
Report from Dagstuhl Seminar 24161

Research Software Engineering: Bridging Knowledge Gaps
Stephan Druskat∗1, Lars Grunske∗2, Caroline Jay∗3, and
Daniel S. Katz∗4

1 German Aerospace Center (DLR), Berlin, DE. stephan.druskat@dlr.de
2 HU Berlin, DE. grunske@informatik.hu-berlin.de
3 University of Manchester, GB. caroline.jay@manchester.ac.uk
4 University of Illinois Urbana-Champaign, US. d.katz@ieee.org

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar “Research Software
Engineering: Bridging Knowledge Gaps” (24161). The seminar brought together participants
from the research software engineering and software engineering research communities, as well
as experts in research software education and community building to identify knowledge gaps
between the two communities, and start collaborations to overcome these gaps. Over the course of
five days, participants engaged in learning about each others’ work and collaborated in breakout
groups on specific topics at the intersection between the two communities. Outputs from the
working groups will be collected in a journal special issue and distributed via a dedicated website.
Seminar April 14–19, 2024 – https://www.dagstuhl.de/24161
2012 ACM Subject Classification Applied computing → Computers in other domains; Applied

computing → Education; Software and its engineering
Keywords and phrases community building, Dagstuhl Seminar, knowledge transfer, research

software engineering, RSE, software engineering research
Digital Object Identifier 10.4230/DagRep.14.4.42

1 Executive Summary

Stephan Druskat (German Aerospace Center (DLR), Berlin, DE)
Lars Grunske (HU Berlin, DE)
Caroline Jay (University of Manchester, GB)
Daniel S. Katz (University of Illinois Urbana-Champaign, US)

License Creative Commons BY 4.0 International license
© Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz

Research Software Engineering (RSEng) is the practice of applying knowledge, methods and
tools from software engineering in research. Software Engineering Research (SER) develops
methods to support software engineering work in different domains. The practitioners of
research software engineering working in academia – Research Software Engineers (RSEs)
– are often not trained software engineers. Nevertheless, RSEs are the software experts in
academic research. They translate research to software, enable new and improved research,
and create software as an important output of research [1].

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Research Software Engineering: Bridging Knowledge Gaps, Dagstuhl Reports, Vol. 14, Issue 4, pp. 42–53
Editors: Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.druskat@dlr.de
mailto:grunske@informatik.hu-berlin.de
mailto:caroline.jay@manchester.ac.uk
mailto:d.katz@ieee.org
https://www.dagstuhl.de/24161
https://doi.org/10.4230/DagRep.14.4.42
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 43

Hypothetically, the RSEng community and the SER community could benefit from each
other. RSEs could leverage software engineering research knowledge to adopt state-of-the-art
methods and tools, thereby improving RSEng practice towards better research software. Vice
versa, software engineering research could adopt RSEng more comprehensively as a research
object, to investigate the methods and tools required for the application of state-of-the-art
software engineering in research contexts [2].

There are currently both unknown and known unknowns that make it hard for either
community to attain the benefits mentioned above. We call these unknowns gaps, and we
call methods to discover the unknown unknowns and to clarify or resolve the (subsequently)
known unknowns bridges.

To find the gaps between research software engineering and software engineering research,
and start building bridges between the two communities with the aim to create mutual
benefit through reciprocal collaboration, we organized and held a five-day seminar in April
2024 at Schloss Dagstuhl – Leibniz Center for Informatics, as Dagstuhl Seminar 24161
“Research Software Engineering: Bridging Knowledge Gaps”. Here, we report and document
the seminar’s program, outputs, and potential outcomes.

Seminar participants
In the past, there has been little focused direct communication between the RSEng and SER
communities. Anecdotally, while the German RSEng and SER conferences co-located in
2023 in Paderborn and shared a break room, there was little, and only informal, exchange in
session attendance by participants of either conference, and hence little knowledge exchange.

We specifically organized our Dagstuhl Seminar to serve as a bridge across this type of
communication gap between the communities, by inviting international experts from both
communities as well as individuals who have a track record of working at the intersection
between the communities. We also invited experts in adjacent fields such as education and
training, and research software funding.

In a pre-seminar survey, we asked participants if they could contribute experience in any
of the following areas:

Research Software Engineering: practicing software engineering in a research context
Software Engineering: practicing software engineering
Research on Software Engineering: conducting SER
Research on Research Software Engineering: conducting research on RSEng
Teaching, training, instruction
Research software funding
Community building

Answers were provided on a 5-point Likert scale: “None” – “A little” – “Some” – “Much” –
“A lot”. The results are shown in Figure 1. They suggest that we were mostly successful
in bringing together participants with at least some relevant expertise, with the possible
exception of research software funding, where more than half of participants claimed little or
no expertise. This was partly due to invitees with a known background in research software
funding being unavailable to attend the seminar.

24161

44 24161 – Research Software Engineering: Bridging Knowledge Gaps

20 10 0 10 20 30

Research Software Engineering

Software Engineering

Research on Software Engineering

Research on Research Software (Engineering)

Teaching, training, instruction

Research software funding

Community building

0

0

4

1

0

4

0

2

5

8

9

3

14

7

9

10

3

9

8

9

12

11

7

6

6

12

5

8

13

13

14

10

12

3

8

 94%

 85%

 65%

 71%

 91%

 48%

 80%

None A little Some Much A lot

Figure 1 Survey responses to a question on experience in a given area. A total of 35 participants
replied to the survey. Each person answered one of five levels of experience in the respective area.

Seminar program
The seminar program was prepared to mainly enable direct collaboration of participants
from both the SER and the RSEng communities. Sessions were run either in the plenary, or
in breakout groups.

After an introductory session where participants introduced themselves and their work,
short presentations were given on ideas for collaborative groups to form at the seminar. From
the original set of ideas, participants eventually formed a total of seven breakout groups to
work on specific topics. Their work is summarized in the respective working group abstracts
in this report. In addition, three additional ideas were brought forward in the course of the
seminar in a more informal manner outside of sessions. For these additional ideas, work
would either be done in parallel to the sessions, or was planned to be done after the seminar.
An overview of all topics is given in Table 1.

Table 1 Topics of working groups and breakout initiatives worked on at the seminar.

Collaboration Topic
Working group Research Software Engineering Training & Education
Working group Better Architecture, Better Software, Better Research
Working group Bridging Communities
Working group Developing a Common Language
Working group Research Software: Towards Categories and Lifecycles
Working group Security and usability of research software
Working group Demystifying research software engineering for re-

search group leaders
Breakout discussion Software Engineering Equity, Diversity, Inclusion or

Accessibility Research in Research Software/RSEng
Breakout project Short software engineering social videos

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 45

The introductory session was rounded off by a primer presentation of research software
engineering, and a preliminary discussion of options for the dissemination of seminar outcomes.
Based on early feedback from participants, we decided to give up on our original idea of
collecting seminar outcomes as chapters of an edited volume – a field manual for research
software engineering. Instead, we discussed options for collecting some of the outputs in a
journal special issue, while leaving it generally up to groups to determine the best way for
their outputs to be disseminated.

For the remainder of the seminar, work was originally planned to take place in breakout
groups, with regular reporting and feedback sessions in the plenary. The third day was
planned as an exception, with two fishbowl sessions scheduled for the morning sessions, and
a group excursion in the afternoon.

Based on feedback from participants on the first day of the seminar, we realized that
there was a wider perception gap between RSEs and software engineering researchers
than originally anticipated: software engineering researchers specifically did not feel entirely
confident in their understanding of the scope and practice of RSEng, and of what research
software projects looked like. Vice versa, RSEs did not feel entirely confident in their
understanding of the aims and scope of software engineering research. We aimed to address
this gap on the second day of the seminar with an ad-hoc “Ask us anything” plenary session
where software engineering researchers asked members of the RSEng community questions
about their work and experience, and with a subsequent ad-hoc session where RSEs presented
the contexts they work in, setup of RSE groups, and particular research software projects.

In light of the need to address this kind of feedback quickly, we moved to adapt the
original schedule for each day the night before, incorporating feedback we have had during
the day.

In the same spirit as the “Ask us anything” sessions, we ran two sessions of “mythbusting
fishbowls,” where members of the SER, and then the RSEng, community formed a dynamic
panel who discussed topics suggested by the respective other community: preconceptions
that one community had about the other’s work were fielded via sli.do, voted for by the
audience, and the most popular ones then discussed by the panel. Panel members were
replaced whenever another community member wanted to contribute to the discussion.

Outputs of the seminar activities are presented in brief in the next section.

Outputs
A central outcome of the seminar is that community members from the SER and RSEng
communities started collaborations to identify and bridge gaps between them.

The outputs of the working groups will be invited to be submitted as articles to a special
issue “Research Software Engineering: Discovering and Bridging Knowledge Gaps” in IEEE
Computing in Science & Engineering, to be edited by the seminar organizers and published
in 2025.

Beyond collecting outputs in this way, one of the working groups developed and published
a website that aims to collect outputs from the seminar in a way accessible to a wider public
and invites contributions from the community: ser-rse-bridge.github.io. The website
also includes a mapping of terms between SER and RSEng, based on the Guide to the
Software Engineering Body of Knowledge [3], which is currently under development (see
Section 3.1).

24161

https://sli.do
sli.do
https://ser-rse-bridge.github.io/
ser-rse-bridge.github.io

46 24161 – Research Software Engineering: Bridging Knowledge Gaps

Additionally, a series of short videos was produced during the seminar. In these videos,
participants introduce central SER and RSEng knowledge concepts in under a minute. These
can be used on social media platforms to create interest in these topics with, e.g., students
looking to choose their courses.

Conclusion and future work
In conclusion, Dagstuhl Seminar “Research Software Engineering: Bridging Knowledge
Gaps” (24161) was successful in bringing together members of two communities that have a
vested interest in research software engineering: research software practitioners and software
engineering researchers. Together with software education and community experts, we learned
about each others’ work and started conversations and collaborations.

Creating conversations between separate communities and their cultures and codes proved
to be challenging at times, e.g., where incentives differed. Where we observed antagonism,
or where it was brought to our attention by participants, we tried to defuse it and steer
conversations into a constructive direction. We are confident that by and large, this worked
well due to flexibility on the side of the participants and a general will to collaborate and
progress.

We found that adapting the program to the needs of participants where possible while
maintaining the general direction, and arguably intensive workload, helped make the seminar
very productive and engaging. Participants have continued to engage after the seminar to
identify gaps and potential bridges between the communities.

Future work should focus on the continuation of the efforts started at the seminar, and
continued communication and collaboration between the communities. We believe that
the seminar marked a starting point for collaboration that can realize future reciprocal
benefit for research software engineering and software engineering research in equal measure.
Interested parties can refer to the seminar website at https://ser-rse-bridge.github.io/ for
related resources and activities.

References
1 J. Cohen, D. S. Katz, M. Barker, N. Chue Hong, R. Haines, and C. Jay, “The Four Pillars

of Research Software Engineering,” IEEE Software, vol. 38, no. 1, pp. 97–105, Jan. 2021,
doi: 10.1109/MS.2020.2973362.

2 M. Felderer, M. Goedicke, L. Grunske, W. Hasselbring, A.-L. Lamprecht, and B. Rumpe,
“Toward Research Software Engineering Research,” Zenodo, Jun. 2023. doi: 10.5281/zen-
odo.8020525.

3 P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering Body of Knowledge,
Version 3.0. IEEE, 2014.

https://ser-rse-bridge.github.io/

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 47

2 Table of Contents

Executive Summary
Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 42

Working groups
Developing a Common Language: Mapping Between Software Engineering Funda-
mentals and Research Software Terminology
David E. Bernholdt, Robert Haines, Guido Juckeland, Timo Kehrer, and Shurui Zhou 48

Security and usability of research software
Jeffrey Carver, Stuart Allen, Hannah Cohoon, Anna-Lena Lamprecht, Christopher
Klaus Lazik, Michael Meinel, and Lata Nautiyal . 49

Research Software: Towards Categories and Lifecycles
Mikaela Cashman McDevitt, Michael Felderer, Michael Goedicke, Wilhelm Hassel-
bring, Daniel S. Katz, Frank Löffler, Sebastian Müller, and Yo Yehudi 49

Better Architecture, Better Software, Better Research
Myra B. Cohen, Neil Chue Hong, Stephan Druskat, Nasir Eisty, Michael Felderer,
Samuel Grayson, Lars Grunske, Wilhelm Hasselbring, Jan Linxweiler, and Colin
Venters . 50

Bridging Communities: Bringing the Research Software Engineering and Software
Engineering Researcher Communities Together for Mutual Benefit
Ian Cosden, Jeffrey Carver, Hannah Cohoon, Stephan Druskat, Nasir Eisty, Carole
Goble, Samuel Grayson, and Samantha Wittke . 51

Demystifying research software engineering for research group leaders
Toby Hodges, Stuart Allen, Neil Chue Hong, Stephan Druskat, Lars Grunske, Daniel
S. Katz, Jan Linxweiler, Frank Löffler, Jan Philipp Thiele, and Samantha Wittke . 52

Participants . 53

24161

48 24161 – Research Software Engineering: Bridging Knowledge Gaps

3 Working groups

3.1 Developing a Common Language: Mapping Between Software
Engineering Fundamentals and Research Software Terminology

David E. Bernholdt (Oak Ridge National Laboratory, US), Robert Haines (University of
Manchester, GB), Guido Juckeland (Helmholtz-Zentrum Dresden-Rossendorf, DE), Timo
Kehrer (Universität Bern, CH), and Shurui Zhou (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© David E. Bernholdt, Robert Haines, Guido Juckeland, Timo Kehrer, and Shurui Zhou

URL https://ser-rse-bridge.github.io/mapping-of-terms/

When trying to build bridges between communities, it is critical that they are able to
understand each other – that they “speak the same language”. Often in science and technology,
different communities tend to communicate more with each other than outside of the
community. Over time, this leads a community to develop terminology that is distinctive.
When people grounded in different communities meet, they may find that they don’t speak
the same language – the same word or term may mean different things in each community,
and the participants in the conversation may not even realize it.

The term “software engineering” dates back to 1965 and software engineering research
(SER) is a well-established academic discipline. Research Software Engineering (RSE), on
the other hand, is a relatively young field (the term was coined in 2012) that, in this context,
is primarily about applying the concepts, tools, and practices of software engineering to the
development of research software (RS). The majority of research software engineers have come
from the research software community, and despite the name, rarely have formal training in
software engineering – rather than learned on demand as they’ve pursued their careers, often
learning from others in their own community rather than seeking out resources produced
directly by the SER community (classes, trainings, papers, etc.). As such the awareness and
adoption of what the SER community would recognize as core concepts, practices, and tools,
is variable, and often filtered through the experience of others in the RSE community – the
two communities don’t necessarily speak the same language.

To help build bridges between the two communities, we are developing a map between the
terminologies of the SER and RSE communities, along with a rough assessment of the extent
to which the RSE community is aware of the concept, the extent to which it is actually used,
and the potential for research by the SER community to improve the use of the concept. We
are using the Software Engineering Body of Knowledge (SWEBOK) as the jumping-off point
for the SE fundamentals that we want to map. SWEBOK represents a systematic distillation
of the field of software engineering by that community, though we expect that there will be
additional terms arising in both communities that will need to be included in the mapping.
The primary output of this work will be a living document, presented via a website, though
we plan to summarize the results in papers, presentations, and other venues. We plan to
engage first the participants of the Dagstuhl Seminar, and then reach out further in both the
RSE and SER communities to flesh out the mapping. We will use the GitHub platform to
carry out the discussion and track the revisions as we develop the map.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ser-rse-bridge.github.io/mapping-of-terms/

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 49

3.2 Security and usability of research software
Jeffrey Carver (University of Alabama, US), Stuart Allen (Cardiff University, GB), Hannah
Cohoon (University of Utah – Salt Lake City, US), Anna-Lena Lamprecht (Universität
Potsdam, DE), Christopher Klaus Lazik (HU Berlin, DE), Michael Meinel (DLR – Berlin,
DE), and Lata Nautiyal (University of Bristol, GB)

License Creative Commons BY 4.0 International license
© Jeffrey Carver, Stuart Allen, Hannah Cohoon, Anna-Lena Lamprecht, Christopher Klaus Lazik,
Michael Meinel, and Lata Nautiyal

This working group addressed the importance of security and usability in Research Software
Engineering (RSE). The benefits of prioritising these quality attributes become apparent
relatively late in the software development lifecycle, typically when developers are looking to
expand their user base. However, this may be too late for efficient and effective implementation.
There is clearly value in ensuring that software is designed from the outset to be both secure
and user-friendly. Our work aims to improve awareness and skills related to security
and usability in research software development. We find that the appropriate research
methodologies for investigating security and usability in the context of RSE are quite similar.
At the Dagstuhl Seminar, we conducted a pilot study to understand RSE/SER perspectives
on these issues and to assess the level of awareness. These initial results show that despite
the critical nature of usability, research software is often perceived as not usable and research
software tools are often abandoned due to lack of usability. Furthermore, security is not
necessarily perceived by seminar participants as an important quality of research software.
We have begun a systematic review of the literature on security and quality in RSE and are
planning further work to build on this initial effort, in particular conducting a larger survey
and gathering testimonials through interviews.

3.3 Research Software: Towards Categories and Lifecycles
Mikaela Cashman McDevitt (Lawrence Berkeley National Laboratory, US), Michael Felderer
(DLR – Köln, DE), Michael Goedicke (Universität Duisburg – Essen, DE), Wilhelm Hassel-
bring (Universität Kiel, DE), Daniel S. Katz (University of Illinois Urbana-Champaign, US),
Frank Löffler (Friedrich-Schiller-Universität Jena, DE), Sebastian Müller (HU Berlin, DE),
and Yo Yehudi (Open Life Science – London, GB)

License Creative Commons BY 4.0 International license
© Mikaela Cashman McDevitt, Michael Felderer, Michael Goedicke, Wilhelm Hasselbring, Daniel S.
Katz, Frank Löffler, Sebastian Müller, and Yo Yehudi

URL https://github.com/ser-rse-bridge/RSE-lifecycle

There is a huge variety of types of research software, at different stages of evolution. This
often confuses potential software users, developers, funders, and other stakeholders who need
to understand a particular software project, such as when deciding to use them, contribute
to them, or fund them. We present work performed by a group who met at a Dagstuhl
Seminar consisting of both software engineering researchers (SERs) and research software
engineers (RSEs). It includes an initial categorization of research software types, and an initial
presentation of an abstract research software lifecycle that can be applied and customized to
suit a wide variety of research software types, which then can be used to make decisions and
guide development standards that may vary per stage. We also seek community input on
improvements of these two artifacts for future iterations.

24161

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/ser-rse-bridge/RSE-lifecycle

50 24161 – Research Software Engineering: Bridging Knowledge Gaps

In addition, because terminologies and definitions often vary, e.g., one person may consider
a software project to be early-stage or in “maintenance mode”, whilst another project might
consider the same software to be inactive or failed. Because of this, we explore and explain
concepts such as software maturity, intended audience, and intended future use.

3.4 Better Architecture, Better Software, Better Research
Myra B. Cohen (Iowa State University – Ames, US), Neil Chue Hong (University of Ed-
inburgh, GB), Stephan Druskat (German Aerospace Center (DLR), Berlin, DE), Nasir
Eisty (Boise State University, US), Michael Felderer (DLR – Köln, DE), Samuel Grayson
(University of Illinois – Urbana-Champaign, US), Lars Grunske (HU Berlin, DE), Wilhelm
Hasselbring (Universität Kiel, DE), Jan Linxweiler (TU Braunschweig, DE), and Colin
Venters (University of Huddersfield, GB)

License Creative Commons BY 4.0 International license
© Myra B. Cohen, Neil Chue Hong, Stephan Druskat, Nasir Eisty, Michael Felderer, Samuel
Grayson, Lars Grunske, Wilhelm Hasselbring, Jan Linxweiler, and Colin Venters

In this breakout, we discussed the notion that better architecture leads to better research. Re-
search software engineering requires flexible and modular architectures to accommodate rapid
evolution and interdisciplinary collaboration. Hence, we argue that research software engin-
eering should focus on architectural metrics to evaluate and improve their code. Architectural
metrics in research software are essential for ensuring the software’s scalability, performance,
maintainability, and overall quality, facilitating reproducible and reliable research outcomes.
We already have many metrics and tools to measure and improve the quality of software
architecture. However, we hypothesized that research software is often built using limited
resources, and without a long-term vision for maintainability, which may lead to architectural
decay. In this breakout, the group (consisting of software engineers, software engineering
researchers, and research software engineers) discussed key architectural metrics such as code
smells, duplication, test coverage, cyclometric complexity, etc., and how these can be used to
improve research software. We explored our hypothesis by applying existing architectural
analysis tools to a few open-source research software repositories during our breakouts. We
discovered high cyclomatic complexity, large god classes that need refactoring, and low test
coverage. We concluded that we should explore this idea further and that there may be an
opportunity to build better tools and techniques to help research software engineers improve
the architecture of their software, which in turn can improve its quality.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 51

3.5 Bridging Communities: Bringing the Research Software Engineering
and Software Engineering Researcher Communities Together for
Mutual Benefit

Ian Cosden (Princeton University, US), Jeffrey Carver (University of Alabama, US), Hannah
Cohoon (University of Utah – Salt Lake City, US), Stephan Druskat (German Aerospace
Center (DLR), Berlin, DE), Nasir Eisty (Boise State University, US), Carole Goble (Uni-
versity of Manchester, GB), Samuel Grayson (University of Illinois – Urbana-Champaign,
US), and Samantha Wittke (CSC Ltd. – Espoo, FI)

License Creative Commons BY 4.0 International license
© Ian Cosden, Jeffrey Carver, Hannah Cohoon, Stephan Druskat, Nasir Eisty, Carole Goble, Samuel
Grayson, and Samantha Wittke

As the other work from this Dagstuhl Seminar illustrates, there is a chasm between the
community of Software Engineering Researchers (SERs) who cater mostly to industry
applications and Research Software Engineers who may or may not have formal training in
software engineering but develop code for research applications. However, we have identified
a number of potential opportunities if we can bridge that chasm: SERs may find novel
research questions from RSE experiences, and RSEs could improve their productivity by
applying approaches and tools developed by SERs.

Change does not happen on its own. Rather, it must be encouraged and catalyzed by
an initial vanguard group and eventually the whole community or communities involved.
Therefore, it is incumbent upon those desiring such change to apply concepts from the theory
of change, push motivational incentive levers love (open development), power (influence),
money (funding), fame (recognition) and create the facilitating conditions of building trust,
providing thrust through resources and support, and operating with transparency).

One community observing the other from a distance is a start but not sufficient for lasting
change because it treats others as a means to a selfish end. Once community addressing the
other is better, but still not enough because there is no feedback from the other to the one.
Only true collaboration with cyclic communication, mutual benefit, and shared experiences
will be enough for lasting change.

Recognizing the SER and RSE communities have developed and evolved independently,
creating bridges between the two represents a cross-disciplinary and cross-cultural endeavor
just as significant as between life science and computer science [1]. With this recognition
we are developing a guide, as a separate publication, for parties from both sides to better
understand how to foster new collaborations between the two communities. This guide, “10
Simple Rules for catalyzing collaborations and building bridges between RSEs and SERs”
will outline some of the potential benefits while giving a simple set of rules to follow for both
communities to thrive in a new, mutually beneficial collaboration.

References
1 Knapp B, Bardenet R, Bernabeu MO, Bordas R, Bruna M, Calderhead B, et al. (2015)

“Ten Simple Rules for a Successful Cross-Disciplinary Collaboration”. PLoS Comput Biol
11(4): e1004214. https://doi.org/10.1371/journal.pcbi.1004214

24161

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pcbi.1004214

52 24161 – Research Software Engineering: Bridging Knowledge Gaps

3.6 Demystifying research software engineering for research group
leaders

Toby Hodges (The Carpentries – Oakland, US), Stuart Allen (Cardiff University, GB), Neil
Chue Hong (University of Edinburgh, GB), Stephan Druskat (German Aerospace Center
(DLR), Berlin, DE), Lars Grunske (HU Berlin, DE), Daniel S. Katz (University of Illinois
Urbana-Champaign, US), Jan Linxweiler (TU Braunschweig, DE), Frank Löffler (Friedrich-
Schiller-Universität Jena, DE), Jan Philipp Thiele (Weierstraß Institut – Berlin, DE), and
Samantha Wittke (CSC Ltd. – Espoo, FI)

License Creative Commons BY 4.0 International license
© Toby Hodges, Stuart Allen, Neil Chue Hong, Stephan Druskat, Lars Grunske, Daniel S. Katz, Jan
Linxweiler, Frank Löffler, Jan Philipp Thiele, and Samantha Wittke

Unfamiliarity among principal investigators with some of the most important principles
of research software engineering remains one obstacle to successful integration of software
engineering practices into research. Research group leaders unfamiliar with essential concepts
and practices in (research) software engineering may find it difficult to provide guidance to
RSEs in their projects/groups, or to leverage their expertise effectively as part of the research
process. While a growing body of literature, training materials, and other resources exists to
help novice research software engineers learn key principles and develop good practices, one
reason for the enduring knowledge gap among research group leaders may be that they are
not the target audience of such literature, lacking first-hand experience of computational
research methods. Often, these resources do not frame RSEng skills within the context
of the research process as a whole. Inspired by the popular “Ten Simple Rules” series of
articles in PLOS CompBio, this group aims to inform PIs and other researchers about
good practices in RSEng – e.g. software testing, documentation, version control, modelling
software architecture – and explain the value of these when applied by an RSE to enrich
research.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz 53

Participants

Stuart Allen
Cardiff University, GB

David E. Bernholdt
Oak Ridge National Laboratory,
US

Jeffrey Carver
University of Alabama, US

Mikaela Cashman McDevitt
Lawrence Berkeley National
Laboratory, US

Neil Chue Hong
University of Edinburgh, GB

Myra B. Cohen
Iowa State University –
Ames, US

Hannah Cohoon
University of Utah –
Salt Lake City, US

Ian Cosden
Princeton University, US

Stephan Druskat
German Aerospace Center
(DLR), Berlin, DE

Nasir Eisty
Boise State University, US

Michael Felderer
DLR – Köln, DE

Carole Goble
University of Manchester, GB

Michael Goedicke
Universität Duisburg –
Essen, DE

Samuel Grayson
University of Illinois –
Urbana-Champaign, US

Lars Grunske
HU Berlin, DE

Robert Haines
University of Manchester, GB

Wilhelm Hasselbring
Universität Kiel, DE

Toby Hodges
The Carpentries – Oakland, US

Caroline Jay
University of Manchester, GB

Guido Juckeland
Helmholtz-Zentrum
Dresden-Rossendorf, DE

Daniel S. Katz
University of Illinois
Urbana-Champaign, US

Timo Kehrer
Universität Bern, CH

Anna-Lena Lamprecht
Universität Potsdam, DE

Christopher Klaus Lazik
HU Berlin, DE

Jan Linxweiler
TU Braunschweig, DE

Frank Löffler
Friedrich-Schiller-Universität
Jena, DE

Michael Meinel
DLR – Berlin, DE

Sebastian Müller
HU Berlin, DE

Lata Nautiyal
University of Bristol, GB

Bernhard Rumpe
RWTH Aachen, DE

Heidi Seibold
München, DE

Jan Philipp Thiele
Weierstraß Institut – Berlin, DE

Colin Venters
University of Huddersfield, GB

Samantha Wittke
CSC Ltd. – Espoo, FI

Yo Yehudi
Open Life Science – London, GB

Shurui Zhou
University of Toronto, CA

24161

	Executive Summary (Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz)
	Table of Contents
	Working groups
	Developing a Common Language: Mapping Between Software Engineering Fundamentals and Research Software Terminology (David E. Bernholdt, Robert Haines, Guido Juckeland, Timo Kehrer, and Shurui Zhou)
	Security and usability of research software (Jeffrey Carver, Stuart Allen, Hannah Cohoon, Anna-Lena Lamprecht, Christopher Klaus Lazik, Michael Meinel, and Lata Nautiyal)
	Research Software: Towards Categories and Lifecycles (Mikaela Cashman McDevitt, Michael Felderer, Michael Goedicke, Wilhelm Hasselbring, Daniel S. Katz, Frank Löffler, Sebastian Müller, and Yo Yehudi)
	Better Architecture, Better Software, Better Research (Myra B. Cohen, Neil Chue Hong, Stephan Druskat, Nasir Eisty, Michael Felderer, Samuel Grayson, Lars Grunske, Wilhelm Hasselbring, Jan Linxweiler, and Colin Venters)
	Bridging Communities: Bringing the Research Software Engineering and Software Engineering Researcher Communities Together for Mutual Benefit (Ian Cosden, Jeffrey Carver, Hannah Cohoon, Stephan Druskat, Nasir Eisty, Carole Goble, Samuel Grayson, and Samantha Wittke)
	Demystifying research software engineering for research group leaders (Toby Hodges, Stuart Allen, Neil Chue Hong, Stephan Druskat, Lars Grunske, Daniel S. Katz, Jan Linxweiler, Frank Löffler, Jan Philipp Thiele, and Samantha Wittke)

	Participants

