
Report from Dagstuhl Seminar 24251

Teaching Support Systems for Formal Foundations of
Computer Science
Tiffany Barnes∗1, Jan Vahrenhold∗2, Thomas Zeume∗3, and
Florian Schmalstieg†4

1 North Carolina State University – Raleigh, US. tiffany.barnes@gmail.com
2 Universität Münster, DE. jan.vahrenhold@uni-muenster.de
3 Ruhr-Universität Bochum, DE. thomas.zeume@rub.de
4 Ruhr-Universität Bochum, DE. florian.schmalstieg@rub.de

Abstract
Introductory courses on formal foundations of computer science – including basic courses on
theoretical computer science (regular and context-free languages, computability theory, and
complexity theory) as well as on logic in computer science (propositional and first-order logic,
modeling, and algorithms for evaluation and satisfaction of formulas) – are a cornerstone of
computer science curricula, yet many students struggle with their often theoretical contents. The
recent influx of students in computer science, as well as the shift towards the inclusion of more
online-based teaching ask for advanced teaching support systems that aid both students and
instructors.

This Dagstuhl Seminar focussed on fostering discussion between researchers in computing
education, builders of systems for teaching formal foundations, as well as instructors of these
foundations in order to facilitate more robust research and development of systems to support
teaching and learning of the formal foundations of computer science.
Seminar June 16–21, 2024 – https://www.dagstuhl.de/24251
2012 ACM Subject Classification Social and professional topics → Computing education; Theory

of computation; Applied computing → Education
Keywords and phrases artificial intelligence in education, computing education research, educa-

tional data mining, formal foundations of computer science, intelligent tutoring systems, user
modeling and adaptive personalization, user studies

Digital Object Identifier 10.4230/DagRep.14.6.108

1 Executive Summary

Thomas Zeume (Ruhr-Universität Bochum, DE)
Tiffany Barnes (North Carolina State University – Raleigh, US)
Jan Vahrenhold (Universität Münster, DE)

License Creative Commons BY 4.0 International license
© Thomas Zeume, Tiffany Barnes, and Jan Vahrenhold

The primary goal of this Dagstuhl Seminar was to determine how to enable communication
between between researchers in computing education, builders of systems for teaching formal
foundations, as well as instructors of these foundations. While these groups have very similar
interests, they also have very different notions, foci, and methods. In particular, participants
from the “formal foundations” community talk about the “hardness” of a problem in terms of

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Teaching Support Systems for Formal Foundations of Computer Science, Dagstuhl Reports, Vol. 14, Issue 6, pp.
108–129
Editors: Tiffany Barnes, Jan Vahrenhold, and Thomas Zeume

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tiffany.barnes@gmail.com
mailto:jan.vahrenhold@uni-muenster.de
mailto:thomas.zeume@rub.de
mailto:florian.schmalstieg@rub.de
https://www.dagstuhl.de/24251
https://doi.org/10.4230/DagRep.14.6.108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 109

its computational complexity, participants from the “intelligent tutoring systems” community
are concerned with whether or not a system can scale or how to best provide feedback to the
learner, and participants from the “computing education research” community study the
effectiveness of teaching methods for learning, e.g., the cognitive load, student learning, etc.

Within the first one-and-a-half days of the seminar, tutorials on Formal Foundations
of CS, CS Education Research, and Intelligent Tutoring Systems given by experts of the
respective domains set the stage for the rest of the seminar. The tutorial on CS Education
Research was interspersed with breakout sessions for applying the theoretical content of
the tutorial to projects of seminar participants, leading to intense discussions across the
different communities and therefore being very effective also in bridging barriers between the
communities. On the afternoon of the first day, tools and tutoring systems in the formal
foundation domain were presented in teaser and poster sessions as well.

The rest of the seminar was centered around breakout sessions, whose research and
discussion topics were proposed and voted on by participants. There were a few contributed
research talks and occasional ad-hoc tutorial-like sessions as they became relevant for the
breakout sessions.

Participants noted that the seminar had a very open atmosphere and that the different
research communities were eager to learn from each other. This welcoming spirit was also
reflected by a music event on one of the evenings where three of the participants gave a
concert and a fare-well magician’s show by one of the participants as part of the closing
session.

In summary, it was a very fruitful seminar – both with respect to research collaborations
and personal interactions. The goal of bringing together the communities and bridging the
gaps between them was fully achieved. Several collaborative research projects were initiated
during the seminar and are currently being followed-up on.

24251

110 24251 – Teaching Support Systems for Formal Foundations of Computer Science

2 Table of Contents

Executive Summary
Thomas Zeume, Tiffany Barnes, and Jan Vahrenhold 108

Overview of Talks
Intelligent Tutoring Systems – An Introduction
Johan Jeuring . 112

Cognitive Science Concepts You Can Use
Shriram Krishnamurthi, Rodrigo Duran, and R. Benjamin Shapiro 114

A Formal-Language-Based Framework for Computing Feedback Information Gener-
ically
Martin Lange . 114

Intelligent Tutoring Systems – Tools (What makes them intelligent?)
Martin Lange, Tiffany Barnes, Felix Freiberger, Michael Goedicke, Norbert Hun-
deshagen, Johan Jeuring, Alexandra Mendes, Seth Poulsen, and Francois Schwar-
zentruber . 115

Automated Proof by Induction Feedback
Seth Poulsen . 116

Theory & Methods in Computing Education Research
R. Benjamin Shapiro and Shriram Krishnamurthi 116

Formal Foundations of Computer Science: A personal perspective
Thomas Zeume . 117

Demos
pseuCo Book
Felix Freiberger . 117

FLACI – Formal Languages, Automata, Compilers and Interpreters
Michael Hielscher . 118

TeachingBook
Norbert Hundeshagen . 118

DiMo
Martin Lange and Norbert Hundeshagen . 119

Proof Blocks
Seth Poulsen . 120

JFLAP (Java Formal Language and Automata Package)
Susan Rodger . 120

Teaching Formal Foundations of Computer Science with Iltis
Marko Schmellenkamp . 121

Automata Tutor
Maximilian Weininger . 122

Karp
Chenhao Zhang . 122

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 111

Working groups
Formal foundations in schools
Erik Barendsen, Rodrigo Duran, Judith Gal-Ezer, Sandra Kiefer, Dennis Komm,
Tilman Michaeli, Liat Peterfreund, Ramaswamy Ramanujam, Susan Rodger, Florian
Schmalstieg, R. Benjamin Shapiro, and John Slaney 123

Using LLMs in the process of learning how to perform reductions – An idea
Michael Hielscher, Norbert Hundeshagen, Johan Jeuring, Martin Lange, and Tilman
Michaeli . 124

Brainstorm on Recording Teachers’ Observations of Errors for Formal Foundations
of CS
Daphne Miedema, Norbert Hundeshagen, Martin Lange, Alexandra Mendes, Sophie
Pinchinat, Anne Remke, Vaishnavi Sundararajan, Maximilian Weininger, and
Thomas Zeume . 125

Automated Proof Feedback in the Wild
Seth Poulsen, Erik Barendsen, Felix Freiberger, Dennis Komm, and Thomas Zeume 125

What makes translating formal languages in set notation to context free grammar
difficult?
Florian Schmalstieg, Rodrigo Duran, Liat Peterfreund, Jakob Schwerter, John
Slaney, and Maximilian Weininger . 126

Can teaching support systems affect students self-regulated learning behavior?
Jakob Schwerter, Michael Hielscher, Daphne Miedema, Marko Schmellenkamp, Jan
Vahrenhold, and Thomas Zeume . 126

Tool building: Experience exchange
Maximilian Weininger, Tiffany Barnes, Felix Freiberger, Michael Goedicke, Michael
Hielscher, Dennis Komm, Daphne Miedema, Seth Poulsen, Susan Rodger, Florian
Schmalstieg, Marko Schmellenkamp, Vaishnavi Sundararajan, and Thomas Zeume 127

Participants . 129

24251

112 24251 – Teaching Support Systems for Formal Foundations of Computer Science

3 Overview of Talks

3.1 Intelligent Tutoring Systems – An Introduction
Johan Jeuring (Utrecht University, NL)

License Creative Commons BY 4.0 International license
© Johan Jeuring

I presented a brief introduction to Intelligent Tutoring Systems. In this abstract I will review
the themes I discussed, and include pointers for further reading.

A good introduction to Tutoring Systems is VanLehn’s the behavior of tutoring sys-
tems [17]. He distinguishes two components:

the inner loop, in which a student works on a task, takes steps towards solving the task,
and a tutoring system provides support in the form of feedback and hints;
the outer loop, which helps a student with finding a path in the learning material, for
example by suggesting next tasks to work on.

Through the years, many approaches to supporting a student when solving an exercise
(the inner loop) have been developed:

cognitive tutors, built upon theories such as ACT-R [7];
constraint-based tutors [6];
domain reasoners [5, 4, 3];
data-driven tutors [2];
LLM-based tutors [15];
and more.

Some approaches use a student model to keep track of the learning progress of a student,
and to adapt the kind of feedback given to a student. There exist many approaches to
student modelling [1]; some well known examples are:

ELO ratings
Overlay models
Knowledge space theory
Constraint-based modelling
Bayesian modelling
Model tracing

Student models are also used to support the outer loop. The outer loop typically presents
tasks to a student. The sequence in which tasks are offered is often fixed, sometimes
determined by the student, and sometimes supported by a giving suggestions for a next task
to work on. Recommendations can be based on a learner model and task attributes, on
behavior from other students, on ratings on earlier items, and sometimes other components [8].

Many experiments have been performed to study the effectiveness of Tutoring Systems.
VanLehn has shown that if you compare the effects of a tutor that supports stepwise exercises
with the help of teaching assistants, there is little difference [16]. Quite a few other meta-
reviews on the effectiveness of tutoring systems have been performed, but it is hard to use
these reviews to make general statements: they regularly compare apples and pears [9, 10].

There is quite a lot of recent work on teaching-support systems for formal foundations
of computer science [11, 12, 13, 14]. A complete overview would require a more systematic
approach.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 113

References
1 Konstantina Chrysafiadi and Maria Virvou: Student modeling approaches: A literature

review for the last decade. Expert Syst. Appl. 40(11): 4715-4729 (2013)
2 Behrooz Mostafavi and Tiffany Barnes: Evolution of an Intelligent Deductive Logic Tutor

Using Data-Driven Elements. Int. J. Artif. Intell. Educ. 27(1): 5-36 (2017)
3 Bastiaan Heeren and Johan Jeuring: Feedback services for stepwise exercises. Sci. Comput.

Program. 88: 110-129 (2014)
4 Bastiaan Heeren, Johan Jeuring and Alex Gerdes: Specifying Rewrite Strategies for Inter-

active Exercises. Math. Comput. Sci. 3(3): 349-370 (2010)
5 Josje Lodder, Bastiaan Heeren and Johan Jeuring: A Domain Reasoner for Propositional

Logic. J. Univers. Comput. Sci. 22(8): 1097-1122 (2016)
6 Antonija Mitrovic, Michael Mayo, Pramuditha Suraweera and Brent Martin: Constraint-

Based Tutors: A Success Story. IEA/AIE 2001: 931-940
7 J.R. Anderson, A. T. Corbett, K.R. Koedinger and Ray Pelletier. (1995). Cognitive Tutors:

Lessons Learned. Journal of the Learning Sciences, 4(2), 167–207. https://doi.org/10.
1207/s15327809jls0402_2

8 M. Deschênes. Recommender systems to support learners’ Agency in a Learning Context:
a systematic review. Int J Educ Technol High Educ 17, 50 (2020). https://doi.org/10.
1186/s41239-020-00219-w

9 J. A. Kulik and J. D. Fletcher (2016). Effectiveness of Intelligent Tutoring Systems: A
Meta-Analytic Review. Review of Educational Research, 86(1), 42-78. https://doi.org/
10.3102/0034654315581420

10 Alan C.K. Cheung and Robert E. Slavin. The effectiveness of educational technology
applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis,
Educational Research Review, Volume 9, 2013, Pages 88-113, ISSN 1747-938X, https:
//doi.org/10.1016/j.edurev.2013.01.001.

11 Marko Schmellenkamp, Alexandra Latys, Thomas Zeume: Discovering and Quantifying
Misconceptions in Formal Methods Using Intelligent Tutoring Systems. SIGCSE (1) 2023:
465-471

12 Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman and Matthew West: Proof Blocks:
Autogradable Scaffolding Activities for Learning to Write Proofs. ITiCSE (1) 2022: 428-434

13 Matthew Farrugia-Roberts, Bryn Jeffries, Harald Søndergaard: Programming to Learn:
Logic and Computation from a Programming Perspective. ITiCSE (1) 2022: 311-317

14 Preya Shabrina, Behrooz Mostafavi, Mark Abdelshiheed, Min Chi and Tiffany Barnes.
Investigating the impact of backward strategy learning in a logic tutor: Aiding subgoal
learning towards improved problem solving. International Journal of Artificial Intelligence
in Education, pages 1–37, 2023.

15 Angelo Sifaleras. Generative Intelligence and Intelligent Tutoring Systems: 20th Interna-
tional Conference, ITS 2024, Thessaloniki, Greece, June 10–13, 2024, Proceedings, Part I.
Springer Nature, 2024.

16 Kurt VanLehn. The relative effectiveness of human tutoring, intelligent tutoring systems,
and other tutoring systems. Educational Psychologist, 46(4):197–221, 2011.

17 Kurt VanLehn. The behavior of tutoring systems. International journal of artificial
intelligence in education, 16(3):227–265, 2006.

24251

https://doi.org/10.1207/s15327809jls0402_2
https://doi.org/10.1207/s15327809jls0402_2
https://doi.org/10.1186/s41239-020-00219-w
https://doi.org/10.1186/s41239-020-00219-w
https://doi.org/10.3102/0034654315581420
https://doi.org/10.3102/0034654315581420
https://doi.org/10.1016/j.edurev.2013.01.001
https://doi.org/10.1016/j.edurev.2013.01.001

114 24251 – Teaching Support Systems for Formal Foundations of Computer Science

3.2 Cognitive Science Concepts You Can Use
Shriram Krishnamurthi (Brown University – Providence, US), Rodrigo Duran (Federal
Institute of Mato Grosso do Sul, BR), and R. Benjamin Shapiro (University of Washington –
Seattle, US)

License Creative Commons BY 4.0 International license
© Shriram Krishnamurthi, Rodrigo Duran, and R. Benjamin Shapiro

A tour of some of the central theories of cognitive science that are directly applicable in tools
for teaching computing foundations (and also in generic pedagogy).

3.3 A Formal-Language-Based Framework for Computing Feedback
Information Generically

Martin Lange (Universität Kassel, DE)

License Creative Commons BY 4.0 International license
© Martin Lange

Joint work of Florian Bruse, Martin Lange
Main reference Florian Bruse, Martin Lange: “Computing All Minimal Ways to Reach a Context-Free Language”, in

Proc. of the Reachability Problems – 18th International Conference, RP 2024, Vienna, Austria,
September 25-27, 2024, Proceedings, Lecture Notes in Computer Science, Vol. 15050, pp. 38–53,
Springer, 2024.

URL https://doi.org/10.1007/978-3-031-72621-7_4

We present a theory of rewriting a word into a given target language. We show that the
natural notion of equivalence between corrections as sequences of edit operations can be
captured syntactically by means of a rather simple rewrite system. Completeness relies
on a normal form for corrections that is then also used to develop a notion of minimality
for corrections. This is not based on edit distance between words and languages but on a
subsequence order on corrections, capturing the intuitive notion of doing a minimal number
of rewriting steps. We show that the number of minimal corrections is always finite, and
that they are computable for context-free languages.

The motivation for this theory and the more intricate notion of minimality is drawn from
the study of digital classroom environments where language learning is required. Minimal
corrections can be used to give individually targeted feedback and thus guide the learning
process automatically.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-72621-7_4
https://doi.org/10.1007/978-3-031-72621-7_4
https://doi.org/10.1007/978-3-031-72621-7_4
https://doi.org/10.1007/978-3-031-72621-7_4
https://doi.org/10.1007/978-3-031-72621-7_4

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 115

3.4 Intelligent Tutoring Systems – Tools (What makes them
intelligent?)

Martin Lange (Universität Kassel, DE), Tiffany Barnes (North Carolina State University –
Raleigh, US), Felix Freiberger (Universität des Saarlandes – Saarbrücken, DE), Michael
Goedicke (Universität Duisburg – Essen, DE), Norbert Hundeshagen (Universität Kassel,
DE), Johan Jeuring (Utrecht University, NL), Alexandra Mendes (University of Porto, PT
& INESC TEC – Porto, PT), Seth Poulsen (Utah State University, US), and Francois
Schwarzentruber (IRISA – ENS Rennes, FR)

License Creative Commons BY 4.0 International license
© Martin Lange, Tiffany Barnes, Felix Freiberger, Michael Goedicke, Norbert Hundeshagen,
Johan Jeuring, Alexandra Mendes, Seth Poulsen, and Francois Schwarzentruber

The original motivation for this breakout session was given by a simple question: how can
intelligent tutoring systems (ITS) be made intelligent? Is the power of LLMs for example
sufficient to guarantee a level of machine intelligence that is sufficient for generating feedback
in ITS for guiding students through particular learning processes? But then, ITS have been
designed and in use before LLMs came up, and therefore other techniques have been used to
create specific forms of intelligence in these tools.

The aim of this breakout session was then to analyse and perhaps categorise and quantify
such forms of intelligence in order to answer the question above in a way that ideally would
tell the developers of ITS what technology to implement in their tools in order to achieve
certain forms of intelligent feedback.

Not surprisingly, the concept of intelligence – even in the restricted setting of tutoring
systems for formal foundations of computer science – is not easily categorised and quantified.
So a large amount of time in this breakout session was initially spent on personal reports on
what is used in particular tools. Examples of such methods include the following general
methods.

Comparing the way that a student constructs a solution to successful paths taken from
previous attempt (of other students).
Comparing a student’s solution – either the final result or, in interactive tools, the
construction path – to some master solution in the form of distance measures or, more
generally, as inputs to some abstract problems, for instance comparing actions traces.
Provide a set of rules that are allowed to be applied in order to construct a correct
solution.

This has also sparked off a brief discussion on what should be judged as a correct solution:
just the final answer, or the entire construction path. The latter perhaps needs a higher
level of intelligence in an ITS. Another very much related question that has been discussed
is: what technology can be used to intelligently create good exercises automatically?

The breakout session indentified some general technologies that can be used to create
some form of intelligence or other, either in marking, feedback generation or creation of
examples and exercise:

LLMs
SAT solvers and, more generally, SMT/CSP solvers,
enumeration algorithms researched primarily in combinatorics and discrete math.

24251

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

116 24251 – Teaching Support Systems for Formal Foundations of Computer Science

3.5 Automated Proof by Induction Feedback
Seth Poulsen (Utah State University – Logan, US)

License Creative Commons BY 4.0 International license
© Seth Poulsen

Joint work of Seth Poulsen, Chenyan Zhao, Yael Gertner, Benjamin Cosman, Shubhang Kulkarni, Mahesh
Viswanathan, Hongxuan Chen, Geoffrey Herman, Matthew West

Main reference Chenyan Zhao, Mariana Silva, Seth Poulsen: “Autograding Mathematical Induction Proofs with
Natural Language Processing”, CoRR, Vol. abs/2406.10268, 2024.

URL https://doi.org/10.48550/ARXIV.2406.10268

This talk is about software tools that help students learn to write mathematical proofs.
Research has shown that timely feedback can be very helpful to students learning new skills.
First I introduce Proof Blocks, a tool which enables students to construct mathematical
proofs by dragging and dropping prewritten proof lines into the correct order instead of
needing to write them from scratch. The instructor specifies the dependency graph of the
lines of the proof, so that any correct arrangement of the lines can receive full credit. We
develop a novel algorithm which enables assigning students’ partial credit on Proof Blocks
problems based on the number of edits that their submission is from a correct solution.

For assessment, we provide statistical evidence that Proof Blocks are easier than written
proofs, which are typically very difficult. We also show that Proof Blocks problems provide
about as much information about student knowledge as written proofs. Survey results
show that students believe that the Proof Blocks user interface is easy to use, and that the
questions accurately represent their ability to write proofs.

Next, I present a set of training methods and models capable of autograding freeform
mathematical proofs by leveraging existing large language models and other machine learning
techniques. We recruit human graders to grade the same proofs as the training data, and
find that the best grading model is also more accurate than most human graders.

With the development of these grading models, we create and deploy an autograder for
proof by induction problems and perform a user study with students. Results from the study
shows that students are able to make significant improvements to their proofs using the
feedback from the autograder, but students still do not trust the AI autograders as much as
they trust human graders. Future work can improve on the autograder feedback and figure
out ways to help students trust AI autograders.

3.6 Theory & Methods in Computing Education Research
R. Benjamin Shapiro (University of Washington – Seattle, US) and Shriram Krishnamurthi
(Brown University – Providence, US)

License Creative Commons BY 4.0 International license
© R. Benjamin Shapiro and Shriram Krishnamurthi

A tour through some of the foundational ideas in education research applicable in computing.
This was followed by a description of good and poor research questions. Finally, we presented
three “grammars” for structuring a study.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2406.10268
https://doi.org/10.48550/ARXIV.2406.10268
https://doi.org/10.48550/ARXIV.2406.10268
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 117

3.7 Formal Foundations of Computer Science: A personal perspective
Thomas Zeume (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Thomas Zeume

In this tutorial, I will outline typical topics and methods included in introductory courses
on formal foundations of computer science. Material from introductory courses in logic and
theoretical computer science at the Ruhr-Universität Bochum will be used as examples.

4 Demos

4.1 pseuCo Book
Felix Freiberger (Universität des Saarlandes – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Felix Freiberger

Main reference Felix Freiberger: “pseuCo Book: An Interactive Learning Experience”, in Proc. of the ITiCSE 2022:
Innovation and Technology in Computer Science Education, Dublin, Ireland, July 8 – 13, 2022,
Volume 1, pp. 414–420, ACM, 2022.

URL https://doi.org/10.1145/3502718.3524801

In this demo, we present pseuCo Book, a truly interactive textbook experience designed to
help teachers and students alike. In pseuCo Book, interactive demonstrations and exercises are
interwoven with traditional textual elements. Its technical foundation, the Hybrid Document
Framework, is a toolset that makes authoring interactive textbooks as easy as possible. PseuCo
Book contains three chapters: The first one, covering Milner’s Calculus of Communicating
systems, is built around an interactive editor for CCS semantics derivations. The second
chapter, teaching notions of equality for concurrent processes, features custom-built exercises
covering proofs and algorithms around trace equality, bisimilarity, and observation congruence.
The third chapter, which covers practical concurrent programming in a minimal, academic
programming language called pseuCo, is built around a set of verification technologies that
allow deep inspection of the concurrency-related features of pseuCo programs, enabling fast
autograding of user-submitted solutions to programming tasks. PseuCo Book has been
used extensively as part of the Concurrent Programming lecture at Saarland University. A
comprehensive user study, run as part of the course, demonstrates that pseuCo Book is both
well-received by students and has a measurable, positive impact on student performance.

24251

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502718.3524801
https://doi.org/10.1145/3502718.3524801
https://doi.org/10.1145/3502718.3524801
https://doi.org/10.1145/3502718.3524801

118 24251 – Teaching Support Systems for Formal Foundations of Computer Science

4.2 FLACI – Formal Languages, Automata, Compilers and Interpreters
Michael Hielscher (Pädagogische Hochschule Schwyz, CH)

License Creative Commons BY 4.0 International license
© Michael Hielscher

Main reference Michael Hielscher, Christian Wagenknecht: “FLACI – Eine Lernumgebung für theoretische
Informatik, Informatik für alle, 18. GI-Fachtagung Informatik und Schule”, INFOS 2019: Page
211-220

URL https://flaci.com
Main reference Christian Wagenknecht, Michael Hielscher: “Formale Sprachen, abstrakte Automaten und Compiler:

Lehr- und Arbeitsbuch mit FLACI für Grundstudium und Fortbildung”, Springer Nature, 2022.
URL https://doi.org/10.1007/978-3-658-36853-1

I gave a brief demo session on FLACI, a web-based system designed for working with formal
languages, context-free grammars, and automata. FLACI simplifies the application of these
theories to compiler construction, making it accessible even at the high school level. The
system allows users to visually construct and simulate automata, derivations, and compiler
processes. The goal is to help students learn formal foundations while they work towards
translating their own simple language into visual or acoustic output using a compiler they
generate from a formal definition.

4.3 TeachingBook
Norbert Hundeshagen (Universität Kassel, DE)

License Creative Commons BY 4.0 International license
© Norbert Hundeshagen

Joint work of Norbert Hundeshagen, Maurice Herwig, John Hundhausen

The TeachingBook (TB) is a prototype of a web-based platform to create interactive learning
materials in a cell-based Jupyter-Notebook-like environment. Its main feature is the flexibility
in creating content for lectures such as interactive scripts or exercise sheets by simply
arranging cells of different types (see attached screenshot). Currently, several cell-types are
supported. Besides markdown cells to provide LateX content and quizzes, also cells are
available to foster the learning of topics in the realm of formal foundations in computer science
(regular languages, reductions, ...). Furthermore, TB is designed to ease the integration of
existing tools either as iFrames or natively as front-end components. Several extensions of
the TeachingBook are currently under development in student projects and a preliminary
usability study has been conducted in a lecture on computability theory. It is planned that a
publication will be ready for next year.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://flaci.com
https://flaci.com
https://flaci.com
https://flaci.com
https://doi.org/10.1007/978-3-658-36853-1
https://doi.org/10.1007/978-3-658-36853-1
https://doi.org/10.1007/978-3-658-36853-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 119

4.4 DiMo
Martin Lange (Universität Kassel, DE) and Norbert Hundeshagen (Universität Kassel, DE)

License Creative Commons BY 4.0 International license
© Martin Lange and Norbert Hundeshagen

Joint work of Maurice Herwig, Norbert Hundeshagen, John Hundhausen, Stefan Kablowski, Martin Lange,
Georg Siebert

Main reference Maurice Herwig, Norbert Hundeshagen, John Hundhausen, Stefan Kablowski, Martin Lange:
“Problem-Specific Visual Feedback in Discrete Modelling”, in Proc. of the DELFI 2024 – Die 22.
Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V., DELFI 2024, Fulda, Germany,
September 9-11, 2024, LNI, Vol. P-356, Gesellschaft für Informatik e.V., 2024.

URL https://doi.org/10.18420/DELFI2024_08

DiMo, short for Discrete Modelling, is a tool that supports learning of skills to use propositional
logic as a backbone for general problem solving. Typical exercises in this area ask for the
construction of propositional formulas depending on problem instance, A good example is:
write a propositional formula Φn for n ≥ 1 that is satisfiable iff the n-queens problem has a
solution, i.e. it is possible to place n queens on a chessboard with no two of them sharing a
row, a column or a diagonal line. Another example is: write a formula ΦG for any undirected
graph G that is satisfiable iff G is 3-colourable.

DiMo provides a language that is reminiscent of simple imperative programming languages
in order to specify formulas. For example,

∨n−1
i=0 D(i, 0) ∧

∧n−1
j=0
j ̸=i

¬D(j, 0) would be written as

FORSOME i: {0,..,n-1}. D(i,0) & FORALL j: {0,..,n-1} \ {i}. -D(j,0)

DiMo translates formulas in this formal language automatically into the mathematical form
above so that students see the connection to the way formulas are presented in lectures etc.

DiMo’s crown feature is a programming language with for-loops and propositions as
data types. It is supposed to be used by teachers in order to write programs that turn
propositional evaluations into any graphical form, for instance in HTML. DiMO then executes
these programs after satisfiability checks on the students’ formulas. This way, it is possible
to check correctness of the formulas graphically, for instance by depicting the placement of
queens on a chessboard.

DiMo is publically available to try out via a webinterface, located at https://dumbarton.
tifm.cs.uni-kassel.de/. Further and more detailed information can be found in two
papers on the technical aspects of DiMo [2] and on the graphical feedback interface [1].

References
1 M. Herwig, N. Hundeshagen, J. Hundhausen, S. Kablowski, and M. Lange. Problem-specific

visual feedback in discrete modelling. In Proc. 21. Fachtagung Bildungstechnologien der GI
e.V., Delfi’24, LNI, 2024. To appear.

2 N. Hundeshagen, M. Lange, and G. Siebert. Dimo – discrete modelling using propositional
logic. In Proc. 24th Int. Conf. on Theory and Applications of Satisfiability Testing, SAT’21,
number 12831 in LNCS, pages 242–250. Springer, 2021.

24251

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18420/DELFI2024_08
https://doi.org/10.18420/DELFI2024_08
https://doi.org/10.18420/DELFI2024_08
https://doi.org/10.18420/DELFI2024_08
https://doi.org/10.18420/DELFI2024_08
https://dumbarton.tifm.cs.uni-kassel.de/
https://dumbarton.tifm.cs.uni-kassel.de/

120 24251 – Teaching Support Systems for Formal Foundations of Computer Science

4.5 Proof Blocks
Seth Poulsen (Utah State University, US)

License Creative Commons BY 4.0 International license
© Seth Poulsen

Joint work of Mahesh Viswanathan, Geoffrey L. Herman, Matthew West
Main reference Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, Matthew West: “Proof Blocks:

Autogradable Scaffolding Activities for Learning to Write Proofs”, in Proc. of the ITiCSE 2022:
Innovation and Technology in Computer Science Education, Dublin, Ireland, July 8 – 13, 2022,
Volume 1, pp. 428–434, ACM, 2022.

URL https://doi.org/10.1145/3502718.3524774

In this software tool paper we present Proof Blocks, a tool which enables students to construct
mathematical proofs by dragging and dropping prewritten proof lines into the correct order.
We present both implementation details of the tool, as well as a rich reflection on our
experiences using the tool in courses with hundreds of students. Proof Blocks problems can
be graded completely automatically, enabling students to receive rapid feedback. When
writing a problem, the instructor specifies the dependency graph of the lines of the proof, so
that any correct arrangement of the lines can receive full credit. This innovation can improve
assessment tools by increasing the types of questions we can ask students about proofs, and
can give greater access to proof knowledge by increasing the amount that students can learn
on their own with the help of a computer.

4.6 JFLAP (Java Formal Language and Automata Package)
Susan Rodger (Duke University – Durham, US)

License Creative Commons BY 4.0 International license
© Susan Rodger

Main reference Susan H. Rodger, Thomas W. Finley: “JFLAP: An Interactive Formal Languages and Automata
Package”. Jones and Bartlett Publishers, Inc., Sudbury, Massachussetts, USA, 2006.

URL https://www.jflap.org

We have been designing the JFLAP tool now for about thirty years. JFLAP allows one to
experiment with finite state automata, pushdown automata, Turing machines, all kinds of
grammars, and L-systems. In addition one can experiment with algorithms and proofs such
as converting a nondeterministic finite automaton (NFA) to a deterministic finite automaton
(DFA), a DFA to a regular expression, a context-free grammar (CFG) to an nondeterministic
pushdown automaton (NPDA), or explore examples with the Pumping Lemma. We presented
a demo on the JFLAP tool to show how to take a CFG to build an LR(1) parse table, and
then parse a string from that CFG using the table. First, we loaded the following CFG:
S -> aSb, S -> aBb, B -> cB, B -> b. We then showed how to convert that CFG to an
equivalent NPDA that corresponds to the LR(1) parsing algorithm. We then traced the
string “aacbbb” showing how the NPDA is nondeterministic and that the string is accepted.
Next, we started with the same grammar and showed how to use JFLAP to construct the
LR(1) parse table from the CFG. First we calculated FIRST and FOLLOW sets. Then we
built a DFA that models how the LR(1) parsing stack works. Each state in the DFA has
marked rules associated with it, indicating how much of the rule has been processed. Using
the DFA, we constructed the equivalent LR(1) parse table. The table showed no conflicts.
Finally, we parsed the same string “aacbbb”, seeing which entry is being executed in the
table and which symbols are on the stack, showing the string is accepted.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502718.3524774
https://doi.org/10.1145/3502718.3524774
https://doi.org/10.1145/3502718.3524774
https://doi.org/10.1145/3502718.3524774
https://doi.org/10.1145/3502718.3524774
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.jflap.org
https://www.jflap.org
https://www.jflap.org

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 121

We have included two figures from this example. One of the figures shows the grammar
on the left and on the right shows the corresponding FIRST set, FOLLOW set, DFA with
marked rules associated with each state, and the corresponding LR(1) parse table. The other
figure shows one step in the parsing of the string “aacbbb$” (we add $ to the right end, an
end of string marker). The top left shows the LR(1) parse table, highlighting row 0 (state 0
in the DFA) and column S with an entry of 1, meaning the S and 1 were just pushed onto
the parsing stack on top of the 0. The top right shows the input remaining, only “$”, and
the current stack contents of 1S0 (with 1 the top of the stack). The grammar is shown in
the bottom left, highlighting the rule that is currently being reduced. The parse tree being
built is shown in the bottom right, and is now complete.

We like to show applications with the theory! www.jflap.org.

References
1 Susan H. Rodger and Thomas W. Finley. JFLAP: An Interactive Formal Languages and

Automata Package. Jones and Bartlett Publishers, Inc., Sudbury, Massachussetts, USA,
2006.

2 Susan H. Rodger, Eric N. Wiebe, Kyung Min Lee, Chris Morgan, Kareem Omar, Jonathan
Su, Increasing engagement in automata theory with JFLAP, Proceedings of the 40th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE 2009, Chattanooga, TN,
USA, pages 403-407, March 4-7, 2009.

4.7 Teaching Formal Foundations of Computer Science with Iltis
Marko Schmellenkamp (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Marko Schmellenkamp

Joint work of Marko Schmellenkamp, Fabian Vehlken, Thomas Zeume
Main reference Marko Schmellenkamp, Fabian Vehlken, Thomas Zeume: “Teaching formal foundations of computer

science with Iltis”. Educational Column of the Bulletin of EATCS 14, 2024.
URL http://bulletin.eatcs.org/index.php/beatcs/article/download/797/842

Iltis is a web-based educational support system for the formal foundations of computer science.
In the field of logic, Iltis offers exercises for many typical reasoning workflows for propositional,
modal, and first-order logic. This includes exercises for modelling a scenario with formulas,
transforming these formulas into appropriate normal forms, and testing these formulas for
satisfiability using different methods. In the field of formal languages, Iltis includes exercises
on regular expressions, finite automata, context-free grammars, and push-down automata. In
the field of computational and complexity theory, Iltis supports students with exercises for
working with graph problems and designing graph-based reductions. Core objectives in the
development of Iltis were to facilitate the straightforward incorporation of new educational
tasks, the sequencing of these individual tasks into multi-step exercises, and the cascading of
sophisticated feedback mechanisms. Iltis is regularly used in courses with more than 300
students. We welcome all readers to try Iltis at https://iltis.cs.tu-dortmund.de.

24251

www.jflap.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://bulletin.eatcs.org/index.php/beatcs/article/download/797/842
http://bulletin.eatcs.org/index.php/beatcs/article/download/797/842
http://bulletin.eatcs.org/index.php/beatcs/article/download/797/842
https://iltis.cs.tu-dortmund.de

122 24251 – Teaching Support Systems for Formal Foundations of Computer Science

4.8 Automata Tutor
Maximilian Weininger (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 4.0 International license
© Maximilian Weininger

Joint work of Loris D’Antoni, Martin Helfrich, Jan Kretinsky, Emanuel Ramneantu, Maximilian Weininger
Main reference Loris D’Antoni, Martin Helfrich, Jan Kretinsky, Emanuel Ramneantu, and Maximilian Weininger.

Automata tutor v3. In CAV (2), volume 12225 of Lecture Notes in Computer Science, pages 3–14.
Springer, 2020.

URL 10.1007/978-3-030-53291-8_1

I shortly demonstrate the teaching-support system Automata Tutor [1], showing the ability
to generate feedback quickly, in the form of counter-examples. The three core messages,
relating to the communities present at the seminar, are:
1. As TCS-teacher (working in foundations), you might want to use Automata Tutor.
2. As an educations researcher, you might be interested in the data Automata Tutor

generates.
3. As a tool-developer, you might be interested in exchanging experiences on technical

challenges.

References
1 Loris D’Antoni, Martin Helfrich, Jan Kretínský, Emanuel Ramneantu, and Maximilian

Weininger. Automata tutor v3. In CAV (2), volume 12225 of Lecture Notes in Computer
Science, pages 3–14. Springer, 2020.

4.9 Karp
Chenhao Zhang (Northwestern University – Evanston, US)

License Creative Commons BY 4.0 International license
© Chenhao Zhang

In CS theory courses, NP reductions are a notorious source of pain for students and instructors
alike. Invariably, students use pen and paper to write down reductions that work in many
but not all cases. When instructors observe that a student’s reduction deviates from the
expected one, they have to manually compute a counterexample that exposes the mistake.
We introduce Karp, a language for programming and testing NP reductions.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 123

5 Working groups

5.1 Formal foundations in schools
Erik Barendsen (Radboud University – Nijmegen, NL & Open University – Heerlen, NL),
Rodrigo Duran (Federal Institute of Mato Grosso do Sul, BR), Judith Gal-Ezer (The Open
University of Israel – Ra’anana, IL), Sandra Kiefer (University of Oxford, GB), Dennis
Komm (ETH Zürich, CH), Tilman Michaeli (TU München, DE), Liat Peterfreund (The
Hebrew University of Jerusalem, IL), Ramaswamy Ramanujam (Azim Premji University –
Bengaluru, IN), Susan Rodger (Duke University – Durham, US), Florian Schmalstieg (Ruhr-
Universität Bochum, DE), R. Benjamin Shapiro (University of Washington – Seattle, US),
and John Slaney (Australian National University – Canberra, AU)

License Creative Commons BY 4.0 International license
© Erik Barendsen, Rodrigo Duran, Judith Gal-Ezer, Sandra Kiefer, Dennis Komm, Tilman Michaeli,
Liat Peterfreund, Ramaswamy Ramanujam, Susan Rodger, Florian Schmalstieg, R. Benjamin
Shapiro, and John Slaney

The members exchanged the current state of affairs concerning the role of formal methods
in K-12 curricula and teacher education in Switzerland, Israel, The Netherlands, Germany,
Brazil, the United States, India, and Australia.

Formal methods include algorithmic reasoning, automata, formal languages, and logic.
The group discussed possible advantages and hindrances related to teaching aspects of formal
methods in K-12. It was useful in distinguishing societal needs, CS as a discipline, curricular
content, and pedagogies.

Potential themes for follow-up activities of the group are:
Why are formal foundations important in K-12? What should be in a dedicated subject
and what is important for “everyone” (or just some group) and why? Which elements
are critical for compulsory education? (The situation for CS seems to be different from,
eg, physics.) An opinion article (column) could be a result.
A research study on teachers’ perspectives on the “formal foundations”: content knowledge,
teacher beliefs, PCK, and a cross-cultural inventory of teaching practices w.r.t. formal
methods.
A research study on students’ point of view on Computing in society and which elements
are based on formal foundations of CS.
Identifying and utilizing the opportunities w.r.t. ‘reasoning’ at primary and upper primary
levels and increasing the logic content across secondary school curricula.
Cross-cultural studies on specific aspects of formal methods, taking the respective cultural
contexts into account.

24251

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

124 24251 – Teaching Support Systems for Formal Foundations of Computer Science

5.2 Using LLMs in the process of learning how to perform reductions –
An idea

Michael Hielscher (Pädagogische Hochschule Schwyz, CH), Norbert Hundeshagen (Universität
Kassel, DE), Johan Jeuring (Utrecht University, NL), Martin Lange (Universität Kassel,
DE), and Tilman Michaeli (TU München, DE)

License Creative Commons BY 4.0 International license
© Michael Hielscher, Norbert Hundeshagen, Johan Jeuring, Martin Lange, and Tilman Michaeli

Reductions are a key method in computability and complexity theory to identify unsolvable
or intractable problems. Therefore, learning how to reduce one problem onto another is
part of every standard curriculum in such courses. We here report on ideas discussed in a
working group with the goal of designing an intervention to help students solving exercises
on reductions and thus, foster a better understanding of this rather difficult topic. Moreover,
our focus is on tool-supported learning by using generative AI. From a learners perspective,
a reduction task between two problems A and B essentially can be seen as a programming
exercise, where students need to write an algorithm that converts instances of A into instances
of B, such that a solution for B can be used to solve A. Our idea of an intervention aims
at this programming part of reductions. More specifically, an educational tool should be
designed to help students plan the solution to a given reduction task. That is, before
implementing a reduction between two given problems, students use our intended tool to
describe in natural language how their algorithm should convert problem instances. This
description is then used as a prompt for an LLM (e.g. ChatGPT 4.0) with the task of actually
producing an implementation, e.g. in Python. The latter allows feedback to be computed in
two ways. First, the AI-generated algorithm can be tested for correctness of the solution
(and the plan), by running it on positive and negative examples of problem A and providing
its answer to the students. In the case of incorrect solution attempts, i.e. positive instances of
A are mapped to negative instances of B, or vice versa, further feedback on how to improve
the plan could also be provided by the LLM. We suspect that a carefully designed prompt
that includes problem-specific information and meta-information on planning can be used
for the latter. As the approach described above is intended to be a first idea on the subject,
it is clear that a number of issues need to be addressed before the intervention is actually
implemented. Among others, it is unclear how planning of reductions in natural language is
perceived by students, and how the quality of a plan can be measured. Furthermore, the
quality of LLM-output needs to be investigated, especially, if reduction tasks are complex
and/or the plans of students are incomplete or ambiguous.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 125

5.3 Brainstorm on Recording Teachers’ Observations of Errors for
Formal Foundations of CS

Daphne Miedema (University of Amsterdam, NL), Norbert Hundeshagen (Universität Kassel,
DE), Martin Lange (Universität Kassel, DE), Alexandra Mendes (University of Porto, PT
& INESC TEC – Porto, PT), Sophie Pinchinat (University of Rennes, FR), Anne Remke
(Universität Münster, DE), Vaishnavi Sundararajan (Indian Institute of Technology – New
Delhi, IN), Maximilian Weininger (IST Austria – Klosterneuburg, AT), and Thomas Zeume
(Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Daphne Miedema, Norbert Hundeshagen, Martin Lange, Alexandra Mendes, Sophie Pinchinat,
Anne Remke, Vaishnavi Sundararajan, Maximilian Weininger, and Thomas Zeume

There is not much existing research on misconceptions for FF and TCS. Therefore, we propose
to build a base to build such work on. The format will be to gather teachers’ observations on
students’ struggles in courses such as Theory of Computer Science. We do this by creating a
form asking for descriptions and example questions that these mistakes occur on. These are
collected and organized in a document, which could be written up for a discussion paper. In
a later stage, we could follow-up on this research by studying error prevalence and identifying
underlying misconceptions.

Additionally, the document could be of use for those building Teaching-Support Systems,
as they can gain insight into problems teachers or students typically run into. They could
translate this into additional exercises or hints within the TSS.

5.4 Automated Proof Feedback in the Wild
Seth Poulsen (Utah State University, US), Erik Barendsen (Radboud University – Nijmegen,
NL & Open University – Heerlen, NL), Felix Freiberger (Universität des Saarlandes – Saar-
brücken, DE), Dennis Komm (ETH Zürich, CH), and Thomas Zeume (Ruhr-Universität
Bochum, DE)

License Creative Commons BY 4.0 International license
© Seth Poulsen, Erik Barendsen, Felix Freiberger, Dennis Komm, and Thomas Zeume

We discussed the feasibility of doing a large scale study of using teaching support systems
to help students learn how to write reduction proofs as part of a computing theory course.
Such a study would involve helping 2nd year computer science students learn reduction
proofs by using Proof Blocks, Faded Proof Blocks, and feedback from large language models
fine-tuned on mathematical proof data. Student proofs would be analyzed through the lens
of the following rubric: (1) Overall proof structure is there, (2) Reduction Function is clearly
defined, (3) Proving the computability/complexity, (4) Proving the Reduction Property (both
directions).

24251

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

126 24251 – Teaching Support Systems for Formal Foundations of Computer Science

5.5 What makes translating formal languages in set notation to context
free grammar difficult?

Florian Schmalstieg (Ruhr-Universität Bochum, DE), Rodrigo Duran (Federal Institute of
Mato Grosso do Sul, BR), Liat Peterfreund (The Hebrew University of Jerusalem, IL), Jakob
Schwerter (TU Dortmund, DE), John Slaney (Australian National University – Canberra,
AU), and Maximilian Weininger (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 4.0 International license
© Florian Schmalstieg, Rodrigo Duran, Liat Peterfreund, Jakob Schwerter, John Slaney, and
Maximilian Weininger

The conversion of formal languages (e.g. set notation to context free grammar or PDA) is
a difficult problem for students to tackle. But some tasks are more difficult than others.
This leads to the question: What properties make a conversion task difficult? We call such
properties difficulty-generating factors. They can help to understand why a specific task
might be difficult and to adapt tasks for different needs.

But in which ways can such factors be found systematically? And how can hypothesized
factors be verified?

To this end we propose a mixture of qualitative and quantitative research designs. First
we want to assess possible difficulty-generating factors. For this we will be doing expert and
novice interviews to find out, which aspects of such a task they look at. The tasks for these
interviews are informed by existing student performance data.

We will then try to verify the found factors in a randomized control trial study by
systematically manipulating the aspects and using Rasch-analysis to compare the result with
the expected ranking.

5.6 Can teaching support systems affect students self-regulated learning
behavior?

Jakob Schwerter (TU Dortmund, DE), Michael Hielscher (Pädagogische Hochschule Schwyz,
CH), Daphne Miedema (University of Amsterdam, NL), Marko Schmellenkamp (Ruhr-
Universität Bochum, DE), Jan Vahrenhold (Universität Münster, DE), and Thomas Zeume
(Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Jakob Schwerter, Michael Hielscher, Daphne Miedema, Marko Schmellenkamp, Jan Vahrenhold,
and Thomas Zeume

Self-regulated learning (SLR) has been shown to be positively correlated to academic succes
(Zimmerman et al. 1992, Greene et al. 2021). In this breakout group, we considered the
question of whether – and if so how – data from digital learning environments (DLEs) can
be used to gain insights into the state of a self-regulated learning process the learner is
currently in. For the sake of conciseness, we decided to focus on the ILTIS DLE while
reminding ourselves of the fact that there is a broad spectrum of such systems. Building on
Zimmerman’s conceptualization (2008), we used the SRL cycle consisting of “Forethought
Phase” – “Performance Phase” – “Self-Reflection Phase”. Going through each of the phases
of this cycle, we started with the question which SRL-related variables can be generated
or derived by the system and what gaps currently exist. We hypothesize that using these
variables, we can create an individual learner profile which then in turn can ultimately be
used to suggest tailored interventions to help learners improve their study and learning
behavior.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 127

References
1 Greene, J. A., Plumley, R. D., Urban, C. J., Bernacki, M. L., Gates, K. M., Hogan,

K. A., Demetriou, C., & Panter, A. T. (2021). Modeling temporal self-regulatory pro-
cessing in a higher education biology course. Learning and Instruction, 72, 101201. ht-
tps://doi.org/10.1016/j.learninstruc.2019.04.002

2 Zimmerman, B. J. (2008). Investigating Self-Regulation and Motivation: Historical Back-
ground, Methodological Developments, and Future Prospects. American Educational Re-
search Journal, 45(1), 166-183. doi.org/10.3102/0002831207312909

3 Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-Motivation for Aca-
demic Attainment: The Role of Self-Efficacy Beliefs and Personal Goal Setting. American
Educational Research Journal, 29(3), 663-676. doi.org/10.3102/00028312029003663

5.7 Tool building: Experience exchange
Maximilian Weininger (IST Austria – Klosterneuburg, AT), Tiffany Barnes (North Carolina
State University – Raleigh, US), Felix Freiberger (Universität des Saarlandes – Saarbrücken,
DE), Michael Goedicke (Universität Duisburg – Essen, DE), Michael Hielscher (Pädagogische
Hochschule Schwyz, CH), Dennis Komm (ETH Zürich, CH), Daphne Miedema (University of
Amsterdam, NL), Seth Poulsen (Utah State University, US), Susan Rodger (Duke University –
Durham, US), Florian Schmalstieg (Ruhr-Universität Bochum, DE), Marko Schmellenkamp
(Ruhr-Universität Bochum, DE), Vaishnavi Sundararajan (Indian Institute of Technology –
New Delhi, IN), and Thomas Zeume (Ruhr-Universität Bochum, DE)

License Creative Commons BY 4.0 International license
© Maximilian Weininger, Tiffany Barnes, Felix Freiberger, Michael Goedicke, Michael Hielscher,
Dennis Komm, Daphne Miedema, Seth Poulsen, Susan Rodger, Florian Schmalstieg, Marko
Schmellenkamp, Vaishnavi Sundararajan, and Thomas Zeume

In this working group, we discussed best practices for building and maintaining teaching
support systems. Below, we summarize the key takeaways:

Maintainability: This is a crucial problem for teaching-support tools, and often a cause
for them to not stay available after some years. A key problem is that they are usually
developed by undergraduate or PhD-students and thus not maintained after some time.
We identified several ways to mitigate this: i) avoid using the “fanciest” new technology,
ii) limit the inclusion of other libraries and dependencies, iii) host a web app and do not
require local installation for users, iv) modularize solutions, v) have a plan for how the
tool will be maintained (which requires permanent staff to be involved).
We also discussed the idea of building on top of existing systems (like ILTIS or moodle)
which can take care of processes like user management, course management and task
management. On the one hand, this simplifies the code of the actual teaching-support
system; on the other hand, it introduces a dependency to the other system and thus a
potential maintainability problem in the future (keeping versions up to date, what if the
existing system is discountinued).
Scalability: Several tools run on a cluster of virtual machines, which has only limited
scalability. Alternative solutions include using systems like Apache Kafka, distributed
caching or client-side processing. The latter effectively eliminates scalability problems,
however at a cost: Firstly, collecting performance data requires is less immediate, but
this can be fixed as has been done for PseuCo. Secondly, client-side grading introduces a
vulnerability, as students can reverse-engineer the grader and obtain the sample solution.

24251

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

128 24251 – Teaching Support Systems for Formal Foundations of Computer Science

Funding: Acquiring the funding to host a teaching-support system is a key problem,
in particular as maintenance and scaling are expensive, but often only development of
new features is funded. The following possible solutions were suggested: using teaching
improvement funds or asking universities using the tool to pay for a student assistant
(since they anyway pay students to grade assignments, they are saving money this way).
Software-development best practices: Proper practices like writing requirements, perform-
ing code-reviews and unit tests should be applied. However, this requires knowledge of
software engineering as well as the funding and time to adhere to these practices.
Data-collection: For education purposes, it can be very useful to not only have the final
result of a task, but also a trace of all the actions the student performed when solving
the task. Moreover, for analysis, it is very useful if the tool offers a “replay” feature.
This allows to “execute” the trace and for every action of the student see the state of the
system like the student did.

Tiffany Barnes, Jan Vahrenhold, Thomas Zeume, and Florian Schmalstieg 129

Participants

Efthimia Aivaloglou
TU Delft, NL

Erik Barendsen
Radboud University – Nijmegen,
NL & Open University –
Heerlen, NL

Tiffany Barnes
North Carolina State University –
Raleigh, US

Rodrigo Duran
Federal Institute of Mato Grosso
do Sul, BR

Felix Freiberger
Universität des Saarlandes –
Saarbrücken, DE

Judith Gal-Ezer
The Open University of Israel –
Ra’anana, IL

Michael Goedicke
Universität Duisburg –
Essen, DE

Michael Hielscher
Pädagogische Hochschule
Schwyz, CH

Norbert Hundeshagen
Universität Kassel, DE

Johan Jeuring
Utrecht University, NL

Sandra Kiefer
University of Oxford, GB

Dennis Komm
ETH Zürich, CH

Shriram Krishnamurthi
Brown University –
Providence, US

Martin Lange
Universität Kassel, DE

Alexandra Mendes
University of Porto, PT &
INESC TEC – Porto, PT

Tilman Michaeli
TU München, DE

Daphne Miedema
University of Amsterdam, NL

Liat Peterfreund
The Hebrew University of
Jerusalem, IL

Sophie Pinchinat
University of Rennes, FR

Seth Poulsen
Utah State University, US

Ramaswamy Ramanujam
Azim Premji University –
Bengaluru, IN

Anne Remke
Universität Münster, DE

Susan Rodger
Duke University – Durham, US

Florian Schmalstieg
Ruhr-Universität Bochum, DE

Marko Schmellenkamp
Ruhr-Universität Bochum, DE

Francois Schwarzentruber
IRISA – ENS Rennes, FR

Thomas Schwentick
TU Dortmund, DE

Jakob Schwerter
TU Dortmund, DE

R. Benjamin Shapiro
University of Washington –
Seattle, US

John Slaney
Australian National University –
Canberra, AU

Vaishnavi Sundararajan
Indian Institute of Technology –
New Delhi, IN

Jan Vahrenhold
Universität Münster, DE

Maximilian Weininger
IST Austria –
Klosterneuburg, AT

Thomas Zeume
Ruhr-Universität Bochum, DE

Chenhao Zhang
Northwestern University –
Evanston, US

24251

	Executive Summary (Thomas Zeume, Tiffany Barnes, and Jan Vahrenhold)
	Table of Contents
	Overview of Talks
	Intelligent Tutoring Systems – An Introduction (Johan Jeuring)
	Cognitive Science Concepts You Can Use (Shriram Krishnamurthi, Rodrigo Duran, and R. Benjamin Shapiro)
	A Formal-Language-Based Framework for Computing Feedback Information Generically (Martin Lange)
	Intelligent Tutoring Systems – Tools (What makes them intelligent?) (Martin Lange, Tiffany Barnes, Felix Freiberger, Michael Goedicke, Norbert Hundeshagen, Johan Jeuring, Alexandra Mendes, Seth Poulsen, and Francois Schwarzentruber)
	Automated Proof by Induction Feedback (Seth Poulsen)
	Theory & Methods in Computing Education Research (R. Benjamin Shapiro and Shriram Krishnamurthi)
	Formal Foundations of Computer Science: A personal perspective (Thomas Zeume)

	Demos
	pseuCo Book (Felix Freiberger)
	FLACI – Formal Languages, Automata, Compilers and Interpreters (Michael Hielscher)
	TeachingBook (Norbert Hundeshagen)
	DiMo (Martin Lange and Norbert Hundeshagen)
	Proof Blocks (Seth Poulsen)
	JFLAP (Java Formal Language and Automata Package) (Susan Rodger)
	Teaching Formal Foundations of Computer Science with Iltis (Marko Schmellenkamp)
	Automata Tutor (Maximilian Weininger)
	Karp (Chenhao Zhang)

	Working groups
	Formal foundations in schools (Erik Barendsen, Rodrigo Duran, Judith Gal-Ezer, Sandra Kiefer, Dennis Komm, Tilman Michaeli, Liat Peterfreund, Ramaswamy Ramanujam, Susan Rodger, Florian Schmalstieg, R. Benjamin Shapiro, and John Slaney)
	Using LLMs in the process of learning how to perform reductions – An idea (Michael Hielscher, Norbert Hundeshagen, Johan Jeuring, Martin Lange, and Tilman Michaeli)
	Brainstorm on Recording Teachers’ Observations of Errors for Formal Foundations of CS (Daphne Miedema, Norbert Hundeshagen, Martin Lange, Alexandra Mendes, Sophie Pinchinat, Anne Remke, Vaishnavi Sundararajan, Maximilian Weininger, and Thomas Zeume)
	Automated Proof Feedback in the Wild (Seth Poulsen, Erik Barendsen, Felix Freiberger, Dennis Komm, and Thomas Zeume)
	What makes translating formal languages in set notation to context free grammar difficult? (Florian Schmalstieg, Rodrigo Duran, Liat Peterfreund, Jakob Schwerter, John Slaney, and Maximilian Weininger)
	Can teaching support systems affect students self-regulated learning behavior? (Jakob Schwerter, Michael Hielscher, Daphne Miedema, Marko Schmellenkamp, Jan Vahrenhold, and Thomas Zeume)
	Tool building: Experience exchange (Maximilian Weininger, Tiffany Barnes, Felix Freiberger, Michael Goedicke, Michael Hielscher, Dennis Komm, Daphne Miedema, Seth Poulsen, Susan Rodger, Florian Schmalstieg, Marko Schmellenkamp, Vaishnavi Sundararajan, and Thomas Zeume)

	Participants

