
Report from Dagstuhl Seminar 24172

Code Search
Satish Chandra∗1, Michael Pradel∗2, and Kathryn T. Stolee∗3

1 Google – Mountain View, US. schandra@acm.org
2 Universität Stuttgart, DE. michael@binaervarianz.de
3 North Carolina State University – Raleigh, US. ktstolee@ncsu.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar “Code Search” (24172).
The seminar brought together researchers and practitioners working on techniques that enable
software developers to find code and artifacts related to code. The participants discussed the state
of the art in code search, identified open problems, and discussed future directions for research
and practice. The seminar was structured with keynote talks, short talks, and breakout groups.
Breakout groups identified how researchers can situate their code search research in terms of the
targeted user groups, the access point for the developer, and the stage of software development
that is most relevant to the code search tasks. Synergies between generative AI and Code Search
were discussed, concluding that for some users and some tasks, generative AI can work with
Code Search to enhance the developer experience and effectiveness. For other tasks, code search
without generative AI would be more effective because of concerns regarding data provenance,
update frequency, privacy, and the need for correctness.
Seminar April 21–24, 2024 – https://www.dagstuhl.de/24172
2012 ACM Subject Classification Software and its engineering → Integrated and visual develop-

ment environments; Software and its engineering → Software development process management;
Software and its engineering → Software evolution; Software and its engineering → Software
libraries and repositories

Keywords and phrases code reuse, code search
Digital Object Identifier 10.4230/DagRep.14.4.108

1 Executive Summary

Kathryn T. Stolee (North Carolina State University – Raleigh, US)
Satish Chandra (Google – Mountain View, US)
Michael Pradel (Universität Stuttgart, DE)

License Creative Commons BY 4.0 International license
© Kathryn T. Stolee, Satish Chandra, and Michael Pradel

The 3-day Dagstuhl Seminar on “Code Search” brought together leading experts from
academia and industry to discuss and advance the field of code search. This seminar
highlighted the critical role of code search in various software engineering activities, from
locating where an error was thrown to learning new APIs or programming languages. It also
emphasized the importance of search in automated software engineering tasks like automated
program repair, code recommendation, and clone detection. The emergence of generative AI
tools, which offer alternative methods for finding and reusing code, was also a significant
topic of discussion.

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Code Search, Dagstuhl Reports, Vol. 14, Issue 4, pp. 108–123
Editors: Satish Chandra, Michael Pradel, and Kathryn T. Stolee

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schandra@acm.org
mailto:michael@binaervarianz.de
mailto:ktstolee@ncsu.edu
https://www.dagstuhl.de/24172
https://doi.org/10.4230/DagRep.14.4.108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 109

Participants explored the implications of code search research on developer productivity,
code quality, and software engineering ethics. They examined the diverse tools available for
code search, ranging from internal company tools to open-source platforms like GitHub, and
generative AI tools like ChatGPT. The seminar addressed various dimensions of code search,
such as appropriate scope for search results, indexing methodologies, and combinations of
code search and LLMs, e.g., in the form of retrieval-augmented generation.

In addition to talks and informal discussions, there were several break-out sessions during
which participants discussed specific topics in smaller groups and eventually reported back
to the other participants. Sections 4.1 provides an overview of the breakout sessions.

As a result of the seminar, several participants plan to launch various follow-up activities,
such as joint publications and transferring promising ideas from academia to industry.

24172

110 24172 – Code Search

2 Table of Contents

Executive Summary
Kathryn T. Stolee, Satish Chandra, and Michael Pradel 108

Overview of Talks
Trustworthy Code Search: A Data-Centric Perspective
Bowen Xu . 112

Representations for (searching) (for? in? with?) spreadsheets
José Cambronero . 112

DiffSearch: A Scalable and Precise Search Engine for Code Changes
Luca Di Grazia and Michael Pradel . 113

AI-Resilient Interfaces and the Value of Variation
Elena Leah Glassman . 113

Coccinelle for Rust
Julia Lawall . 114

An Academic Perspective on Code Search and AI
Tobias Kiecker . 114

My Code Search: Then, Now
Dongsun Kim . 114

A Journey through Searching Similar Code
Miryung Kim . 115

Code Search – Clone Search – Code Similarity
Jens Krinke . 116

Syntactic Code Search with Sequence-to-Tree Matching
Gabriel Matute . 116

Scaling Embeddings for Github
Alexander Neubeck . 117

User Intent and Needs for Code Search
Nikitha Rao . 117

Code and Library Search
Christoph Treude . 118

Querying code in Meta-SQL
Jan Van den Bussche . 118

Code Search Perspectives from (Startup) Industry
Rijnard van Tonder . 118

Searching for code that doesn’t exist
Cristina Videira Lopes . 119

Code Search at Google
Tobias Welp . 119

Codesearch in developer journeys
Ciera Jaspan . 119

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 111

Code Search + Code Review = ♡
Bogdan Vasilescu and Reid Holmes . 120

Working groups
Overview of Breakout Sessions
Kathryn T. Stolee, Boris Bokowski, José Cambronero, Satish Chandra, Jürgen Cito,
Luca Di Grazia, Elena Leah Glassman, Georgios Gousios, Reid Holmes, Ciera
Jaspan, Tobias Kiecker, Dongsun Kim, Miryung Kim, Jens Krinke, Julia Lawall,
Gabriel Matute, Alexander Neubeck, Michael Pradel, Nikitha Rao, Christoph Treude,
Jan Van den Bussche, Rijnard van Tonder, Bogdan Vasilescu, Cristina Videira
Lopes, Tobias Welp, Bowen Xu, and Svetlana Zemlyanskaya 121

Code Search Needs of Different User Groups . 121

Impact of Generative AI Tools on Code Search . 121

Code Search at Different Stages of Software Development 122

Participants . 123

24172

112 24172 – Code Search

3 Overview of Talks

3.1 Trustworthy Code Search: A Data-Centric Perspective
Bowen Xu (North Carolina State University – Raleigh, US)

License Creative Commons BY 4.0 International license
© Bowen Xu

URL https://seedguard.ai

Data quality plays an important role in LLMs’ performance. For code search, there also exist
several data quality issues from different aspects that may affect LLMs. For example, security,
consistency, label correctness, etc. Regarding this, I presented an open-source library named
SEEDGuard (https://seedguard.ai) I am currently developing with my students. SEEDGuard
aims to generate higher-quality data for building LLM4Code.

3.2 Representations for (searching) (for? in? with?) spreadsheets
José Cambronero (Microsoft – Redmond, US)

License Creative Commons BY 4.0 International license
© José Cambronero

Spreadsheet environments remain one of the most popular platforms for end-users (and
non-professional programmers) to carry out computational tasks. In contrast to traditional
programming environments, spreadsheets are inherently multimodal: they contain tabular
(and non-tabular) data; code in the form of sheet formulas, recorded macros, and small
data analysis programs in popular languages like Python; artifacts of analyses such as plots
and formatted tables; and natural language in the form of table headers, comments, and
values. To expand the applicability of code search to such environments, we must inherently
tackle retrieval (and similarity and so on) across these different types of data. In this
talk, I argue one possible way to do so is to leverage learned representations. However,
for these representations to be effective we must incorporate domain-specific insights into
the learning process. To illustrate this, I present an approach to learning spreadsheet
formula representations that incorporates data curation, spreadsheet-specific tokenization,
and pretraining objectives. Next, I provide an overview of a table representation learning
approach that incorporates hierarchical position information and sheet-oriented pre-training
objectives that enable these representations to be effective for the heterogeneity of tables
in spreadsheets. Finally, I present some results showing that the effectiveness of LLMs at
solving basic table tasks (such as value lookups) when using prompting-based approaches
are not robust to the table serialization.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://seedguard.ai
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 113

3.3 DiffSearch: A Scalable and Precise Search Engine for Code Changes
Luca Di Grazia (Universität Stuttgart, DE), Michael Pradel (Universität Stuttgart, DE)

License Creative Commons BY 4.0 International license
© Luca Di Grazia and Michael Pradel

Joint work of Luca Di Grazia, Paul Bredl, Michael Pradel
Main reference Luca Di Grazia, Paul Bredl, Michael Pradel: “DiffSearch: A Scalable and Precise Search Engine for

Code Changes”, IEEE Trans. Software Eng., Vol. 49(4), pp. 2366–2380, 2023.
URL https://doi.org/10.1109/TSE.2022.3218859

The source code of successful projects is evolving all the time, resulting in hundreds of
thousands of code changes stored in source code repositories. This wealth of data can be
useful, e.g., to find changes similar to a planned code change or examples of recurring code
improvements. This paper presents DiffSearch, a search engine that, given a query that
describes a code change, returns a set of changes that match the query. The approach is
enabled by three key contributions. First, we present a query language that extends the
underlying programming language with wildcards and placeholders, providing an intuitive
way of formulating queries that is easy to adapt to different programming languages. Second,
to ensure scalability, the approach indexes code changes in a one-time preprocessing step,
mapping them into a feature space, and then performs an efficient search in the feature
space for each query. Third, to guarantee precision, i.e., that any returned code change
indeed matches the given query, we present a tree-based matching algorithm that checks
whether a query can be expanded to a concrete code change. We present implementations
for Java, JavaScript, and Python, and show that the approach responds within seconds to
queries across one million code changes, has a recall of 80.7% for Java, 89.6% for Python,
and 90.4% for JavaScript, enables users to find relevant code changes more effectively than a
regular expression-based search and GitHub’s search feature, and is helpful for gathering a
large-scale dataset of real-world bug fixes.

You can try our online instance here: http://diffsearch.software-lab.org/
diffsearch.

3.4 AI-Resilient Interfaces and the Value of Variation
Elena Leah Glassman (Harvard University – Allston, US)

License Creative Commons BY 4.0 International license
© Elena Leah Glassman

Joint work of Elena Leah Glassman, Ziwei Gu, Jonathan Kummerfeld
Main reference Elena L. Glassman, Ziwei Gu, Jonathan K. Kummerfeld: “AI-Resilient Interfaces”, CoRR,

Vol. abs/2405.08447, 2024.
URL https://doi.org/10.48550/ARXIV.2405.08447

AI is powerful, but it can make both objective errors and contextually inappropriate choices.
We need AI-resilient interfaces that help people be resilient to the AI choices that are not right,
or not right for them. Existing human-AI interaction guidelines recommend that interfaces
include user-facing features for efficient dismissal, modification, or otherwise efficient recovery
from AI choices that the user does not like. However, users cannot decide to dismiss or
modify AI choices that they have not noticed, and, without sufficient context, users may not
realize that some of the noticed AI choices are wrong or inappropriate. In this talk, I discuss
the challenges and benefits of designing AI-resilient interfaces for code search, and how
two complementary theories of human concept learning – Variation Theory and Analogical
Learning Theory – can provide design guidance.

24172

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSE.2022.3218859
https://doi.org/10.1109/TSE.2022.3218859
https://doi.org/10.1109/TSE.2022.3218859
http://diffsearch.software-lab.org/diffsearch
http://diffsearch.software-lab.org/diffsearch
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2405.08447
https://doi.org/10.48550/ARXIV.2405.08447
https://doi.org/10.48550/ARXIV.2405.08447

114 24172 – Code Search

3.5 Coccinelle for Rust
Julia Lawall (INRIA – Paris, FR)

License Creative Commons BY 4.0 International license
© Julia Lawall

Joint work of Julia Lawall, Tathagata Roy

Coccinelle is a tool for code search and transformation that has been under development
since the mid 2000s. The main novelty of Coccinelle was to design the transformation
language around the notion of a patch, familiar to source-code developers, and to extend this
with metavariables and information about types and control-flow. Coccinelle was originally
designed to support large-scale transformation in the Linux kernel, and has been extensively
used by Linux kernel developers. Today, we are investigating whether the same approach can
be successful for Rust code. This talk reviews some of the main design decisions of Coccinelle
for C, including writing the parser and pretty printer from scratch and the design of the
control-flow graph. We then consider how those design decisions have been adapted to Rust,
including more reuse of existing Rust tools, and the potential implications of those decisions.

3.6 An Academic Perspective on Code Search and AI
Tobias Kiecker (HU Berlin, DE)

License Creative Commons BY 4.0 International license
© Tobias Kiecker

Joint work of Tobias Kiecker, Lars Grunske

This talk examines the impact of artificial intelligence (AI), especially large language models
(LLMs), on software engineering research in general and on code search in particular. It starts
with a recap on how LLMs have advanced or replaced other code generation techniques in
recent years. The talk then goes on to our previous research on code search, addressing how
LLMs have influenced this area and might shape it further in the future. It concludes with an
open challenge, namely the relatively low visibility of code search in academic research and
teaching, and advocates for the integration of this topic into software engineering curricula.

3.7 My Code Search: Then, Now
Dongsun Kim (Kyungpook National University – Daegu, KR)

License Creative Commons BY 4.0 International license
© Dongsun Kim

My “Code Search” journey has two phases. At the first phase, I have focused on traditional
code search techniques, which take query strings and return locations of source code in local
or global code repositories. I figured out that many users of code search tools experienced
the vocabulary mismatch problem. To address this problem, I proposed the “two-step” query
translation approach based on StackOverflow posts. I built two code search tools based on
this idea: CoCaBu (for free-form queries) and FaCoY (for code-to-code search). These tools
are effective in searching for code locations against a given (free-form and code) queries.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 115

The second phase explores applications of code search. First, I proposed an approach
to detecting and repairing wrong inconsistent method names. This approach searches for
similar methods by method names and bodies after embedding them into vectors. Then,
the approach compares neighboring sets of a method name and body to figure out the
inconsistency between them. This approach successfully detects inconsistent names and
suggests better names. My recent applications include improving LLMs with code search
techniques: Memorization discovery and membership inference attack.

References
1 Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke SHI, Dongsun Kim, DongGyun Han, David

Lo, “Unveiling Memorization in Code Models”, in the Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal, April
14-20, 2024.

2 Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, David
Lo: Gotcha! This Model Uses My Code! Evaluating Membership Leakage Risks in Code
Models. CoRR abs/2310.01166 (2023)

3 Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Taeyoung Kim, Kisub Kim, Anil Koyuncu,
Suntae Kim and Yves Le Traon, “Learning to Spot and Refactor Inconsistent Method
Names”, in the Proceedings of the 41st International Conference on Software Engineering
(ICSE 2019), Montréal, QC, Canada, May 25–31, 2019. Acceptance rate: 20.6% (109/529).

4 Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques Klein,
Yves Le Traon: FaCoY: a code-to-code search engine. ICSE 2018: 946-957

5 Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein, Kisub
Kim, Yves Le Traon: Augmenting and structuring user queries to support efficient free-form
code search. Empir. Softw. Eng. 23(5): 2622-2654 (2018)

3.8 A Journey through Searching Similar Code
Miryung Kim (University of California at Los Angeles, USA & Amazon Web Services – Palo
Alto, USA)

License Creative Commons BY 4.0 International license
© Miryung Kim

This talk reflects on my group’s research on searching similar code for the past 20 years,
answering the following six questions: (1) What motivated us to research code search?
(2) What were early attempts? (3) How serious is this problem? (4) How can we automate?
(5) How can we examine variations at scale? (6) How to search similar code with a human in
the loop?

We discuss that similar recurring updates motivated this line of work on searching similar
code. As an early attempt, we created rule-based change abstractions and automatically
inferred rules from diff-patches. We then quantified the effort needed to make similar changes
in multiple contexts: co-evolution of forked projects, similar updates to clones, API evolution
and ripple effects on client applications, and refactoring. We discussed our work on generalized
patch synthesis to automate similar updates by learning from example patches. We realized
the importance of examining search results at scale and designed a new visualization method
of leveraging simultaneous overlay of similar code snippets. Then to enable construction
of a search pattern with a human in the loop, we designed an active learning method that
provides global distribution and what-if speculative analysis.

24172

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

116 24172 – Code Search

3.9 Code Search – Clone Search – Code Similarity
Jens Krinke (University College London, GB)

License Creative Commons BY 4.0 International license
© Jens Krinke

Joint work of Jens Krinke, Chaiyong Ragkhitwetsagul
Main reference Jens Krinke, Chaiyong Ragkhitwetsagul: “BigCloneBench Considered Harmful for Machine

Learning”, in Proc. of the 16th IEEE International Workshop on Software Clones, IWSC 2022,
Limassol, Cyprus, October 2, 2022, pp. 1–7, IEEE, 2022.

URL https://doi.org/10.1109/IWSC55060.2022.00008

This talk presents the connection of code similarity to clone and code search. The application
of clone search to investigate the provenance and quality of code on StackOverflow led to the
development of a clone search engine evaluated with the often-used BigCloneBench dataset.
However, this dataset is flawed due to how it has been constructed and the evaluation results
are unreliable, particularly if the dataset is used to learn code similarity. Current work is
on using LLMs to detect code similarity but another benchmark for functional similarity,
CodeNet, is shown to be potentially illicit due to scraping copyrighted code. The talk
concludes with preliminary results on using 36 LLMs to detect code similarity, which show
that the LLMs are not yet ready for use as only six perform better than a random classifier.

3.10 Syntactic Code Search with Sequence-to-Tree Matching
Gabriel Matute (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© Gabriel Matute

Joint work of Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, S. E. Chasins
Main reference Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, Sarah E. Chasins: “Syntactic Code Search

with Sequence-to-Tree Matching: Supporting Syntactic Search with Incomplete Code Fragments”,
Proc. ACM Program. Lang., Vol. 8(PLDI), pp. 2051–2072, 2024.

URL https://doi.org/10.1145/3656460

Lightweight syntactic analysis tools like Semgrep and Comby leverage the tree structure of
code, making them more expressive than string and regex search. Unlike traditional language
frameworks (e.g., ESLint) that analyze codebases via explicit syntax tree manipulations, these
tools use query languages that closely resemble the source language. However, state-of-the-art
matching techniques for these tools require queries to be complete and parsable snippets,
which makes in-progress query specifications useless.

We propose a new search architecture that relies only on tokenizing (not parsing) a query.
We introduce a novel language and matching algorithm to support tree-aware wildcards on
this architecture by building on tree automata. We also present stsearch, a syntactic search
tool leveraging our approach. In contrast to past work, our approach supports syntactic
search even for previously unparsable queries. Our work offers evidence that lightweight
syntactic code search can accept in-progress specifications, potentially improving support for
interactive settings.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/IWSC55060.2022.00008
https://doi.org/10.1109/IWSC55060.2022.00008
https://doi.org/10.1109/IWSC55060.2022.00008
https://doi.org/10.1109/IWSC55060.2022.00008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 117

3.11 Scaling Embeddings for Github
Alexander Neubeck (GitHub – San Francisco, US)

License Creative Commons BY 4.0 International license
© Alexander Neubeck

There are a lot of papers and publications around RAG based systems. But most of the
benchmarks, algorithms, and implementations focus on relatively small datasets (1-100
million embeddings) whereas at Github the scale is 100-1000x larger. At this scale, every
tiny aspect of the RAG system must be revisited. Quality is now just one parameter in
the equation, but no longer the most important one. One central part in RAG systems is
the chunking strategy with the main focus to increase retrieval quality. However, at scale,
stability and redundancy aspects become just as important. Picking a different strategy can
decrease the cost easily by 10x and more. The talk shows for the various aspects of a RAG
system which problems arise at scale and which questions need to be answered.

3.12 User Intent and Needs for Code Search
Nikitha Rao (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Nikitha Rao

Joint work of Vincent J. Hellendoorn, Martin Hirzel, Jason Tsay, Kiran Kate, Chetan Bansal, Thomas
Zimmermann, Ahmed Hassan Awadallah, Nachiappan Nagappan, Joe Guan

Main reference Nikitha Rao, Jason Tsay, Kiran Kate, Vincent J. Hellendoorn, Martin Hirzel: “AI for Low-Code for
AI”, in Proc. of the 29th International Conference on Intelligent User Interfaces, IUI 2024,
Greenville, SC, USA, March 18-21, 2024, pp. 837–852, ACM, 2024.

URL https://doi.org/10.1145/3640543.3645203
Main reference Nikitha Rao, Chetan Bansal, Thomas Zimmermann, Ahmed Hassan Awadallah, Nachiappan

Nagappan: “Analyzing Web Search Behavior for Software Engineering Tasks”, in Proc. of the 2020
IEEE International Conference on Big Data (IEEE BigData 2020), Atlanta, GA, USA, December
10-13, 2020, pp. 768–777, IEEE, 2020.

URL https://doi.org/10.1109/BIGDATA50022.2020.9378083
Main reference Nikitha Rao, Jason Tsay, Kiran Kate, Vincent J. Hellendoorn, Martin Hirzel: “AI for Low-Code for

AI”, in Proc. of the 29th International Conference on Intelligent User Interfaces, IUI 2024,
Greenville, SC, USA, March 18-21, 2024, pp. 837–852, ACM, 2024.

URL https://doi.org/10.1145/3640543.3645203

Developers use search for various tasks such as finding code, documentation, debugging
information, etc. First, we study user intents by conducting a large-scale analysis of web
search behavior for software engineering tasks and propose a taxonomy of user intents.
We then introduce a weak supervision based approach for detecting code search intent in
search queries for C# and Java. Additionally, we present Search4Code, the first large-scale
real-world dataset of code search queries mined from the Bing web search engine. Next, we
extend our analysis beyond textual code and explore other forms of code representations
such as low-code. We observe that different types of users (novices vs experts) may have
different search needs, and demonstrate how LLMs can be useful in a visual (low-code) space,
despite being trained on textual code, using LowCoder.

24172

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1109/BIGDATA50022.2020.9378083
https://doi.org/10.1109/BIGDATA50022.2020.9378083
https://doi.org/10.1109/BIGDATA50022.2020.9378083
https://doi.org/10.1109/BIGDATA50022.2020.9378083
https://doi.org/10.1109/BIGDATA50022.2020.9378083
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1145/3640543.3645203
https://doi.org/10.1145/3640543.3645203

118 24172 – Code Search

3.13 Code and Library Search
Christoph Treude (The University of Melbourne, AU)

License Creative Commons BY 4.0 International license
© Christoph Treude

Joint work of Brittany Reid, Marcelo d’Amorim, Markus Wagner, Christoph Treude
Main reference Brittany Reid, Marcelo d’Amorim, Markus Wagner, Christoph Treude: “NCQ: Code Reuse Support

for Node.js Developers”, IEEE Trans. Software Eng., Vol. 49(5), pp. 3205–3225, 2023.
URL https://doi.org/10.1109/TSE.2023.3248113

When developing software, finding the right pieces of code and the best libraries are important
but challenging tasks. Code search lets developers find specific code snippets quickly, while
library search helps them pick libraries that add more capabilities to their projects. To
help, we’ve developed Node Code Query (NCQ), a tool that simplifies both tasks for Node.js
developers. NCQ allows developers to search for NPM packages and code snippets, and it
helps fix errors, set up testing environments quickly, and switch easily between searching
and editing. Feedback from users shows that NCQ makes starting and finishing tasks faster,
making it a valuable tool for Node.js developers. We’ve also started exploring methods to
prioritize search results for diversity, ensuring users receive varied and useful results.

3.14 Querying code in Meta-SQL
Jan Van den Bussche (Hasselt University, BE)

License Creative Commons BY 4.0 International license
© Jan Van den Bussche

Joint work of Jan Van den Bussche, Stijn Vansummeren, Gottfried Vossen
Main reference Jan Van den Bussche, Stijn Vansummeren, Gottfried Vossen: “Towards practical meta-querying”, Inf.

Syst., Vol. 30(4), pp. 317–332, 2005.
URL https://doi.org/10.1016/J.IS.2004.04.001

We recall some ideas presented more than 20 years ago on meta-querying. Collections of
database queries, e.g., SQL statements from database catalogs, or query logs from SPARQL
endpoints on the semantic Web, are also datasets of code that we may want to query. We are
interested in expressive querying, so we represent queries as trees. We go one step further and
also want to be able to query the behavior of queries. We describe Meta-SQL, a prototype
language that uses SQL/XML for querying and transforming the tree structures of code, and
which includes an added EVAL function to dynamically execute queries.

3.15 Code Search Perspectives from (Startup) Industry
Rijnard van Tonder (Mysten Labs – Palo Alto, US)

License Creative Commons BY 4.0 International license
© Rijnard van Tonder

Main reference Rijnard van Tonder: “You Don’t Know Search: Helping Users Find Code by Automatically
Evaluating Alternative Queries”, in Proc. of the 45th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice, SEIP@ICSE 2023, Melbourne, Australia,
May 14-20, 2023, pp. 270–280, IEEE, 2023.

URL https://doi.org/10.1109/ICSE-SEIP58684.2023.00030

The value and future of Code Search lies in the concrete benefits provided to ordinary
developers. Developers use code search for simple tasks (finding a function) and complex ones
(regular expressions to refactor parts of code). The wide spectrum of use cases imply the need

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSE.2023.3248113
https://doi.org/10.1109/TSE.2023.3248113
https://doi.org/10.1109/TSE.2023.3248113
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/J.IS.2004.04.001
https://doi.org/10.1016/J.IS.2004.04.001
https://doi.org/10.1016/J.IS.2004.04.001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSE-SEIP58684.2023.00030
https://doi.org/10.1109/ICSE-SEIP58684.2023.00030
https://doi.org/10.1109/ICSE-SEIP58684.2023.00030
https://doi.org/10.1109/ICSE-SEIP58684.2023.00030
https://doi.org/10.1109/ICSE-SEIP58684.2023.00030

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 119

for levels of code search expressivity that cater to both novice and advanced users. We pose
the question of how to provide greater value to developers (e.g., efficiency and time-savings
for completing software tasks) in terms of search query expressivity. For example, we find
that in practice, the majority of users do not regularly use regular expressions in search
queries. Providing value (i.e., greater efficiency) to developers through code search implies
discovering methods and evaluating usage (e.g., click behavior on results sets) to discover
a balance of expressivity in code search. We share our outlook on what continues to work
well in practice (fast literal code search via indexing), what’s changing (LLMs and prompt
queries), and challenges that remain difficult (e.g., discovering user intent, especially across
heterogeneous users and organizations who use code search).

3.16 Searching for code that doesn’t exist
Cristina Videira Lopes (University of California – Irvine, US)

License Creative Commons BY 4.0 International license
© Cristina Videira Lopes

Joint work of Cristina Videira Lopes, Rakib Misu, Iris Ma, James Noble
Main reference Md Rakib Hossain Misu, Cristina V. Lopes, Iris Ma, James Noble: “Towards AI-Assisted Synthesis

of Verified Dafny Methods”, Proc. ACM Softw. Eng., Vol. 1(FSE), pp. 812–835, 2024.
URL https://doi.org/10.1145/3643763

Large Language Models don’t know much about Dafny, because not much code exists written
in Dafny. I explain some experiments we did that drastically improve the LLMs’ ability to
generate formally verified algorithms written in Dafny.

3.17 Code Search at Google
Tobias Welp (Google – München, DE)

License Creative Commons BY 4.0 International license
© Tobias Welp

Code Search enables fast search for tokens, files, filtering for languages, etc. across large code
bases and browsing through code with semantic information and cross references. It requires
continuous investment in advancing the technology to keep up with code base growth. In
comparison to Code Search, LLMs provide the opportunity to cover for wider knowledge
gaps of the user, potentially addressing some of their Code Search needs better, but provide
less precision with higher latency.

3.18 Codesearch in developer journeys
Ciera Jaspan (Google – Mountain View, US)

License Creative Commons BY 4.0 International license
© Ciera Jaspan

When we extract logs from developer tools, we can usee that code search is a common task
across nearly every common developer journey. It’s used when trying to answer questions
while coding, to share information with others, to review code, to debug production issues, and

24172

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3643763
https://doi.org/10.1145/3643763
https://doi.org/10.1145/3643763
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

120 24172 – Code Search

to identify security problems, among many many others. Codesearch is used by developers
mfultiple times a day for all of these tasks. However, we are frequently missing two pieces
of information when understanding these developer journeys. First, while we can see that
engineers are doing these tasks, we can’t determine their intent. We can’t tell what question
they are trying to answer or what the context is that they want an answer for. Second, we
can’t tell when a task is “successful”; there is no way to distinguish between “I found my
answer” and “I gave up”. Until we can see these differences, it’s very hard to determine
whether new features of codesearch, especially ones powered by LLMs, are actively helping
developers achieve their goals or whether they are getting in the way.

3.19 Code Search + Code Review = ♡
Bogdan Vasilescu (Carnegie Mellon University – Pittsburgh, US) and Reid Holmes (University
of British Columbia – Vancouver, CA)

License Creative Commons BY 4.0 International license
© Bogdan Vasilescu and Reid Holmes

Tools that search through code, the history of software repositories, and other software arti-
facts (hereafter just “code search tools”) have a long history of development and deployment
in industrial practice. The data generated by code search tools is especially relevant given
the large-scale, quickly-evolving nature of modern systems. However, one common design
challenge facing most code search implementations is that it is easy to overwhelm users with
too much information. But there is hope! Large language models and the conversational
agents that usually go with them tend to be particularly useful at summarizing large volumes
of information. Could they also help with amplifying code review with search? In this work
we outline a vision for augmenting code review with extra information from code search tools
coupled with advanced LLM-based techniques for analyzing and summarizing these data into
information a patch-writer or reviewer could use to improve a proposed patch.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 121

4 Working groups

4.1 Overview of Breakout Sessions
Kathryn T. Stolee (North Carolina State University – Raleigh, US), Boris Bokowski (Google –
München, DE), José Cambronero (Microsoft – Redmond, US), Satish Chandra (Google –
Mountain View, US), Jürgen Cito (TU Wien, AT), Luca Di Grazia (Universität Stuttgart,
DE), Elena Leah Glassman (Harvard University – Allston, US), Georgios Gousios (TU Delft,
NL), Reid Holmes (University of British Columbia – Vancouver, CA), Ciera Jaspan (Google –
Mountain View, US), Tobias Kiecker (HU Berlin, DE), Dongsun Kim (Kyungpook National
University – Daegu, KR), Miryung Kim (University of California at Los Angeles, USA &
Amazon Web Services – Palo Alto, USA), Jens Krinke (University College London, GB),
Julia Lawall (INRIA – Paris, FR), Gabriel Matute (University of California – Berkeley, US),
Alexander Neubeck (GitHub – San Francisco, US), Michael Pradel (Universität Stuttgart,
DE), Nikitha Rao (Carnegie Mellon University – Pittsburgh, US), Christoph Treude (The
University of Melbourne, AU), Jan Van den Bussche (Hasselt University, BE), Rijnard van
Tonder (Mysten Labs – Palo Alto, US), Bogdan Vasilescu (Carnegie Mellon University –
Pittsburgh, US), Cristina Videira Lopes (University of California – Irvine, US), Tobias Welp
(Google – München, DE), Bowen Xu (North Carolina State University – Raleigh, US), and
Svetlana Zemlyanskaya (JetBrains GmbH – München, DE)

License Creative Commons BY 4.0 International license
© Kathryn T. Stolee, Boris Bokowski, José Cambronero, Satish Chandra, Jürgen Cito, Luca Di
Grazia, Elena Leah Glassman, Georgios Gousios, Reid Holmes, Ciera Jaspan, Tobias Kiecker,
Dongsun Kim, Miryung Kim, Jens Krinke, Julia Lawall, Gabriel Matute, Alexander Neubeck,
Michael Pradel, Nikitha Rao, Christoph Treude, Jan Van den Bussche, Rijnard van Tonder, Bogdan
Vasilescu, Cristina Videira Lopes, Tobias Welp, Bowen Xu, and Svetlana Zemlyanskaya

4.2 Code Search Needs of Different User Groups
This breakout focused on different groups of users of code search tools. This includes
professional developers, students, legacy developers, and hobbyists. The tasks they are
trying to accomplish include navigation, search, information acquisition, observability (e.g.,
Do I understand this problem to know how many people will be impacted? How much
resources will solving this require? What are the impacts of this security vulnerability?), and
debugging.

When addressing the needs of a particular user group, it is important to understand their
entry point into code search. Given a specific micro-intent/goal, how will they access code
search? Is it within a document as in Ctrl+F? Is it as a separate browser tab? From there,
how can we help developers retain and regain their mental context? Last, how easy or hard
is it to consume the search results?

4.3 Impact of Generative AI Tools on Code Search
We had three breakout groups with the following prompt for discussion: “Come up with two
concrete examples of how code search and LLMs are good and two where they are bad.” Each
group reported out, and we summarize the main points.

24172

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

122 24172 – Code Search

4.3.1 The Good of LLMs + Code Search

The power of the LLMs can be used to assist users with understanding complex queries
and patterns (e.g., regexes). Similarly, the LLM could be used to summarize or analyze the
results from code search to aid with code comprehension. Another interesting use case could
be for finding clones, which may be more likely to be generated by a LLM than by a real
person. LLMs may uncover better search / query heuristics. Analyzing tradeoffs between
different decisions (e.g., choosing packages). Good at presenting results in a personalized
way (e.g, personalized summarization / aggregation etc). Help less expert users act more
like power users.

The ability to support fuzzy searches with embeddings for re-ranking search results would
be a useful combination of LLMs and Code Search. LLMs can also go to answering the actual
question instead of just code retrieval. Test code generation was mentioned in particular.
LLMs fall short when fact extraction / code navigation is necessary (or at least unnecessary).

4.3.2 The Bad of LLMs + Code Search

On the flip side, often, we need results of a query or prompt to be correct. Additionally,
checking for the absence of something is hard (e.g., have all references to a depreciated API
been updated?). Complete results are needed (audits, security, etc.)

There could be legal issues or privacy concerns that prevent sending data to LLM. Also,
there were provenance concerns and concerns about update frequency.

There were also concerns for education with respect to whether students will learn how
to read code without writing it.

4.4 Code Search at Different Stages of Software Development
This breakout group discussed the different stages of software development and how code
search can be used at each stage. The group discussed different stages where code search
is relevant, such as learning a new language, debugging, and code reuse. The group also
discussed the different tools and techniques that can be used at each stage, such as code
search engines, code search in IDEs, and code search in documentation.

Satish Chandra, Michael Pradel, and Kathryn T. Stolee 123

Participants

Boris Bokowski
Google – München, DE

José Cambronero
Microsoft – Redmond, US

Satish Chandra
Google – Mountain View, US

Jürgen Cito
TU Wien, AT

Luca Di Grazia
Universität Stuttgart, DE

Elena Leah Glassman
Harvard University – Allston, US

Georgios Gousios
TU Delft, NL

Reid Holmes
University of British Columbia –
Vancouver, CA

Ciera Jaspan
Google – Mountain View, US

Tobias Kiecker
HU Berlin, DE

Dongsun Kim
Kyungpook National University –
Daegu, KR

Miryung Kim
University of California at Los
Angeles, USA & Amazon Web
Services – Palo Alto, US

Jens Krinke
University College London, GB

Julia Lawall
INRIA – Paris, FR

Gabriel Matute
University of California –
Berkeley, US

Alexander Neubeck
GitHub – San Francisco, US

Michael Pradel
Universität Stuttgart, DE

Nikitha Rao
Carnegie Mellon University –
Pittsburgh, US

Kathryn T. Stolee
North Carolina State University –
Raleigh, US

Christoph Treude
The University of Melbourne, AU

Jan Van den Bussche
Hasselt University, BE

Rijnard van Tonder
Mysten Labs – Palo Alto, US

Bogdan Vasilescu
Carnegie Mellon University –
Pittsburgh, US

Cristina Videira Lopes
University of California –
Irvine, US

Tobias Welp
Google – München, DE

Bowen Xu
North Carolina State University –
Raleigh, US

Svetlana Zemlyanskaya
JetBrains GmbH – München, DE

24172

	Executive Summary (Kathryn T. Stolee, Satish Chandra, and Michael Pradel)
	Table of Contents
	Overview of Talks
	Trustworthy Code Search: A Data-Centric Perspective (Bowen Xu)
	Representations for (searching) (for? in? with?) spreadsheets (José Cambronero)
	DiffSearch: A Scalable and Precise Search Engine for Code Changes (Luca Di Grazia and Michael Pradel)
	AI-Resilient Interfaces and the Value of Variation (Elena Leah Glassman)
	Coccinelle for Rust (Julia Lawall)
	An Academic Perspective on Code Search and AI (Tobias Kiecker)
	My Code Search: Then, Now (Dongsun Kim)
	A Journey through Searching Similar Code (Miryung Kim)
	Code Search – Clone Search – Code Similarity (Jens Krinke)
	Syntactic Code Search with Sequence-to-Tree Matching (Gabriel Matute)
	Scaling Embeddings for Github (Alexander Neubeck)
	User Intent and Needs for Code Search (Nikitha Rao)
	Code and Library Search (Christoph Treude)
	Querying code in Meta-SQL (Jan Van den Bussche)
	Code Search Perspectives from (Startup) Industry (Rijnard van Tonder)
	Searching for code that doesn't exist (Cristina Videira Lopes)
	Code Search at Google (Tobias Welp)
	Codesearch in developer journeys (Ciera Jaspan)
	Code Search + Code Review = ♡ (Bogdan Vasilescu and Reid Holmes)

	Working groups
	Overview of Breakout Sessions (Kathryn T. Stolee, Boris Bokowski, José Cambronero, Satish Chandra, Jürgen Cito, Luca Di Grazia, Elena Leah Glassman, Georgios Gousios, Reid Holmes, Ciera Jaspan, Tobias Kiecker, Dongsun Kim, Miryung Kim, Jens Krinke, Julia Lawall, Gabriel Matute, Alexander Neubeck, Michael Pradel, Nikitha Rao, Christoph Treude, Jan Van den Bussche, Rijnard van Tonder, Bogdan Vasilescu, Cristina Videira Lopes, Tobias Welp, Bowen Xu, and Svetlana Zemlyanskaya)
	Code Search Needs of Different User Groups
	Impact of Generative AI Tools on Code Search
	Code Search at Different Stages of Software Development

	Participants

