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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar “Low-Dimensional
Embeddings of High-Dimensional Data: Algorithms and Applications” (24122). Low-dimensional
embeddings are widely used for unsupervised data exploration across many scientific fields, from
single-cell biology to artificial intelligence. These fields routinely deal with high-dimensional
characterization of millions of objects, and the data often contain rich structure with hierarchically
organized clusters, progressions, and manifolds. Researchers increasingly use 2D embeddings
(t-SNE, UMAP, autoencoders, etc.) to get an intuitive understanding of their data and to generate
scientific hypotheses or follow-up analysis plans. With so many scientific insights hinging on these
visualizations, it becomes urgent to examine the current state of these techniques mathematically
and algorithmically.

This Dagstuhl Seminar brought together machine learning researchers working on algorithm
development, mathematicians interested in provable guarantees, and practitioners applying
embedding methods in biology, chemistry, humanities, social science, etc. The aim of the seminar
was to (i) survey the state of the art; (ii) identify critical shortcomings of existing methods; (iii)
brainstorm ideas for the next generation of methods; and (iv) forge collaborations to help make
these a reality.
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Figure 1 Example applications in single-cell transcriptomics. Left: cortical neurons [8], sample
size n = 1.2M. Middle: human brain organoid development [9], n = 43K. Right: human blood and
bone marrow cells in leukaemia [10], n = 70K. Figures from original publications.
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2D embeddings in science
In recent years, high-dimensional “big” data have become commonplace in multiple academic
fields. To give some examples, single-cell transcriptomics routinely produces datasets with
sample sizes in hundreds of thousands and dimensionality in tens of thousands [1]; single-cell
mass spectrometry deals with millions of samples [2]; genomic datasets quantifying single-
nucleotide polymorphisms can deal with many millions of features [3]; behavioural physiology
produces high-dimensional datasets with tens of thousands of samples [4]. In neuroscience,
calcium imaging allows to record time-series activity of thousands of neurons. Many scientific
fields that traditionally did not have to deal with high-dimensional data analysis now face
similar challenges; for example, a digital library can yield a dataset with tens of millions of
samples and hundreds, if not millions, of features [5].

Such datasets require adequate computational methods for data analysis, including
unsupervised data exploration. In fact, exploratory statistical analysis has become an
essential tool in many scientific disciplines, allowing researchers to compactly visualise,
represent and make sense of their data. It became commonplace to explore low-dimensional
embeddings of the data, generated by methods like t-SNE [6] or UMAP [7]. Such visualisation
has proven to be a valuable tool for exploring the data, performing quality control, and
generating scientific hypotheses (Figure 1).

Similar algorithms are also applied in artificial intelligence research to visualise massive
datasets used to train state-of-the-art artificial intelligence models, such as image-based and
text-based generative models. This allows researchers to discover biases and gaps in the data,
to highlight model limitations, and ultimately to develop better models (Figure 2). A concise
overview of the model’s training data can also be helpful for societal oversight and public
communication.

Neighbour embedding methods like t-SNE and UMAP create a low-dimensional map
of the data based on the k-nearest-neighbour graph. As a result, they are often unable
to reproduce large-scale global structure of the data [12], creating potentially misleading
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Figure 2 Example applications in artificial intelligence. Left: GPT4All-J training data [11],
n = 800K. Right: image captions from LAION-Aesthetics dataset (figure by Dadid McClure),
n = 12M.

visualizations [13]. Acquisition of increasingly high-dimensional data across scientific fields
has sparked widespread interest in employing dimensionality reduction and visualisation
methods. However, there is a gap between method developers who propose and implement
these algorithms, and domain experts who aim to use them. The purpose of this seminar was
to bring together machine learning researchers, theoreticians, and practitioners, to address
current gaps in theoretical guarantees and evaluation measures for state-of-the-art approaches,
highlight practical challenges in applying these techniques in different domains, brainstorm
the solutions, and set up new collaborations to tackle open problems in this vibrant field.

Seminar topics
The overarching purpose of this Dagstuhl Seminar was to brainstorm open problems and
challenges in the field of low-dimensional embeddings, as seen by (i) practitioners; (ii)
theoreticians and mathematicians; and (iii) machine learning researchers — leading to new
collaborations to tackle these problems. The seminar focused on the following open questions,
grouped into four areas.

Low-dimensional embeddings in actual practice

Single-cell biology, working with large quantities of high-dimensional data and interested in
exploratory research, became a field heavily relying on low-dimensional embeddings. But
embeddings of texts [5], of genomes [14], of graph nodes [15], of chemical structures [16], etc.,
are also rapidly gaining popularity. Seminar participants discussed and brainstormed which
fields in the coming years are likely to generate data amenable for embedding methods, and
compared challenges raised by each of these application fields.

Neighbour embeddings have a number of well-known limitations [12]: for example, they
can strongly distort the global structure of the data and are unable to represent high-
dimensional topological features of the data. These artefacts can lead practitioners to
incorrect scientific conclusions or to chasing unfounded hypotheses. We extensively discussed
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Figure 3 Handwritten abstracts from our seminar.

(i) which limitations can be addressed by the new generation of algorithms; (ii) how to
diagnose misleading aspects of any given embedding; and (iii) what evaluation metrics are
necessary and sufficient for comparing different visualisation techniques.

Moreover, two-dimensional embeddings have been recently criticised as being dangerously
misleading [13]. At the same time, they are widely used across many disciplines and can
be helpful in actual scientific practice, if used with care [12]. In several talks and multiple
discussions, seminar participants talked about specific examples of how and where the
embeddings are useful, and which best practices can help to avoid them being misleading.

Common themes across state-of-the-art algorithms and relevant trade-offs

One common theme in multiple talks and discussions was trade-offs between various embed-
ding algorithms.

First, methods like t-SNE or UMAP are typically used to produce 2D or 3D embeddings,
while spectral methods like Laplacian eigenmaps [17] produce low-dimensional embeddings
that are often used with more embedding dimensions. This is less suitable for visualisation
but may be better suited for downstream data analysis. Several seminar participants reported
successfully applying UMAP to intermediate dimensionality too, with particular benefits for
downstream density-based clustering (using HDBSCAN algorithm).

Second, all neighbour embedding algorithms operate on the kNN graph of the data but
use different loss functions and different attractive/repulsive forces to arrive at the final
layout. This yields various trade-offs in the quality of global/local structure preservation [18].

Third, neighbour embedding algorithms are typically run on a kNN graph constructed
using pairwise Euclidean distances, but in principle any other metric can be used as well.
Specifically, metric design can be useful for incorporating domain knowledge and statistical
priors on the data [19, 20]. We discussed what kinds of data can profit from using non-
Euclidean distance metrics, or from kNN graph post-processing, such as diffusion-based
smoothing.
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Fourth, more generally, neighbour embeddings are known to be related to the self-
supervised learning approach known as contrastive learning [21]. However, despite substantial
progress in each of these two fields, they stayed largely disconnected from each other. Seminar
participants argued that both contrastive learning and neighbour embedding research can
benefit from each other’s state-of-the-art approaches, and in particular can be combined to
develop new algorithms for visualising textual and/or graph-based data.

Fifth, while neighbour embeddings only aim to preserve nearest neighbours, methods based
on MDS aim to preserve all pairwise distances including the large ones. In Isomap [22] and
PHATE [23], pairwise distances are obtained as graph distances on the kNN graph. Isomap
uses short path distance, while PHATE uses diffusion-based distance called potential distance.
LDLE [24] uses bottom-up manifold learning to align low-distortion local embeddings to
a global embedding. We discussed to what extent these approaches can capture both the
local and the global structure of the data, and what the advantages and the disadvantages of
aiming to preserve global aspects of the data are.

Interactive embeddings

Another extensively discussed topic was interactive visualizations of 2D embeddings (in
particular see abstracts by Benjamin M. Schmidt and B. P. F. Lelieveldt). While most often
low-dimensional embeddings are depicted as static images, they can be powerful tools for
interactive data explorers. NomicAI has been developing software for in-browser interactive
explorers, while the group of B. P. F. Lelieveldt has been working on stand-alone software
for interactive explorerd of RNA-sequencing data.

Perspective paper

During the seminar, participants decided to work together on a perspective paper, provision-
ally titled like the seminar: “Low-dimensional embeddings of high-dimensional data”. During
the seminar, we organized several brainstorming sessions on what should the paper cover
and how the material should be organized. The writing is currently underway and we hope
to be able to release the work some time in summer 2024.
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3 Overview of Talks

3.1 RNA Velocity Embeddings in Curved Spaces
Michael Bleher (Universität Heidelberg, DE)

License Creative Commons BY 4.0 International license
© Michael Bleher

RNA velocity data provides a snapshot of cell states and their current rate of change. It
promises insights into the behaviour of individual cells and the dynamics governing cell
division and differentiation processes. To explore single cell RNA-sequence data one often
relies on low-dimensional visualizations, e.g. tSNE or UMAP. A priori it is not obvious
how RNA velocities carry over to such representations and current methods have several
drawbacks.

It was recently suggested that one should fix a biologically motivated, low-dimensional
manifold and infer RNA velocities strictly in terms of an embedding of the data in that
manifold. I expand on that idea and argue that low-dimensional representations of position-
velocity pairs should utilize the Sasakian geometry on the tangent bundle of curved target
spaces. Moreover, I propose that non-linear neighbour embeddings into low- or middle-
dimensional symmetric spaces provide a geometric representation of the principal dynamical
components in the data. This geometrization provides interesting future directions regarding
the analysis of the dynamical processes captured in single cell data.

3.2 Dimensionality Reduction for Scientific Machine Learning – First
Steps towards Task-driven Mechanistic Model Reduction

Kerstin Bunte (University of Groningen, NL)

License Creative Commons BY 4.0 International license
© Kerstin Bunte

Joint work of Kerstin Bunte, Peter Tiňo, Elisa Oostwal, Janis Norden, Michael Chappell
Main reference Yuan Shen, Peter Tino, Krasimira Tsaneva-Atanasova: “Classification framework for partially

observed dynamical systems”, Phys. Rev. E, Vol. 95, p. 043303, American Physical Society, 2017.
URL https://doi.org/10.1103/PhysRevE.95.043303

Main reference Kerstin Bunte, David J Smith, Michael J Chappell, Zaki Hassan-Smith, Jeremy W Tomlinson,
Wiebke Arlt, Peter Tiňo: “Learning pharmacokinetic models for in vivo glucocorticoid activation”. J
Theor Biol. 2018 Oct 14;455:222-231. Epub 2018 Jul 23. PMID: 30048717.

URL https://doi.org/10.1016/j.jtbi.2018.07.025

Nowadays, most successful machine learning (ML) techniques for the analysis of complex
interdisciplinary data use significant amounts of measurements as input to a statistical system.
The domain expert knowledge is often only used in data preprocessing. The subsequently
trained technique appears as a “black box”, which is difficult to interpret and rarely allows
insight into the underlying natural process. Especially in critical domains such as medicine
and engineering, the analysis of dynamic data in the form of sequences and time series is
often difficult. Due to natural or cost limitations and ethical considerations data is often
irregularly and sparsely sampled and the underlying dynamic system is complex. Therefore,
domain experts currently enter a time-consuming and laborious cycle of mechanistic model
construction and simulation, often without direct use of the experimental data or the task at
hand. We now combine the predictive power of ML and the explanatory power of mechanistic
models. Therefore we perform learning in the space of dynamic models that represent the
complex underlying natural processes, with potentially very few measurements. We use
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principles of dimensionality reduction, such as subspace learning, to determine relevant areas
in the parameter space of the underlying model as a first step to achieve task-driven model
reduction.

3.3 Tree-based Dimensionality Reduction and Clustering
Miguel Á. Carreira-Perpiñán (University of California – Merced, US)

License Creative Commons BY 4.0 International license
© Miguel Á. Carreira-Perpiñán

URL http://faculty.ucmerced.edu/mcarreira-perpinan/research/TAO.html

I describe recent work about tree-structured dimensionality reduction, with applications to
interpretability, fast training and inference, and scalability to large datasets. This relies
on learning optimal sparse oblique decision trees, which have hyperplane splits using few
features (rather than the traditional single-feature splits). I make connections to methods
ranging from PCA to autoencoders to t-SNE, and extensions to clustering and other topics.

3.4 Mapping the Embedding Multiverse
Corinna Coupette (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Corinna Coupette

Joint work of Jeremy Wayland, Corinna Coupette, Bastian Rieck
Main reference Jeremy Wayland, Corinna Coupette, Bastian Rieck: “Mapping the Multiverse of Latent

Representations”, CoRR, Vol. abs/2402.01514, 2024.
URL https://doi.org/10.48550/ARXIV.2402.01514

Echoing recent calls to counter reliability and robustness concerns in machine learning via
multiverse analysis, we present PRESTO, a principled framework for mapping the multiverse
of machine-learning models that rely on latent representations. Although such models enjoy
widespread adoption, the variability in their embeddings remains poorly understood, resulting
in unnecessary complexity and untrustworthy representations. Our framework uses persistent
homology to characterize the latent spaces arising from different combinations of diverse
machine-learning methods, (hyper)parameter configurations, and datasets, allowing us to
measure their pairwise (dis)similarity and statistically reason about their distributions. As
we demonstrate both theoretically and empirically, our pipeline preserves desirable properties
of collections of latent representations, and it can be leveraged to perform sensitivity analysis,
detect anomalous embeddings, or efficiently and effectively navigate hyperparameter search
spaces.
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3.5 Detecting the Topology of High-dimensional Data with Spectral
Methods

Sebastian Damrich (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
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Joint work of Sebastian Damrich, Philipp Berens, Dmitry Kobak
Main reference Sebastian Damrich, Philipp Berens, Dmitry Kobak: “Persistent homology for high-dimensional data

based on spectral methods”, CoRR, Vol. abs/2311.03087, 2023.
URL https://doi.org/10.48550/ARXIV.2311.03087

Persistent homology is a popular computational tool for finding the global shape (topology)
of point clouds, such as the presence of loops or voids. However, many real-world datasets
with low intrinsic dimensionality reside in an ambient space of much higher dimensionality.
We show that in this case traditional persistent homology becomes very sensitive to noise
and fails to detect the correct topology. The same holds true for existing refinements of
persistent homology. As a remedy, we find that spectral distances, such as diffusion distance
and effective resistance, allow persistent homology to detect the correct topology even in the
presence of high-dimensional noise. Finally, we apply these methods to high-dimensional
single-cell RNA-sequencing data.

3.6 Neighbor Embedding Algorithms: Missing Data, Fast Multiscale
Approaches, and Interpretability

Cyril de Bodt (University of Louvain, BE)
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Joint work of Cyril de Bodt, Dounia Mulders, Michel Verleysen, Pierre Lambert, Edouard Couplet
Main reference Cyril de Bodt, Dounia Mulders, Michel Verleysen, John Aldo Lee: “Fast Multiscale Neighbor

Embedding”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 33(4),
pp. 1546–1560, 2022.

URL https://doi.org/10.1109/TNNLS.2020.3042807

Dimensionality reduction (DR) aims at computing relevant low-dimensional (LD) represent-
ations of high-dimensional (HD) data sets, mainly for exploratory visualization. Different
paradigms have emerged to formalize mappings from HD to LD coordinates, e.g., through
the reproduction of distances or neighborhoods. In the data visualization context, neighbor
embedding (NE) algorithms, such as stochastic neighbor embedding (SNE) and variants
(t-SNE, UMAP, etc.), reach outstanding DR performance compared to older techniques.

After quickly introducing the field of dimensionality reduction for data visualization and
NE algorithms in particular, this talk will summarize three lines of projects recently explored
in our lab:

The visualization of databases with missing entries [1];
The acceleration of multiscale NE schemes, which aim at better preserving both local
and global HD structures in LD embeddings [2];
The interpretability of NE algorithms, through the design of both post-hoc techniques
and natively interpretable methods [3, 4].
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3.7 What is a Population? Insights from Topological Analysis of
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Population genetics methods necessarily rely on some definition of a population for analysis.
Many methods exist, and most either model a discrete number of populations and their
mixtures or define an archetype of a population and fit data to that. Alternatively, we can
use density clustering after having processed the data with UMAP specifically parametrized
for clustering. Using this approach, we can visualize and study biobank data from a
genetic perspective, allowing us to better understand the complexity of the gene-geography-
environment relationship, explore potential analyses, and ultimately learn much more about
the data upon which so many analyses are based.
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3.8 Compound-SNE for Comparative Alignment of Multiple t-SNEs &
Eco-velo for RNA-velocity estimation
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One of the first steps in single-cell omics data analysis is visualization, which allows re-
searchers to see how well-separated cell-types are from each other. In order to improve
visual comparisons between large numbers of samples, we introduce Compound-SNE, which
performs what we term a soft alignment of samples in embedding space. We show that
Compound-SNE is able to align cell-types in embedding space across samples and data
modalities, while preserving local embedding structures from when samples are embedded
independently. I also talked about application of the Nostrum projection method for visual-
isation of RNA-velocities, as well as our cost-efficient Eco-velo approach, which skips the
current unreliable gene-by gene parameter fitting approaches for velocity estimation.

3.9 Using Embeddings in the Social Sciences: Examples and Open
Problems

Ágnes Horvát (Northwestern University – Evanston, US)
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In recent years, there has been an explosion of interest in quantitative methods that rely
on low-dimensional embeddings for pattern extraction and visualization. Social scientists
increasingly recognize that these techniques open up new methodological opportunities. This
brief talk presented examples from our work relying on digital trace data to understand
online science communication [1, 4, 3, 2], musical creativity [5], and capital allocation [6],
highlighting the challenges where social science applications need further methodological
development.
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3.10 Neighbour Embeddings Meet Contrastive Learning
Dmitry Kobak (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Dmitry Kobak

Main reference Jan Niklas Böhm, Philipp Berens, Dmitry Kobak: “Attraction-Repulsion Spectrum in Neighbor
Embeddings”, Journal of Machine Learning Research, Vol. 23(95), pp. 1–32, 2022.

URL http://jmlr.org/papers/v23/21-0055.html

In recent years, neighbor embedding methods like t-SNE and UMAP have become widely
used across several application fields, in particular in single-cell biology. Given this attention,
it is very important to understand possibilities, shortcomings, and trade-offs of neighbor
embedding methods. In this talk, I present our recent work on the attraction-repulsion
spectrum of neighbor embeddings and the involved trade-offs [1, 2]. I also explain how
neighbor embeddings are related to contrastive learning, a popular framework for self-
supervised learning of image data. This leads to our recent work on contrastive visualizations
of image datasets (t-SimCNE) [3].
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3.11 Tear and Repulsion Enabled Registration of Point Clouds for
Manifold Learning

Dhruv Kohli (University of California – San Diego, US)
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We present a framework for aligning the local views of a possibly closed/non-orientable data
manifold to produce an embedding in its intrinsic dimension through tearing. Through
a spectral coloring scheme, we render the embeddings of the points across the tear with
matching colors, enabling a visual recovery of the topology of the data manifold. The
embedding is further equipped with a tear-aware metric that enables computation of shortest
paths while accounting for the tear. To measure the quality of an embedding, we propose two
Lipschitz-type notions of global distortion—a stronger and a weaker one—along with their
pointwise counterparts for a finer assessment of the embedding. Subsequently, we bound
them using the distortion of the local views and the alignment error between them. We show
that our theoretical result on strong distortion leads to a new perspective on the need for
a repulsion term in manifold learning objectives. As a result, we enhance our alignment
approach by incorporating repulsion. Finally, we compare various strategies for the tear and
repulsion enabled alignment, with regard to their speed of convergence and the quality of
the embeddings produced.

3.12 Heat Diffusion Distances, Manifold Embeddings and Geodesics
Smita Krishnaswamy (Yale University – New Haven, US)
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Here we explore the connection between heat diffusion on data and recovery of manifold or
more intrinsic distances in data for low dimensional embeddings and dimensionality reduction.
The main approach here is to view the data as a graph over which random walks or heat
diffusion are conducted to discover distances “through” the data between points and then
embed them in low dimensions. We introduce the idea of random walk based distance, which
is a feature of diffusion maps and our PHATE method. With the latter using an M-divergence
between data (discrete) diffusion probabilities. Next we introduce the heat kernel which
involves exponential powers of the graph laplacian, which can be used to discover a more
generalized multiscale distance and preservation options which weigh near and far distances
under different schema to create a continuum between neighbor preservation embeddings
(like SNE) and global embeddings like PHATE. Finally we showed how to use these distances
to regularize autoencoders whose latent spaces can then be used for population flows and
discovery of dynamics from static snapshot data via our Neural FIM and Mioflow frameworks.
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3.13 Unsupervised Dimensionality Reduction: Multi-Scale Methods &
Quality Assessment

John Aldo Lee (UC Louvain-la-Neuve, BE) and Cyril de Bodt (University of Louvain, BE)
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Since 2008, methods of neighbor embedding (NE) have gained much popularity and have
outperformed mostly all other paradigms of dimensionality reduction DR. A method like
t-SNE yields results that clearly outperform stress-based multidimensional scaling (MDS)
for instance. However, NE is known to be a local method, preserving small neighborhoods,
whereas MDS is more of a global method, keeping the global data arrangement. This work
is interested in developing NE methods that are local and global, as well as quality criteria
to evaluate them. Multi-scale NE can be achieved by using entropic affinities by browsing a
range of neighborhood sizes (a.k.a. perplexities in NE) like powers of 2 up to about N/2.
Then entropic affinities are averaged to get multi-scale affinities that can be matched with
information-theoretic divergences.

In order to evaluate these methods, quality criteria have been developed, based on
neighborhood rank preservation. As those criteria depend on the neighborhood size K, curves
of neighborhood agreement with respect to K can be drawn. Rescaling the criterion to
account for random embedding and having a log axis for abscissa K visually emphasizes
local neighborhoods; the area under the curve yields a scalar score for each compared
embedding. DR quality assessment can then be considered in a (DR – DR QA – user) loop
for iterative exploratory data analysis. Some examples are discussed and a software interface
for exploratory data analysis are presented. A complementary topic is a new method of MDS,
working with a low-cost stochastic optmization, coined SQuaD-MDS (stochastic quartet
descent). Like other flavors of MDS, SQuaD-MDS is more of a global method. However, it
can be combined with accelerated local methods of NE to address their main shortcoming of
overlooking the global structure.

A companion talk is given by Cyril de Bodt with recent projects and papers along that
line (NE with missing data, fast multi-scale NE, interpretable NE).

3.14 Interactive Visual Analytics and Hypothesis Generation with
Non-linear Similarity Embeddings

B.P.F. Lelieveldt (Leiden University Medical Center, NL)
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Non-linear similarity embedding techniques such tSNE and UMAP have rapidly gained
traction for exploratory data analysis and visualization. They have demonstrated their
utility for hypothesis generation, and following from that, the formulation of highly targeted
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experimental setups for verification of these visualization-inspired hypotheses. Key enabling
factor for this hypothesis generation is the development of high-performance tools to interact
with embeddings that enable on-the-fly drill-ins, re-embedding and complementary views on
the data: a visualization paradigm known as visual analytics. This presentation discussed
a number of methods to enable and integrate interactivity, as well as embedding dynamics
and quality control cues into the visual exploration of high-dimensional data. Departing
from the scalable embedding technique Hierarchical Stochastic Neighbor Embedding (HSNE),
methods such as progressive visualization of attraction force reduction during embedding,
dual sample-feature views, magic lenses for localized alterations in attraction force, elastically-
coupled multi-view embeddings, and strategies for “focus and context” drill-in options for
multi-million datapoint datasets were discussed. Application examples were focused on life-
sciences (single-cell and spatial transcriptomics) and hyperspectral image analysis (satellite
imagery and paintings).

3.15 Nearest Neighbour Graphs – Edges and Weights
Leland McInnes (Tutte Institute for Mathematics&Computing – Ottawa, CA)
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I proposed an alternative method for generating weights in a nearest neighbour graph, with
the intention of using the (directed, weighted) graph for clustering or dimension reduction.
The approach uses per point estimates of the distribution of nearest neighbour distances in
local regions of the data space; these estimates can be constructed by performing recursive
Bayesian updates of estimates based on the estimates of neighbouring points. One can then
generate a neighbour graph with edge weights (of affinities) given by the probability (under
the points model of nearest neighbour distances) that a given candidate neighbour is a nearest
neighbour. It can be shown that results in a graph where edge weights more closely align
with distances in low-dimensional representations given by neighbour graph methods such
as t-SNE, TriMAP, MDE and UMAP. This provides a potential approach for performing
clustering directly on high dimensional data that is competitive with approaches such as
UMAP+HDBCSAN.
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3.16 The Case for Intermediate-dimensional Embeddings – Looking
Deep into the Spectrum of the Graph Laplacian

Gal Mishne (University of California, San Diego – La Jolla, US)
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In this talk, I introduce new unsupervised geometric approaches for extracting structure
from large-scale high-dimensional data. The traditional viewpoint of spectral approaches to
clustering and manifold learning is to construct a data-driven graph on the data-points and
use the top eigenvectors of the graph Laplacian matrix to embed the data. However, in recent
work, we have shown the benefit of looking deep within the spectrum of the graph-Laplacian
to identify subsets of eigenvectors that characterize the data locally. First, I will present a
new robust measure, the Spectral Embedding Norm, to separate clusters from background,
and demonstrate its application to both outlier detection and image segmentation. Based
on this measure we developed a greedy method for extracting overlapping clusters from
a dominant background compound, which we demonstrate on calcium imaging data at
different spatial scales (e.g., cellular, widefield). Finally, I will present Low Distortion Local
Eigenmaps (LDLE), a “bottom-up” manifold learning technique that constructs a set of low
distortion local views of a dataset in lower dimension and registers them to obtain a global
embedding. In contrast to existing data visualization techniques, LDLE is more geometric
and can embed manifolds without boundary as well as non-orientable manifolds into their
intrinsic dimension.

3.17 Probabilistic Embedding Models
Ian Nabney (University of Bristol, GB)

License Creative Commons BY 4.0 International license
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This talk discussed briefly the importance of user involvement in method development with
an example from model evaluation: how does a non-expert user know whether further work
is needed on a specific model?

The main aim of the talk was to describe how latent variable models can be used
for dimensionality reduction and the characteristics of the statistical probability analysis
viewpoint. Principal Component Analysis was defined as a probabilistic model and it was
shown how it can be generalised to a density model for the data (latent variable model
exemplified by Generative Topographic Mapping – GTM). The value of this is the use of a
single coherent framework: probabilities (noise and statistical viewpoint not an afterthought
but inherent in the model), latent variables, inference, EM algorithm, Bayes. We then
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discussed how GTM can be extended to deal with missing values, discrete and mixed
data types, time-dependent data, hierarchies, and feature selection. Illustrations from real
applications were provided throughout.

3.18 On the Epistemic Virtues of Dimensionality Reduction
Maximilian Noichl (Utrecht University, NL)
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In the present contribution, we focus on novel techniques of dimensionality-reduction. These
methods can be useful both as independent analyses in there own right, as preprocessing
steps for further analysis, e. g. clustering, and as visualisation techniques that translate
data into two or three dimensions. Because of their undeniable power, both linear variants,
like the older PCA, as well as somewhat novel non-linear variants, like t-SNE or UMAP,
have become ubiquitous in scientific and commercial data analysis, including domains as
varied as chemistry, linguistics, genetics and psychology. Importantly, they are also used
to inspect the features learned by neural networks and to visualise their learning-process.
But their adoption has not been without controversy, as the structures they produce can
be highly sensitive to the choice of hyper-parameters as well as random initialisation. This
has made some practitioners cautious in their interpretation and communication of their
results, especially regarding settings that have some bearing on social questions. UMAP
or t-SNE-visualizations of human genomic data can for example give the impression of
clear separation of human groups that is not warranted by the data, a visual feature that
has led them to be widely shared in racist internet-communities. In our contribution, we
investigate the emergence of epistemic virtues, a notion we borrow from Lorraine Daston’s
and Peter Galison’s work on the virtue of objectivity, surrounding these techniques. We base
our analysis on published articles, open-sourced code, tutorials, as well as a computational
analysis of social media content, and interviews with key-actors in the domain. Based on
our analysis we suggest a first account of the epistemic virtues which in our view ought
to surround their practical usage. We suggest that virtues like accessibility, interactivity,
explorability can supersede virtues like mechanisation and process-determinacy im some
cases. We further highlight how deeply non-epistemic values of software-implementation, like
speed and ease of use interweave with epistemic one, and make some suggestions for how the
the maintainers of open source packages can improve the environment in which end-users
find themselves to contribute to a responsible and scientifically profitable practice.
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3.19 VERA: Generating Visual Explanations of Two-Dimensional
Embeddings via Region Annotation

Pavlin G. Poličar (University of Ljubljana, SI)
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Two-dimensional embeddings obtained from dimensionality reduction techniques, such as
MDS, t-SNE, and UMAP, are widely used across various disciplines to visualize high-
dimensional data. These visualizations provide a valuable tool for exploratory data analysis,
allowing researchers to visually identify clusters, outliers, and other interesting patterns
in the data. However, interpreting the resulting visualizations can be challenging, as it
often requires additional manual inspection to understand the differences between data
points in different regions of the embedding space. To address this issue, we propose
Visual Explanations via Region Annotation (VERA), an automatic embedding-annotation
approach that generates visual explanations for any two-dimensional embedding. VERA
produces informative explanations that characterize distinct regions in the embedding space,
allowing users to gain an overview of the embedding landscape at a glance. Unlike most
existing approaches, which typically require some degree of manual user intervention, VERA
produces static explanations, automatically identifying and selecting the most informative
visual explanations to show to the user. We illustrate the usage of VERA on a real-world
data set and validate the utility of our approach with a comparative user study. Our
results demonstrate that the explanations generated by VERA are as useful as fully-fledged
interactive tools on typical exploratory data analysis tasks but require significantly less time
and effort from the user.

3.20 No Metric to Rule Them All: Gauging the Graphicality of Graph
Data

Bastian Rieck (Helmholtz Zentrum München, DE)
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Graphs are ubiquitous and constitute the primary data type in many application domains.
Modern graph learning algorithms, like graph neural networks, permit dealing with graph
data in such contexts. Recent research, however, shows that these algorithms are biased in
the sense that they use the graph structure for tasks even when it unnecessary or detrimental
for task performance. Thus, there is a crucial need for understanding to what extent the
structure of a graph and its attributes are related. We address this by lifting the problem to
a comparison of metric spaces defined by either the attributes or the structure of a graph.
This defines a new measure that we refer to as graphicality. We demonstrate its utility via a
suite of experiments while also proving its stability properties.

24122

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2406.04808
https://arxiv.org/abs/2406.04808
https://arxiv.org/abs/2406.04808
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


112 24122 – Low-Dimensional Embeddings of High-Dimensional Data

3.21 Distances and Trees
Enrique Fita Sanmartin (Universität Heidelberg, DE)
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In the first part of the talk, we present the “log-norm” family of distances, a novel family
of metrics on graphs that interpolates between the shortest path, minimax and commute
cost distances. The log-norm family is based on the “algebraic path problem” framework, a
generalization of the shortest path problem. In the second part, we introduce a family of
robust spanning trees embedded in Euclidean space, named central spanning tree (CST),
whose geometric structure is resilient against perturbations such as noise. The family of trees
is defined through a parameterized NP-hard minimization problem over the edge lengths,
with specific instances including the minimum spanning tree or the Euclidean Steiner tree.
The minimization problem weighs the length of the edges by their tree edge-centralities,
which are regulated by a parameter α. Two variants of the problem are explored: one
permitting the inclusion of Steiner points (referred to as branched central spanning tree or
BCST), and another that does not. The effect of α on tree robustness is empirically analyzed,
and a heuristic for approximating the optimal solution is proposed.

3.22 Scalable Interaction in Browser-based Embedding Visualizations
Benjamin M. Schmidt (Nomic AI – New York, US)
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Practices of two-dimensional embedding representations that have emerged from the cul-
tural heritage community offer useful models for advancing human-computer interaction
techniques in dimensionality reduction. Domain experts in the fields often have extremely
little investment in programming but can easily understand and read individual points given
a sufficiently advanced interface. In this talk I describe the tactics used in Deepscatter,
a typescript/WebGL library, that is able to progressively serve, render, and interactively
animate billion-point scatterplots over the web using Apache Arrow and other technologies by
storing data in a progressively-loaded quadtree format designed to allow mutations and edit-
ing through asynchronous transformations. I also describe the language of data interaction
we have developed in the Nomic AI Atlas product for easing the tasks of large-scale filtering,
selection, tagging, and search on data represented upstream as embeddings; the creation
of selections of data and interactive repositioning of points is an important component of
interaction that allows improving models and avoiding the misreadings that are easy when
relying on only a single, static view that makes interrogating individual points difficult or
impossible.
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3.23 Using Higher-Order De Bruijn Graphs to Learn Causality-Aware
Representations of Temporal Graphs

Ingo Scholtes (Universität Würzburg, DE)
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Graph Neural Networks (GNNs) have become a cornerstone for the application of deep
learning to data on complex networks. However, we increasingly have access to time-resolved
data that not only capture which nodes are connected to each other, but also when and
in which temporal order those connections occur. A number of works have shown how the
timing and ordering of links shapes the causal topology of networked systems, i.e. which
nodes can possibly influence each other via so-called time-respecting paths that account for
the arrow of time [5]. Moreover, higher-order graph models have been developed that allow
us to model patterns in the resulting causal topology [4, 3]. Building on these works, we
introduce De Bruijn Graph Neural Networks (DBGNNs), a novel time-aware graph neural
network architecture for time-resolved data on dynamic graphs. Our approach accounts for
temporal-topological patterns that unfold via causal walks, i.e. temporally ordered sequences
of links by which nodes can influence each other over time. This enables us to learn patterns
in the causal topology of time series data on complex networks, which facilitates to address
learning tasks in temporal graphs.

In my talk, I will show how we can use higher-order De Bruijn graph models of time-
respecting paths to learn low-dimensional Euclidean representations that capture both
temporal and topological patterns in data on temporal graphs. Building on a generalization
of graph Laplacians to higher-order De Bruijn graph models [5], I will show how we can use
a Laplacian embedding to detect temporal-topological cluster patterns in temporal graphs. I
further demonstrate a neural representation learning technique that is based on the De Bruijn
Graph Neural Network (DBGNN) architecture [2]. Apart from facilitating node classification
it has recently been used to predict temporal node centralities in temporal graphs [1].
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3.24 Guided Data Exploration with (Semi-)Supervised Manifold
Learning

Guy Wolf (University of Montreal, CA & MILA – Montreal, CA)
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Modern challenges in exploratory data analysis, especially in biomedical applications involving
single cell data, give rise to representation learning techniques that aim to capture intrinsic
data geometry (e.g., patterns and structures), while separating it from data distribution that
is typically biased by data availability and collection artifacts, thus allowing discovery of
rare subpopulations and sparse transitions between meta-stable states. A common approach
in this area, which I discuss in this talk, is the construction of a data-driven diffusion
geometry that both captures intrinsic structure in data and provides a generalization of
Fourier harmonics on it, combining tools and perspectives from a range of fields including
manifold learning, graph signal processing, and harmonic analysis. However, most methods
following this paradigm rely on unsupervised learning, under the assumption that the target
phenomena of interest will form the dominant emergent patterns in the data, uncovered
by the extracted representation. While this is the case in certain controlled experiment
conditions, such property cannot be guaranteed in many observational services settings. As
an alternative, here we discuss semi-supervised approaches that leverage annotations and
meta information that often accompanies collected data, in order to guide the data geometry
to accentuate task-informed structures in the learned representation. This approach is
demonstrated in data exploration tasks including visualization and multimodal data fusion.
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