
Report from Dagstuhl Seminar 24171

Automated Synthesis: Functional, Reactive and Beyond
S. Akshay∗1, Bernd Finkbeiner∗2, Kuldeep S. Meel∗3,
Ruzica Piskac∗4, and Arijit Shaw†5

1 Indian Institute of Technology Bombay – Mumbai, IN. akshayss@cse.iitb.ac.in
2 CISPA – Saarbrücken, DE. finkbeiner@cispa.de
3 University of Toronto, CA. meel@comp.nus.edu.sg
4 Yale University – New Haven, US. ruzica.piskac@yale.edu
5 Chennai Mathematical Institute, IN & University of Toronto, CA.

if.arijit@gmail.com

Abstract
This report summarizes the program of Dagstuhl Seminar 24171 on “Automated Synthesis:
Functional, Reactive and Beyond”. The seminar brought together researchers working on different
aspects of functional synthesis and investigated its relationship with reactive synthesis. Through
multiple expository tutorials, diverse technical talks, and multiple open discussion sessions, the
seminar crystallized the current challenges for theory and tools in this area and opened fresh
directions towards new applications.
Seminar April 21–26, 2024 – https://www.dagstuhl.de/24171
2012 ACM Subject Classification Computing methodologies; Theory of computation → Logic
Keywords and phrases automated synthesis, boolean functions, knowledge representations,

reactive synthesis, SAT/SMT solvers
Digital Object Identifier 10.4230/DagRep.14.4.85

1 Executive Summary

S. Akshay (Indian Institute of Technology Bombay – Mumbai, IN)
Bernd Finkbeiner (CISPA – Saarbrücken, DE)
Kuldeep S. Meel (University of Toronto, CA)
Ruzica Piskac (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac

In Dagstuhl Seminar 24171, we brought together researchers working in various aspects of
automated functional synthesis. This diverse topic encompasses areas ranging from Boolean
variants to quantified variants, automated reasoning for general theories, program synthesis,
and more. One particular focus was on finding synergies between functional and reactive
synthesis communities and investigating the deep connections between these two areas.

On the first day, we started with two introductory tutorials: one on Boolean functional
synthesis and another on reactive synthesis, setting the agenda for the entire seminar. This
was succeeded by technical presentations on definability and dependency in quantified Boolean
formulas. The second day included a tutorial on automated reasoning and synthesis, with
an emphasis on theories extending beyond Boolean (e.g., SMT), followed by discussions

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Automated Synthesis: Functional, Reactive and Beyond, Dagstuhl Reports, Vol. 14, Issue 4, pp. 85–107
Editors: S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
mailto:finkbeiner@cispa.de
mailto:meel@comp.nus.edu.sg
mailto:ruzica.piskac@yale.edu
mailto:if.arijit@gmail.com
https://www.dagstuhl.de/24171
https://doi.org/10.4230/DagRep.14.4.85
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


86 24171 – Automated Synthesis: Functional, Reactive and Beyond

on quantitative properties. On the third day, we organized a special session with other
tool competition organizers to assess the feasibility of a competition or track dedicated to
functional synthesis.

The remaining days were filled with diverse technical talks that fell into two categories.
The first category included talks that delved deeper into specific aspects of functional
synthesis, reactive/LTL synthesis, and specific problems within these fields. The second
category introduced new applications or connections, such as quantum applications and
functional programming. Discussions during and beyond these talks were further explored in
different open and problem sessions. Some of the identified and discussed problems were:
1. How to formalize the Boolean functional synthesis problem at the heart of reactive

synthesis? Various problem formulations were discussed, and some benchmarks were
created.

2. Can we go beyond Boolean theories and synthesize programs and functions for general
SMT? What bottlenecks do we face?

3. How can we find synergy between automated functional synthesis and synthesis using
transformers? Specifically, what is the meeting ground between machine learning and
inductive program synthesis techniques, functional synthesis, and automated reasoning?

4. Can the successful lens of knowledge representations and compilations for model counting
and Boolean functional synthesis be extended to other settings?

5. Can we synthesize quantum circuits from specifications, thus leading to a theory of
automated reasoning for quantum systems?

6. Can reactive synthesis over finite traces utilize techniques developed in automated
functional synthesis?

These were among the prominent topics discussed, but the list is by no means exhaustive.
Several bottlenecks were identified, such as the need for growth within the community
developing these tools before establishing a proper competition. Additionally, there was a
recognized necessity for broader and more extensive discussions on benchmarks.

Overall, the seminar fostered a collaborative spirit among theoreticians, tool developers,
and experts across different aspects of automated functional synthesis. The seminar was also
attended by a large number of early career researchers, postdoctoral fellows, and graduate
students who also participated enthusiastically throughout the seminar. The shared optimism
generated during this seminar has laid a strong foundation for future advancements. We
advocate for the continuation of these valuable discussions and propose organizing further
meetings of a similar nature to build on the momentum gained and to explore new frontiers
in automated functional synthesis.

In the remainder of this report, we provide the abstracts of all the talks, as well as
discussion sessions held during the seminar. We thank all the speakers and attendees for
their active participation and look forward to attending and organizing more such events in
the future.



S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 87

2 Table of Contents

Executive Summary
S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac . . . . . . . . . 85

Overview of Talks

To Assume, Or Not To Assume
Ashwani Anand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LTLf Model Checking
Suguman Bansal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Formal XAI via Syntax-Guided Synthesis
Katrine Bjørner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Programming by example for end user tasks and the use of LLMs
José Cambronero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Boolean Functional Synthesis: A Quick Tour
Supratik Chakraborty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Symbolic Fixpoint Techniques for Logical LTL Games
Deepak D’Souza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
On the compilation of non-CNF systems of constraints (or, your weekly dose of
knowledge compilation)
Alexis de Colnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Synthesis of Infinite-State Reactive Systems (and why it needs functional synthesis
for theories beyond Boolean)
Rayna Dimitrova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A Semi-Gentle Introduction to Reactive Synthesis
Rüdiger Ehlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
On Dependent Variables in Reactive Synthesis
Dror Fried . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Exploring Connections between Automated Reasoning and Synthesis
Mikoláš Janota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Stochastic Boolean Satisfiability: Recent Developments and Connection to Func-
tional Synthesis
Jie-Hong Roland Jiang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
The Unreasonable Effectiveness of Classical Automated Reasoning in Quantum
Computing
Alfons Laarman and Jingyi Mei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Reactive Synthesis modulo Theories using Abstraction Refinement
Benedikt Maderbacher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Boosting Definability Bipartition Computation using SAT Witnesses
Pierre Marquis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A Flock of Birds: Owl & Strix
Tobias Meggendorfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

24171



88 24171 – Automated Synthesis: Functional, Reactive and Beyond

Pre-condition and Program Synthesis for Polynomial Specifications over Integers
Govind Rajanbabu, S. Akshay, and Supratik Chakraborty . . . . . . . . . . . . . . . 99
Synthesis of Semantic Actions in Attribute Grammars
Subhajit Roy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Reactive Program Synthesis Modulo LLM Code Generation
Mark Santolucito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A Short Introduction to Inductive Functional Programming
Ute Schmid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Oracle-Guided Inductive Synthesis, Learning Theory, and LLMs
Sanjit A. Seshia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
An Approximate Skolem Function Counter
Arijit Shaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Counterexample-Guided DQBF Solving
Friedrich Slivovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A problem with functional synthesis
Mate Soos, Supratik Chakraborty, and Kuldeep S. Meel . . . . . . . . . . . . . . . . 102
Reactive synthesis via parity and Rabin games
K. S. Thejaswini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
On the Power of LTLf in Reactive Synthesis
Shufang Zhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Working groups

Benchmarking (and LLMs)
José Cambronero, Johannes Klaus Fichte, Benedikt Maderbacher, Tobias Meggen-
dorfer, Ruzica Piskac, and Mark Santolucito . . . . . . . . . . . . . . . . . . . . . . 104
Developing a Computational Theory for Learning Functions from Relations
Kuldeep S. Meel, Dror Fried, Alfons Laarman, Sanjit A. Seshia, and Mate Soos . . 105

Panel discussions

Reactive Synthesis and Model Counting Competitions
Guillermo A. Pérez and Johannes Klaus Fichte . . . . . . . . . . . . . . . . . . . . 105

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 89

3 Overview of Talks

3.1 To Assume, Or Not To Assume
Ashwani Anand (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Ashwani Anand

Joint work of Ashwani Anand, Kaushik Mallik, Satya Prakash Nayak, Anne-Kathrin Schmuck
Main reference Ashwani Anand, Anne-Kathrin Schmuck, Satya Prakash Nayak: “Contract-Based Distributed

Logical Controller Synthesis”, in Proc. of the 27th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2024, Hong Kong SAR, China, May 14-16, 2024,
pp. 11:1–11:11, ACM, 2024.

URL https://doi.org/10.1145/3641513.3650123

Reactive synthesis techniques assume that the environment acts adversarially. However,
in many real-life scenarios, the environment might not work antagonistically. We solve
the problem of automatically computing a new class of environment assumptions in two-
player turn-based finite graph games which characterize an “adequate cooperation” needed
from the environment to allow the system player to win [1]. Given an ω-regular winning
condition Φ for the system player, we compute an ω-regular assumption Ψ for the environment
player, such that (i) every environment strategy compliant with Ψ allows the system to
fulfill Φ (sufficiency), (ii) Ψ can be fulfilled by the environment for every strategy of the
system (implementability), and (iii) Ψ does not prevent any cooperative strategy choice
(permissiveness).

For parity games, which are canonical representations of ω-regular games, we present a
polynomial-time algorithm for the symbolic computation of adequately permissive assump-
tions and show that our algorithm runs faster and produces better assumptions than existing
approaches – both theoretically and empirically. To the best of our knowledge, for ω-regular
games, we provide the first algorithm to compute sufficient and implementable environment
assumptions that are also permissive.

In the second part of the talk, we apply the lessons learned to strategies computation [2],
and negotiations between multiple agents [3].

References
1 Ashwani Anand, Kaushik Mallik, Satya Prakash Nayak, and Anne-Kathrin Schmuck.

“Computing Adequately Permissive Assumptions for Synthesis.” In Tools and Algorithms for
the Construction and Analysis of Systems, edited by Sriram Sankaranarayanan and Natasha
Sharygina, 211–228. Cham: Springer Nature Switzerland, 2023.

2 Ashwani Anand, Satya Prakash Nayak, and Anne-Kathrin Schmuck. “Synthesizing Per-
missive Winning Strategy Templates for Parity Games.” In Computer Aided Verification –
35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part I, edited by Constantin Enea and Akash Lal, 13964:436–458. Lecture Notes in Computer
Science. Springer, 2023. https://doi.org/10.1007/978-3-031-37706-8_22.

3 Ashwani Anand, Anne-Kathrin Schmuck, and Satya Prakash Nayak. “Contract-Based
Distributed Logical Controller Synthesis.” In Proceedings of the 27th ACM International
Conference on Hybrid Systems: Computation and Control, 1–11. HSCC ’24. New York, NY,
USA: Association for Computing Machinery, 2024. https://doi.org/10.1145/3641513.
3650123.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org///dx.doi.org/10.1145/3641513.3650123
https://doi.org///dx.doi.org/10.1145/3641513.3650123
https://doi.org///dx.doi.org/10.1145/3641513.3650123
https://doi.org///dx.doi.org/10.1145/3641513.3650123
https://doi.org/10.1145/3641513.3650123
https://doi.org/10.1007/978-3-031-37706-8_22
https://doi.org/10.1145/3641513.3650123
https://doi.org/10.1145/3641513.3650123


90 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.2 LTLf Model Checking
Suguman Bansal (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 4.0 International license
© Suguman Bansal

Joint work of Suguman Bansal, Yong Li, Lucas M. Tabajara, Moshe Y. Vardi, Andrew Wells
Main reference Suguman Bansal, Yong Li, Lucas M. Tabajara, Moshe Y. Vardi, Andrew M. Wells: “Model Checking

Strategies from Synthesis over Finite Traces”, in Proc. of the Automated Technology for Verification
and Analysis – 21st International Symposium, ATVA 2023, Singapore, October 24-27, 2023,
Proceedings, Part I, Lecture Notes in Computer Science, Vol. 14215, pp. 227–247, Springer, 2023.

URL https://doi.org/10.1007/978-3-031-45329-8_11

The innovations in reactive synthesis from Linear Temporal Logics over finte traces (LTLf)
will be amplified by the ability to verify the correctness of the strategies generated by
LTLf synthesis tools. This motivates our work on LTLf model checking. LTLf model
checking, however, is not straightforward. The strategies generated by LTLf synthesis may be
represented using terminating transducers or non-terminating transducers where executions
are of finite-but-unbounded length or infinite length, respectively. For synthesis, there is no
evidence that one type of transducer is better than the other since they both demonstrate
the same complexity and similar algorithms.

In this work, we show that for model checking, the two types of transducers are fun-
damentally different. Our central result is that LTLf model checking of non-terminating
transducers is exponentially harder than that of terminating transducers. We show that the
problems are EXPSPACE-complete and PSPACE-complete, respectively. Hence, considering
the feasibility of verification, LTLf synthesis tools should synthesize terminating transducers.
This is, to the best of our knowledge, the first evidence to use one transducer over the other
in LTLf synthesis.

3.3 Formal XAI via Syntax-Guided Synthesis
Katrine Bjørner (New York University, US)

License Creative Commons BY 4.0 International license
© Katrine Bjørner

Joint work of Katrine Bjørner, Samuel Judson, Filip Cano Córdoba, Drew Goldman, Nicholas Shoemaker, Ruzica
Piskac, Bettina Könighofer

Main reference Katrine Bjørner, Samuel Judson, Filip Cano Córdoba, Drew Goldman, Nicholas Shoemaker, Ruzica
Piskac, Bettina Könighofer: “Formal XAI via Syntax-Guided Synthesis”, in Proc. of the Bridging
the Gap Between AI and Reality – First International Conference, AISoLA 2023, Crete, Greece,
October 23-28, 2023, Proceedings, Lecture Notes in Computer Science, Vol. 14380, pp. 119–137,
Springer, 2023.

URL https://doi.org/10.1007/978-3-031-46002-9_7

We propose a novel application of syntax-guided synthesis to find symbolic representations
of a model’s decision-making process, designed for easy comprehension and validation by
humans. Our approach takes input-output samples from complex machine learning models,
such as deep neural networks, and automatically derives interpretable mimic programs. A
mimic program precisely imitates the behavior of an opaque model over the provided data.
We discuss various types of grammars that are well-suited for computing mimic programs for
tabular and image input data.

Our experiments demonstrate the potential of the proposed method: we successfully
synthesized mimic programs for neural networks trained on the MNIST and the Pima Indians
diabetes data sets. All experiments were performed using the SMT-based cvc5 synthesis tool.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-46002-9_7
https://doi.org/10.1007/978-3-031-46002-9_7
https://doi.org/10.1007/978-3-031-46002-9_7
https://doi.org/10.1007/978-3-031-46002-9_7
https://doi.org/10.1007/978-3-031-46002-9_7
https://doi.org/10.1007/978-3-031-46002-9_7


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 91

3.4 Programming by example for end user tasks and the use of LLMs
José Cambronero (Microsoft – Redmond, US)

License Creative Commons BY 4.0 International license
© José Cambronero

Joint work of José Cambronero, Mukul Singh, Gust Verbruggen, Sumit Gulwani, Vu Le

Programming by example (PBE) allows users with little to no formal computation experience
to carry out tasks by providing simple demonstrations (e.g. input/output-based examples). In
practice, PBE has found considerable industrial uptake, particularly in end-user environments
like spreadsheet software (e.g. Microsoft Excel, Google Sheets). In this talk, I’ll present a
recent project on learning data-dependent formatting rules in Excel from examples. We’ll
then discuss how PBE in this domain can be extended to also incorporate multimodal
specifications, by supporting use of natural language. Using this as a segue into combining
symbolic and neural methods, I’ll discuss recent work from the field that uses LLMs and
may provide ideas for nice collaborations between formal reasoning and popular LLM-based
approaches.

3.5 Boolean Functional Synthesis: A Quick Tour
Supratik Chakraborty (Indian Institute of Technology Bombay – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Supratik Chakraborty

Joint work of S. Akshay, Aman Bansal, Supratik Chakraborty, Priyanka Golia, Kuldeep Meel, Subhajit Roy, Preey
Shah, Shetal Shah, Friedrich Slivovsky

Given a Boolean relational specification φ(X, Y ) over input variables X and output variables
Y, Boolean functional synthesis concerns finding Skolem functions F(X) for Y such that
∃Y φ(X, Y ) is semantically equivalent to φ(X, F (X)). In this talk, we introduce the problem,
survey some earlier results and then take a deeper dive into two solution approaches that
have shown promise in recent years. Specifically, we discuss the guess-check-repair paradigm
for synthesizing Skolem functions, and also present a knowledge compilation based approach
for Boolean functional synthesis. Finally, we conclude with some perspectives on future
research in this area. The talk is based on work reported in [1, 2, 3, 4, 5].

References
1 S. Akshay, Supratik Chakraborty, Shubham Goel, Sumith Kulal, Shetal Shah: Boolean

Functional Synthesis: Hardness and Practical Algorithms, Formal Methods Syst. Des. 57(1):
53-86 (2021).

2 S. Akshay, S. Chakraborty, S. Shah: Tractable Representations for Boolean Functional Synthesis,
Annals of Mathematics and Artificial Intelligence, 1-46, 2023.

3 Preey Shah, Aman Bansal, S. Akshay, Supratik Chakraborty: A Normal Form Characterization
for Efficient Boolean Skolem Function Synthesis, LICS 2021: 1-13.

4 Priyanka Golia, Friedrich Slivovsky, Subhajit Roy, Kuldeep S. Meel: Engineering an Efficient
Boolean Functional Synthesis Engine, ICCAD 2021: 1-9.

5 Priyanka Golia, Subhajit Roy, Kuldeep S. Meel: Manthan: A Data-Driven Approach for
Boolean Function Synthesis, CAV (2) 2020: 611-633.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


92 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.6 Symbolic Fixpoint Techniques for Logical LTL Games
Deepak D’Souza (Indian Institute of Science – Bangalore, IN)

License Creative Commons BY 4.0 International license
© Deepak D’Souza

Joint work of Deepak D’Souza, Stanly John Samuel, Komondoor V. Raghavan
Main reference Stanly Samuel, Deepak D’Souza, Raghavan Komondoor: “Symbolic Fixpoint Algorithms for Logical

LTL Games”, in Proc. of the 38th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2023, Luxembourg, September 11-15, 2023, pp. 698–709, IEEE, 2023.

URL https://doi.org/10.1109/ASE56229.2023.00212

We consider the problem of synthesizing strategies in logically-specified infinite-state two-
player games with LTL winning conditions. We lift classical fixpoint algorithms for synthesiz-
ing strategies in finite-states games, to our setting. Our evaluation of these algorithms show
that they compare well with earlier techniques based on template-based logical synthesis and
abstraction-refinement, on benchmarks from the literature.

This is joint work with Stanly Samuel and K V Raghavan.

3.7 On the compilation of non-CNF systems of constraints (or, your
weekly dose of knowledge compilation)

Alexis de Colnet (TU Wien, AT)

License Creative Commons BY 4.0 International license
© Alexis de Colnet

Knowledge compilers often take as inputs a CNF formula and construct an equivalent
Boolean circuit with specific properties. Generally, the size of the output circuit increases
exponentially. However, for some families of CNF formulas, one can exploit the structure
of the formulas to compile them efficiently. In this talk, I first give a general overview of
knowledge compilation and of the circuits that knowledge compilers construct. Then, I
present results on the compilation of non-CNF inputs. Seeing CNF as systems of constraints,
where every constraint is a clause, I explain how positive results on the compilation of CNF
with a certain structure can be extended to more general systems of constraints.

3.8 Synthesis of Infinite-State Reactive Systems (and why it needs
functional synthesis for theories beyond Boolean)

Rayna Dimitrova (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Rayna Dimitrova

Joint work of Philippe Heim, Rayna Dimitrova
Main reference Philippe Heim, Rayna Dimitrova: “Solving Infinite-State Games via Acceleration”, Proc. ACM

Program. Lang., Vol. 8(POPL), pp. 1696–1726, 2024.
URL https://doi.org/10.1145/3632899

Infinite-state games are a commonly used model for the synthesis of reactive systems with
unbounded data domains. Symbolic methods for solving such games need to be able to
construct intricate arguments to establish the existence of winning strategies. Furthermore,
the synthesis of the resulting reactive system implementations necessitates the use of functional
synthesis for theories beyond Boolean. In this talk, I will present a recent symbolic approach

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 93

for the synthesis of infinite-state reactive systems, called attractor acceleration, which employs
ranking arguments to improve the convergence of symbolic game-solving algorithms. I will
then discuss the application and the challenges for functional synthesis in this context.

3.9 A Semi-Gentle Introduction to Reactive Synthesis
Rüdiger Ehlers (TU Clausthal, DE)

License Creative Commons BY 4.0 International license
© Rüdiger Ehlers

Reactive synthesis is the process of computing correct-by-construction finite-state controllers
from temporal logic specifications. In this tutorial, we have a look at the basic concepts that
underlie current reactive synthesis approaches. We discuss the topic on a fairly technical
level in order to highlight the connections to functional and Boolean synthesis.

3.10 On Dependent Variables in Reactive Synthesis
Dror Fried (The Open University of Israel – Ra’anana, IL)

License Creative Commons BY 4.0 International license
© Dror Fried

Given a Linear Temporal Logic (LTL) formula over input and output variables, reactive
synthesis requires us to design a deterministic Mealy machine that gives the values of outputs
at every time step for every sequence of inputs, such that the LTL formula is satisfied. In this
paper, we investigate the notion of dependent variables in the context of reactive synthesis.
Inspired by successful pre-processing techniques in Boolean functional synthesis, we define
dependent variables in reactive synthesis as output variables that are uniquely assigned, given
an assignment to all other variables and the history so far. We describe an automata-based
approach for finding a set of dependent variables. Using this, we show that dependent
variables are surprisingly common in reactive synthesis benchmarks. Next, we develop a
novel synthesis framework that exploits dependent variables to construct an overall synthesis
solution. By implementing this framework using the widely used library Spot, we show
that reactive synthesis that exploits dependent variables can solve some problems beyond
the reach of existing techniques. Furthermore, we observe that among benchmarks with
dependent variables, if the count of non-dependent variables is low (≤ 3 in our experiments),
our method outperforms state-of-the-art tools for synthesis.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


94 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.11 Exploring Connections between Automated Reasoning and
Synthesis

Mikoláš Janota (Czech Technical University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Mikoláš Janota

In this talk we explore the connections between synthesis and automated reasoning techniques.
Generally, synthesis, from logic perspective, is formalized as solving a formula of the following
form.

∃f ∀x.P [f, x]

where P is a predicate parametrized by a vector of variables x and an unknown function f .
Typically, the (second order) quantifier ∃f it is omitted; in particular in Satisfiability Modulo
Theories (SMT), where f functions are implicitly quantified existentially.

Many approaches use solvers in a black-box fashion by assuming a certain template for
f , such as linear, quadratic etc. [9]. Then, the synthesis problem is formulated as an SMT
problem that search as for the parameters (coefficients) of the template. Interestingly, such
approach can also be used to search for all the possible f [1].

Some approaches integrate more deeply with the solver. A powerful technique is
deskolemization of f (as inverse of skolemization), which is possible, if f is always ap-
plied to the same tuple of arguments everywhere in P . In the literature, such specific-
ations are referred to as single-invocation properties [5, 8]. An example of such prop-
erty would be ∀x1x2. f(x1, x2) > x1 ∧ f(x1, x2) > x2, which would be deskolemized as
∀x1x2∃z. z > x1 ∧ z > x2.

For deskolemized version of the specification, f can be that synthesized by quantifier
elimination (QE) if the formula is in a theory that admits QE, such as linear real/integer
arithmetic [7, 2], cf. [5, 6]. Alternatively, Reynolds et al. [8] synthesize f by inspecting the
SMT refutation (proof). Hozzová et al. [3] synthesize f in the setting of first or logic (FOL),
again from the proof, which relies on explicit axiomatization of any theory that may be used.

Specifications going beyond the single-invocation property fragment maybe tackled by
embedding the language of possible solutions into the solver as than algebraic datatype [8].
More recent research shows that refutations containing mathematical induction enable
synthesizing recursive functions [4].

References
1 Chad E. Brown, Mikoláš Janota, and Mirek Olšák. Symbolic computation for all the fun. In

Satisfiability Checking and Symbolic Computation, 2024. https://ceur-ws.org/Vol-3717/
paper6.pdf.

2 David C Cooper. Theorem proving in arithmetic without multiplication. Machine intelligence,
7(91-99):300, 1972.

3 Petra Hozzová, Laura Kovács, Chase Norman, and Andrei Voronkov. Program synthesis in
saturation. In CADE, 2023.

4 Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács, Andrei Voronkov, and
Eva Maria Wagner. Synthesis of recursive programs in saturation. In International Joint
Conference on Automated Reasoning IJCAR, 2024.

5 Swen Jacobs and Viktor Kuncak. Towards complete reasoning about axiomatic specifications.
In Verification, Model Checking, and Abstract Interpretation, 2011.

6 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Software synthesis
procedures. Communications of the ACM, 55(2):103–111, February 2012.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ceur-ws.org/Vol-3717/paper6.pdf
https://ceur-ws.org/Vol-3717/paper6.pdf


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 95

7 Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination. Comput. J.,
36(5):450–462, 1993.

8 Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark W. Barrett, and Morgan Deters.
Refutation-based synthesis in SMT. Formal Methods Syst. Des., 55(2):73–102, 2019.

9 Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-based program
verification and program synthesis. Int. J. Softw. Tools Technol. Transf., 15(5-6):497–518,
2013.

3.12 Stochastic Boolean Satisfiability: Recent Developments and
Connection to Functional Synthesis

Jie-Hong Roland Jiang (National Taiwan University – Taipei, TW)

License Creative Commons BY 4.0 International license
© Jie-Hong Roland Jiang

Joint work of Jie-Hong Roland Jiang, Pei-Wei Chen, Che Cheng, Yu-Wei Fan, Cheng-Han Hsieh, Yu-Ching Huang,
Nian-Ze Lee, Yun-Rong Luo, Christoph Scholl, Kuan-Hua Tu, Hao-Ren Wang, Yen-Shi Wang

Stochastic Boolean Satisfiability (SSAT) generalizes quantified Boolean formulas (QBFs) by
allowing quantification over random variables. It is often referred to as games against nature
and has applications in making decisions or optimizing under uncertainty. This talk will
introduce SSAT, its recent developments, and its connection to Boolean functional synthesis.

References
1 Yu-Wei Fan, Jie-Hong R. Jiang: Unifying Decision and Function Queries in Stochastic Boolean

Satisfiability, AAAI 2024: 7995-8003.
2 Yun-Rong Luo, Che Cheng, Jie-Hong R. Jiang: A Resolution Proof System for Dependency

Stochastic Boolean Satisfiability, J. Autom. Reason. 67(3): 26 (2023).
3 Che Cheng, Jie-Hong R. Jiang: Lifting (D)QBF Preprocessing and Solving Techniques to

(D)SSAT, AAAI 2023: 3906-3914.
4 Yu-Wei Fan, Jie-Hong R. Jiang: SharpSSAT: A Witness-Generating Stochastic Boolean

Satisfiability Solver, AAAI 2023: 3949-3958.
5 Jie-Hong R. Jiang: Second-Order Quantified Boolean Logic, AAAI 2023: 4007-4015.
6 Cheng-Han Hsieh, Jie-Hong R. Jiang: Encoding Probabilistic Graphical Models into Stochastic

Boolean Satisfiability, IJCAI 2022: 1834-1842.
7 Hao-Ren Wang, Kuan-Hua Tu, Jie-Hong R. Jiang, Christoph Scholl: Quantifier Elimination

in Stochastic Boolean Satisfiability, SAT 2022: 23:1-23:17.
8 Pei-Wei Chen, Yu-Ching Huang, Jie-Hong R. Jiang: A Sharp Leap from Quantified Boolean

Formula to Stochastic Boolean Satisfiability Solving, AAAI 2021: 3697-3706.
9 Nian-Ze Lee, Jie-Hong R. Jiang: Dependency Stochastic Boolean Satisfiability: A Logical

Formalism for NEXPTIME Decision Problems with Uncertainty, AAAI 2021: 3877-3885.
10 Nian-Ze Lee, Yen-Shi Wang, Jie-Hong R. Jiang: Solving Exist-Random Quantified Stochastic

Boolean Satisfiability via Clause Selection, IJCAI 2018: 1339-1345.
11 Nian-Ze Lee, Yen-Shi Wang, Jie-Hong R. Jiang: Solving Stochastic Boolean Satisfiability

under Random-Exist Quantification, IJCAI 2017: 688-694.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


96 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.13 The Unreasonable Effectiveness of Classical Automated Reasoning
in Quantum Computing

Alfons Laarman (Leiden University, NL) and Jingyi Mei (Leiden University, NL)

License Creative Commons BY 4.0 International license
© Alfons Laarman and Jingyi Mei

Joint work of Jingyi Mei, Arend-Jan Quist, Alejandro Villoria, Sebastiaan Brand, Dimitrios Thanos, Tim
Coopmans, Alfons Laarman

Main reference Jingyi Mei, Tim Coopmans, Marcello M. Bonsangue, Alfons Laarman: “Equivalence Checking of
Quantum Circuits by Model Counting”, in Proc. of the Automated Reasoning – 12th International
Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part II, Lecture Notes in
Computer Science, Vol. 14740, pp. 401–421, Springer, 2024.

URL https://doi.org/10.1007/978-3-031-63501-4_21

In this talk, we will show that existing classical automated reasoning methods perform
exceedingly well for computationally hard problems in quantum computing and physics. In
particular, we demonstrate a linear-length #SAT encoding of the simulation and equivalence
checking of universal quantum circuits. An implementation of this method, called Quokka#,
outcompetes other state-of-the-art approaches using an off-the-shelve #SAT solver that
supports negative weights (GPMC). While decision diagrams offer a viable alternative, we
unveil their inherent limitations stemming from their inability to represent the prevalent
stabilizer states. This limitation is particularly noteworthy considering the efficient classical
simulatability of circuits generating such states. To address this constraint, we introduce
Local Invertible Map Decision Diagrams (LIMDDs), which offer exponential improvements
in succinctness compared to the combination of stabilizer formalism and existing decision
diagrams. Finally, we illustrate how these findings hold relevance beyond quantum computing
by translating them back to the domain of quantum physics. To achieve this, we build upon
Darwiche and Marquis’ seminal “knowledge compilation map” approach, by pioneering a
knowledge compilation map for quantum information. This map juxtaposes various decision
diagrams against tensor networks and Boltzmann machines, two formalisms extensively
utilized in physics to address quantum-hard problems such as simulating many-body systems
and determining their ground energy. Our results underscore the significant potential of
existing automated reasoning methods in both quantum computing and physics domains.

References
1 Coecke, B., Duncan, R.: Interacting Quantum Observables: Categorical Algebra

and Diagrammatics. New Journal of Physics 13(4), 043016 (Apr 2011), http:
//arxiv.org/abs/0906.4725, arXiv:0906.4725 [quant-ph]

2 Vrudhula, S.B.K., Pedram, M., Lai, Y.T.: Edge Valued Binary Decision Diagrams, pp.
109–132. Springer US (1996)

3 Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 40(9), 1810–1824
(2020)

4 Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38(5), 848–859 (2019)

5 Tafertshofer, P., Pedram, M.: Factored edge-valued binary decision diagrams. Formal
Methods in System Design 10(2), 243–270 (1997)

6 Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible and
quantum circuits. 36th International Symposium on Multiple-Valued Logic (ISMVL’06) pp.
30–30 (2006)

7 Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum circuit simulation. Springer Science
and Business Media (2009)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-63501-4_21
https://doi.org/10.1007/978-3-031-63501-4_21
https://doi.org/10.1007/978-3-031-63501-4_21
https://doi.org/10.1007/978-3-031-63501-4_21
https://doi.org/10.1007/978-3-031-63501-4_21


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 97

8 Mei, J., Coopmans, T., Bonsangue, M., Laarman, A. (2024, July). Equivalence checking
of quantum circuits by model counting. In International Joint Conference on Automated
Reasoning (pp. 401-421). Cham: Springer Nature Switzerland.

9 Mei, J., Bonsangue, M., Laarman, A. (2024). Simulating Quantum Circuits by Model
Counting. to appear in CAV 2024, available as arXiv preprint arXiv:2403.07197.

10 Quist, A.J., Laarman, A.: Optimizing quantum space using spooky pebble games. In:
International Conference on Reversible Computation. pp. 134–149. Springer (2023)

11 Thanos, D., Coopmans, T., Laarman, A.: Fast equivalence checking of quantum circuits of
Clifford gates. In: Andr´e, ´E., Sun, J. (eds.) Automated Technology for Verification and
Analysis. pp. 199–216. Springer Nature Switzerland, Cham (2023)

12 Villoria, A., Basold, H., Laarman, A.: Enriching diagrams with algebraic operations. arXiv
preprint arXiv:2310.11288 (2023)

13 Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD: A decision
diagram for simulation of quantum computing including stabilizer states. Quantum 7, 1108
(2023), https://doi.org/10.22331/q-2023-09-11-1108

14 Vinkhuijzen, L., Coopmans, T., Laarman, A.: A knowledge compilation map
for quantum information. arXiv preprint arXiv:2401.01322 (2024), https://doi.
org/10.48550/arXiv.2401.01322

15 Vinkhuijzen, L., Grurl, T., Hillmich, S., Brand, S., Wille, R., Laarman, A.: Efficient
implementation of LIMDDs for quantum circuit simulation. In: International Symposium
on Model Checking of Software (SPIN) (2023)

16 Brand, S., Coopmans, T., Laarman, A.: Quantum graph-state synthesis with SAT. Pro-
ceedings of the 14th International Workshop on Pragmatics of SAT (2023)

17 Rennela, M., Brand, S., Laarman, A., Dunjko, V.: Hybrid divide-and-conquer approach for
tree search algorithms. Quantum 7, 959 (2023)

3.14 Reactive Synthesis modulo Theories using Abstraction Refinement
Benedikt Maderbacher (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Benedikt Maderbacher

Joint work of Benedikt Maderbacher, Roderick Bloem
Main reference Benedikt Maderbacher, Roderick Bloem: “Reactive Synthesis Modulo Theories using Abstraction

Refinement”, in Proc. of the 22nd Formal Methods in Computer-Aided Design, FMCAD 2022,
Trento, Italy, October 17-21, 2022, pp. 315–324, IEEE, 2022.

URL https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38

Temporal stream logic modulo theories (TSL-T) is used to specify the behavior of infinite
state reactive systems. We present a refinement based synthesis method that works using
LTL synthesis and SMT solving. First, a LTL underapproximation is computed and given to
a LTL synthesis tool. In case this is unrealizable the created counter-strategy is analyzed
for inconsistencies with the theory. New assumptions and predicates are added to the
specification to rule out the counter-strategy and the LTL synthesis is run again. If the
problem becomes realizable a program statisfying the original specification is extracted.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38


98 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.15 Boosting Definability Bipartition Computation using SAT
Witnesses

Pierre Marquis (University of Artois/CNRS – Lens, FR)

License Creative Commons BY 4.0 International license
© Pierre Marquis

Joint work of Jean-Marie Lagniez, Pierre Marquis
Main reference Jean-Marie Lagniez, Pierre Marquis: “Boosting Definability Bipartition Computation Using SAT

Witnesses”, in Proc. of the Logics in Artificial Intelligence – 18th European Conference, JELIA 2023,
Dresden, Germany, September 20-22, 2023, Proceedings, Lecture Notes in Computer Science,
Vol. 14281, pp. 697–711, Springer, 2023.

URL https://doi.org/10.1007/978-3-031-43619-2_47

Bipartitioning the set of variables Var(Σ) of a propositional formula Σ w.r.t. definability
consists in pointing out a bipartition ⟨I, O⟩ of Var(Σ) such that Σ defines the variables of O

(outputs) in terms of the variables in I (inputs), i.e., for every o ∈ O, there exists a formula
Φo over I such that o ⇔ Φo is a logical consequence of Σ. The existence of Φo given o, I,
and Σ is a coNP-complete problem, and as such, it can be addressed in practice using a SAT
solver. From a computational perspective, definability bipartitioning has been shown as a
valuable preprocessing technique for model counting, a key task for a number of AI problems
involving probabilities. To maximize the benefits offered by such a preprocessing, one is
interested in deriving subset-minimal bipartitions in terms of input variables, i.e., definability
bipartitions ⟨I, O⟩ such that for every i ∈ I, ⟨I \ {i}, O ∪ {i}⟩ is not a definability bipartition.
We show how the computation of subset-minimal bipartitions can be boosted by leveraging
not only the decisions furnished by SAT solvers (as done in previous approaches), but also
the SAT witnesses (models and cores) justifying those decisions.

3.16 A Flock of Birds: Owl & Strix
Tobias Meggendorfer (Lancaster University Leipzig, DE)

License Creative Commons BY 4.0 International license
© Tobias Meggendorfer

Joint work of Tobias Meggendorfer, Javier Esparza, Jan Křetínský, Michael Luttenberger, Salomon Sickert, Philipp
J. Meyer

Main reference Javier Esparza, Jan Kretínský, Salomon Sickert: “A Unified Translation of Linear Temporal Logic to
ω-Automata”, J. ACM, Vol. 67(6), pp. 33:1–33:61, 2020.

URL https://doi.org/10.1145/3417995

In this talk, I briefly outline the theoretical and practical advances that together form the
foundation of Owl and Strix, state-of-the-art tools for LTL to automata translation and LTL
synthesis, respectively.

This includes a large body of work, a small selection follows:
Unified translation (JACM): https://doi.org/10.1145/3417995
One theorem to rule them all (LICS): https://doi.org/10.1145/3209108.3209161
Owl tool paper: https://doi.org/10.1007/978-3-030-01090-4_34
Strix tool paper: https://doi.org/10.1007/978-3-319-96145-3_31

The small list above is the culmination of about a dozen papers, see the respective cites
within for more details.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1007/978-3-031-43619-2_47
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-319-96145-3_31


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 99

3.17 Pre-condition and Program Synthesis for Polynomial Specifications
over Integers

Govind Rajanbabu (Indian Institute of Technology Bombay – Mumbai, IN), S. Akshay (Indian
Institute of Technology Bombay – Mumbai, IN), Supratik Chakraborty (Indian Institute of
Technology Bombay – Mumbai, IN)

Joint work of Govind Rajanbabu, S. Akshay, Amir Kafshdar Goharshady, Supratik Chakraborty, Harshit Jitendra
Motwani, Sai Teja Varanasi

License Creative Commons BY 4.0 International license
© Govind Rajanbabu, S. Akshay, and Supratik Chakraborty

Main reference S. Akshay, Supratik Chakraborty, Amir Kafshdar Goharshady, R. Govind, Harshit J. Motwani, Sai
Teja Varanasi: “Automated Synthesis of Decision Lists for Polynomial Specifications over Integers”,
in Proc. of the LPAR 2024: Proceedings of 25th Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Port Louis, Mauritius, May 26-31, 2024, EPiC Series in Computing,
Vol. 100, pp. 484–502, EasyChair, 2024.

URL https://doi.org/10.29007/NJPH

In this talk, we will look at the problem of synthesizing both the program and pre-condition,
when the post-condition is given as Boolean combination of polynomial inequalities and
variables take integral values over a bounded region. The problem does not have a sub-
exponential time procedure under Exponential Time Hypothesis. We will discuss an approach
that is more efficient than naive enumeration by exploiting results from algebraic geometry.

3.18 Synthesis of Semantic Actions in Attribute Grammars
Subhajit Roy (Indian Institute of Technology Kanpur, IN)

License Creative Commons BY 4.0 International license
© Subhajit Roy

Joint work of Subhajit Roy, Pankaj Kumar Kalita, Miriyala Jeevan Kumar
Main reference Pankaj Kumar Kalita, Miriyala Jeevan Kumar, Subhajit Roy: “Synthesis of Semantic Actions in

Attribute Grammars”, in Proc. of the 22nd Formal Methods in Computer-Aided Design, FMCAD
2022, Trento, Italy, October 17-21, 2022, pp. 304–314, IEEE, 2022.

URL https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_37

Attribute grammars allow the association of semantic actions to the production rules in
context-free grammars, providing a simple yet effective formalism to define the semantics
of a language. However, drafting the semantic actions can be tricky and a large drain on
developer time. In this work, we propose a synthesis methodology to automatically infer
the semantic actions from a set of examples associating strings to their meanings. We
also propose a new coverage metric, derivation coverage. We use it to build a sampler to
effectively and automatically draw strings to drive the synthesis engine. We build our ideas
into our tool, PĀNINI, and empirically evaluate it on twelve benchmarks, including a forward
differentiation engine, an interpreter over a subset of Java bytecode, and a mini-compiler
for C language to two-address code. Our results show that PĀNINI scales well with the
number of actions to be synthesized and the size of the context-free grammar, significantly
outperforming simple baselines.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.29007/NJPH
https://doi.org/10.29007/NJPH
https://doi.org/10.29007/NJPH
https://doi.org/10.29007/NJPH
https://doi.org/10.29007/NJPH
https://doi.org/10.29007/NJPH
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_37
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_37
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_37
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_37


100 24171 – Automated Synthesis: Functional, Reactive and Beyond

3.19 Reactive Program Synthesis Modulo LLM Code Generation
Mark Santolucito (Barnard College, Columbia University – New York, US)

License Creative Commons BY 4.0 International license
© Mark Santolucito

Main reference Raven Rothkopf, Hannah Tongxin Zeng, Mark Santolucito: “Enforcing Temporal Constraints on
Generative Agent Behavior with Reactive Synthesis”, CoRR, Vol. abs/2402.16905, 2024.

URL https://doi.org/10.48550/ARXIV.2402.16905

Temporal logics are powerful tools that are widely used for the synthesis and verification of
reactive systems. The recent progress on Large Language Models (LLMs) has the potential to
make the process of writing such specifications more accessible. However, writing specifications
in temporal logics remains challenging for all but the most expert users. A key question
in using LLMs for temporal logic specification engineering is to understand what kind of
guidance is most helpful to the LLM and the users to easily produce specifications. Looking
specifically at the problem of reactive program synthesis, we explore the impact of providing
an LLM with guidance on the separation of control and data–making explicit for the LLM
what functionality is relevant for the specification, and treating the remaining functionality
as an implementation detail for a series of pre-defined functions and predicates. We present
a benchmark set and find that this separation of concerns improves specification generation.
Our benchmark provides a test set against which to verify future work in LLM generation of
temporal logic specifications.

3.20 A Short Introduction to Inductive Functional Programming
Ute Schmid (Universität Bamberg, DE)

License Creative Commons BY 4.0 International license
© Ute Schmid

Main reference Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute Schmid,
Benjamin G. Zorn: “Inductive programming meets the real world”, Commun. ACM, Vol. 58(11),
pp. 90–99, 2015.

URL https://doi.org/10.1145/2736282

Inductive functional programming, also called inductive program synthesis, addresses the
problem of learning (mostly recursive) functional programs from input/output examples.
An related area of research is inductive logic programming (ILP). IP is a type of machine
learning because programs (models) are synthesized by inductive generalisation. In contrast
to statistical and neural approaches to machine learning, IP approaches typically only need a
small number of training examples. Since learned models are represented in form of programs,
IP belongs to the group of interpretable machine learning approaches. In the talk, I will give
an introduction to inductive functional programming and also present basic concepts of ILP.
Furthermore, I will point out how IP can be combined with Deep Learning Architectures for
explainability.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2402.16905
https://doi.org/10.48550/ARXIV.2402.16905
https://doi.org/10.48550/ARXIV.2402.16905
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2736282
https://doi.org/10.1145/2736282
https://doi.org/10.1145/2736282
https://doi.org/10.1145/2736282


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 101

3.21 Oracle-Guided Inductive Synthesis, Learning Theory, and LLMs
Sanjit A. Seshia (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Sanjit A. Seshia

More than a decade ago, I described how many problems in formal methods are effectively
addressed through reduction to synthesis, including the synthesis of proof artifacts during
verification, and synthesis within solvers such as for theory lemmas and quantifier instantiation.
Additionally, I observed how an inductive, data-driven approach to synthesis is often very
effective. In this talk, I review these ideas, which are also summarized in [1]. I also describe
how they enable one to develop learning-theoretic foundations for synthesis, leading to the
frameworks of formal inductive synthesis and oracle-guided inductive synthesis (OGIS), with
initial theoretical results reported in [2]. Finally, I note how synthesis with large language
models (LLMs) is but a special case of oracle-guided synthesis where the LLM forms an
untrusted but often effective oracle for searching over large expression (program) spaces.
I describe how we can use this oracle-guided synthesis view to formulate an approach to
verified code transpilation with LLMs, which beats all conventional approaches to verified
code transpilation – initial results are presented in [3].

References
1 Sanjit A. Seshia. Combining Induction, Deduction, and Structure for Verification and

Synthesis. Proceedings of the IEEE, 103(11):2036–2051, 2015. Conference version in DAC
2012.

2 Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via Inductive Learning.
Acta Informatica, 54(7):693–726, 2017.

3 Sahil Bhatia, Jie Qiu, Sanjit A. Seshia and Alvin Cheung. Can LLMs Perform Verified Lifting
of Code? Technical Report No. UCB/EECS-2024-11, EECS Department, UC Berkeley,
March 2024.

3.22 An Approximate Skolem Function Counter
Arijit Shaw (Chennai Mathematical Institute, IN & University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Arijit Shaw

Joint work of Arijit Shaw, Brendan Juba, Kuldeep S. Meel
Main reference Arijit Shaw, Brendan Juba, Kuldeep S. Meel: “An Approximate Skolem Function Counter”, CoRR,

Vol. abs/2312.12026, 2023.
URL https://doi.org/10.48550/ARXIV.2312.12026

Motivated by the recent development of scalable approaches to Boolean function synthesis,
we study the problem of counting Boolean functions: given a Boolean specification between a
set of inputs and outputs, count the number of functions of inputs such that the specification
is met. This stands in relation to our problem analogously to the relationship between
Boolean satisfiability and the model counting problem. Yet, counting Skolem functions poses
considerable new challenges. From the complexity-theoretic standpoint, counting Skolem
functions is not only #P-hard; it is quite unlikely to have an FPRAS (Fully Polynomial
Randomized Approximation Scheme) as the problem of even synthesizing one Skolem function
remains challenging, even given access to an NP oracle. The primary contribution of this work
is the first algorithm, SkolemFC, that computes an estimate of the number of Skolem functions.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2312.12026
https://doi.org/10.48550/ARXIV.2312.12026
https://doi.org/10.48550/ARXIV.2312.12026


102 24171 – Automated Synthesis: Functional, Reactive and Beyond

SkolemFC relies on technical connections between counting functions and propositional model
counting: our algorithm makes a linear number of calls to an approximate model counter
and computes an estimate of the number of Skolem functions with theoretical guarantees.
Moreover, we show that Skolem function count can be approximated through a polynomial
number of calls to a SAT oracle. Our prototype displays impressive scalability, handling
benchmarks comparably to state-of-the-art Skolem function synthesis engines, even though
counting all such functions ostensibly poses a greater challenge than synthesizing a single
function.

References
1 Arijit Shaw, Brendan Juba, and Kuldeep S. Meel. An Approximate Skolem Function Counter.

Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, number 8, pages
8108–8116, 2024.

3.23 Counterexample-Guided DQBF Solving
Friedrich Slivovsky (University of Liverpool, GB)

License Creative Commons BY 4.0 International license
© Friedrich Slivovsky

Joint work of Franz-Xaver Reichl, Friedrich Slivovsky, Stefan Szeider
Main reference Franz-Xaver Reichl, Friedrich Slivovsky, Stefan Szeider: “Certified DQBF Solving by Definition

Extraction”, in Proc. of the Theory and Applications of Satisfiability Testing – SAT 2021 – 24th
International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings, Lecture Notes in Computer
Science, Vol. 12831, pp. 499–517, Springer, 2021.

URL https://doi.org/10.1007/978-3-030-80223-3_34

In a Dependency Quantified Boolean Formula (DQBF), each existentially quantified variable
is annotated with a dependency set consisting of universally quantified variables. A model of a
DQBF consists of functions that correctly assign values to the existentially quantified variables
based on the values of the universally quantified variables they depend on. Determining
whether a DQBF has a model is NEXP-complete, and DQBFs can naturally express a range
of synthesis problems. This talk presents an algorithm for finding a model of a DQBF that
iteratively refines a candidate model based on counterexamples. It covers techniques that
are crucial to make this approach work well in practice, such as identifying unique Skolem
functions by propositional definition extraction, and finding local repairs of invalid functions.

3.24 A problem with functional synthesis
Mate Soos (University of Toronto, CA), Supratik Chakraborty (Indian Institute of Technology
Bombay – Mumbai, IN), and Kuldeep S. Meel (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Mate Soos, Supratik Chakraborty, and Kuldeep S. Meel

There is an issue we should address related to functional synthesis. Its definition is incomplete.
It talks about inputs and outputs only – but many of the variables are in fact don’t cares. It
is easily imaginable that many users don’t need the skolem function for a number of internal
variables that are not inputs. However, current systems have to create a skolem function for
these, too, potentially wasting the end user’s resources. In my opinion, this should to be
changed, allowing users to give a dontcare set.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-80223-3_34
https://doi.org/10.1007/978-3-030-80223-3_34
https://doi.org/10.1007/978-3-030-80223-3_34
https://doi.org/10.1007/978-3-030-80223-3_34
https://doi.org/10.1007/978-3-030-80223-3_34
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 103

So, if e.g. there are 100 variables, and the user sets 1..50 as inputs, they should be able to
say that they are only interested in the skolem function of variable 100 – and if that involves
variables 51..99 then of course their skolem functions, too. But if, for example, variable 100
is not connected in any way, shape or form, to variable 66, then there is absolutely no point
in creating the skolem function for variable 66. It would be noting but a waste of the end
user’s resources. We should focus on what the end users want – and I’m quite sure they only
want specific variable(s)’ skolem functions, not everything that isn’t an input.

Let’s discuss. Obviously this new formulation can gracefully simulate the original problem,
simply set dontcare = ∅. But I am pretty sure that once users start using functional synthesis,
their dotcare set will be quite large.

3.25 Reactive synthesis via parity and Rabin games
K. S. Thejaswini (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 4.0 International license
© K. S. Thejaswini

To solve the reactive synthesis problem from LTL specifications or non-deterministic Buchi
automata, there are two common approaches: either reduce it to the solving a parity game
or solving a Rabin game. We discuss some algorithms to solve these games.

3.26 On the Power of LTLf in Reactive Synthesis
Shufang Zhu (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Shufang Zhu

Joint work of Shufang Zhu, Geguang Pu, Moshe Y. Vardi, Jianwen Li, Lucas M. Tabajara, Giuseppe De Giacomo,
Antonio Di Stasio, Marta Kwiatkowska, Pian Yu

Reactive synthesis emerges as a trustworthy-by-design technique in developing verifiably
correct autonomous AI systems. This talk puts a particular focus on reactive synthesis of
Linear Temporal Logic on finite traces (LTLf). LTLf, on the one hand, allows for specifying
a rich set of temporally extended specifications, and on the other hand, focuses on finite
traces, which makes it particularly suitable for specifying tasks of autonomous AI systems.
Note that autonomous AI systems will not get stuck accomplishing a task for all their
lifetime, but only for a finite (but unbounded) number of steps. In this talk, I will present
an overview of key advancements in LTLf synthesis, highlighting its scalability and potential
in complex scenarios. These results base on a so-called DFA-technology, which essentially
takes the maximal simplicity of reasoning about efficiently constructed deterministic finite
word automaton (DFA) of the LTLf objective. The goal of this talk is to engage researchers
in automated synthesis, encouraging further advances on the scalability and applicability of
LTLf synthesis.

References
1 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, Moshe Y. Vardi: Symbolic

LTLf Synthesis. IJCAI 2017: 1362-1369
2 Shufang Zhu, Giuseppe De Giacomo, Geguang Pu, Moshe Y. Vardi: LTLƒ Synthesis with

Fairness and Stability Assumptions. AAAI 2020: 3088-3095

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


104 24171 – Automated Synthesis: Functional, Reactive and Beyond

3 Giuseppe De Giacomo, Antonio Di Stasio, Moshe Y. Vardi, Shufang Zhu: Two-Stage
Technique for LTLf Synthesis Under LTL Assumptions. KR 2020: 304-314

4 Shufang Zhu, Lucas M. Tabajara, Geguang Pu, Moshe Y. Vardi: On the Power of Automata
Minimization in Temporal Synthesis. GandALF 2021: 117-134

5 Giuseppe De Giacomo, Antonio Di Stasio, Lucas M. Tabajara, Moshe Y. Vardi, Shufang
Zhu: Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis. IJCAI
2021: 1852-1858

6 Pian Yu, Shufang Zhu, Giuseppe De Giacomo, Marta Kwiatkowska, Moshe Y. Vardi: The
Trembling-Hand Problem for LTLf Planning. To appear at IJCAI2024

4 Working groups

4.1 Benchmarking (and LLMs)
José Cambronero (Microsoft – Redmond, US), Johannes Klaus Fichte (Linköping University,
SE), Benedikt Maderbacher (TU Graz, AT), Tobias Meggendorfer (Lancaster University
Leipzig, DE), Ruzica Piskac (Yale University – New Haven, US), and Mark Santolucito
(Barnard College, Columbia University – New York, US)

License Creative Commons BY 4.0 International license
© José Cambronero, Johannes Klaus Fichte, Benedikt Maderbacher, Tobias Meggendorfer, Ruzica
Piskac, and Mark Santolucito

In our discussion, we focused on current challenges to identifying opportunities for impact
for the work carried out by the reactive synthesis community. One point discussed was the
need to identify (industrial) applications and then use these applications to drive benchmark
development. While current benchmarks, such as SYNTCOMP, provide cases that are able
to test the limits of current solvers (an important goal, and complementary to what we
propose here), there is no evidence that the tasks being solved in these competitions are
necessarily realistic for industrial use. Discussion surfaced some natural domains for possible
application, such as networking, robotics, smart-home systems, or other applications that
require substantial planning and long running environments. However, how to obtain concrete
tasks from these domains remains a challenge. One idea discussed was the importance of
establishing connections with such communities, potentially through venues like Dagstuhl, to
bring together their problems with the solutions from the reactive synthesis community.

Finally, we discussed the potential for using generative AI (specifically LLMs) as a
potential tool to improve or extend the current benchmarking done or existing tools. For
example, we discussed that an LLM may be able to provide a natural language description
of an LTL specification, which may be helpful for explainability (making this more accessible
to non-experts). Similarly, an LLM may be potentially useful for generating LTL benchmark
tasks, which may be of interest to evaluate performance on problems with different structure
or that somehow reflect the bias of problems observed in their training data (which in turn
may correlate with potential applications). Alternatively, we also discussed that LLM-based
systems (e.g. agents) may themselves be a good application area for LTL.

One challenge identified by participants is that the community may not necessarily reward
applications of techniques, since these efforts would be reflected in publications (or other
achievements) in the target domain community instead.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 105

4.2 Developing a Computational Theory for Learning Functions from
Relations

Kuldeep S. Meel (University of Toronto, CA), Dror Fried (The Open University of Israel –
Ra’anana, IL), Alfons Laarman (Leiden University, NL), Sanjit A. Seshia (University of
California – Berkeley, US), and Mate Soos (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Kuldeep S. Meel, Dror Fried, Alfons Laarman, Sanjit A. Seshia, and Mate Soos

The working group participants included Dror Fried, Mate Soos, Sanjit A. Seshia, and Alfons
Laarman. The group’s primary objective was to explore the necessity for developing a
computational theory for learning functions from relations. The discussions encompassed
understanding the connections between the work of Jha and Seshia, particularly their paper
titled A Theory of Formal Synthesis via Inductive Learning (2014).

Moreover, another significant line of discussion was the distinction between the traditional
setting of computational learning theory, where the underlying specification guarantees
a unique function, and the scenarios we are interested in. Specifically, the focus was on
developing a theoretical framework that can characterize situations where it is possible to
learn small Skolem functions, assuming such functions exist.

The discussions concluded with the consensus that these issues represent important open
problems in the field, warranting further research and investigation.

5 Panel discussions

5.1 Reactive Synthesis and Model Counting Competitions
Guillermo A. Pérez (University of Antwerp, BE) and Johannes Klaus Fichte (Linköping
University, SE)

License Creative Commons BY 4.0 International license
© Guillermo A. Pérez and Johannes Klaus Fichte

Automated Reasoning (AR) covers different aspects of deductive reasoning as practiced in
mathematics and formal logic. Practical and theoretical research enabled ground-breaking
success in a variety of application domains. At the core of this success lie incredibly
sophisticated and complex pieces of software (so-called solvers), which tackle specific problems
of AR. Recurring (typically annual) solver competitions or evaluations play a significant role
in this practical success. Competitions aim at advancing applications, identifying challenging
benchmarks, fostering new solver development, enhancing existing solvers, bringing together
various researchers, identifying challenges, and inspiring numerous new applications. In
this talk, we share experience from two competitions. The Model Counting Competition
(https://mccompetition.org/)[2] and the Reactive Synthesis Competition (https://www.
syntcomp.org/)[1]. Subsequently, we provide thoughts and tasks for a broad discussion to
establish a Boolean Function Synthesis Challenge.

24171

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mccompetition.org/
https://www.syntcomp.org/
https://www.syntcomp.org/


106 24171 – Automated Synthesis: Functional, Reactive and Beyond

References
1 Swen Jacobs, Guillermo A. Pérez, Remco Abraham, Véronique Bruyère, Michaël Cadilhac,

Maximilien Colange, Charly Delfosse, Tom van Dijk, Alexandre Duret-Lutz, Peter Fay-
monville, Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger, Klara J.
Meyer, Thibaud Michaud, Adrien Pommellet, Florian Renkin, Philipp Schlehuber-Caissier,
Mouhammad Sakr, Salomon Sickert, Gaëtan Staquet, Clément Tamines, Leander Tentrup,
Adam Walker: The Reactive Synthesis Competition (SYNTCOMP): 2018-2021. CoRR
abs/2206.00251 (2022)

2 Johannes Klaus Fichte, Markus Hecher, Florim Hamiti: The Model Counting Competition
2020. ACM J. Exp. Algorithmics 26: 13:1-13:26 (2021)



S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac 107

Participants

S. Akshay
Indian Institute of Technology
Bombay – Mumbai, IN

Ashwani Anand
MPI-SWS – Kaiserslautern, DE

A. R. Balasubramanian
MPI-SWS – Kaiserslautern, DE

Suguman Bansal
Georgia Institute of Technology –
Atlanta, US

Katrine Bjørner
New York University, US

José Cambronero
Microsoft – Redmond, US

Supratik Chakraborty
Indian Institute of Technology
Bombay – Mumbai, IN

Deepak D’Souza
Indian Institute of Science –
Bangalore, IN

Alexis de Colnet
TU Wien, AT

Rayna Dimitrova
CISPA – Saarbrücken, DE

Rüdiger Ehlers
TU Clausthal, DE

Johannes Klaus Fichte
Linköping University, SE

Bernd Finkbeiner
CISPA – Saarbrücken, DE

Dror Fried
The Open University of Israel –
Ra’anana, IL

Mikoláš Janota
Czech Technical University –
Prague, CZ

Jie-Hong Roland Jiang
National Taiwan University –
Taipei, TW

Ayrat Khalimov
TU Clausthal, DE

Alfons Laarman
Leiden University, NL

Benedikt Maderbacher
TU Graz, AT

Pierre Marquis
University of Artois/CNRS –
Lens, FR

Kuldeep S. Meel
University of Toronto, CA

Tobias Meggendorfer
Lancaster University Leipzig, DE

Jingyi Mei
Leiden University, NL

Guillermo A. Pérez
University of Antwerp, BE

Ruzica Piskac
Yale University – New Haven, US

Govind Rajanbabu
Indian Institute of Technology
Bombay – Mumbai, IN

Subhajit Roy
Indian Institute of Technology
Kanpur, IN

Mark Santolucito
Barnard College, Columbia
University – New York, US

Ute Schmid
Universität Bamberg, DE

Sanjit A. Seshia
University of California –
Berkeley, US

Shetal Shah
Indian Institute of Technology
Bombay – Mumbai, IN

Arijit Shaw
Chennai Mathematical Institute,
IN & University of Toronto, CA

Friedrich Slivovsky
University of Liverpool, GB

Mate Soos
University of Toronto, CA

K. S. Thejaswini
IST Austria – Klosterneuburg,
AT

Hazem Torfah
Chalmers University of
Technology – Göteborg, SE

Shufang Zhu
University of Oxford, GB

24171


	Executive Summary (S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, and Ruzica Piskac)
	Table of Contents
	Overview of Talks
	To Assume, Or Not To Assume (Ashwani Anand)
	LTLf Model Checking (Suguman Bansal)
	Formal XAI via Syntax-Guided Synthesis (Katrine Bjørner)
	Programming by example for end user tasks and the use of LLMs (José Cambronero)
	Boolean Functional Synthesis: A Quick Tour (Supratik Chakraborty)
	Symbolic Fixpoint Techniques for Logical LTL Games (Deepak D'Souza)
	On the compilation of non-CNF systems of constraints (or, your weekly dose of knowledge compilation) (Alexis de Colnet)
	Synthesis of Infinite-State Reactive Systems (and why it needs functional synthesis for theories beyond Boolean) (Rayna Dimitrova)
	A Semi-Gentle Introduction to Reactive Synthesis (Rüdiger Ehlers)
	On Dependent Variables in Reactive Synthesis (Dror Fried)
	Exploring Connections between Automated Reasoning and Synthesis (Mikoláš Janota)
	Stochastic Boolean Satisfiability: Recent Developments and Connection to Functional Synthesis (Jie-Hong Roland Jiang)
	The Unreasonable Effectiveness of Classical Automated Reasoning in Quantum Computing (Alfons Laarman and Jingyi Mei)
	Reactive Synthesis modulo Theories using Abstraction Refinement (Benedikt Maderbacher)
	Boosting Definability Bipartition Computation using SAT Witnesses (Pierre Marquis)
	A Flock of Birds: Owl & Strix (Tobias Meggendorfer)
	Pre-condition and Program Synthesis for Polynomial Specifications over Integers (Govind Rajanbabu, S. Akshay, and Supratik Chakraborty)
	Synthesis of Semantic Actions in Attribute Grammars (Subhajit Roy)
	Reactive Program Synthesis Modulo LLM Code Generation (Mark Santolucito)
	A Short Introduction to Inductive Functional Programming (Ute Schmid)
	Oracle-Guided Inductive Synthesis, Learning Theory, and LLMs (Sanjit A. Seshia)
	An Approximate Skolem Function Counter (Arijit Shaw)
	Counterexample-Guided DQBF Solving (Friedrich Slivovsky)
	A problem with functional synthesis (Mate Soos, Supratik Chakraborty, and Kuldeep S. Meel)
	Reactive synthesis via parity and Rabin games (K. S. Thejaswini)
	On the Power of LTLf in Reactive Synthesis (Shufang Zhu)

	Working groups
	Benchmarking (and LLMs) (José Cambronero, Johannes Klaus Fichte, Benedikt Maderbacher, Tobias Meggendorfer, Ruzica Piskac, and Mark Santolucito)
	Developing a Computational Theory for Learning Functions from Relations (Kuldeep S. Meel, Dror Fried, Alfons Laarman, Sanjit A. Seshia, and Mate Soos)

	Panel discussions
	Reactive Synthesis and Model Counting Competitions (Guillermo A. Pérez and Johannes Klaus Fichte)

	Participants

