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Abstract
This report summarizes the program of Dagstuhl Seminar 24171 on “Automated Synthesis:
Functional, Reactive and Beyond”. The seminar brought together researchers working on different
aspects of functional synthesis and investigated its relationship with reactive synthesis. Through
multiple expository tutorials, diverse technical talks, and multiple open discussion sessions, the
seminar crystallized the current challenges for theory and tools in this area and opened fresh
directions towards new applications.
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In Dagstuhl Seminar 24171, we brought together researchers working in various aspects of
automated functional synthesis. This diverse topic encompasses areas ranging from Boolean
variants to quantified variants, automated reasoning for general theories, program synthesis,
and more. One particular focus was on finding synergies between functional and reactive
synthesis communities and investigating the deep connections between these two areas.

On the first day, we started with two introductory tutorials: one on Boolean functional
synthesis and another on reactive synthesis, setting the agenda for the entire seminar. This
was succeeded by technical presentations on definability and dependency in quantified Boolean
formulas. The second day included a tutorial on automated reasoning and synthesis, with
an emphasis on theories extending beyond Boolean (e.g., SMT), followed by discussions
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on quantitative properties. On the third day, we organized a special session with other
tool competition organizers to assess the feasibility of a competition or track dedicated to
functional synthesis.

The remaining days were filled with diverse technical talks that fell into two categories.
The first category included talks that delved deeper into specific aspects of functional
synthesis, reactive/LTL synthesis, and specific problems within these fields. The second
category introduced new applications or connections, such as quantum applications and
functional programming. Discussions during and beyond these talks were further explored in
different open and problem sessions. Some of the identified and discussed problems were:
1. How to formalize the Boolean functional synthesis problem at the heart of reactive

synthesis? Various problem formulations were discussed, and some benchmarks were
created.

2. Can we go beyond Boolean theories and synthesize programs and functions for general
SMT? What bottlenecks do we face?

3. How can we find synergy between automated functional synthesis and synthesis using
transformers? Specifically, what is the meeting ground between machine learning and
inductive program synthesis techniques, functional synthesis, and automated reasoning?

4. Can the successful lens of knowledge representations and compilations for model counting
and Boolean functional synthesis be extended to other settings?

5. Can we synthesize quantum circuits from specifications, thus leading to a theory of
automated reasoning for quantum systems?

6. Can reactive synthesis over finite traces utilize techniques developed in automated
functional synthesis?

These were among the prominent topics discussed, but the list is by no means exhaustive.
Several bottlenecks were identified, such as the need for growth within the community
developing these tools before establishing a proper competition. Additionally, there was a
recognized necessity for broader and more extensive discussions on benchmarks.

Overall, the seminar fostered a collaborative spirit among theoreticians, tool developers,
and experts across different aspects of automated functional synthesis. The seminar was also
attended by a large number of early career researchers, postdoctoral fellows, and graduate
students who also participated enthusiastically throughout the seminar. The shared optimism
generated during this seminar has laid a strong foundation for future advancements. We
advocate for the continuation of these valuable discussions and propose organizing further
meetings of a similar nature to build on the momentum gained and to explore new frontiers
in automated functional synthesis.

In the remainder of this report, we provide the abstracts of all the talks, as well as
discussion sessions held during the seminar. We thank all the speakers and attendees for
their active participation and look forward to attending and organizing more such events in
the future.
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3 Overview of Talks

3.1 To Assume, Or Not To Assume
Ashwani Anand (MPI-SWS – Kaiserslautern, DE)
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Joint work of Ashwani Anand, Kaushik Mallik, Satya Prakash Nayak, Anne-Kathrin Schmuck
Main reference Ashwani Anand, Anne-Kathrin Schmuck, Satya Prakash Nayak: “Contract-Based Distributed

Logical Controller Synthesis”, in Proc. of the 27th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2024, Hong Kong SAR, China, May 14-16, 2024,
pp. 11:1–11:11, ACM, 2024.

URL https://doi.org/10.1145/3641513.3650123

Reactive synthesis techniques assume that the environment acts adversarially. However,
in many real-life scenarios, the environment might not work antagonistically. We solve
the problem of automatically computing a new class of environment assumptions in two-
player turn-based finite graph games which characterize an “adequate cooperation” needed
from the environment to allow the system player to win [1]. Given an ω-regular winning
condition Φ for the system player, we compute an ω-regular assumption Ψ for the environment
player, such that (i) every environment strategy compliant with Ψ allows the system to
fulfill Φ (sufficiency), (ii) Ψ can be fulfilled by the environment for every strategy of the
system (implementability), and (iii) Ψ does not prevent any cooperative strategy choice
(permissiveness).

For parity games, which are canonical representations of ω-regular games, we present a
polynomial-time algorithm for the symbolic computation of adequately permissive assump-
tions and show that our algorithm runs faster and produces better assumptions than existing
approaches – both theoretically and empirically. To the best of our knowledge, for ω-regular
games, we provide the first algorithm to compute sufficient and implementable environment
assumptions that are also permissive.

In the second part of the talk, we apply the lessons learned to strategies computation [2],
and negotiations between multiple agents [3].

References
1 Ashwani Anand, Kaushik Mallik, Satya Prakash Nayak, and Anne-Kathrin Schmuck.

“Computing Adequately Permissive Assumptions for Synthesis.” In Tools and Algorithms for
the Construction and Analysis of Systems, edited by Sriram Sankaranarayanan and Natasha
Sharygina, 211–228. Cham: Springer Nature Switzerland, 2023.

2 Ashwani Anand, Satya Prakash Nayak, and Anne-Kathrin Schmuck. “Synthesizing Per-
missive Winning Strategy Templates for Parity Games.” In Computer Aided Verification –
35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part I, edited by Constantin Enea and Akash Lal, 13964:436–458. Lecture Notes in Computer
Science. Springer, 2023. https://doi.org/10.1007/978-3-031-37706-8_22.

3 Ashwani Anand, Anne-Kathrin Schmuck, and Satya Prakash Nayak. “Contract-Based
Distributed Logical Controller Synthesis.” In Proceedings of the 27th ACM International
Conference on Hybrid Systems: Computation and Control, 1–11. HSCC ’24. New York, NY,
USA: Association for Computing Machinery, 2024. https://doi.org/10.1145/3641513.
3650123.
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3.2 LTLf Model Checking
Suguman Bansal (Georgia Institute of Technology – Atlanta, US)
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Strategies from Synthesis over Finite Traces”, in Proc. of the Automated Technology for Verification
and Analysis – 21st International Symposium, ATVA 2023, Singapore, October 24-27, 2023,
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The innovations in reactive synthesis from Linear Temporal Logics over finte traces (LTLf)
will be amplified by the ability to verify the correctness of the strategies generated by
LTLf synthesis tools. This motivates our work on LTLf model checking. LTLf model
checking, however, is not straightforward. The strategies generated by LTLf synthesis may be
represented using terminating transducers or non-terminating transducers where executions
are of finite-but-unbounded length or infinite length, respectively. For synthesis, there is no
evidence that one type of transducer is better than the other since they both demonstrate
the same complexity and similar algorithms.

In this work, we show that for model checking, the two types of transducers are fun-
damentally different. Our central result is that LTLf model checking of non-terminating
transducers is exponentially harder than that of terminating transducers. We show that the
problems are EXPSPACE-complete and PSPACE-complete, respectively. Hence, considering
the feasibility of verification, LTLf synthesis tools should synthesize terminating transducers.
This is, to the best of our knowledge, the first evidence to use one transducer over the other
in LTLf synthesis.

3.3 Formal XAI via Syntax-Guided Synthesis
Katrine Bjørner (New York University, US)

License Creative Commons BY 4.0 International license
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Main reference Katrine Bjørner, Samuel Judson, Filip Cano Córdoba, Drew Goldman, Nicholas Shoemaker, Ruzica
Piskac, Bettina Könighofer: “Formal XAI via Syntax-Guided Synthesis”, in Proc. of the Bridging
the Gap Between AI and Reality – First International Conference, AISoLA 2023, Crete, Greece,
October 23-28, 2023, Proceedings, Lecture Notes in Computer Science, Vol. 14380, pp. 119–137,
Springer, 2023.
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We propose a novel application of syntax-guided synthesis to find symbolic representations
of a model’s decision-making process, designed for easy comprehension and validation by
humans. Our approach takes input-output samples from complex machine learning models,
such as deep neural networks, and automatically derives interpretable mimic programs. A
mimic program precisely imitates the behavior of an opaque model over the provided data.
We discuss various types of grammars that are well-suited for computing mimic programs for
tabular and image input data.

Our experiments demonstrate the potential of the proposed method: we successfully
synthesized mimic programs for neural networks trained on the MNIST and the Pima Indians
diabetes data sets. All experiments were performed using the SMT-based cvc5 synthesis tool.
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3.4 Programming by example for end user tasks and the use of LLMs
José Cambronero (Microsoft – Redmond, US)

License Creative Commons BY 4.0 International license
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Programming by example (PBE) allows users with little to no formal computation experience
to carry out tasks by providing simple demonstrations (e.g. input/output-based examples). In
practice, PBE has found considerable industrial uptake, particularly in end-user environments
like spreadsheet software (e.g. Microsoft Excel, Google Sheets). In this talk, I’ll present a
recent project on learning data-dependent formatting rules in Excel from examples. We’ll
then discuss how PBE in this domain can be extended to also incorporate multimodal
specifications, by supporting use of natural language. Using this as a segue into combining
symbolic and neural methods, I’ll discuss recent work from the field that uses LLMs and
may provide ideas for nice collaborations between formal reasoning and popular LLM-based
approaches.

3.5 Boolean Functional Synthesis: A Quick Tour
Supratik Chakraborty (Indian Institute of Technology Bombay – Mumbai, IN)
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Joint work of S. Akshay, Aman Bansal, Supratik Chakraborty, Priyanka Golia, Kuldeep Meel, Subhajit Roy, Preey
Shah, Shetal Shah, Friedrich Slivovsky

Given a Boolean relational specification φ(X, Y ) over input variables X and output variables
Y, Boolean functional synthesis concerns finding Skolem functions F(X) for Y such that
∃Y φ(X, Y ) is semantically equivalent to φ(X, F (X)). In this talk, we introduce the problem,
survey some earlier results and then take a deeper dive into two solution approaches that
have shown promise in recent years. Specifically, we discuss the guess-check-repair paradigm
for synthesizing Skolem functions, and also present a knowledge compilation based approach
for Boolean functional synthesis. Finally, we conclude with some perspectives on future
research in this area. The talk is based on work reported in [1, 2, 3, 4, 5].

References
1 S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah: Boolean

Functional Synthesis: Hardness and Practical Algorithms, Formal Methods Syst. Des. 57(1):
53-86 (2021).

2 S. Akshay, S. Chakraborty, S. Shah: Tractable Representations for Boolean Functional Synthesis,
Annals of Mathematics and Artificial Intelligence, 1-46, 2023.

3 Preey Shah, Aman Bansal, S. Akshay, Supratik Chakraborty: A Normal Form Characterization
for Efficient Boolean Skolem Function Synthesis, LICS 2021: 1-13.

4 Priyanka Golia, Friedrich Slivovsky, Subhajit Roy, Kuldeep S. Meel: Engineering an Efficient
Boolean Functional Synthesis Engine, ICCAD 2021: 1-9.

5 Priyanka Golia, Subhajit Roy, Kuldeep S. Meel: Manthan: A Data-Driven Approach for
Boolean Function Synthesis, CAV (2) 2020: 611-633.
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3.6 Symbolic Fixpoint Techniques for Logical LTL Games
Deepak D’Souza (Indian Institute of Science – Bangalore, IN)
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Engineering, ASE 2023, Luxembourg, September 11-15, 2023, pp. 698–709, IEEE, 2023.

URL https://doi.org/10.1109/ASE56229.2023.00212

We consider the problem of synthesizing strategies in logically-specified infinite-state two-
player games with LTL winning conditions. We lift classical fixpoint algorithms for synthesiz-
ing strategies in finite-states games, to our setting. Our evaluation of these algorithms show
that they compare well with earlier techniques based on template-based logical synthesis and
abstraction-refinement, on benchmarks from the literature.

This is joint work with Stanly Samuel and K V Raghavan.

3.7 On the compilation of non-CNF systems of constraints (or, your
weekly dose of knowledge compilation)

Alexis de Colnet (TU Wien, AT)

License Creative Commons BY 4.0 International license
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Knowledge compilers often take as inputs a CNF formula and construct an equivalent
Boolean circuit with specific properties. Generally, the size of the output circuit increases
exponentially. However, for some families of CNF formulas, one can exploit the structure
of the formulas to compile them efficiently. In this talk, I first give a general overview of
knowledge compilation and of the circuits that knowledge compilers construct. Then, I
present results on the compilation of non-CNF inputs. Seeing CNF as systems of constraints,
where every constraint is a clause, I explain how positive results on the compilation of CNF
with a certain structure can be extended to more general systems of constraints.

3.8 Synthesis of Infinite-State Reactive Systems (and why it needs
functional synthesis for theories beyond Boolean)

Rayna Dimitrova (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
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Joint work of Philippe Heim, Rayna Dimitrova
Main reference Philippe Heim, Rayna Dimitrova: “Solving Infinite-State Games via Acceleration”, Proc. ACM

Program. Lang., Vol. 8(POPL), pp. 1696–1726, 2024.
URL https://doi.org/10.1145/3632899

Infinite-state games are a commonly used model for the synthesis of reactive systems with
unbounded data domains. Symbolic methods for solving such games need to be able to
construct intricate arguments to establish the existence of winning strategies. Furthermore,
the synthesis of the resulting reactive system implementations necessitates the use of functional
synthesis for theories beyond Boolean. In this talk, I will present a recent symbolic approach
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for the synthesis of infinite-state reactive systems, called attractor acceleration, which employs
ranking arguments to improve the convergence of symbolic game-solving algorithms. I will
then discuss the application and the challenges for functional synthesis in this context.

3.9 A Semi-Gentle Introduction to Reactive Synthesis
Rüdiger Ehlers (TU Clausthal, DE)

License Creative Commons BY 4.0 International license
© Rüdiger Ehlers

Reactive synthesis is the process of computing correct-by-construction finite-state controllers
from temporal logic specifications. In this tutorial, we have a look at the basic concepts that
underlie current reactive synthesis approaches. We discuss the topic on a fairly technical
level in order to highlight the connections to functional and Boolean synthesis.

3.10 On Dependent Variables in Reactive Synthesis
Dror Fried (The Open University of Israel – Ra’anana, IL)

License Creative Commons BY 4.0 International license
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Given a Linear Temporal Logic (LTL) formula over input and output variables, reactive
synthesis requires us to design a deterministic Mealy machine that gives the values of outputs
at every time step for every sequence of inputs, such that the LTL formula is satisfied. In this
paper, we investigate the notion of dependent variables in the context of reactive synthesis.
Inspired by successful pre-processing techniques in Boolean functional synthesis, we define
dependent variables in reactive synthesis as output variables that are uniquely assigned, given
an assignment to all other variables and the history so far. We describe an automata-based
approach for finding a set of dependent variables. Using this, we show that dependent
variables are surprisingly common in reactive synthesis benchmarks. Next, we develop a
novel synthesis framework that exploits dependent variables to construct an overall synthesis
solution. By implementing this framework using the widely used library Spot, we show
that reactive synthesis that exploits dependent variables can solve some problems beyond
the reach of existing techniques. Furthermore, we observe that among benchmarks with
dependent variables, if the count of non-dependent variables is low (≤ 3 in our experiments),
our method outperforms state-of-the-art tools for synthesis.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


94 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.11 Exploring Connections between Automated Reasoning and
Synthesis

Mikoláš Janota (Czech Technical University – Prague, CZ)
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In this talk we explore the connections between synthesis and automated reasoning techniques.
Generally, synthesis, from logic perspective, is formalized as solving a formula of the following
form.

∃f ∀x.P [f, x]

where P is a predicate parametrized by a vector of variables x and an unknown function f .
Typically, the (second order) quantifier ∃f it is omitted; in particular in Satisfiability Modulo
Theories (SMT), where f functions are implicitly quantified existentially.

Many approaches use solvers in a black-box fashion by assuming a certain template for
f , such as linear, quadratic etc. [9]. Then, the synthesis problem is formulated as an SMT
problem that search as for the parameters (coefficients) of the template. Interestingly, such
approach can also be used to search for all the possible f [1].

Some approaches integrate more deeply with the solver. A powerful technique is
deskolemization of f (as inverse of skolemization), which is possible, if f is always ap-
plied to the same tuple of arguments everywhere in P . In the literature, such specific-
ations are referred to as single-invocation properties [5, 8]. An example of such prop-
erty would be ∀x1x2. f(x1, x2) > x1 ∧ f(x1, x2) > x2, which would be deskolemized as
∀x1x2∃z. z > x1 ∧ z > x2.

For deskolemized version of the specification, f can be that synthesized by quantifier
elimination (QE) if the formula is in a theory that admits QE, such as linear real/integer
arithmetic [7, 2], cf. [5, 6]. Alternatively, Reynolds et al. [8] synthesize f by inspecting the
SMT refutation (proof). Hozzová et al. [3] synthesize f in the setting of first or logic (FOL),
again from the proof, which relies on explicit axiomatization of any theory that may be used.

Specifications going beyond the single-invocation property fragment maybe tackled by
embedding the language of possible solutions into the solver as than algebraic datatype [8].
More recent research shows that refutations containing mathematical induction enable
synthesizing recursive functions [4].
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3.12 Stochastic Boolean Satisfiability: Recent Developments and
Connection to Functional Synthesis
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Stochastic Boolean Satisfiability (SSAT) generalizes quantified Boolean formulas (QBFs) by
allowing quantification over random variables. It is often referred to as games against nature
and has applications in making decisions or optimizing under uncertainty. This talk will
introduce SSAT, its recent developments, and its connection to Boolean functional synthesis.
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3.13 The Unreasonable Effectiveness of Classical Automated Reasoning
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In this talk, we will show that existing classical automated reasoning methods perform
exceedingly well for computationally hard problems in quantum computing and physics. In
particular, we demonstrate a linear-length #SAT encoding of the simulation and equivalence
checking of universal quantum circuits. An implementation of this method, called Quokka#,
outcompetes other state-of-the-art approaches using an off-the-shelve #SAT solver that
supports negative weights (GPMC). While decision diagrams offer a viable alternative, we
unveil their inherent limitations stemming from their inability to represent the prevalent
stabilizer states. This limitation is particularly noteworthy considering the efficient classical
simulatability of circuits generating such states. To address this constraint, we introduce
Local Invertible Map Decision Diagrams (LIMDDs), which offer exponential improvements
in succinctness compared to the combination of stabilizer formalism and existing decision
diagrams. Finally, we illustrate how these findings hold relevance beyond quantum computing
by translating them back to the domain of quantum physics. To achieve this, we build upon
Darwiche and Marquis’ seminal “knowledge compilation map” approach, by pioneering a
knowledge compilation map for quantum information. This map juxtaposes various decision
diagrams against tensor networks and Boltzmann machines, two formalisms extensively
utilized in physics to address quantum-hard problems such as simulating many-body systems
and determining their ground energy. Our results underscore the significant potential of
existing automated reasoning methods in both quantum computing and physics domains.
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Temporal stream logic modulo theories (TSL-T) is used to specify the behavior of infinite
state reactive systems. We present a refinement based synthesis method that works using
LTL synthesis and SMT solving. First, a LTL underapproximation is computed and given to
a LTL synthesis tool. In case this is unrealizable the created counter-strategy is analyzed
for inconsistencies with the theory. New assumptions and predicates are added to the
specification to rule out the counter-strategy and the LTL synthesis is run again. If the
problem becomes realizable a program statisfying the original specification is extracted.
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3.15 Boosting Definability Bipartition Computation using SAT
Witnesses
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Bipartitioning the set of variables Var(Σ) of a propositional formula Σ w.r.t. definability
consists in pointing out a bipartition ⟨I, O⟩ of Var(Σ) such that Σ defines the variables of O

(outputs) in terms of the variables in I (inputs), i.e., for every o ∈ O, there exists a formula
Φo over I such that o ⇔ Φo is a logical consequence of Σ. The existence of Φo given o, I,
and Σ is a coNP-complete problem, and as such, it can be addressed in practice using a SAT
solver. From a computational perspective, definability bipartitioning has been shown as a
valuable preprocessing technique for model counting, a key task for a number of AI problems
involving probabilities. To maximize the benefits offered by such a preprocessing, one is
interested in deriving subset-minimal bipartitions in terms of input variables, i.e., definability
bipartitions ⟨I, O⟩ such that for every i ∈ I, ⟨I \ {i}, O ∪ {i}⟩ is not a definability bipartition.
We show how the computation of subset-minimal bipartitions can be boosted by leveraging
not only the decisions furnished by SAT solvers (as done in previous approaches), but also
the SAT witnesses (models and cores) justifying those decisions.

3.16 A Flock of Birds: Owl & Strix
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In this talk, I briefly outline the theoretical and practical advances that together form the
foundation of Owl and Strix, state-of-the-art tools for LTL to automata translation and LTL
synthesis, respectively.

This includes a large body of work, a small selection follows:
Unified translation (JACM): https://doi.org/10.1145/3417995
One theorem to rule them all (LICS): https://doi.org/10.1145/3209108.3209161
Owl tool paper: https://doi.org/10.1007/978-3-030-01090-4_34
Strix tool paper: https://doi.org/10.1007/978-3-319-96145-3_31

The small list above is the culmination of about a dozen papers, see the respective cites
within for more details.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-319-96145-3_31


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 99

3.17 Pre-condition and Program Synthesis for Polynomial Specifications
over Integers
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In this talk, we will look at the problem of synthesizing both the program and pre-condition,
when the post-condition is given as Boolean combination of polynomial inequalities and
variables take integral values over a bounded region. The problem does not have a sub-
exponential time procedure under Exponential Time Hypothesis. We will discuss an approach
that is more efficient than naive enumeration by exploiting results from algebraic geometry.

3.18 Synthesis of Semantic Actions in Attribute Grammars
Subhajit Roy (Indian Institute of Technology Kanpur, IN)

License Creative Commons BY 4.0 International license
© Subhajit Roy

Joint work of Subhajit Roy, Pankaj Kumar Kalita, Miriyala Jeevan Kumar
Main reference Pankaj Kumar Kalita, Miriyala Jeevan Kumar, Subhajit Roy: “Synthesis of Semantic Actions in

Attribute Grammars”, in Proc. of the 22nd Formal Methods in Computer-Aided Design, FMCAD
2022, Trento, Italy, October 17-21, 2022, pp. 304–314, IEEE, 2022.
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Attribute grammars allow the association of semantic actions to the production rules in
context-free grammars, providing a simple yet effective formalism to define the semantics
of a language. However, drafting the semantic actions can be tricky and a large drain on
developer time. In this work, we propose a synthesis methodology to automatically infer
the semantic actions from a set of examples associating strings to their meanings. We
also propose a new coverage metric, derivation coverage. We use it to build a sampler to
effectively and automatically draw strings to drive the synthesis engine. We build our ideas
into our tool, PĀNINI, and empirically evaluate it on twelve benchmarks, including a forward
differentiation engine, an interpreter over a subset of Java bytecode, and a mini-compiler
for C language to two-address code. Our results show that PĀNINI scales well with the
number of actions to be synthesized and the size of the context-free grammar, significantly
outperforming simple baselines.
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3.19 Reactive Program Synthesis Modulo LLM Code Generation
Mark Santolucito (Barnard College, Columbia University – New York, US)
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Temporal logics are powerful tools that are widely used for the synthesis and verification of
reactive systems. The recent progress on Large Language Models (LLMs) has the potential to
make the process of writing such specifications more accessible. However, writing specifications
in temporal logics remains challenging for all but the most expert users. A key question
in using LLMs for temporal logic specification engineering is to understand what kind of
guidance is most helpful to the LLM and the users to easily produce specifications. Looking
specifically at the problem of reactive program synthesis, we explore the impact of providing
an LLM with guidance on the separation of control and data–making explicit for the LLM
what functionality is relevant for the specification, and treating the remaining functionality
as an implementation detail for a series of pre-defined functions and predicates. We present
a benchmark set and find that this separation of concerns improves specification generation.
Our benchmark provides a test set against which to verify future work in LLM generation of
temporal logic specifications.

3.20 A Short Introduction to Inductive Functional Programming
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Inductive functional programming, also called inductive program synthesis, addresses the
problem of learning (mostly recursive) functional programs from input/output examples.
An related area of research is inductive logic programming (ILP). IP is a type of machine
learning because programs (models) are synthesized by inductive generalisation. In contrast
to statistical and neural approaches to machine learning, IP approaches typically only need a
small number of training examples. Since learned models are represented in form of programs,
IP belongs to the group of interpretable machine learning approaches. In the talk, I will give
an introduction to inductive functional programming and also present basic concepts of ILP.
Furthermore, I will point out how IP can be combined with Deep Learning Architectures for
explainability.
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3.21 Oracle-Guided Inductive Synthesis, Learning Theory, and LLMs
Sanjit A. Seshia (University of California – Berkeley, US)
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More than a decade ago, I described how many problems in formal methods are effectively
addressed through reduction to synthesis, including the synthesis of proof artifacts during
verification, and synthesis within solvers such as for theory lemmas and quantifier instantiation.
Additionally, I observed how an inductive, data-driven approach to synthesis is often very
effective. In this talk, I review these ideas, which are also summarized in [1]. I also describe
how they enable one to develop learning-theoretic foundations for synthesis, leading to the
frameworks of formal inductive synthesis and oracle-guided inductive synthesis (OGIS), with
initial theoretical results reported in [2]. Finally, I note how synthesis with large language
models (LLMs) is but a special case of oracle-guided synthesis where the LLM forms an
untrusted but often effective oracle for searching over large expression (program) spaces.
I describe how we can use this oracle-guided synthesis view to formulate an approach to
verified code transpilation with LLMs, which beats all conventional approaches to verified
code transpilation – initial results are presented in [3].
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3.22 An Approximate Skolem Function Counter
Arijit Shaw (Chennai Mathematical Institute, IN & University of Toronto, CA)
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Motivated by the recent development of scalable approaches to Boolean function synthesis,
we study the problem of counting Boolean functions: given a Boolean specification between a
set of inputs and outputs, count the number of functions of inputs such that the specification
is met. This stands in relation to our problem analogously to the relationship between
Boolean satisfiability and the model counting problem. Yet, counting Skolem functions poses
considerable new challenges. From the complexity-theoretic standpoint, counting Skolem
functions is not only #P-hard; it is quite unlikely to have an FPRAS (Fully Polynomial
Randomized Approximation Scheme) as the problem of even synthesizing one Skolem function
remains challenging, even given access to an NP oracle. The primary contribution of this work
is the first algorithm, SkolemFC, that computes an estimate of the number of Skolem functions.
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SkolemFC relies on technical connections between counting functions and propositional model
counting: our algorithm makes a linear number of calls to an approximate model counter
and computes an estimate of the number of Skolem functions with theoretical guarantees.
Moreover, we show that Skolem function count can be approximated through a polynomial
number of calls to a SAT oracle. Our prototype displays impressive scalability, handling
benchmarks comparably to state-of-the-art Skolem function synthesis engines, even though
counting all such functions ostensibly poses a greater challenge than synthesizing a single
function.
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3.23 Counterexample-Guided DQBF Solving
Friedrich Slivovsky (University of Liverpool, GB)
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Extraction”, in Proc. of the Theory and Applications of Satisfiability Testing – SAT 2021 – 24th
International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings, Lecture Notes in Computer
Science, Vol. 12831, pp. 499–517, Springer, 2021.

URL https://doi.org/10.1007/978-3-030-80223-3_34

In a Dependency Quantified Boolean Formula (DQBF), each existentially quantified variable
is annotated with a dependency set consisting of universally quantified variables. A model of a
DQBF consists of functions that correctly assign values to the existentially quantified variables
based on the values of the universally quantified variables they depend on. Determining
whether a DQBF has a model is NEXP-complete, and DQBFs can naturally express a range
of synthesis problems. This talk presents an algorithm for finding a model of a DQBF that
iteratively refines a candidate model based on counterexamples. It covers techniques that
are crucial to make this approach work well in practice, such as identifying unique Skolem
functions by propositional definition extraction, and finding local repairs of invalid functions.

3.24 A problem with functional synthesis
Mate Soos (University of Toronto, CA), Supratik Chakraborty (Indian Institute of Technology
Bombay – Mumbai, IN), and Kuldeep S. Meel (University of Toronto, CA)
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There is an issue we should address related to functional synthesis. Its definition is incomplete.
It talks about inputs and outputs only – but many of the variables are in fact don’t cares. It
is easily imaginable that many users don’t need the skolem function for a number of internal
variables that are not inputs. However, current systems have to create a skolem function for
these, too, potentially wasting the end user’s resources. In my opinion, this should to be
changed, allowing users to give a dontcare set.
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So, if e.g. there are 100 variables, and the user sets 1..50 as inputs, they should be able to
say that they are only interested in the skolem function of variable 100 – and if that involves
variables 51..99 then of course their skolem functions, too. But if, for example, variable 100
is not connected in any way, shape or form, to variable 66, then there is absolutely no point
in creating the skolem function for variable 66. It would be noting but a waste of the end
user’s resources. We should focus on what the end users want – and I’m quite sure they only
want specific variable(s)’ skolem functions, not everything that isn’t an input.

Let’s discuss. Obviously this new formulation can gracefully simulate the original problem,
simply set dontcare = ∅. But I am pretty sure that once users start using functional synthesis,
their dotcare set will be quite large.

3.25 Reactive synthesis via parity and Rabin games
K. S. Thejaswini (IST Austria – Klosterneuburg, AT)
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To solve the reactive synthesis problem from LTL specifications or non-deterministic Buchi
automata, there are two common approaches: either reduce it to the solving a parity game
or solving a Rabin game. We discuss some algorithms to solve these games.

3.26 On the Power of LTLf in Reactive Synthesis
Shufang Zhu (University of Oxford, GB)
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Joint work of Shufang Zhu, Geguang Pu, Moshe Y. Vardi, Jianwen Li, Lucas M. Tabajara, Giuseppe De Giacomo,
Antonio Di Stasio, Marta Kwiatkowska, Pian Yu

Reactive synthesis emerges as a trustworthy-by-design technique in developing verifiably
correct autonomous AI systems. This talk puts a particular focus on reactive synthesis of
Linear Temporal Logic on finite traces (LTLf). LTLf, on the one hand, allows for specifying
a rich set of temporally extended specifications, and on the other hand, focuses on finite
traces, which makes it particularly suitable for specifying tasks of autonomous AI systems.
Note that autonomous AI systems will not get stuck accomplishing a task for all their
lifetime, but only for a finite (but unbounded) number of steps. In this talk, I will present
an overview of key advancements in LTLf synthesis, highlighting its scalability and potential
in complex scenarios. These results base on a so-called DFA-technology, which essentially
takes the maximal simplicity of reasoning about efficiently constructed deterministic finite
word automaton (DFA) of the LTLf objective. The goal of this talk is to engage researchers
in automated synthesis, encouraging further advances on the scalability and applicability of
LTLf synthesis.
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4 Working groups

4.1 Benchmarking (and LLMs)
José Cambronero (Microsoft – Redmond, US), Johannes Klaus Fichte (Linköping University,
SE), Benedikt Maderbacher (TU Graz, AT), Tobias Meggendorfer (Lancaster University
Leipzig, DE), Ruzica Piskac (Yale University – New Haven, US), and Mark Santolucito
(Barnard College, Columbia University – New York, US)
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In our discussion, we focused on current challenges to identifying opportunities for impact
for the work carried out by the reactive synthesis community. One point discussed was the
need to identify (industrial) applications and then use these applications to drive benchmark
development. While current benchmarks, such as SYNTCOMP, provide cases that are able
to test the limits of current solvers (an important goal, and complementary to what we
propose here), there is no evidence that the tasks being solved in these competitions are
necessarily realistic for industrial use. Discussion surfaced some natural domains for possible
application, such as networking, robotics, smart-home systems, or other applications that
require substantial planning and long running environments. However, how to obtain concrete
tasks from these domains remains a challenge. One idea discussed was the importance of
establishing connections with such communities, potentially through venues like Dagstuhl, to
bring together their problems with the solutions from the reactive synthesis community.

Finally, we discussed the potential for using generative AI (specifically LLMs) as a
potential tool to improve or extend the current benchmarking done or existing tools. For
example, we discussed that an LLM may be able to provide a natural language description
of an LTL specification, which may be helpful for explainability (making this more accessible
to non-experts). Similarly, an LLM may be potentially useful for generating LTL benchmark
tasks, which may be of interest to evaluate performance on problems with different structure
or that somehow reflect the bias of problems observed in their training data (which in turn
may correlate with potential applications). Alternatively, we also discussed that LLM-based
systems (e.g. agents) may themselves be a good application area for LTL.

One challenge identified by participants is that the community may not necessarily reward
applications of techniques, since these efforts would be reflected in publications (or other
achievements) in the target domain community instead.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 105

4.2 Developing a Computational Theory for Learning Functions from
Relations

Kuldeep S. Meel (University of Toronto, CA), Dror Fried (The Open University of Israel –
Ra’anana, IL), Alfons Laarman (Leiden University, NL), Sanjit A. Seshia (University of
California – Berkeley, US), and Mate Soos (University of Toronto, CA)
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The working group participants included Dror Fried, Mate Soos, Sanjit A. Seshia, and Alfons
Laarman. The group’s primary objective was to explore the necessity for developing a
computational theory for learning functions from relations. The discussions encompassed
understanding the connections between the work of Jha and Seshia, particularly their paper
titled A Theory of Formal Synthesis via Inductive Learning (2014).

Moreover, another significant line of discussion was the distinction between the traditional
setting of computational learning theory, where the underlying specification guarantees
a unique function, and the scenarios we are interested in. Specifically, the focus was on
developing a theoretical framework that can characterize situations where it is possible to
learn small Skolem functions, assuming such functions exist.

The discussions concluded with the consensus that these issues represent important open
problems in the field, warranting further research and investigation.

5 Panel discussions

5.1 Reactive Synthesis and Model Counting Competitions
Guillermo A. Pérez (University of Antwerp, BE) and Johannes Klaus Fichte (Linköping
University, SE)

License Creative Commons BY 4.0 International license
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Automated Reasoning (AR) covers different aspects of deductive reasoning as practiced in
mathematics and formal logic. Practical and theoretical research enabled ground-breaking
success in a variety of application domains. At the core of this success lie incredibly
sophisticated and complex pieces of software (so-called solvers), which tackle specific problems
of AR. Recurring (typically annual) solver competitions or evaluations play a significant role
in this practical success. Competitions aim at advancing applications, identifying challenging
benchmarks, fostering new solver development, enhancing existing solvers, bringing together
various researchers, identifying challenges, and inspiring numerous new applications. In
this talk, we share experience from two competitions. The Model Counting Competition
(https://mccompetition.org/)[2] and the Reactive Synthesis Competition (https://www.
syntcomp.org/)[1]. Subsequently, we provide thoughts and tasks for a broad discussion to
establish a Boolean Function Synthesis Challenge.
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