmholtz Zentrum München, DE)
Jan Felix Senge (Polish Academy of Science, PL & Universität Bremen, DE)
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In complexity theory, a classical problem is the so-called planted clique problem. Given natural
numbers n and k, the planted clique problem uses the following procedure:
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1. Create an Erdős–Rényi graph G on n vertices with edge creation probability p = 0.5.
2. With probability 0.5, select a subset of k vertices in G and turn them into a k-clique.
3. Return G.
Given G, the goal is now to detect whether a clique has been planted or not. The planted
clique problem is most interesting – and hard – for a specific range of k, viz.

2 log2(n) ≪ k ≪
√

n. (2)

My open question is whether topological descriptors can detect planted cliques in the
distributional sense, for instance via persistence landscapes, calculated from an appropriately-
selected filtration. (See the working groups section below for the preliminary results).

Preliminary results

Using the magnitude of metric spaces, we found that some regimes, i.e. choices of k and
n, afford a detection that is substantially better than random chance; see table 1 for an
overview. Moving forward, we will work on deriving more theoretical bounds.

Table 1 Detecting planted cliques with metric space magnitude. We used graphs with n = 600
vertices and generated N = 500 graphs. The table reports the accuracies for detecting a planted
clique as a function of k, the clique size.

k Accuracy

19 58.40 ± 4.88
20 62.40 ± 4.67
21 61.00 ± 4.34
22 65.00 ± 2.97
23 62.80 ± 0.98
24 60.20 ± 4.07

5.4 Working Group: Monotonicity of Magnitude functions of Euclidean
metric spaces

Sara Kalisnik (ETH Zürich – Zürich, CH)
Claudia Landi (University of Modena and Reggio Emilia, IT)
Elizabeth Munch (Michigan State University, US)
Tom Needham (Florida State University – Tallahassee, US)
Anastasios Stefanou (Universität Bremen, DE)
Ling Zhou (Duke University – Durham, US)
Paweł Dłotko (Polish Academy of Science, PL)
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This group worked on a basic problem in the theory of metric space magnitude. Magnitude
was introduced by Leinster and its fundamental properties are worked out in [26, 25]. The
notation and initial exposition below follow [25].
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5.4.1 Definitions and problem statement

Let X = (X, d) be a finite metric space. We fix an order on the points of X and denote them
as x1, . . . , xn. The distance matrix of X, with respect to this ordering, is denoted

D = [d(xi, xj)]ij = [Dij ]ij .

From the distance matrix, we derive a similarity matrix Z = ZX with entries Zij = e−Dij .
Assuming that the similarity matrix is invertible, the magnitude of X, denoted |X| is given
by

|X| =
n∑

i,j=1
(Z−1)ij .

Speaking informally, the magnitude |X| captures the effective number of points in X. For
example, if X is a two point metric space whose points are at distance t, then |X| = 2

1+e−t ,
so that |X| → 1 as t → 0 and |X| → 2 as t → ∞.

The example above suggests studying the magnitude of rescalings of the metric space.
For t > 0, let tX denote the metric space with underlying set X and with metric t · d; that
is, the metric function is uniformly rescaled by a factor of t. The magnitude function of X is
the function M = MX defined by

M : R>0 → R
t 7→ |tX|.

For example, if X is the two point metric space whose points are at unit distance from one
another, then the example from the previous paragraph implies that

MX(t) = 2
1 + e−t

.

Observe that the magnitude function is only well-defined for metric spaces X such that the
similarity matrix ZtX is invertible for all t > 0. It can be shown by example that invertibility
of Zt0X for some particular value of t0 is not enough to imply invertibility at all t.

The behavior of the magnitude function for several explicit examples, as well as numerical
evidence, suggests the following:
Main Question: Is M monotone increasing when we assume that distance d comes from
an embedding of X into a Euclidean space?

5.4.2 Progress

We were able to answer the main question in the affirmative in a few very specific cases. The
general question remains open. In this subsection, we present our partial results.

Two point space

For a two point space, with given distance d between the two points, we have D =
(

0 d

d 0

)
.

Below, we use tZ to denote the similarity matrix ZtX , to simplify notation. Then

tZ =
(

1 e−td

e−td 1

)
and (tZ)−1 =

(
1 −e−td

−e−td 1

)
,
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so that

|tX| = 2
1 − e−2td

(1 + e−td) = 2(1 + e−td)−1,

and
d

dt
|tX| = 2de−dt(e−dt + 1)−2.

Since d
dt |tX| is positive (as d > 0 and e−dt > 0), the magnitude function of X is monotonically

increasing.

Three point equilateral space

Next, consider the equilateral triangle space X = {x1, x2, x3} with d(xi, xj) = 1 for i ̸= j.
Note that we will later show that magnitude is monotone increasing for a general equilateral
space (i.e., on an arbitrary number of points), but we begin with this hands-on example. For
the three-point space tX, the similarity matrix is given by

tZ =

 1 e−t e−t

e−t 1 e−t

e−t e−t 1

 .

The inverse of tZ is:

(tZ)−1 = et

et + e2t − 2

et + 1 −1 −1
−1 et + 1 −1
−1 −1 et + 1

 .

To get the magnitude function, we sum all the entires, which results in the function

M(t) = 3et(et − 1)
et + e2t − 2 .

The derivative of this function is

M ′(t) = 6et

(et + 2)2 .

Thus M ′(t) ≥ 0, so M(t) is monotone increasing – see Figure 1.

Finite equilateral space

Before proceeding, let us make some general observations about the magnitude function. Let
X be a metric space such that tZ is invertible for all t > 0 and let u = (1, · · · , 1)T . Then

|tX| =
∑
i,j

((tZ)−1)i,j = uT (tZ)−1u.

We want to show that |tX| is non-decreasing by showing that d
dt |tX| = |tX|′ is non-negative.

Note that

|tX|′ =
(
uT (tZ)−1u

)′

= uT
(
(tZ)−1)′

u

= −uT (tZ)−1(tZ)′(tZ)−1u.
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Figure 1 The black curve is M(t) for the three point equilateral space and the green curve
is M ′(t). Note that limt→0 M(t) = 1 and limt→∞ M(t) = 3 as we expect based on the informal
meaning of magnitude described above.

Now we specialize and generalize the three-point equilateral space considered above. Let
X denote the metric space on n points such that d(xi, xj) = a for all i ̸= j. In this case, tZ

and (tZ)′ both have u as an eigenvector, and the associated eigenvalue is the row sum (all
rows have the same sum) of the corresponding matrix. For any matrix A, let Rk(A) =

∑
i Aki

be the sum of the k-th row of A. Then,

(tZ)u = R1(tZ)u =
(
1 + (n − 1)e−at

)
u

implies

(tZ)−1u = 1
(1 + (n − 1)e−at)u

and

(tZ)′u = R1((tZ)′)u = −(n − 1)ae−atu.

Thus, noting that (tZ)−1 is symmetric and hence uT (tZ)−1 = ((tZ)−1u)T , we have

|tX|′ = −uT (tZ)−1(tZ)′(tZ)−1u

= − 1
(1 + (n − 1)e−at) (−(n − 1)ae−at) 1

(1 + (n − 1)e−at)uT u

= (n − 1)ae−at

(1 + (n − 1)e−at)2 n > 0.

This proves that for any finite equilateral space, its magnitude is monotonically increasing.

The obstruction in extending this method to non-equilateral cases is due to the fact that
u is not necessarily an eigenvector of tZ when considering an arbitrary finite metric space.

Numerical Experiments

We performed some simple numerical experiments whose results agree with our assertion
that the main question should be answered in the affirmative. Fixing a dimension k and
number of points n, we sampled n points from Rk to create a finite Euclidean metric
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Figure 2 Results of our numerical experiments. The horizontal axis is the t-axis, and the functions
plotted are magnitude functions t 7→ |tX| for various Euclidean pointclouds X. See the text for
details.

space X, then computed the magnitude function M(t) = |tX| (at densely and uniformly
sampled values of t ∈ (0, 100]). We performed this experiment for k ∈ {2, 3, 10} and
n ∈ {20, 40, 60, 80, 100}, and for each choice of parameters, we repeated the experiment 50
times. Plots of the resulting magnitude functions are shown in Figure 2. Observe that in
each case, the magnitude functions are monotonically increasing.
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