Report from Dagstuhl Seminar 24162
Hardware Support for Cloud Database Systems in the
Post-Moore's Law Era

David F. Bacon*!, Carsten Binnig*?, David Patterson*3

Margo Seltzer**

, and

Google — New York, US. dfb@google.com

TU Darmstadt, DE. carsten.binnig@cs.tu-darmstadt.de

University of California — Berkeley, US. pattrsn@cs.berkeley.edu
University of British Columbia — Vancouver, CA. mseltzer@cs.ubc.ca

W=

—— Abstract
The end of scaling from Moore’s and Dennard’s laws has greatly slowed improvements in CPU
speed, RAM capacity, and disk/flash capacity. Meanwhile, cloud database systems, which are
the backbone for many large-scale services and applications in the cloud, are continuing to grow
exponentially. For example, most of Google’s products that run on the Spanner database have
more than a billion users and are continuously growing. Moreover, the growth in data also shows
no signs of slowing down, with further orders-of-magnitude increases likely, due to autonomous
vehicles, the internet-of-things, and human-driven data creation. Meanwhile, machine learning
creates an appetite for data that also needs to be preprocessed using scalable cloud database
systems. As a result, cloud database systems are facing a fundamental scalability wall on how to
further support this exponential growth given the stagnation in hardware.

While database research has a long tradition of investigating how modern hardware can
be leveraged to improve overall system performance — which is also shown by the series of
past Dagstuhl Seminars — a more holistic view is required to address the imminent exponential
scalability challenge that databases will be facing. However, applying hardware accelerators in
a database needs a careful design. In fact, so far, no commercial system has applied hardware
accelerators at scale. Unlike other hyper-scale applications such as machine learning training and
video processing where accelerators such as GPUs and TPUs circumvent this problem, workloads
in cloud database systems are typically not compute-bound and thus benefit less or not at all from
such existing accelerators. This Dagstuhl Seminar thus aimed to bring together leading researchers
and practitioners from database systems, hardware architecture, and storage systems to rethink,
from the ground up, how to co-design database systems and compute/storage hardware. By
uniting experts across these disciplines, the seminar sought to identify the architectural changes
and system designs that could enable the order-of-magnitude improvements required for the next
generation of applications.

Seminar April 14-19, 2024 — https://www.dagstuhl.de/24162

2012 ACM Subject Classification Information systems — Data management systems; Hardware
Keywords and phrases Databases, Modern Hardware, Cloud

Digital Object Identifier 10.4230/DagRep.14.4.54

* Editor / Organizer

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 4.0 International license
Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era, Dagstuhl Reports, Vol. 14, Issue 4,
pp. 54-84
Editors: David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

\\v pacsTupL Dagstuhl Reports
ReporRTs  Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:dfb@google.com
mailto:carsten.binnig@cs.tu-darmstadt.de
mailto:pattrsn@cs.berkeley.edu
mailto:mseltzer@cs.ubc.ca
https://www.dagstuhl.de/24162
https://doi.org/10.4230/DagRep.14.4.54
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

1 Executive Summary

David F. Bacon (Google — Seattle, US, dfv@google.com)

Carsten Binnig (TU Darmstadt, DE, carsten.binnig@cs.tu-darmstadt.de)

David Patterson (University of California — Berkeley, US, pattrsn@cs.berkeley.edu)
Margo Seltzer (University of British Columbia — Vancouver, CA, mseltzer@cs.ubc.ca)

License @ Creative Commons BY 4.0 International license
© David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

This Dagstuhl Seminar on the Future of Cloud Database Systems was convened to address the
pressing challenges arising from the stagnation in hardware performance gains, historically
driven by Moore’s and Dennard’s laws. As data continues to grow exponentially — propelled
by the expansion of autonomous systems, the Internet of Things (IoT), and machine learning —
there is an urgent need to rethink the co-design of database systems and hardware. This
seminar brought together experts from database systems, hardware architecture, and storage
systems to explore innovative approaches to overcoming these scalability bottlenecks and
envisioning the future of cloud database systems.

A central theme of the seminar was the growing disconnect between the exponential
increase in data and the slowing pace of hardware improvements, leading to what participants
referred to as a “scalability wall.” Addressing this challenge requires groundbreaking architec-
tural changes in cloud database systems to support the next generation of applications. One
significant area of focus was the potential role of Al-driven hardware and software in reshaping
database management systems (DBMS). Participants explored whether AT hardware, such
as GPUs and TPUs, could be adapted for database workloads, which traditionally are not
compute-bound. Additionally, the concept of leveraging large language models (LLMs) as a
new paradigm for databases was discussed, prompting further considerations of the future
interplay between Al and DBMS.

To kickstart these discussions, several invited impulse talks were presented, each designed
to set the stage for the working groups by exploring possible future scenarios for cloud
database systems:

1. AI Rules: This talk examined a future where Al hardware and software dominate data
centers, fundamentally altering the design and function of DBMS. The discussion centered
on how DBMSs might need to evolve in a world where Al is integral to data processing
and whether an LLM could serve as a database.

2. A Disaggregated Future: This presentations offered a perspective on a future where
heterogeneous devices (compute, memory, storage) are connected via ultra-fast networks,
creating a fully disaggregated cloud infrastructure. The talk prompted discussions on
how DBMS could adapt to and thrive in such an environment.

3. A Fully Reprogrammable Future: The talk on this future envisioned a future where
all hardware is reprogrammable and customizable at runtime, drastically changing how
data processing and storage are handled. The implications for DBMS in such a highly
flexible hardware environment were critically examined.

4. The Pipe Dream: This session explored the idea of “dreaming up” new DBMS hardware,
revisiting the concept of a dedicated database machine. The discussion focused on whether
this approach, which has failed in the past, could succeed in the context of modern cloud
environments.

Following these impulse talks, the seminar divided into working groups to delve deeper
into specific challenges:

55

24162


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

56

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

1. Working Group 1: The Next Order of Magnitude focused on how database technologies
can evolve to achieve order-of-magnitude improvements in performance, despite the
slowdown in hardware advancements. This group was particularly concerned with
managing the exponential growth of unstructured data feeding machine learning models.

2. Working Group 2: Memory-Centric DBMS Design advocated for a shift from processor-
centric to memory-centric designs, emphasizing the optimization of data access in cloud
environments as a solution to the performance bottlenecks caused by traditional architec-
tural models.

3. Working Group 3: Al Hardware for Databases investigated how emerging Al hardware,
like GPUs and TPUs, could be leveraged for cloud DBMS, even though database workloads
typically do not benefit as much from compute-bound acceleration as other applications
do.

4. Working Group 4: The last working group explored taking disaggregation to the
extreme and considering its impact on systems for cloud DBMSs.

As the seminar progressed, participants emphasized the importance of cross-disciplinary
collaboration and knowledge sharing. They worked together to draft a comprehensive paper
for publication, summarizing the insights and innovations discussed. The seminar concluded
with a focus on the need for continued innovation in both hardware and software to meet
the demands of future cloud database systems.

In summary, the Dagstuhl Seminar provided a crucial platform for reimagining the future
of cloud database systems in light of hardware stagnation. By bringing together leading
experts from multiple disciplines and sparking deep discussions through targeted impulse
talks, the seminar laid the groundwork for the architectural and system-level innovations
necessary to overcome the scalability challenges posed by exponential data growth. The
insights and collaborative efforts from this seminar will be instrumental in guiding the
development of next-generation database systems.



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer 57

2 Table of Contents

Executive Summary
David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer . . . . . . . 55

Overview of Impulse Talks

Computer Architecture 101

David A. Patlerson . . . . . . . . . e 58
Some Hardware Impacts on Cloud Databases

Mark D. Hill . . . . . . . e 58
Cloud Databases (OLTP) — Where are we and where are we going?

David F. Bacon . . . . . . . . . . e e e e e 59
Cloud Databases (OLAP) — Where are we and where are we going?

Justin Levandoski . . . . . . . . . 60
The AI Future: ML for Systems

Tim Kraska . . . . . . . . . e e e e 61
The AI Future: Do we need Databases at all? Or Model = DB?

Carsten Binnig . . . . . . . . o e e 61
The AI Future: Where is Al HW going?

Holger Froming . . . . . . . .« o 0 i i e e e e 62
The AI Future: AI rules (NOT)? Real-Time Intelligent Systems

Anastasia Ailamaki . . . . . . . . 62

A Disaggregated Heterogeneous Future: An Overview
Gustavo Alonso . . . . . . . . e 63

A Disaggregated Heterogeneous Future: Building Cloud-native Data Systems for
the Post-Moore Era

Jana Giceva . . . . . ..o 63

A fully (Re-)Programmable Future: Cloud Databases and Hardware

Zsolt Istudm . . . . . . o Lo e 64

The Pipe Dream: Database Systems Chasing Hardware

Jignesh M. Patel . . . . . . . . . e 64

The Pipe Dream: Hardware Acceleration For Databases

Lisa Wu Wills. . . .« . . o o e e 65
Working Group 1: The Next Order of Magnitude . . ... .. ... ... ... 65
Working Group 2: A Case for Memory-Centric Design of Cloud Servers and

DBMS . . e 69
Working Group 3: AI Hardware. What is in it for Cloud DBMSs? . . . .. 72
Working Group 4: Incrementally Distributed . . . .. ... .. ... ... ... 76
Participants . . . . . . . .. 84

24162



58

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

3 Overview of Impulse Talks

In the following, we provide the information about the (stage setting) impulse talks. While the
initial talks had the goal to connect communities by providing the state-of-the-art regarding
hardware and cloud databases, the other impulse talks were motivating possible futures how
hardware and databases might evolve.

3.1 Computer Architecture 101
David A. Patterson (University of California — Berkeley, US)

License ) Creative Commons BY 4.0 International license
© David A. Patterson

The slowing of Moore’s Law and the lack of new big ideas to improve CPUs mean slow
improvement in general purpose computing in data centers. Innovations in packaging such
as chiplets and high bandwidth memories help, but they do not restore the doubling of
performance every 18 months that we enjoyed previously. Today the path to much faster
general purpose computing that lifts all boats requires scaling out to more computers and
more data centers. Similarly, the end of Dennard Scaling means faster computation uses
more power. The maximum power of data centers CPUs and GPUs has risen from 300W,
which could be air cooled, to 7T00W and 1200W, respectively, which requires liquid cooling.
Domain Specific Architectures (DSAs) are the only path left for big gains in performance.
Nevertheless, DSAs must follow Amdahl’s Law: performance improvement to be gained from
using a faster mode of execution is limited by the fraction of the time the faster mode can
be used. Given the high expense to develop new hardware, which domains merit DSAs?
Deep Neural Networks (DNNs) easily justify their own chips and supercomputers. Through
boldness and good fortune, NVIDIA dominates commercial DSAs for DNNs with an uncon-
ventional architecture and new programming language (GPU/SIMT and CUDA), although
most hyperscalers also have their internal inhouse alternatives. DNN DSAs have leveraged
on fast matrix multiply, high memory bandwidth, and new narrow data types. We have
likely reached a historic tipping point in data center hardware. From the 1960s to the 2010s,
conventional software was king and Moore’s law still held, so CPUs dominated the hardware
investment and deployment. Looking forward, Moore’s Law is slowing and Al software now
holds the throne, so we expect DNN DSAs will be the majority of investment and deployment.

3.2 Some Hardware Impacts on Cloud Databases
Mark D. Hill (University of Wisconsin-Madison, US)

License ) Creative Commons BY 4.0 International license
© Mark D. Hill

This talk addresses three hardware impacts on cloud database systems. First, using acceler-
ators will be necessary to get more rapid performance improvement than will be possible
with slowly improving CPUs. To this end, I recommend that innovation first target existing
accelerators like GPUs, TPUs, SmartNICs, data movers, encryption, and compression. This
avoids the substantial investment that new accelerators require. Second, memory is and
will likely be the bottleneck for many computations. With general purpose CPUs, database


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

work should consider exploiting Compute eXpress Link (CXL) that enables more more
memory to be attached to CPUs than possible with directly-attached DDR memory alone.
For GPUs, high-bandwidth memory (HBM) will provide high bandwidth, but low capacity,
leaving the challenge for how the next memory tier should evolve and be exploited. Third,
the public cloud is evolving toward confidential compute wherein tenant data is protected
cryptographically end-to-end. New database ideas and accelerators must be compatible with
confidential compute to impact the public cloud.

3.3 Cloud Databases (OLTP) — Where are we and where are we going?
David F. Bacon (Google — New York, US)

License @ Creative Commons BY 4.0 International license
© David F. Bacon

There are two fundamental types of databases: operational (OLTP) and analytic (OLAP).
My presentation focuses on Spanner, Google’s largest OLTP database; Justin Levandoski
will cover BigQuery, which is our analytic database, in the next session. Since this is an
“opinionated overview” and I haven’t worked on other Cloud database systems, I'll invite
others in the audience to contribute details where other systems are different. Spanner
stores 15 EiB of data and runs at over 4 billion QPS. Its data under management has been
doubling roughly every year. Given the hardware trends described earlier in the talks by Dave
Patterson and Mark Hill, we are at a crossroads where it will either cost dramatically more
to store data each year, or we will have to dramatically slow the growth in data storage, or
we will have to find new ways to storing and operating on data efficiently. As a co-organizer
of this event, it was solving this problem that motivated me to help bring us together.

Strong Consistency Wins. Spanner is now used to store the data for virtually all of Google’s
largest consumer products, including Search, YouTube, Gmail, Drive, Photos, Maps, Meet,
and so on. It also stores much of the data for the Google Cloud control plane and for Google’s
internal infrastructure. Finally, it is offered as a product as part of Google Cloud. Cloud
Spanner is used by Uber, Walmart, Ford, and others.

Google was instrumental in launching the “NoSQL” movement for building its hyper-scale
applications. A fundamental part of NoSQL (although the term has become somewhat fuzzy
over time) was using relaxed consistency as a way of achieving scale. While this may still
be true in parts of the industry, at Google we have come full circle: Spanner has solved the
problems of strong consistency at scale. Meanwhile, we have repeatedly had the experience
that building products without strong consistency may work well in the beginning, but as
products evolve, add more features, and become more heavily relied upon by the public,
that weak consistency becomes an Achilles heel. Each application wound up trying to hide
weak consistency from users, and building custom protocols which are often ad-hoc and
error-prone.

In 1976, when System R was introduced with the relational model, SQL was running
at perhaps 20 QPS on 60 MB of data. Since then SQL has scaled by 11 decimal orders
of magnitude in storage and 8 orders of magnitude in QPS. This is a testament to the
remarkable power of its declarative programming model and its ability to express massive
parallelism in an architecture-independent way.

The Scaling Wall? However, with the end of Moore and Dennard scaling, exponential data
growth would cause almost exponential increase in cost, which is untenable. However, data
growth shows no sign of slowing down. In fact, LLMs and related technologies seem to be

59

24162


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

60

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

accelerating data growth. At its current growth rate, Spanner could reach a zettabyte (1000
exabytes) by 2030, with an aggregate of 1 trillion QPS. Meanwhile, data is getting colder, on
a per-byte basis. Spanner’s storage is growing substantially faster than its QPS and CPU
consumption. While more and more IOPs are moving to SSD, HDD IOPs are an increasingly
large part of the total system cost.

No Silver Bullet. Unfortunately, there is no clear answer to these problems. Database
systems are notoriously diverse in their computational load. Spanner’s hottest function is
roughly 2% of total CPU time, so there are no “kernels” amenable to hardware optimization.
The biggest opportunity lies in data compression. Compression is a modest amount of total
CPU time, but that is due to the fact that better compression is too expensive in software.
If we had cheap compression available, we could compress more aggressively. The biggest
savings would come not from the CPU time, but from the savings in HDD, SSD, and IOPs.
Total system optimizations to make more effective use of the hardware, either by improving
CPI or by reducing power consumption, are also fruitful areas for exploration. The best hope
for hardware acceleration actually lies in creating new database paradigms and workloads,
which have more computational density. While it isn’t yet clear how, AI will clearly play a
large role here.

Reliability Challenges at Exascale. Google has previously reported that a small but
significant number of cores occasionally performs incorrect computation. Unlike memory or
disk corruption, where there are long-standing mechanisms to detect and prevent corruption,
we do not have experience with corruptions in the computational path. These corrupted
computations can and do lead to corrupted data, and are therefore of enormous concern for
Spanner. As we move towards exascale databases, we will need to tame this problem if we
are to maintain the data integrity guarantees that our users expect.

3.4 Cloud Databases (OLAP) — Where are we and where are we going?
Justin Levandoski (Google — Seattle, US)

License @ Creative Commons BY 4.0 International license
© Justin Levandoski

This talk provided an overview of current cloud-native analytics system architectures (e.g.,
Amazon Redshift [2], Snowflake [10], Google BigQuery [22]) that separate compute and
storage. It then focused on the high-level architecture of BigQuery that also disaggregates
memory for intermediate shuffle. This serverless and disaggregated design has several benefits,
as it (1) allows for on-demand scaling of each resource, (2) allows for on-demand sharing of
resources, and (3) adapts well to multi-tenant USge at lower cost — all of which is important
to running a cloud data service at scale.

While the benefits and flexibility of compute/storage separate are well known, this talk
reiterated the benefit of disaggregated memory for shuffle (also covered in [22]), which
(1) reduced shuffle latency by and order-of-magnitude, (2) enabled order-of-magnitude
larger shuffles, (3) reduced resource cost by 20% by allowing the system to avoid resource
fragmentation, stranding, poor isolation of memory resources. This talk ended by introducing
new workloads on the horizon for cloud data warehousing, focusing on unstructured data
becoming a first-class citizen in these systems and the overall trend of traditional data
warehouses becoming general purpose cloud data platforms for all data types [19].


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

3.5 The Al Future: ML for Systems
Tim Kraska (MIT — Cambridge, US)

License @ Creative Commons BY 4.0 International license
© Tim Kraska

Machine learning (ML) and Generative AT (GAI) is changing the way we build, operate,
and use data systems. For example, ML-enhanced algorithms, such as learned scheduling
algorithms and indexes/storage layouts are being deployed in commercial data services,
GAI-code assistant help to more quickly develop features, ML-based techniques simplify
operations by automatically tuning system knobs, and GenAl-based assistants help to debug
operational issues. Most importantly though, Generative Al is reshaping the way users
interact with data systems. Even today, all leading cloud providers already offer natural
language to SQL (NL2SQL) features as part of their Python Notebook or SQL editors to
increase the productivity of analysts. Business-line users are starting to use natural language
as part of their visualization platforms or enterprise search, whereas application developers
are exploring new ways to expose (structured) data as part of their GAI-based experiences
using RAG and other techniques. Some even go so far and say that “English will become the
new SQL” despite the obvious challenges that English is often more ambiguous. Arguably,
industry is leading many of these efforts and they are happening at unprecedented speed —
almost every week there is a new product announcement. Yet, a lot of the work feels ad-hoc
and many challenges remain to make ML/GATI for systems in all these areas really practical
despite all the product announcements. In this talk, I provide an overview of some of these
recent developments and outline how the academic solution often differs from the ones
deployed in industry. Finally, I list several opportunities for academia to not only contribute
but also build a better, more grounded foundation.

3.6 The Al Future: Do we need Databases at all? Or Model = DB?
Carsten Binnig (TU Darmstadt, DE)

License @@ Creative Commons BY 4.0 International license
© Carsten Binnig

In recent years, the DBMS community has outlined a new direction of so-called learned
DBMS components, where core components such as indexes or query optimizers are replaced
by machine learning (ML) models. In this talk, I conducted a (somewhat extreme) thought
experiment and asked the question: “Can we replace the entire DBMS with an ML model”
or in short “DBMS = ML model”. This direction is particularly interesting as “DBMS =
ML model” would allow us to run DBMS natively on AI hardware and leverage advances
of Al hardware in which massive investments are being made today. In addition, recent
results on learned DBMS components have shown that they can significantly improve DBMS
performance. However, it is still far from clear whether a complete DBMS can be replaced
by a single ML model or whether this is simply impossible. Wait, is it really unclear whether
“DBMS = ML model” can be true?

In my talk I implied that there is (at least) hope that “DBMS = ML model” can be
true. For example, if we look at LLMs today, we can see that LLMs are already being used
as a type of database because they support question-answering on external data sources,
including tables, when used in combination with retrieval in what is called retrieval-augmented

61

24162


https://people.csail.mit.edu/kraska
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

62

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

generation. Beyond the fact that we can thus use AI hardware as discussed above, using
LLMs as DBMSs offers many other possibilities for modern DBMS workloads which need to
deal with multimodal data (images and text). However, LLMs have many known weaknesses
such as hallucinations and other issues that need to be addressed in order to utilize them for
query answering and act as a replacement for DBMSs.

3.7 The Al Future: Where is Al HW going?
Holger Froning (Universitit Heidelberg — Mannheim, DE)

License @ Creative Commons BY 4.0 International license
© Holger Froning

Graphics Processing Units (GPUs) and Deep Neural Networks (DNNs) synergize to advance
computational capabilities. GPUs, originally for graphics rendering, accelerate DNN training
and inference with parallel processing. DNNs’ demanding computations benefit from GPUs’
parallel architecture, driving efficiency and speed. As DNN complexity grows, so does the
demand for more powerful GPUs, spurring GPU advancements. In turn, GPU evolution fuels
DNN innovation, enabling breakthroughs in computer vision, natural language processing,
and autonomous systems. This reciprocal relationship propels technological progress, shaping
the future of Al and computational sciences.

In this light, this talk will review fundamentals of CMOS technology scaling, in particular
considering the end of Dennard scaling. As a result, it is anticipated that overall performance
in terms of operations per second is rather governed by power consumption budget and
energy efficiency in operations per Joule. Furthermore, technology analysis suggests that
data movements are more expensive than computations.

The talk will conclude with a couple of research directions in the light of these observations.

3.8 The Al Future: Al rules (NOT)? Real-Time Intelligent Systems
Anastasia Ailamaki (EPFL — LaUSnne, CH)

License @ Creative Commons BY 4.0 International license
© Anastasia Ailamaki

Database systems face new hurdles with the rise of diverse hardware infrastructures and
varying workloads. Evolving hardware, with its mix of different components and dynamic
configurations, complicates how data moves within systems, and affects performance and
robustness. At the same time, the surge in data-centric analytics and powerful AT models
brings a wide range of workloads that systems must handle. The old way of designing systems
based on predicted performance no longer works, leading to inefficiencies.

This talk analyzes the complexity of heterogeneous hardware and diverse workloads in
database systems. It highlights the limitations of standard approaches and stresses the
need for systems that can adapt without relying on fixed assumptions about hardware
or workloads. The future is real-time intelligent systems, i.e., systems that adapt to
changes in their execution environment in intelligent ways using ML, GenAl, abstraction and
just-in-time code generation. The goal is modular, composable infrastructures which enable
cross-optimizations dynamically, while preserving separation of concerns in system design.


https://csg.ziti.uni-heidelberg.de/members/holger_froening/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

3.9 A Disaggregated Heterogeneous Future: An Overview
Gustavo Alonso (ETH Ziirich, CH)

License @ Creative Commons BY 4.0 International license
© Gustavo Alonso

The trend towards hardware specialization and disaggregation raises the question of how
data processing engines will be take advantage of these developments or, at the least, adapt
to them. In the talk, I point out that the biggest bottleneck in data processing is the data
movement and new hardware can be used to turn the data path from storage to processing
units into a series of active components that filter, reduce, transform, and pre-process the
data. I give an example of how this can be implemented using smart storage (e.g., to
project data out), a smart NIC on the storage system (e.g., to filter the data further), a
controller in disaggregated CXL memory (e.g., performing an initial hashing of the data), a
smart NIC on the computing node (e.g., decompression and decrypting the data), and an
accelerator between memory and caches (e.g., hashing the data to partition the data across
different processors). Such a pipeline of processing elements is feasible today and can be
used as an experimental platform to inform hardware evolution and better understand how
near-data-processing can be orchestrated to achieve the biggest possible gains.

3.10 A Disaggregated Heterogeneous Future: Building Cloud-native
Data Systems for the Post-Moore Era

Jana Giceva (TU Miinchen — Garching, DE)

License ) Creative Commons BY 4.0 International license
© Jana Giceva

Considering the disaggregated cloud environment, there are many open questions on how to
build accelerators for data intensive applications and the impact resource disaggregation may
have on the whole system stack. In this talk I touch upon a few directions that are worthwhile
discussing in this context and exploring further in the spirit of Dagstuhl. In the first part
I introduce the idea of using operator primitives as a building block both for expressing
various types of dataflows (beyond relational) and for enabling hardware acceleration across
the data-path in the era of resource disaggregation and active hardware components. In the
second part I discuss the systems challenges and opportunities for adopting such primitives in
practice. For example, one idea is to start treating databases as domain specific compilers, so
we can transform optimizations of the logical plan into compiler passes, before generating a
physical plan (DAG) of tasks with binaries suitable to the target environment. Nevertheless,
for the primitives to be fully adopted we need to find a way to address the heterogeneity
of the underlying memory- and compute-models, the need for data transformations, and
virtualizing the resources in the cloud context. And finally, in the third part I propose using

a memory-centric view of the system as a programming model for fully disaggregated system.

63

24162


https://people.inf.ethz.ch/alonso/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.professoren.tum.de/en/giceva-jana
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

64

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

3.11 A fully (Re-)Programmable Future: Cloud Databases and
Hardware

Zsolt Istvin (TU Darmstadt, DE)

License @ Creative Commons BY 4.0 International license
© Zsolt Istvan

In modern clouds, Resource Disaggregation has been adopted as a way of offering scalability
and efficient resource utilization for large-scale applications. Provisioning CPU, memory, and
storage resources independently for distributed data-intensive applications is a great enabler
and cloud databases are already designed with disaggregation in mind. In this talk, we focus
on an exciting opportunity that emerges in this context, namely, to dramatically increase the
efficiency of cloud databases through the use the specialized and programmable hardware
devices that already underpin resource disaggregation. To take advantage of this opportunity,
however, we need to overcome several challenges. First, we need to find practical ways
of co-designing databases and the offloaded hardware functionality. Second, programming
such devices must become easier, to be able to achieve good performance without having to
entirely re-design operators. In this talk I sampled from relevant related work and from our
early results on overcoming these two challenges, getting us closer to a fully programmable
future for cloud databases.

3.12 The Pipe Dream: Database Systems Chasing Hardware
Jignesh M. Patel (Carnegie Mellon University — Pittsburgh, US)

License ) Creative Commons BY 4.0 International license
© Jignesh M. Patel

New hardware is typically designed to support new essential applications that are poorly
served by existing commodity hardware or to address fundamental architectural constraints.
Database systems are modular in their internal organization, allowing them to adapt to new
hardware in ways other software applications generally cannot. Thus, database applications
haven’t become critical motivators for new hardware, and this trend will continue. To get
high performance, database systems must adapt in two primary ways. First, methods that
reduce data movement will be even more critical. This was the primary reason analytic
database systems went from row to column stores. We can further slice columns by bits and
develop bit stores to reduce data movement even more. The second observation is that Al
will drive the development of new hardware and that database systems have no choice but
to adapt to run efficiently on this new hardware, which includes GPUs today. Fortunately,
this seems possible, given the modular abstractions in database systems. Thus, the future of
high-performance database systems is in developing methods that intrinsically reduce data
movement and enable them to run efficiently on available diverse commodity hardware.


https://zistvan.github.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://csd.cmu.edu/people/faculty/jignesh-patel
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

3.13 The Pipe Dream: Hardware Acceleration For Databases

Lisa Wu Wills (Duke University — Durham, US)

License @ Creative Commons BY 4.0 International license
© Lisa Wu Wills

In this talk, we ask the question of whether it is possible to accelerate databases by having a
true hardware-software co-design. Surveying the hardware development landscape, hardware
specialization is motivated by more efficient processing where efficiency is defined as higher
performance, lower power, lower energy, and therefore lower total cost of ownership. We
introduce the concept of using datatype acceleration to raise the level of abstraction when
designing hardware and leveraging already-defined software method calls and containers to
provide more efficiency. We showed a classic example of Q100 accelerating databases achieving
one to two orders of magnitude of performance and energy efficiency using heterogeneous
functional tiles and exploiting pipeline and data parallelism. We then pose three possible
futures for exploration: 1) replacing some worthwhile software operations with hardware
primitives, 2) using an FPGA to provide fused specialized units for common database
operations, and 3) providing hardware support for primitives used in a data-centric computing
world.

4 Working Group 1: The Next Order of Magnitude

Gustavo Alonso (ETH Ziirich, CH, alonso@inf.ethz.ch)

Carsten Binnig (TU Darmstadt, DE, carsten.binnig@cs.tu-darmstadt.de)

Mark Hill (University of Wisconsin-Madison, US, markhill@cs.wisc.edu)

Thab F. Ilyas (University of Waterloo, CA, ilyas@uwaterloo.ca)

Justin Levandoski (Google — Settle, US, levandoski@google.com)

Jignesh M. Patel (Carnegie Mellon University — Pittsburgh, US, jignesh@cmu.edu)
Holger Pirk (Imperial College, London, UK, pirk@imperial.ac.uk)

Tobias Ziegler (TU Darmstadt, DE, tobias.ziegler@cs.tu-darmstadt.de)

License @@ Creative Commons BY 4.0 International license
© Gustavo Alonso, Carsten Binnig, Mark Hill, Thab F. Ilyas, Justin Levandoski, Jignesh M. Patel,
Holger Pirk, and Tobias Ziegler

Data growth continues being exponential®, especially regarding the unstructured data feeding
machine learning and large language models. In the past, hardware advancements enabled
keeping pace with this trend. However, with the slowing of Moore’s Law [28], managing large
data volumes solely through hardware improvements has become increasingly challenging.
This raises a critical question: if data continues to grow exponentially, how can we evolve
database technologies to achieve order-of-magnitude improvements in performance?

Data workload growth and addressing Hill’s law

At a high level, database workloads can be divided into (1) Online transaction processing
(OLTP) that handles transactional/operational workloads for a system-of-record and (2) On-
line analytics processing (OLAP) for large-scale data analytics and enterprise business

! https://www.statista.com/statistics/871513/worldwide-data-created/

65

24162


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.informatik.tu-darmstadt.de/systems/systems_tuda/group/team_detail_18624.en.jsp
http://www.cs.wisc.edu/~markhill
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.statista.com/statistics/871513/worldwide-data-created/

66

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

reporting. We argue that OLTP workloads are unlikely to experience exponential growth.

Several of the authors have spent decades in industry building and operating cloud-based

transaction processing systems. For the vast majority of these workloads (the 99.999%), a

single large machine typically suffices. Furthermore, transaction processing workloads easily

partition (e.g., by use case) and can thus horizontally scale without needing to coordinate
cross-partition transactions.

Conversely, analytics workloads are experiencing a renaissance in both data volume
growth and workload types. Traditionally OLAP workloads dealt with precise structured
tabular data that is aggregated and fed into business intelligence/reporting applications.
While valuable, these “traditional” analytics/BI workloads are expected to grow modestly
at 20-30% year-over-year in line with the current cloud data warehousing market. A key
exponential growth area for OLAP will be unstructured data and the new workload types
it will bring about at the intersection of AI/ML and analytics. There are three key trends
driving this growth:

1. Unstructured data growth and collection in the enterprise. With the advent of
cheap cloud object storage, it has become economical for enterprises to store unstructured
data (e.g., pdfs, video, audio, images) in raw form. As one data point, the IDC expects
80% data to be unstructured by 20252, and is driving new use cases for analytics on
images, audio, speech and text.

2. Cloud data warehouse architectural shifts and customer expectations. The data
analytics industry is shifting toward a so-called “lakehouse” approach to data management,
whereby data warehouses evolve into general-purpose data orchestration platforms for
all data types. This architectural shift separates storage and compute. Data is now
stored in a scalable storage layer and the data warehouse software provides the compute
layer orchestrating IO and computing on that data as needed. This architecture can be
generalized to handle all kinds of data including non-tabular unstructured data. This
architecture meets customer expections of a single system (or the illusion of a single
system) to seamlessly handle both traditional data warehousing and advanced analytics
use cases [2, 19].

3. Democratization of in AI/ML inference/extraction. Powerful LLM capabilities
and advances in AI/ML inference techniques have democratized the ability to extract
valuable enterprise data from unstructured data (e.g., audio, video, images, pdfs). Hence,
more structured, but less accurate, tabular data will be available to OLAP workloads
based on these techniques.

This new reality will affect OLAP workloads in three ways. First, data curation and
cleaning workloads will incur a significant jump in both compute and storage budget. Second,
the volume of structured data generated from inference over unstructured data will grow
exponentially compared to that traditionally ingested from structured/tabular sources. This
structured extraction will take place directly within the analytics platform, as unstructured
data has become a first-class citizen in these systems, e.g., through BigQuery object tables [19]
or Snowflake directory tables®. This functionality gives rise to a new workload that is expected
to dominate the storage and compute cost of modern OLAP stacks. Last but not least,
we will soon embed this multi-modal data as large vector stores to enable features such as
dense-retrieval, clustering and serving downstream models. It is probably too early to tell

2 https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-

unstructured-in-five-years
3 https://docs.snowflake.com/en/user-guide/data-load-dirtables


https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years
https://docs.snowflake.com/en/user-guide/data-load-dirtables

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

how these vector stores will change the overall data growth, but it definitely calls for a new
scaling paradigm since data growth cannot simply be handled by hardware advancements
anymore. We will call this observation Hill’s law.

Hill's Law: The exponentially widening disparity between accelerating data growth and
modest hardware improvements must be covered by exponentially better data reduction
techniques.

Will hardware improvements be sufficient to handle data workload growth?

The answer is a qualified “no:” Hardware improvements may be able to cover the growth of
OLTP and structured OLAP workloads, but will be woefully insufficient for straightforward
handling of the exploding growth of exploratory OLAP processing of unstructured data.

A key hardware impact on data and other workloads occurs because some hardware
parameters scale at different rates that others. One must pay particular attention to this
now as 2D transistor scaling slows (Moore’s Law).

2D logic scaling of general purpose cores on SOC package is slowing but will still proceed

faster than scaling of DDR memory bandwidth off package and memory capacity per

chip.

Compute eXpress Link (CXL) will allow more memory bandwidth and capacity but at

substantial cost. CXL also enables the hardware system designer to flexibility allocate a

package’s “lanes” to memory, I/O (PCle), or accelerators.

High-bandwidth memory (HBM) will continue to provide GPUs (and others) high band-

width at high cost, but with limited capacity.

SSD capacity will grow well due to its monolithic 3D implementation while its bandwidth

growth will follow PCle growth.

Hard disk drive capacity and bandwidth will likely grow very slowly.

Optical interconnect use will move closer to computing systems and will eventually

terminate on SOC packages (“co-packaged” optics). This will unlock more bandwidth

that can reach further, e.g., for disaggregation.

These disparate scaling trends will encourage hardware systems that carefully husband
bandwidth (memory and 1/O) and capacity (memory and hard drive) more than other
resources. In the extreme, one can model computation as free.

With careful design, we expect hardware improvements may be more or less sufficient
to cover the relatively slow growth of OLTP and Structured OLAP. However, substantial
innovation in algorithms, software, and (co-designed) hardware will be needed to support
exploding OLAP processing on exploding unstructured data.

First order principles to address Hill’'s Law

For cloud data platforms, the hardware developments outlined before and in particular the
stagnation regarding bandwidth (both SSD and memory bandwidth) as well as memory
capacity will have a significant impact on analytical data platform where data is growing
at fast rates. In the following, we discuss first order principles that will help future cloud
DBMS to get around these hardware limitations.

(1) Increase information density. A first principle that will help us to support the future
growth in data without sacrificing performance is the principle that we need to increase
information density per bit (IDB). An important aspect is that the information density needs
to be increased along the full data access path from storage over memory until data hits the

67

24162



68

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

compute. This will have two important consequences: First, when we need to move data
along the hierarchy from storage over memory to compute, we can significantly reduce the
footprint of the data movement, which means we can “move more for less”. Moreover, at
the same time when keeping the information density also the footprint of intermediate data
stored in memory will also be reduced which will help us to “store more for less”.

(2) Consider computation free. Computation, unlike bandwidth, is projected to scale with
the increasing number of processors that can be integrated into a server. So, we advocate for
the following second core principle: ezploit the “free” computation capacity. This principle is
in particularly interesting since it closely aligns with our first principle, as it allows for a
trade-off between computation and bandwidth and effectively use the information density per
bit. For instance, by integrating more aggressive compression schemes such as heavy-weight
compression along the full data access path until, we can keep data footprint low until
it reaches the compute and use (free) computation to inflate data once it hits compute.
Additional techniques to leverage this principle will be discussed in the following.

(3) Use better what we already have. As an alternative to reduce data footprint, as a
third principle we can use resources better that we already have. Current infrastructure
suffers from stranded memory resources, i.e., memory that is not fully utilized. Microsoft, for
example, reported that up to 25% [20] of memory capacity is stranded. This under-utilization
has long been an issue but has become even more critical as memory capacity now represents
a constrained resource. As such, we should optimize the use of memory to avoid wastefulness
and manage costs effectively. In particular, there are two ways forward: (1) We should
adopt the principle of resource-constraint systems that memory is precious instead of trading
memory for computation, e.g., by large pre-computed lookup tables. (2) more flexible
database architectures, e.g., by using CXL to pool memory [20].

What can DBMS do to deal with the growth in structured data?

It is clear from the discussion above that storage devices will be more bandwidth-constrained
than capacity-constrained in the future, and this discrepancy will only worsen over time.
Further, the other hardware trend is that compute cycles are plentiful and nearly free. These
driving factors open up new opportunities for efficiently scaling data management techniques
by leveraging the first principles above.

Thus, methods like compression and encoding that intrinsically increase the IDB and
thus reduce data sent across communication channels will be essential. Leveraging the
nearly “free” compute cycles and “cheap” storage capacity, one can be far more aggressive
in pre-computation, replication, and summarization of data and query results. Memory
capacity, however, is likely to be an increasingly constrained resource, and one will have to
throw away data far more aggressively in that layer. However, since analytic data systems
are often bandwidth-constrained, designing methods that trade storage bandwidth for lower
memory capacity will be critical.

What can DBMS do to deal with the growth in unstructured data?

Unstructured data use cases are relatively new and emerging quickly driven by Generative
AT technologies. Coupled with the rapid changes in hardware, we can only speculate on the
approaches needed to deal with this class of data applications.

At the data scales we have today and due to the influence of machine learning, there is
the opportunity to take advantage of lossy compression and approximated computing as way
to reduce the amount of data moving from storage to processing units. There might also



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

be an opportunity to apply learning to data so that there is no need to process the data to
find the answer to a query since the answer can be obtained through inference over a model
(similar to the way some queries can be answered by looking at an index rather than at the
data). These approaches would be a direct application of Hill’s Law.

Similarly, data selection and model behavior attribution techniques [16, 24] operating over,
for example, training data can help in reducing data movement, especially if the sampling and
filtering can be directly done on computational storage, thereby providing hardware support
for the improvements needed in Hill’s Law. This will also require to revisit conventional data
processing algorithms so that they can operate on approximated subsets of the data and low
precision vector representations. Finally, given the size of vectors employed in ML and LLMs,
a more efficient used of memory though different representations and data organizations will
help in reducing the impact of limited I/O and memory bandwidth on our ability to process
large amounts of data.

5 Working Group 2: A Case for Memory-Centric Design of Cloud
Servers and DBMS

Anastasia Ailamaki (EPFL — Lausanne, CH, anastasia.ailamaki@epfl.ch)

Lawrence Benson (TU Minchen, DE, lawrence.benson@tum.de)

Helena Caminal (Google — Sunnyvale, US, hcaminal@google.com)

Yannis Chronis (Google — Sunnyvale, US, chronis@google.com)

Jana Gieceva (TU Miinchen, DE, jana.giceva@in.tum.de)

David A. Patterson (University of California — Berkeley, US, pattrsn@cs.berkeley.edu)
Eric Sedlar (Oracle Labs — Redwood Shores, US, eric.sedlar@oracle.com,)

Lisa Wu Wills (Duke University — Durham, US, lisa@cs.duke.edu)

License @ Creative Commons BY 4.0 International license
© Anastasia Ailamaki, Lawrence Benson, Helena Caminal, Yannis Chronis, Jana Gieceva, David A.
Patterson, Eric Sedlar, and Lisa Wu Wills

The exponential growth of data in cloud-based systems, coupled with the plateauing of
traditional processor performance gains, has created a fundamental bottleneck for database
management systems (DBMS). The processor-centric architectural model, dominant for
decades, is now hindered by slowing improvements dictated by Moore’s Law and Dennard
Scaling. This shift in the performance landscape requires a rethinking of DBMS design
principles, moving the focus from pure computation to optimizing data access via memory
and storage.

Conventional processor-centric architectures place the CPU as the central element, sur-
rounded by statically allocated DRAM and connected to storage and networking via I/O
buses. While this design served well when all components improved at similar rates, it is
increasingly unsuited to modern workloads. Innovations like chiplets help mitigate limitations
on the compute side, but they cannot compensate for the DRAM and data management
challenges posed by modern datasets. Furthermore, the focus on computation in traditional
design conflicts with the fundamentally data-oriented nature of DBMS operations.

In response to these challenges, we advocate for a memory-centric design approach. This
model dissociates processors and data, allowing processors to access a shared pool of DRAM
as needed. This improves DRAM utilization and reduces the cost impact of DRAM, which is
increasingly expensive compared to other components. Additionally, memory-centric systems

69

24162


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

70

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

strategically leverage low-cost processors near storage devices. These “smart” storage nodes
pre-process data on-site, performing operations like filtering, aggregation, and compression,
thereby minimizing the need for costly data movement to higher system levels. In short, the
emphasis is on moving the computation to the data, not the other way around.

The recent CXL (Compute Express Link) industry standard enables realistic imple-
mentations of the memory-centric concept. CXL creates a cacheable shared memory space
across multiple sockets, where at least some of the space is hardware coherent. While CXL
introduces some latency and bandwidth trade-offs compared to local DRAM, the optimization
of data locality and utilization more than compensate for these factors in DBMS workloads.
For long-term scalability, CXL switches and optical interconnects could dramatically expand
the size of the shared memory pool.

A memory-centric approach fundamentally transforms the design and optimization of
DBMS systems. Here are key areas of change:

Query Execution

Traditional query optimization generates physical query execution plans from relational
algebra expressions using an estimate of the available compute and memory resources as
well as a cost model. Query processing relies on the optimizer’s decisions to maximize
efficiency through selecting specific operator implementations and implicit data movement
(e.g., repartitioning, data shuffling with the exchange operator in a distributed setting).
Both modules focus on minimizing processor cycles while mindfully using memory resources.
Memory-centric computing makes data a first-class citizen. Query processing and optimization
in memory-resident query execution engines will focus on pushing processing to and operating
directly on data stored in local storage. Query optimization will produce query plans which
make decisions about distribution of execution. The physical query execution plans will
be produced locally on each node and may vary depending on node capabilities and local
memory technologies (just-in-time mappings to local micro-architecture and code generation
will produce the final query executions plan on each participating node during execution time,
leveraging cache-conscious algorithms). When data from remote storage is needed, engines
must push operator code to the processors attached to the remote storage. The integration
of low-cost general-purpose cores (ARM/RISC-V) into those devices is a reality and recent
innovation of tightly-integrated implementations of processing-in-storage will further increase
the benefits of the memory-centric computing scheme. The more computation is executed
close to storage the more we can reduce the pressure on the capacity and bandwidth of
pooled DRAM. When the execution is placed near the data, instead of copying data between
compute units, where possible it should be passed by reference. Memory-centric indexing
needs to facilitate access to local data and use references to remote indexes to facilitate code
transfer. Real-time adaptive query processing algorithms in combination with code-generated
operators can bind the query processing logic with the specifics of memory microarchitecture,
thereby optimizing for in-situ hardware characteristics. This makes query processing a natural
fit to the memory pooling design, and enables more powerful operations to be offloaded to
where the data actually sits (e.g., closer to storage).

Transaction Processing (OLTP)

Cloud-native transaction processing can significantly benefit from a memory-centric design
as it allows for more efficient data access and processing by bringing computation closer to
where the data resides in memory, thereby eliminating or reducing the need for frequent
data movement between different memory locations and simplifies handling consistency. In



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

addition, memory-centric designs enable better data partitioning strategies that minimize
the need for cross-partition transactions.

Workload Infrastructure

Moving to a memory-centric system design does not have to make things complicated when
reasoning about core infrastructure logic and management of resources. Whereas in a typical
CPU-centric system, we have a coordinator and multiple compute nodes, in a memory-centric

system the control plane can be placed on the host’s root complex or a set of CPU nodes.

The control plane’s coordinator threads operate on shared system state and metadata, which
can be placed on the coherent memory pool for ease of coordination, and to avoid leading to
host-congestions [cite, Meta].

Data Pipelines

Databases are the first step in many data intensive tasks (e.g., Recommendation systems,
Retrieval Augmented Generation, ML inference, sensor data monitoring) where the database

output is the input to one (or more) “consumer” systems (e.g., Tensorflow model inference).

The end to end task execution is organized in a data pipeline where each part of the pipeline
uses the hardware and software platform suited to the operation it executes.

A memory centric design can enable a shift where CPUs and the accelerators that are
increasingly becoming part of such data pipelines are “equidistant” from the data enabling
simpler communication and minimizing the performance cliffs observed by data movement
or by CPU and accelerators operating with vastly different memory budgets.

Conclusion

The conventional processor-oriented computer design, centered around a CPU, is becoming
less attractive due to the slowing of Moore’s Law and the increasing costs and constraints of
DRAM. As a result, we should shift towards memory-oriented computer designs, where data
plays a central role.

Memory-oriented computer designs dissociate processors from data, enabling computation
wherever the data resides and minimizing data movement. By placing a greater emphasis on
memory and storage components, memory-oriented designs optimize resource utilization and
enable more efficient processing of data-intensive workloads. This approach also aligns with
the rise of domain-specific architectures (DSAs), particularly for tasks such as Deep Neural
Networks (DNNs), which are driving significant advancements in data center computing. For
database systems specifically, a memory-centric design offers several advantages, including
improved query processing, transaction management, and hybrid transactional-analytical
processing. By partitioning query processing operations based on data location, pushing
processing closer to the data, and optimizing memory capacity, memory-centric DBMSs can
achieve higher performance and efficiency. Additionally, memory-centric designs facilitate the
integration of data pipelines, enabling simpler communication and minimizing performance
cliffs associated with data movement.

The adoption of memory-centric design principles represents a fundamental shift in
how we approach computing architecture, particularly in cloud environments and database
systems. By prioritizing memory and data access over traditional compute-centric approaches,
memory-oriented designs offer the promise of greater performance, scalability, and efficiency
in handling data-intensive workloads in the modern computing landscape.

71

24162



72

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

6 Working Group 3: Al Hardware. What is in it for Cloud DBMSs?

David F. Bacon (Google — New York, US, dfb@google.com)

Holger Froning (Universitdt Heidelberg — Mannheim, DE,

holger. froening@ziti.uni-heidelberg. de)

Mark D. Hill (University of Wisconsin-Madison, US, markhill@cs.wisc.edu)
Holger Pirk (Imperial College London, GB, pirk@imperial.ac.uk)

Pinar Tozin (IT University of Copenhagen, DK, pito@itu.dk)

Tianzheng Wang (Simon Fraser University — Burnaby, CA, tzwang@sfu.ca)

License ) Creative Commons BY 4.0 International license
© David F. Bacon, Holger Froning, Mark D. Hill, Holger Pirk, Pinar T6zlin, and Tianzheng Wang

AT hardware and deep neural networks (DNNs) synergize to advance computational capabil-
ities. Graphics Processing Units (GPUs), originally for graphics rendering, accelerate DNN
training and inference with parallel processing. DNNs’ demanding computations benefit from
GPUs’ parallel architecture, driving efficiency and speed.

Similarly, DNN demands drive the design of specialized Al hardware such as Google’s
TPU [18], Intel’s Gaudi [17] processor, and various other examples from industry and
academia [5, 7, 3, 8, 6, 1, 11, 13, 30]. As DNN complexity grows, so does the demand for
more powerful processors, spurring advancements in processor design. In turn, processor
evolution fuels DNN innovation, enabling breakthroughs in computer vision, natural language
processing, and autonomous systems. This reciprocal relationship propels technological
progress, shaping the future of Al and computational sciences.

Al Hardware and Workloads

Given the synergy between Al hardware and DNNs, we make two main observations that
mutually fuel each other. Firstly, the computational rule behind DNNs — including but
not limited to convolutional layers, attention modules, and linear layers — is to a large
extent dominated by the dot product operation. Seen as a set of operations that shares
input operands, dot product operations exhibit high computational/arithmetic intensity ¢,
calculated as the number of computations executed per byte fetched from memory. Secondly,
analyzing the scaling trends reveals that compute performance scales much better than
memory performance. In more detail, the ratio r of compute performance in operations
per second and memory performance in bytes per second continues to grow. Notably, these
two observations complement each other, as achieving peak performance on CMOS-based
processors requires an increasing computational intensity 1.

Furthermore, a growing ratio implies that overall execution costs are increasingly domin-
ated by data movements such as fetching data from memory to the processor. In contrast,
the contribution of the number of computations following such a data fetch to overall costs
is becoming insignificant. Fundamentally, this suggests that it is unpromising to design
algorithms based on the number of operations as it happens in classical Big O analysis.
Instead, it is highly promising to revisit algorithmic alternatives that have no longer been
pursued due to high computational costs.

Last, the energy (non-)proportionality of processors suggests that it is unpromising not
to run a processor at peak utilization, as only then the best power efficiency can be achieved.
As peak utilization requires utilizing all components, including compute and memory, such a
situation is only achievable for a high ratio r. This in combination with other effects, such
as large electrical surges when power variations occur, also indicates that computationally
intensive workloads are desirable.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

From Data-Intensive to Compute-Intensive

World-wide data production is increasing very quickly, and the amount of data stored by
databases is increasing rapidly as well. For instance, Google’s Spanner has been roughly
doubling in size every year, expecting to reach a zettabyte by 2030 as mentioned earlier.
While compute and I/O costs for data continue to rise rapidly, they are not rising nearly as
fast as the demand for storage. This means that on a per-byte basis, data is becoming colder.

Databases have historically been I/O-dominated. They retrieve large amounts of data
and do relatively small amounts of computation per byte. Increases in both storage volume
and I/O cost have motivated more and more use of data compression, as one way of trading
space for time.

These database trends are on a collision course with the hardware trends described in
the previous section. The one resource that is becoming cheaper is specialized computation
(in the form of GPUs and TPUs). Thus far we have not found a way to exploit this form of
computation. Some work has explored how to process data on TPUs [14], however, as the
amount of data grows exponentially we still lack approaches to managing data storage cost,
and bringing substantially more data from storage to the computing resources still presents
a major bottleneck.

Our fundamental thesis is therefore we must switch the balance in database systems from
being data-intensive to being compute-intensive. If we can trade space for time, and move
the compute time into specialized hardware (and in particular, specialized hardware being
deployed for AI), then we can bring database growth back in line with technology growth.

In the following, we explore two basic approaches to solving this problem:

Developing new forms of data compression that takes advantage of various properties of

large language models (LLMs) [27, 29, 9, 4] and their use in emerging applications.

Using more computationally expensive algorithms for database operations, and moving

them into TPUs and GPUs.

Learned Compression

Compression is typically divided into lossless and lossy compression. We propose a third
category, learned compression, which uses LLMs to compress data.

The fundamental observation is that much of the data growth is being driven by the
storage of generated data, using prompts to LLMs. This presents an opportunity for databases
to reduce their storage footprint by storing prompts rather than storing the “expansion” and
re-generating the expansion on demand. This can lead to order-of-magnitude reduction in
data storage and data transfer costs, at the expense of much more compute-intensive data
retrieval. But that retrieval has now been moved to the GPU/TPU, where we can ride the
commodity curve of capability and capacity.

Assuming the source data used to generate an LLM-based response is already in the
database, and that we store a pointer to the input data, we describe three forms of learned
compression:

Use the LLM as a data source.

Use the LLM to generate a summary of the information that is stored.

Use the LLM to produce an approximation of the original input when it is retrieved.

Regenerating Auto-generated Information. A use of LLMs that has very rapidly entered
widespread commercial use is automatic generation of text inside of productivity applications.
For example, Gmail plugins can generate responses using GPT-4. In many cases, users simply
accept the generated response and send it. The generated email is then stored in the “Sent”

73

24162



74

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

folder. However, we observe that the response can be encoded far more compactly as a triple
consisting of (1) a “pointer” to the message to which the reply was generated (e.g. a message
ID), (2) an identifier for the model that was used to generate it (e.g. “GPT-47), and (3) the
random seed used for the generative operation. Upon retrieval, this triple is combined with
the original message and fed into the model, which should re-generate the identical response
text.

The same approach can be applied for applications like auto-generated document sum-
maries, translations and so on.

Delta Compression. It is quite common for the auto-generated email text to be modified
by the user, and frequently those changes are small relative to the total size of the text. We
can augment the technique above by storing a delta against the generated text. If the delta
gets too large, we simply revert to storing the text itself.

Other Modalities. Images, audio, and video represent even larger opportunities for com-
pression. In some cases this will be many orders of magnitude. One example would be
Generate an MP3 audio file saying “I’ll Be Back” using Donald Duck’s voice. The database
then only needs to store such prompt along with the random seed and model information,
instead of full MP3 audio file copies.

Generating Column Data from Models. Another way of turning data-intensive operations
into more compute-intensive ones is rather than storing all the data in a database to answer
queries, we let models to either directly answer certain questions or generate materialized
views of data for further data processing.

Even though it may be imprecise, LLMs have been good at answering common knowledge
questions. For example, the answers to which or how many books are written by an author or
the movies an actor stars are such questions. If we are to use a SQL query over a database to
answer these questions, the data has to be loaded into a database with a predefined schema,
such as:

—-— A traditional SQL table:
CREATE TABLE Actors (
Actor STRING NOT NULL
Movie STRING NOT NULL
) PRIMARY KEY (Actor);

This results in higher space consumption either in storage or memory compared to keeping
raw /unstructured data because of the explicit schema.

Rather than explicitly storing the data in a database with a schema, today we can
effectively pose these questions as prompts to a LLM. Depending on the questions, an LLM
deployed on a GPU or TPU can either answer it directly or generate a column or a table
that can later be used by more traditional database operators. For example, we may turn
the above predefined schema into the following form:

-- A SQL table generated from a model:

CREATE TABLE Movies (

Actor STRING NOT NULL,

Movie STRING NOT NULL AS (GENERATE FROM Gemini3.O0
WITH "What movies featured the actor [Actor]?")

) PRIMARY KEY (Actor);



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

Also, a COUNT * query can be answered by the model without generating a table. If we
expect follow-up questions after the initial prompt, it could be better to generate a table
and materialize it. For example, a search of the movies an actor starred in may trigger a
follow up question on keywords on the movie title. The materialized tables can be cached
in accelerator memory if there is space or stored in a fast persistent storage medium (e.g.,
NVMe SSDs) for later reuse by other queries.

Re-inflation of Summarized Data. LLMs are also heavily used for both summarizing
documents and generating longer documents given a summary. One can use these features to

store the summarized versions of documents closer to the compute nodes with accelerators.

Storing the summaries instead of the whole documents reduces the overall data size and
makes caching of this data more feasible. When someone asks for the contents of the whole
document, an LLM deployed on a hardware accelerator such as GPU or TPU can re-inflate
this document using its summary.

Revisiting Compute-intensive Problems in Data Processing

Analytical query processors need to be conscious of the bottleneck shifting from compute to
data access. Fortunately, there is precedent for such shifts, such as the move from sequential
to parallel processing. To take that into account, we believe that algorithms that have
been considered too compute-intensive in the past should be reinvestigated to determine
if they are more competitive given the new balance in hardware. There are past examples
that can serve as inspiration: For aggregation, sequential scans are optimal on sequential
processors, while massively parallel prefix scans perform optimally on GPUs. Worst-case
optimal join algorithms reduce the need for large intermediate result materialization at
the cost of highly CPU-inefficient control paths. Neural networks were considered too
expensive to evaluate upon their invention (in the 1960s) efficiently but received a boost
in popularity when massively parallel processors became available. Another example from
scientific computing is iterative methods used to solve systems of linear equations. While
they share a common objective of minimal time, they differ in how they update the solution
at each iteration. In the classical Gauss-Seidel method which was designed with sequential
processing in mind, the updated value of one element is immediately used in the calculation
of the next element. In the Jacobi method, in contrast, all components of the solution vector
are updated simultaneously using the values from the previous iteration. In practice, this
means that Gauss-Seidel converges faster with regard to the number of iterations. However,

due to the algorithm’s sequential nature, the execution is not in line with parallel processors.

Given that all processors are highly parallel, it is thus much more promising to use the Jacobi

method instead, even though it is work-inefficient with regard to the number of iterations.
We believe that more such “newly-relevant” techniques can be discovered for data-intensive

operations such as relational analytics, graph processing and even transaction processing.

Non-Traditional Workloads

Finally, the increasing diversity of data management workloads creates challenges beyond
traditional analytics and transaction processing: workloads such as spatial data processing,
data cleaning or data integration will likely benefit from Al-supporting hardware. Developing
creative solutions to map such workloads to the new hardware is an exciting research
opportunity. Emerging domains such as vector databases are also a natural fit for Al-focused
hardware.

75

24162



76

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

7 Working Group 4: Incrementally Distributed

Nandita Vijaykumar (University of Toronto, CA, nandita@cs.toronto.edu,),

Zsolt Istvan (TU Darmstadt, DE, zsolt.istvan@tu-darmstadt.de),

Tilmann Rabl (HPI Potsdam, DE, Tilmann.Rabl@hpi.de),

Alexander Boehm (SAP HANA, DE, alexander.boehm@sap.com),

Margo Seltzer (University of British Columbia — Vancouver, CA, mseltzer@cs.ubc.ca)

License ) Creative Commons BY 4.0 International license
© Nandita Vijaykumar, Zsolt Istvan, Tilmann Rabl, Alexander Boehm, and Margo Seltzer

Today’s database landscape renders as a black and white image in which database systems
are either single-node systems or distributed systems. Generally, the distributed systems
offer scalability, but pay a penalty in terms of single-node performance. But single-node
systems face obvious scalability challenges. The ideal would be a system with the simplicity
and ease of operation of a single-node system capable of infinite scaling.

In lieu of being able to achieve our ideal, we currently provide two different solutions.
First, we have small-scale distributed systems, such as Oracle RAC [26] and SAP HANA [12],
that typically scale only to a double-digit number of geographically co-located machines.
Second, cloud storage systems enable single-node systems to host databases larger than the
storage available locally on a single node. Both of these architectures are point solutions that
do not fully cover the range of possibilities between single-node and cloud-scale databases.

Resource disaggregation provides a logically centralized abstraction for a physically
distributed reality, managed by infrastructure providers. We already make this a reality for
persistent storage: cloud-scale storage systems provide practically infinite capacity from a
single node. Emerging interconnect technology, such as Compute Express Link (CXL) [25],
makes it possible for compute nodes to directly access more memory than is possible in a
purely local configuration. In other words, in the same way that cloud storage systems allow
for disaggregated storage; CXL allows for disaggregated memory. In addition to providing
a simpler abstraction on which to build databases, such disaggregation solves problems
for cloud providers: it makes use of stranded resources, thereby increasing cloud provider
efficiency. This trend towards disaggregation introduces exciting, new software architectures.

We present a taxonomy that provides a framework in which to consider disaggregation
more broadly. We ask what it might mean to disaggregate any combination of CPU, memory,
network connectivity, storage, and custom accelerators. We consider different combinations
of resource disaggregation and how such new configurations influence database management
systems.

Considering disaggregation more broadly lets us optimize systems for different metrics.
Rather than focusing on maximizing queries-per-second (QPS), we might ask for an architec-
ture that maximizes QPS/core, QPS/byte, QPS/joule, etc. Alternately, these considerations
allow us to consider software architectures that are impractical today, e.g., single-node
databases with access to petabytes of main memory or systems with new forms of elasticity
in memory, network bandwidth, or access to hardware acceleration. In other words, the
golden age of computer architecture [15] should be enabling a new golden age in database
system design.

All resources become disaggregated

In the past, scalable database architectures have introduced disaggregation for storage sys-
tems such as Oracle RAC that use dedicated and separately scalable storage networks. This
separation of storage and compute improves adaptability and independent scalability of


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

resources, enables better sizing decisions, and avoids underutilization. Meanwhile, disaggreg-
ated storage has become the standard way of persisting data in cloud environments. This
allows even systems that were not designed with disaggregated storage in mind to benefit
from features such as virtually infinitely scalable, highly available, and dynamically growing
storage that looks like a traditional block device.

Today, DRAM contributes a significant fraction of the cost of data centers [21]. This
memory is utilized differently and dynamically depending on the applications and operators
running in the system. Database engine designers have started addressing this problem
by sharing memory across nodes. Today, memory sharing is selectively used for specific
operations, such as data shuffling in Google BigQuery [23], or to temporarily “borrow”
memory from remote nodes using RDMA to avoid spilling data to disk in situations where
not enough local memory is available [21]. However, there is no standard and easy-to-use
way for cross-node memory sharing. Technologies such as CXL provide a new opportunity as
they enable transparent memory capacity sharing within racks, with limited, but noticeable,
overhead over local memory. This enables gracefully scaling memory requirements beyond
single node capacity by utilizing either specialized memory instances or neighboring nodes’
memory.

As a next step, after memory and storage are disaggregated, one can also think about
disaggregating other resources, in particular, network and accelerators. Given increasing
network bandwidth and varying communication patterns in applications, it is likely that
systems frequently fail to utilize all their local network capacity. The NICs in some nodes will
be overutilized while others are idle, similarly to the situation with memory today. If nodes are
also interconnected with other technologies such as CXL, we see the potential of disaggregating
networking, by sharing NICs across nodes. This enables new heterogeneous setups of network
topologies, increasing the total bandwidth available, and improving utilization. Analogously,
disaggregating accelerators makes it possible to share them for certain workloads rather
than requiring a homogeneous overprovisioning on every node or requiring specialized node
configurations. A fully disaggregated system will be able to efficiently use local and remote
resources, scale each resource individually based on demand from a single system perspective,
and optimize deployments from a multi-tenant perspective.

Database Taxonomy of Disaggregation

We claim that disaggregation will enable DBMS that can be incrementally distributed over
time, regardless of whether they were initially designed as single-node systems with node-local
resources or as distributed systems, where resources are spread out in a cluster.

Table 1 below gives an overview of the resource allocation for various database system
designs and deployments. Node-local resources are depicted as an “L”, and disaggregated/dis-
tributed resources are denoted by “D”.

The classical single-node databases are built with the assumption that all resources are
node-local (Line 1 in Table 1). By deploying them in a cloud-environment where storage is
already disaggregated, but still offered as a block-device abstraction (e.g., AWS Elastic Block
Storage (EBS), Google Persistent Disk (PD)), these systems implicitly adopt a distributed
storage layer (Line 2). This brings them closer to multi-node DBMS such as Oracle RAC
or Google AlloyDB (Line 3), which were initially designed for (small) clusters of machines
leveraging a shared storage pool that enables data sharing across nodes. While Google’s
Spanner system (Line 4) is architected as a globally distributed system that significantly
scales beyond the capabilities of multi-node DBMS, its use of disaggregated hardware is still
similar to “classical” scale-out database deployments.

77

24162



78

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

Table 1 Overview of the resource allocation for various database system designs and deployments.

CPU | Network | Memory | Storage | Accelerators

1 | Single Node (Postgres, MySQL) L L L L L

2 | Single Node on Cloud Infra L L L D L
(RDS, CloudSQL)

3 | Multi-Node Systems (Oracle RAC, | D L L D L
SAP HANA, AlloyDB, Aurora)

4 | Distributed OLTP Systems D L L D L
(Spanner, Cockroach)

5 | Distributed OLAP Systems D L D D L
(BQ, SPARK)

6 | Future Analytical L D D D D

Systems (?)

7 | Future Analytical D D D D D
Systems (?)

Today, there are only a few large-scale, distributed systems that are designed to make
use of disaggregated memory. A prominent example is Google BigQuery [23] (Line 5), which
uses a shared memory pool for data shuffling. With the proliferation of far memory, provided
via CXL, existing multi-node systems can easily evolve in this direction, by getting (some of)
their memory from remote CXL devices instead of local DRAM.

We envision that other resources such as network and accelerator cards will be disag-
gregated in the future, leading to potential new analytical systems that use communication
channels other than Ethernet or RDMA for inter-node communication, thus allowing for the
shared use of network and accelerator cards.

With the ever increasing trend of hardware disaggregation, we claim that all DBMS will
eventually run on disaggregated storage, memory, and even make use of other disaggregated
resources such as networking or accelerators. This is independent of whether the systems
were initially designed for such a hardware configuration or not. Thus, database architects
will need to adapt existing system architectures to the different hardware characteristics (e.g.,
increased latency, more capacity, changes in bandwidth) and leverage potential opportunities
that come with disaggregation (e.g., increased elasticity, opportunities for data sharing).

Open Challenges & Opportunities

For database system architecture, disaggregation brings many opportunities. We see three
steps toward DBMSs embracing a disaggregated future.

The low hanging fruit is to use disaggregated resources like local resources to expand
single node systems, essentially, ignoring disaggregation. The prototypical example is memory
expansion over CXL, which enables a system to extend local memory with slightly longer-
latency far memory without changing the architecture. To avoid running into performance
cliffs when crossing the single node boundary, awareness for local and far memory is beneficial.
Otherwise, systems will continue to function as designed, but they may be notably slower.
Without coping with disaggregation and optimizing across different workloads and database
deployments, this will improve scalability but not utilization.



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

A next level is a cluster level view on the database and application deployments, which
enables improving resource utilization by sharing resources across nodes with different
requirements. Besides static, but disaggregated, mapping of resources, dynamic assignment
can further improve utilization and reduce cost and energy USge.

When fully embracing disaggregation, it is possible to fluidly scale across resources, also
scaling down to fractions of nodes. This would enable more fine-grain control in resource
offerings from cloud providers, carbon efficiency from being able to consolidate and turn off
unused pools of resources, and more flexibility in constructing hardware architectures for any
database application. Being aware of hardware heterogeneity in disaggregated setups also
enables efficient compute and data placement, new data structure designs, and innovative
communication-less data exchange.

Carbon and Economic Efficiency

Data centers incur costs from provisioning sufficient compute resources (e.g., memory, CPU,
storage) separately from provisioning power and cooling for these resources. Replacing and
upgrading components further contribute to cost. In addition to direct economic costs, data
centers create a significant carbon footprint from both power consumption and embodied
carbon due to chip manufacturing for acquiring new components. As hardware technologies
and applications evolve at a rapid pace, there is an increasing requirement for data centers
to refresh older components.

Disaggregation offers the opportunity to deliver cost savings to both cloud providers and
users, while enabling a reduction in carbon footprint. The reduction in carbon footprint via
disaggregation can be accomplished in several ways. First, disaggregation can potentially

reduce the overall requirements for hardware components by reducing resource stranding.

The major benefits of disaggregation are in enabling better utilization of resources in the
data center by addressing the bin packing problem, enabling flexible resource sharing, and
more efficient resource utilization, potentially necessitating fewer resources overall. Second,
disaggregation enables the use of older, lower performance components opportunistically in
addition to newer higher performance components. This can potentially be done without

sacrificing performance with novel system-level techniques to address performance differences.

Providing different pricing points for the use of data center hardware can also motivate the
use of older components. Third, disaggregation can enable flexibly turning off power to large
pools of hardware resources in data centers during periods of low utilization. During these
periods, all utilization of compute resources can be redirected to fewer pools of disaggregated
resources and has the potential to significantly reduce the overall power consumption in data
centers.

Economic Model: Elastic and Fine-grained Allocation

The initial promise of the cloud was elastic and fine-grained resource allocation. In today’s
cloud resource model, clients typically pick between pre-defined “bundles” of resources: even
though there are plenty of different instance types in the cloud offering, these all link together
CPUs, memory, network, and storage. In a disaggregated future, with resources “unbundled”,
clients can express their needs more specifically, in terms of CPU cores, memory, storage
capacity, network bandwidth, etc., in smaller increments than what instance types allow for
today. This latter way of requesting, allocating, and billing for resources is the fulfillment of
the initial promise of clouds on granularity.

79

24162



80

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

In terms of elasticity of resources, even though today we can scale out at VM increments.
Within a single VM, storage capacity and bandwidth can be elastic, but memory and CPU
allocations are static. In a disaggregated future we will have elasticity of CPUs, memory,
and network bandwidth even within a single VM. This is an important improvement for
single node databases, which will be able to allocate an expected amount of memory but
have the ability to temporarily use more main memory, in case they face workload spikes.

A beneficial side-effect of allocating resources for applications in a more fine-grained and
elastic manner is that it will bring to light the hidden “divisor” of performance metrics.
Today, we reason in Queries Per Second (QPS), hiding the fact that in most workloads we
should consider QPS/core, QPS/GB of memory, or QPS/aggregate power of the resources
we run on. By being able to expose the divisor, scalability bottlenecks can be easier to
identify and requirements can be more transparently communicated between users and service
providers.

In terms of the pricing model of disaggregated resources, we believe that those cloud
providers (existing or new) that will find an economic model that passes on the savings
resulting from the more efficient use of hardware to their customers will be at a significant
advantage over their competitors who stick to rigid instance types. For customers, once they
can allocate and pay only for the resources they need, there will be little incentive to stick to
the old model.

Call to Action

Disaggregation is happening. As database designers, we have three choices: we can ignore
it, cope with it, or embrace it. In reality, we have no choice, we must adapt systems to
work in a disaggregated world. Coping with disaggregation means redesigning our systems
to effectively use multiple memory tiers. Embracing disaggregation means designing next
generation architectures that seamlessly grow from the fastest single-node system to a fully,
cloud-scale system. In designing these systems, we should demand that hardware designers
and cloud providers give us the mechanisms we need. If a small amount of cache coherent
memory is game-changing for databases, then we need to convince the hyperscalers to make
it available; we should demand elasticity in all resources.

We should embrace the entire spectrum from single-node to cloud-scale growth. Cloud
providers should provide seamless elasticity in every dimension: CPU, storage, memory,
network capacity, and hardware acceleration (including GPUs). Database providers should
design systems that take full advantage of this elasticity. Together we can enable customers
to optimize for metrics other than pure latency and bandwidth — customers might optimize
for queries per second (QPS), QPS/core, QPS/byte, or QPS/watt.

References

1 Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R Stan-
ley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Strachan, Kaushik Roy, et al.
Puma: A programmable ultra-efficient memristor-based accelerator for machine learning
inference. In Proceedings of the twenty-fourth international conference on architectural
support for programming languages and operating systems, pages 715-731, 2019.

2 Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran
Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta, Sebastian Hillig, Eric
Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy, Fabian Nagel, Ippokratis Pandis,
Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul
Soundararajan, Sriram Subramanian, and Doug Terry. Amazon redshift re-invented. In
SIGMOD, pages 2205-2217. ACM, 2022.



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

10

11

Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A multi-neural network acceleration
architecture. In Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture, ISCA ’20, page 940 — 953. IEEE Press, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, US, 2020. Curran Associates Inc.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-
learning. In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 14, page 269 — 284, New York,
NY, US, 2014. Association for Computing Machinery.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. ACM SIGARCH computer architecture
news, 44(3):367-379, 2016.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li, Tianshi
Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning super-
computer. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 609-622, 2014.

Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang,
and Yuan Xie. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. ACM SIGARCH Computer Architecture News,
44(3):27-39, 2016.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchin-
son, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David
Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat,
Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. Palm: scaling language modeling with pathways. J. Mach. Learn. Res.,
24(1), mar 2024.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang,
Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg Rahn,
Spyridon Triantafyllis, and Philipp Unterbrunner. The snowflake elastic data warehouse. In
SIGMOD, pages 215-226, 2016.

Renhao Fan, Yikai Cui, Qilin Chen, Mingyu Wang, Youhui Zhang, Weimin Zheng, and
Zhaolin Li. Maicc: A lightweight many-core architecture with in-cache computing for
multi-dnn parallel inference. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’23, page 411 — 423, New York, NY, US, 2023.
Association for Computing Machinery.

81

24162



82

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

12

13

14

15

16

17
18

19

20

21

22

23

Franz Féarber, Norman May, Wolfgang Lehner, Philipp Grofle, Ingo Miiller, Hannes Rauhe,
and Jonathan Dees. The sap hana database-an architecture overview. IEEE Data Eng.
Bull., 35(1):28-33, 2012.

Soroush Ghodrati, Sean Kinzer, Hanyang Xu, Rohan Mahapatra, Yoonsung Kim, By-
ung Hoon Ahn, Dong Kai Wang, Lavanya Karthikeyan, Amir Yazdanbakhsh, Jongse Park,
Nam Sung Kim, and Hadi Esmaeilzadeh. Tandem processor: Grappling with emerging
operators in neural networks. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 24, page 1165 — 1182, New York, NY, US, 2024. Association for Computing
Machinery.

Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun Park,
Carlo Curino, Jestis Camacho-Rodriguez, Konstantinos Karanasos, and Matteo Interlandi.
Query processing on tensor computation runtimes. Proc. VLDB Endow., 15(11):2811 — 2825,
jul 2022.

John L. Hennessy and David A. Patterson. A new golden age for computer architecture.
Commun. ACM, 62(2):48 — 60, jan 2019.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
Datamodels: Understanding predictions with data and data with predictions. In ICML,
volume 162, pages 9525-9587, 2022.

Intel Corporation. Intel gaudi ai accelerators, 2024.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant
Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young, Xiang Zhou,
Zongwei Zhou, and David A Patterson. Tpu v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, ISCA 23, New York, NY, US,
2023. Association for Computing Machinery.

Justin Levandoski, Garrett Casto, Mingge Deng, Rushabh Desai, Pavan Edara, Thibaud
Hottelier, Amir Hormati, Anoop Johnson, Jeff Johnson, Dawid Kurzyniec, Sam McVeety,
Prem Ramanathan, Gaurav Saxena, Vidya Shanmugam, and Yuri Volobuev. Biglake:
Bigquery’s evolution toward a multi-cloud lakehouse. In SIGMOD, 2024.

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic,
Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura,
and Ricardo Bianchini. Pond: Cxl-based memory pooling systems for cloud platforms. In
Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift, editors, Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC, CA, March 25-29, 2023,
pages 574-587. ACM, 2023.

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic,
Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura,
and Ricardo Bianchini. Pond: Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, page 574 — 587,
New York, NY, US, 2023. Association for Computing Machinery.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min, Mosha Pasumansky,
and Jeff Shute. Dremel: A decade of interactive SQL analysis at web scale. PVLDB,
13(12):3461-3472, 2020.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min, Mosha Pasumansky, and
Jeff Shute. Dremel: a decade of interactive sql analysis at web scale. Proc. VLDB Endow.,
13(12):3461 — 3472, aug 2020.



David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer

24

25

26

27

28

29

30

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
TRAK: attributing model behavior at scale. In ICML, volume 202, pages 2707427113,
2023.

Debendra Das Sharma, Robert Blankenship, and Daniel S. Berger. An introduction to the
compute express link (cxl) interconnect, 2024.

Steve Shaw and Martin Bach. RAC Architecture, pages 63-95. Apress, Berkeley, CA, 2010.
Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language
model for science. arXiv preprint arXiv:2211.09085, 2022.

Thomas N. Theis and H.-S. Philip Wong. The end of moore’s law: A new beginning for
information technology. Comput. Sci. Eng., 19(2):41-50, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.
Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei Wang, Sanchari Sen, Jintao Zhang,
Ankur Agrawal, Monodeep Kar, Shubham Jain, Alberto Mannari, Hoang Tran, Yulong Li,
Eri Ogawa, Kazuaki Ishizaki, Hiroshi Inoue, Marcel Schaal, Mauricio Serrano, Jungwook
Choi, Xiao Sun, Naigang Wang, Chia-Yu Chen, Allison Allain, James Bonano, Nianzheng
Cao, Robert Casatuta, Matthew Cohen, Bruce Fleischer, Michael Guillorn, Howard Haynie,
Jinwook Jung, Mingu Kang, Kyu-hyoun Kim, Siyu Koswatta, Saekyu Lee, Martin Lutz,
Silvia Mueller, Jinwook Oh, Ashish Ranjan, Zhibin Ren, Scot Rider, Kerstin Schelm,
Michael Scheuermann, Joel Silberman, Jie Yang, Vidhi Zalani, Xin Zhang, Ching Zhou,
Matt Ziegler, Vinay Shah, Moriyoshi Ohara, Pong-Fei Lu, Brian Curran, Sunil Shukla,
Leland Chang, and Kailash Gopalakrishnan. Rapid: Ai accelerator for ultra-low precision
training and inference. In 2021 ACM/IEEE }8th Annual International Symposium on
Computer Architecture (ISCA), pages 153-166, 2021.

83

24162



84

24162 — Hardware Support for Cloud Database Systems in the Post-Moore’s Law Era

Participants

- Anastasia Ailamaki
EPFL — Lausanne, CH

= Gustavo Alonso
ETH Ziirich, CH

= David F. Bacon
Google — New York, US
= Lawrence Benson
TU Minchen, DE

= Carsten Binnig

TU Darmstadt, DE

- Alexander Bohm
SAP SE - Walldorf, DE
= Helena Caminal
Google — Sunnyvale, US
= Yannis Chronis
Google — Sunnyvale, US
= Holger Froning
Universitidt Heidelberg —
Mannheim, DE

= Jana Giceva

TU Miinchen — Garching, DE

= Mark D. Hill
University of Wisconsin-
Madison, US

= Thab Francis Ilyas
University of Waterloo, CA

= Zsolt Istvan
TU Darmstadt, DE

= Lana Josipovic
ETH Ziirich, CH

= Tim Kraska
MIT — Cambridge, US

= Justin Levandoski
Google — Seattle, US

= Jignesh M. Patel

Carnegie Mellon University —

Pittsburgh, US

= David A. Patterson
University of California —
Berkeley, US

= Holger Pirk
Imperial College London, GB

= Tilmann Rabl
Hasso-Plattner-Institut,
Universitdt Potsdam, DE

- Eric Sedlar
Oracle Labs —
Redwood Shores, US

= Margo Seltzer

University of British Columbia —

Vancouver, CA

= Pinar T6zlin

IT University of
Copenhagen, DK

= Nandita Vijaykumar
University of Toronto, CA

= Tianzheng Wang
Simon Fraser University —
Burnaby, CA

= Lisa Wu Wills

Duke University — Durham, US

= Tobias Ziegler
TU Darmstadt, DE




	Executive Summary (David F. Bacon, Carsten Binnig, David Patterson, and Margo Seltzer)
	Table of Contents
	Overview of Impulse Talks
	Computer Architecture 101 (David A. Patterson)
	Some Hardware Impacts on Cloud Databases (Mark D. Hill)
	Cloud Databases (OLTP) – Where are we and where are we going? (David F. Bacon)
	Cloud Databases (OLAP) – Where are we and where are we going? (Justin Levandoski)
	The AI Future: ML for Systems (Tim Kraska)
	The AI Future: Do we need Databases at all? Or Model = DB? (Carsten Binnig)
	The AI Future: Where is AI HW going? (Holger Fröning)
	The AI Future: AI rules (NOT)? Real-Time Intelligent Systems (Anastasia Ailamaki)
	A Disaggregated Heterogeneous Future: An Overview (Gustavo Alonso)
	A Disaggregated Heterogeneous Future: Building Cloud-native Data Systems for the Post-Moore Era (Jana Giceva)
	A fully (Re-)Programmable Future: Cloud Databases and Hardware (Zsolt István)
	The Pipe Dream: Database Systems Chasing Hardware (Jignesh M. Patel)
	The Pipe Dream: Hardware Acceleration For Databases (Lisa Wu Wills)

	Working Group 1: The Next Order of Magnitude
	Working Group 2: A Case for Memory-Centric Design of Cloud Servers and DBMS
	Working Group 3: AI Hardware. What is in it for Cloud DBMSs?
	Working Group 4: Incrementally Distributed
	Participants

