
Report from Dagstuhl Seminar 25052

From Research to Certification with Data-Driven Medical
Decision Support Systems
Raul Santos-Rodriguez∗1, Kacper Sokol∗2, Julia E. Vogt∗3, and
Sven Wellmann∗4

1 University of Bristol, GB. enrsr@bristol.ac.uk
2 ETH Zürich, CH. kacper.sokol@inf.ethz.ch
3 ETH Zürich, CH. julia.vogt@inf.ethz.ch
4 Universität Regensburg, DE. sven.wellmann@barmherzige-regensburg.de

Abstract
This report outlines the programme and outcomes of Dagstuhl Seminar 25052 “From Research to
Certification with Data-Driven Medical Decision Support Systems”. Our seminar addressed the
complex challenges of transferring artificial intelligence systems from research labs into real-world
clinical practice. Bringing together clinicians, researchers and industry stakeholders, it explored
the potential and pitfalls of deploying data-driven models in healthcare, highlighting the need for
rigorous evaluation, human-centred design and responsible innovation. Key discussions included
regulatory hurdles, reproducibility issues, interpretability and human–machine collaboration.
Group sessions focused on evaluation frameworks and human factors in medical artificial intelligence
system design. The seminar laid the foundation for a collaborative research agenda aimed at safe,
effective and ethical integration of data-driven predictive models into real-life clinical workflows.
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Seminar Vision

Artificial intelligence has made tremendous strides across many spheres of life, however
deploying this technology in safety critical domains remains challenging. This Dagstuhl
Seminar focuses on clinical practice where data-driven models can streamline the work of
healthcare professionals and democratise access to personalised medicine, thus have lasting
positive impact on society, but also where deploying such tools without adequate foresight
and safeguards can be perilous. This duality – anticipated benefits that may come along
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with unintended consequences – requires new technologies to be thoroughly vetted, e.g.,
with clinical trials and medical certification processes, before they can be deployed to avoid
any harmful fallout. However, fulfilling such regulatory requirements is a lengthy and
complex process plagued with many challenges, hence while prototype systems are becoming
increasingly ubiquitous, they often remain indefinitely designated as research tools that
can be used exclusively for research purposes. Their lacklustre adoption is compounded by
pervasive reproducibility issues; history of unsafe systems being deployed prematurely; scarce
data that are inherently private, difficult to collect or share, and often riddled with numerous
biases; and prevalence of automation promises that never come to fruition. Such hurdles
result in healthcare remaining one of the least digitised spheres of life.

A different contributing factor is predictive systems often being misconstrued as autonom-
ous rather than social and relational, which is manifested in a counterproductive drive
to match or exceed human-level performance in selected (narrowly- or ill-defined) tasks,
with the aim to fully automate and replace humans. This goal has nonetheless repeatedly
proven difficult to attain due to brittle predictions whose subpar fairness, interpretability
and robustness as well as ambiguous accountability are concerning, especially given their
potential harm. By considering the broader organisational and societal context in which
data-driven systems are operationalised, we should not only strive to automate and replace
(when appropriate and desirable) but also to augment and support human reasoning and
decision-making to help people flourish at work, e.g., through human–machine collaboration
that preserves people’s agency and maintains the attribution of responsibility with them.
Such a perspective promises to offer an antidote to widely reported apprehension of artificial
intelligence and expedite its adoption in safety critical domains.

Seminar Topic

To address these challenges, our interdisciplinary seminar gathers a broad range of stakeholders
– including clinicians, academics and researchers from industry – whose diverse expertise
can contribute to charting a novel research agenda for effective and responsible adoption of
artificial intelligence in medicine given the complex sociotechnical landscape outlined above.
Our goal is to identify best ways of operationalising medical data-driven systems as to ensure
their alignment with the needs and expectations of various stakeholders in healthcare as well
as seamless integration into real-life clinical workflows, taking a human-centred perspective.
Exploring these aspects of artificial intelligence is especially important given that achieving
state-of-the-art performance on benchmark tasks often does not directly translate into clinical
efficacy and acceptability. To support this objective, we additionally intend to scrutinise
relevant evaluation procedures, medical device certification processes, practicality of clinical
trials involving data-driven algorithms and clinical approvals thereof in view of compliance
with various laws, rules and regulations as well as societal norms and ethical standards.
Throughout the seminar we envisage identifying challenges that can be addressed with current
technologies, distilling areas that require further work, and emphasising promising research
directions. Finally, the event aims to galvanise an interdisciplinary community dedicated to
advancing the meeting’s agenda after its conclusion.

Seminar Outcomes

The seminar focused on the challenges of translating medical artificial intelligence (AI) models
from research settings to real-world clinical applications. It brought together academic and
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industry researchers, start-up representatives as well as practising clinicians to foster a
multidisciplinary exchange of ideas. One of the key highlights of the seminar was an invited
keynote by Rich Caruana from Microsoft Research. His presentation on ante-hoc interpretable
models emphasised the importance of intelligibility in machine learning for healthcare. This
talk sparked significant discussions among the participants and served as a catalyst for many
of the conversations that followed.

Throughout the seminar, the participants engaged in a variety of discussions and present-
ations. Clinicians were invited to share their experiences with data-driven decision support
systems, focusing on both success stories and ongoing challenges; they were also encouraged
to describe their hopes and vision for the future of such tools. These clinical pitches played
a central role in shaping the seminar’s core themes, which included research, translation,
testing, deployment, monitoring, updating and maintenance of AI systems in healthcare.
Additionally, researchers delivered short presentations on their work, providing insights into
the state of the art as well as open research problems in clinical AI systems. A dedicated
session for start-ups offered valuable insights into the process of transforming research find-
ings into real-life clinical tools. Among others, entrepreneurs shared their experiences with
commercialisation and the regulatory hurdles they encountered. Many discussions revolved
around the practical aspects of deploying AI in healthcare settings and the lessons learnt
from these experiences.

The seminar also facilitated group work; two dedicated working groups were formed.
The first group focused on frameworks for evaluation and (post-deployment) monitoring of
clinical AI. The second group explored important criteria to consider when selecting clinical
problems for which to develop AI tools; it additionally investigated human factors of medical
AI systems and key approaches to improve the interaction between AI and doctors.

Overall, the seminar identified pressing challenges and opportunities in clinical AI research
and deployment. Clinicians gained a deeper understanding of AI’s capabilities and limitations,
while researchers benefited from the exchange of strategies for overcoming integration and
adoption barriers. The discussions and findings from the seminar are expected to facilitate
smoother transitions from research to clinical AI prototypes, allowing such tools to be tested
and deployed in hospitals. By fostering interdisciplinary collaboration, the seminar laid the
groundwork for future innovations in AI-driven clinical decision support systems. The insights
shared and connections formed during the event will contribute to ongoing advancements in
the field and help bridge the gap between AI research and practical healthcare applications.
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3 Overview of Talks

3.1 Bridging the Gap Between Clinical Data and AI: Lessons From
Real-World EMR Studies

Brett Beaulieu-Jones (University of Chicago, US)

License Creative Commons BY 4.0 International license
© Brett Beaulieu-Jones

Healthcare data, particularly electronic medical records (EMRs), present significant challenges
due to their complexity, inconsistency and inherent biases. This presentation explores the
implications of these issues for clinical artificial intelligence (AI) and phenotyping models,
emphasising the role of clinician-initiated (CI) versus non-clinician-initiated (NCI) data in
predictive modelling. Using real-world case studies, we examine how AI models interpret
EMR data, the risks of confounding feedback loops in clinical decision support and the
divergence between models trained on CI and NCI data. We highlight findings from large-scale
EMR studies on patient risk stratification, model performance limitations and the impact of
institutional effects. Additionally, we discuss the dangers of label leakage, reproducibility
challenges in published predictive models and the unintended consequences of AI-based
clinical alerts. The talk underscores the need for rigorous evaluation of AI models deployed
in clinical settings to ensure they enhance, rather than hinder, medical decision-making.

3.2 Implementing Clinical Workflows in the Clinic
Michael Brudno (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Michael Brudno

In this presentation I will look at the challenges of implementing machine learning (ML) in
a hospital setting, concentrating specifically on integrating ML into clinical workflows in a
safe and effective manner. I will utilise two examples from my research: the deployment of
Machine Learning Medical Directives (MLMD) for making low-risk decision in paediatric
Emergency Rooms and scheduling of craniosynostosis and plagiocephaly patients for Plastic
Surgery consultations based on their likely risk and urgency.

To develop MLMD we used data from the EHR system from the Hospital for Sick
Children, a tertiary care hospital in the city of Toronto, Canada to train multiple ML models
to predict the need for urinary dipstick testing, ECGs, abdominal ultrasounds, testicular
ultrasounds, bilirubin testing and forearm X-rays using data available at triage. There was
a total of 42,238 patients (54.7% boys) included in model development; mean (SD) age of
the children was 5.4 (4.8) years. Models obtained high area under the receiver operator
curve (0.89–0.99) and positive predictive values (0.77–0.94) across each of the use cases.
The proposed implementation of MLMDs would streamline care for 22.3% of all patient
visits and make test results available earlier by 165 minutes (weighted mean) per affected
patient. Model explainability for each MLMD demonstrated clinically relevant features
having the most influence on model predictions. In the presentation we emphasised the safety
of deploying these ML models and the importance of considering clinical workflows (staff
availability, importance of explaining the AI models to patients, etc.) in deployment.

https://creativecommons.org/licenses/by/4.0/
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In the second example we consider the scheduling of appointments of craniosynostosis
and plagiocephaly patients in a plastic surgery department. Craniosynostosis is a birth
defect that results in a misshapen skull due to premature bone fusion as a newborn’s skull is
formed. In some cases, skulls with this defect do not have adequate space for the newborn’s
brain to grow, which increases the chance of visual and mental development impairments;
almost all cases of craniosynostosis also result in head shape abnormalities that may lead
to bullying and impact individual self-perception. Craniosynostosis can be corrected by
relatively non-invasive surgery before 3 months; after this age, however, patients require
more complex surgery with higher morbidity. Craniosynostosis is typically diagnosed by a
physical examination by a specialist, such as a paediatric plastic surgeon. Paediatricians
who are not trained at identifying craniosynostosis often confuse it for plagiocephaly, a
related but mostly benign condition, and typically refer patients with either condition to
plastic surgery for a definitive diagnosis. However, the delay associated with the referral
process can require the more complex surgical approach. We have recently demonstrated
that 3D head shape reconstruction using a standalone ToF camera (3DMD system) can aid
in the identification of craniosynostosis with high accuracy and allow prioritisation of referred
patients. Again, deploying this tool into clinical care requires careful consideration of existing
clinical workflows. While reducing the overall burden for some families, it would require
patients to make multiple visits (one to have a 3D photo taken, one to see the surgeon for a
comprehensive evaluation). This would potentially lead to some inequity, as patients further
from the hospital would require more resources to benefit from the AI.

In discussing both cases I will emphasise the important “fall-back” mechanisms, where if
a patient is not flagged by the ML system, they will still undergo standard-of-care treatment,
and also consider how the presence of automation may impact clinicians who become
“accustomed” to having the support, and may fail to act appropriately if the technology
malfunctions.

3.3 Friends Don’t Let Friends Deploy Black Box Models: The
Importance of Intelligibility in Machine Learning for Healthcare

Rich Caruana (Microsoft – Redmond, US)
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The conventional wisdom in machine learning has been that to achieve high accuracy you
must use opaque black-box models such as deep neural nets, boosted trees or random forests,
and that if you want models to be interpretable and able to explain their predictions, you
have to accept a loss in accuracy. This trade-off is no longer true when working with tabular
data – in the last 10 years glass-box learning methods have been developed that are just as
accurate as black-box learning methods but which are fully interpretable and can explain their
predictions. Applying these glass-box learning methods to healthcare data has uncovered
many problems inherent in clinical data that would make models trained on the data risky
to use on patients. These problems include selection bias, race and gender bias, treatment
effects, other forms of statistical confounding and problems with popular methods of dealing
with missing data and data coding.

None of these are new problems. What is new is how widespread these problems are,
how unexpected some of them are even in high-quality well-curated data and the difficulty
of correcting these problems using traditional methods. The new high-accuracy glass-box
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learning methods have shown that these problems exist in every dataset. Moreover, these
problems make all black-box models trained on medical data suspect because one is unable
to anticipate all of the problems in advance and it is difficult to fully understand after the
fact what has been learnt by complex black-box models. Glass-box learning methods not
only make it easier to detect these problems, but also provide tools for correcting many
of these problems by allowing clinicians to use their expertise to directly correct/edit the
models when they have learnt patterns that would put patients at risk.

In the talk we examined a half dozen case studies using real medical data that show the
kinds of problems that are common in medical datasets, and how we would use glass-box
learning to detect and then correct these problems. The case studies serve as a wake-up
call to anyone using machine learning and artificial intelligence in healthcare that if they
are training and/or using models that they cannot fully understand (i.e., black-box models),
then they are almost certainly putting patients at higher risk if model predictions are acted
upon. In addition to providing models that are fully interpretable, some of the new glass-box
learning methods not only provide methods to correct models, but also can explain their
reasoning and help protect privacy. Now that glass-box learning methods are so powerful, it
would be wrong to intentionally use black-box models in critical domains such as healthcare
if glass-box models yielded comparable accuracy.

The talk was not about the technical details of any one glass-box learning method.
Instead, it was a collection of case studies that show the dangers of using black-box models
in healthcare and how glass-box methods can be used to mitigate these risks. Once the
problems hidden in each dataset are uncovered, there may be multiple methods available to
tackle the problems, but the key challenge is to detect the problems in the first place so that
they can be corrected prior to deploying the model.

3.4 Validation in Biomedical Imaging AI: Are We Ready for Clinical
Translation?

Evangelia Christodoulou (DKFZ – Heidelberg, DE)

License Creative Commons BY 4.0 International license
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Reliable validation of machine learning (ML) algorithms remains a critical challenge, particu-
larly in biomedical image analysis, where chosen performance metrics often fail to reflect
domain interests. To address this, we introduce Metrics Reloaded, a comprehensive frame-
work guiding researchers in selecting problem-aware validation metrics. Developed by an
international consortium, it employs a structured problem fingerprint to capture key aspects
influencing metric selection. Additionally, we highlight a crucial limitation in current perform-
ance reporting: the widespread neglect of performance variability. Analysing 221 MICCAI
2023 segmentation papers, we find that over 50% do not assess variability, and only 0.5%
report confidence intervals (CIs). To bridge this gap, we propose an approximation method
that reconstructs CIs using unreported standard deviation values, revealing that reported
performance differences often lack statistical significance. Together, these contributions aim
to enhance ML validation practices, ensuring more reliable and clinically relevant algorithm
evaluation.

https://creativecommons.org/licenses/by/4.0/
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3.5 Towards Deployment: Considerations Beyond Technical
Performance

Jeff Clark (IngeniumAI – Bath, GB)
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When developing a decision support system, it is tempting to focus most of your energy on the
core technology: the technical innovation, which we believe will have a positive impact on the
healthcare system once deployed. In this talk I touch upon many of the other required facets,
which must be pursued in parallel, as you move from a research project towards deployment.
This includes technical considerations concerned with safe deployment such as prospective
performance and drift, but also many factors beyond the performance of the core technology,
including but not limited to: initiating a quality management system, regulatory evidence
and documentation, route to market strategy, human factors and healthcare economics. None
of these other factors can be ignored, and will be pivotal to the success of deploying your
innovation.

3.6 AI at the Bedside. There Must Be a Culture Change
James Fackler (Johns Hopkins University – Baltimore, US)
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Focused on paediatric critical care, I believe there are no current uses of machine learning
(ML) or artificial intelligence (AI) in general that have reached the bedside. However, I
remain optimistic that AI will have a profound impact on patient care in the next five years
(or ten at the longest).

To leverage AI at the bedside will require a substantial medical culture change. Because
knowledge will be “ubiquitous”, the traditional hierarchy where the doctor (or in academic
medicine, the attending physician) is the final arbiter of truth and the sole source of a care
plan, will be upended. Patients will have access to the same knowledge as do the doctors.
The role of the senior clinician will become one who understands what AI “knows” and more
importantly what AI does not (or cannot) know. Individuals on the care team (e.g., nurses,
junior physicians, pharmacists) will develop the same relationship with AI and knowledge
but will do so within the “niche” expertise.

3.7 A Few Lessons Learnt From Trying To Work With Healthcare and
Related Data

Thomas Gärtner (Technische Universität Wien, AT)
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In my talk, I reported on a variety of experiences from (so far) mostly unsuccessful attempts
of applying machine learning algorithms to healthcare and related data. My first experience
was with time series of oxygen levels taken during brain surgeries and was available for
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a very small number of patients only. My next experience was on images of eyes with
implanted lenses for cataract patients and could be solved sufficiently well without the use
of sophisticated machine learning algorithms. My most recent experience is with clinical
studies and involves long discussions about NDAs and IPRs with legal departments.

3.8 AI in Healthcare: Key Human–Computer Interaction Challenges
Maia Jacobs (Northwestern University – Evanston, US)
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The use of artificial intelligence (AI) for improving medical decision-making has garnered
great excitement in recent years. Yet, despite growing enthusiasm and increased research,
real-world clinical impact has been slow. Often, abandonment of these tools in clinical
settings is not related to algorithmic performance, but rather due to inattention towards
the technologies’ design and implementation. To understand and address these challenges,
I will share two of my lab’s research projects, which use user-centred and participatory
design methods to incorporate both providers’ and patients’ perspectives into clinical decision
support systems.

3.9 From Code to Clinic – From Bits to Bedside
Michael Kamp (Universitätsmedizin Essen, DE)
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The integration of artificial intelligence (AI) into clinical practice requires not only technolo-
gical advancements but also rigorous methods to ensure reliability, privacy and interpretability.
At the University Hospital Essen (UK Essen), one of the world’s leading smart hospitals, the
Institute for AI in Medicine (IKIM) develops and deploys AI systems within a large-scale
data infrastructure based on Europe’s largest FHIR server. This enables advanced machine
learning applications while maintaining strict data governance.

This talk will present research from the Trustworthy Machine Learning group, focusing
on three core challenges in medical AI: privacy-preserving federated learning, where we
move beyond standard model aggregation techniques to improve learning from distributed
clinical data; statistical performance guarantees, leveraging theoretical insights from loss
surface analysis to better understand generalisation in deep learning; and (federated) causal
discovery, which aims to disentangle causal relationships in medical datasets to improve
model interpretability and robustness.

By combining these approaches, we work toward AI models that are not only predictive
but also scientifically grounded and reliable in clinical decision-making. The talk will discuss
recent advancements in federated learning, causal inference and generalisation theory, along
with their implications for AI applications in healthcare.
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3.10 Learning From Machine Learning – How To Deduce a
Mechanism-Based Pharmacometrics Model for Serum Creatinine
in Preterm Neonates From Neural Ordinary Differential Equations

Gilbert Koch (Universitäts-Kinderspital beider Basel, CH)
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Introduction

Machine learning (ML) is an emerging field in pharmacometrics (PMX) [1], providing methods
for a variety of PMX tasks, including data preparation [2], data analysis and data modelling.
One ML approach gaining special attention in PMX are neural ordinary differential equations
(NODEs) [3, 4, 5, 6]. Although an NODE is basically an ordinary differential equation
(ODE), the difference is that the right-hand side of the ODE is not described with mechanism-
based functions, as it is typically done in PMX, but it consists of neural networks (NNs).
Consequently, these NNs learn the dynamics observed in the training data. However, there
are some major criticisms regarding NODEs, including that (i) they are “black box” models,
(ii) they have poor extrapolation capabilities, e.g., for unseen dose ranges, due to their
structure, and (iii) they do not include prior clinical knowledge. In this work, a reverse
modelling approach is presented that leverages the learnt knowledge by a NODE to deduce a
mechanism-based model allowing to additionally include clinical knowledge. This enables to
overcome the criticism of NODEs mentioned above and to make them a more viable approach
in the field of PMX.

Methods

As endurance test, a dataset consisting of serum creatinine concentration measurements
(n = 4,026) from extremely low birth weight neonates (n = 217) with marked renal maturation
processes was applied [7]. The low-dimensional NODE approach was utilised [6] where the
right-hand side of the NODE consists of two types of NNs specifically tailored to PMX. The
first NN takes the state as input, reflecting the autonomous behaviour of the dynamics. The
second NN takes explicit time as input, reflecting behaviour of the dynamics that change over
time, e.g., maturation processes. First, the serum creatinine measurements were fitted with
the low-dimensional NODE in the non-linear mixed-effects context in Monolix and a covariate
analysis was performed. Second, the learnt dynamics of the NNs were visualised in derivative
versus state or time plots [6]. Based on visual inspection of these plots, PMX functions
were selected that described the shape of the trajectories in these plots. Third, these PMX
functions were combined to deduce a mechanism-based model that is capable to characterise
the dynamics of serum creatinine concentrations. Fourth, this deduced mechanism-based
model was further refined with clinical knowledge about the influence of body weight on the
volume of distribution. As last step, this deduced final mechanism-based model was fitted to
the data, a covariate analysis was conducted with the previously gained information from
the NODE-covariate analysis and simulations were performed.

Results

The developed low-dimensional NODE was capable of learning complex dynamics of serum
creatinine in preterm neonates with good measures of precision and bias (mean squared error
MSE = 0.023 and relative mean prediction error RMPE = 1.471). In comparison to the
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previously published model [7], the NODE model provided similar data fitting and simulated
similar GA-dependent reference values. Further it was able to identify the most important
covariates found in the previously published model. Based on the visualised trajectories in
the derivative versus state or time plots, a linear function for the NN characterising the state
and an Emax function for the NN describing time were chosen. Remarkably, the deduced
mechanism-based model had a similar structure as the previously published serum creatinine
model [7]. In addition, clinical knowledge was included, i.e., volume of distribution for serum
creatinine was assumed to be 7 dL/kg, resulting in the final mechanism-based model with
similar measures of precision and bias as the NODE model (MSE = 0.025, RMPE = -2.17). It
should be noted that NODE-based ML approach dramatically reduced time effort associated
with the development of a mechanism-based model describing serum creatinine dynamics in
neonates.

Conclusion

A mechanism-based model was successfully deduced from the dynamics learnt by the NODE.
Structure of the deduced mechanism-based model was in accordance with a previously
published, conventionally developed model for serum creatinine concentration in preterm
neonates. Hence, we demonstrated the potential that initially learning the dynamics by an
NODE is expected to accelerate development of mechanism-based models, particularly in
paediatrics.
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3.11 AI for Chronic Care Management
Yamuna Krishnamurthy (Phamily – New York, US)
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In this talk I presented how we, at Phamily, are empowering chronic care management
with artificial intelligence (AI). Phamily is a healthcare start-up with a vision to provide
value-based care to chronic care patients. Our goal is to provide a system that brings
physicians, nurses, care managers and patients together for continued conversations about the
care that the patients need and how they can be addressed by the medical staff in between
office visits. AI is the much needed assistant to the care managers that can help them quickly
do chart reviews, draw up care plans and engage the patients. It can also assess short- and
long-term patient risks for early detection and timely intervention that can save lives and
prevent exorbitant costs for all involved.

3.12 Rethinking Medical AI: Evaluation, Representation and
Transferability

Christoph Lippert (Hasso-Plattner-Institut, Universität Potsdam, DE)
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Medical artificial intelligence (AI) systems promise to revolutionise clinical practice, but
questions about their real-world effectiveness and interoperability remain largely unanswered.
In this talk, I addressed two fundamental questions: Do we need to evaluate medical AI?
and Do we need ontologies?

In the first part, I discussed insights from our study on commercial AI systems for
tuberculosis detection [1], where we found that key information – such as training population
details – is often lacking or opaque. This undermined model applicability, especially in global
health settings, and required us to conduct extensive pilot testing to adapt a commercial
algorithm for use in a South African community-based screening initiative.

In the second part, I turned to the role of ontologies in medical AI. Based on our recent
work [2], I argued that representations learnt by large language models (LLMs) offer a
superior and more scalable alternative to traditional medical ontologies. Our GRASP model
embeds medical codes into a unified semantic space using LLMs, enabling cross-system and
cross-country transferability of EHR-based prediction models – even without harmonised
data models.

Taken together, the talk advocates for greater transparency in evaluation and a shift from
static ontologies to dynamic, data-driven language representations for advancing trustworthy
and generalisable medical AI.
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3.13 All Models Are Wrong and Yours Are Useless
Florian Markowetz (University of Cambridge, GB)
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Most published clinical prediction models are never used in clinical practice and there is a
huge gap between academic research and clinical implementation. In this talk I propose ways
for academic researchers to be proactive partners in improving clinical practice and to design
models in ways that ultimately benefit patients.

3.14 Predictive Analytics Monitoring at the Bedside
Randall Moorman (University of Virginia – Charlottesville, US)
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Predictive analytics monitoring is a new field of research and development that is ready for
clinical implementation. The precepts are that there are detectable signatures of illness in
continuous monitoring data and that detection of these signatures can lead to early detection,
early treatment and improved outcomes.

I describe a successful example. Sepsis in premature infants is a common and pernicious
problem but, if the culprit infection is diagnosed early, antibiotic treatment averts severe
morbidity and mortality. We found more than 20 years ago that there was a robust signature
of illness, reduced variability and transient decelerations of heart rate, that appeared hours
before clinical presentation. A very large randomised trial showed that infants with a display
of a risk index based on these abnormal heart rate characteristics had improved all-cause
survival. While the signature was detected by visual inspection of many heart rate records by
clinicians, the same signature was detected by machine learning and deep learning methods.

There are challenges to this new field. Before modelling begins, data sets may not have
well-annotated target events and the data may reflect the clinicians and not the patients.
When modelling, deep learning may be no better than machine learning, bias in the data
may lead to bias in the model and the model output may not be explainable to clinicians.
After deployment, effective implementation is difficult and the model will not work the same
if the data shift.
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3.15 Interpretability?
Rajesh Ranganath (NYU Courant Institute of Mathematical Science, US)
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Feature attributions attempt to highlight what inputs drive predictive power. Good attribu-
tions or explanations are thus those that produce inputs that retain this predictive power;
accordingly, evaluations of explanations score their quality of prediction. However, evalu-
ations produce scores better than what appears possible from the values in the explanation
for a class of explanations called encoding explanations. Probing for encoding remains a
challenge because there is no general characterisation of what gives the extra predictive
power. We develop a definition of encoding that identifies this extra predictive power via
conditional dependence and show that the definition fits existing examples of encoding. This
definition implies, in contrast to encoding explanations, that non-encoding explanations
contain all the informative inputs used to produce the explanation, giving them a “what you
see is what you get” property, which makes them transparent and simple to use. Next, we
prove that existing scores (ROAR, FRESH, EVAL-X) do not rank non-encoding explanations
above encoding ones, and develop STRIPE-X, which ranks them correctly. After empirically
demonstrating the theoretical insights, we use STRIPE-X to show that despite prompting a
large language model (LLM) to produce non-encoding explanations for a sentiment analysis
task, the LLM-generated explanations encode.

3.16 AI in Paediatric Surgery and Paediatric Urology
Patricia Reis Wolfertstetter (KH Barmh. Brüder Klinik St. Hedwig – Regensburg, DE)
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Artificial intelligence and machine learning models are promising tools for the further
development of paediatric surgery and paediatric urology. They can be used for optimising
treatment and patient stratification preoperatively, during operation and postoperatively. Up
to now, our work focused on paediatric appendicitis. First, predictive models were developed
and validated on a dataset acquired from 430 children and adolescents aged 0–18 years, based
on a range of information encompassing history, clinical examination, laboratory parameters
and abdominal ultrasonography. Logistic regression, random forests and gradient boosting
machines were used for predicting the three target variables: diagnosis, treatment and severity.
Furthermore, we presented interpretable machine learning models for predicting the diagnosis,
management and severity of suspected appendicitis using ultrasound images. Our approach
utilised concept bottleneck models (CBM) that facilitate interpretation and interaction with
high-level concepts understandable to clinicians. We extended CBMs to prediction problems
with multiple views and incomplete concept sets. Our models were trained on a dataset
comprising 579 paediatric patients with 1,709 ultrasound images accompanied by clinical and
laboratory data. The developed models are deployed as an open access easy-to-use online
tool (for tabular data and ultrasound images).
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3.17 My Priorities for AI in Health: Proper Evaluation and Prediction
Under Intervention

Wouter van Amsterdam (University Medical Center Utrecht, NL)
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Artificial intelligence systems in healthcare must ultimately support safe and effective decision-
making. In this talk, I argue that evaluation should extend beyond predictive performance
on held-out data to the real-world setting – treating deployment itself as an intervention. I
highlight how misaligned evaluation metrics can lead to harmful self-fulfilling prophecies,
especially in treatment decision support.

Next, I argue researchers should build models for “prediction under intervention” (some-
times referred to as counterfactual prediction): estimating what would happen under different
treatment options rather than expected outcomes under historical regimes. I draw on meth-
ods from causal inference and off-policy evaluation, and reflect on how emerging regulatory
frameworks (EU and FDA) and available randomised control trial data can support a more
rigorous approach.

3.18 Scaling up Clinical ML: Modalities, External Validation, Health
Systems

Robin Van de Water (Hasso-Plattner-Institut, Universität Potsdam, DE)
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Scaling medical machine learning (ML) requires integrating multiple modalities, improving
model validation practices and establishing robust infrastructure to handle massive amounts
of clinical data.

Scaling Up to Different Modalities

In visceral surgery, postoperative complications often arise in nursing wards, where real-time
monitoring is limited. While ML-powered predictive systems show promise in the intensive
care unit (ICU), their effectiveness diminishes outside of it due to data shortages, leaving
patients at risk. To address this, we propose an integrated approach that combines patient
data from preoperative, intraoperative, ICU and nursing ward stages, while introducing
high-resolution continuous vital sign monitoring in a hybrid nursing environment [2]. This
system enhances early detection of complications like surgical site infections and bile leakage,
demonstrating the importance of high-quality wearable data. Our findings suggest that
hybrid monitoring can significantly improve ML-based early warning models in clinical
settings, enhancing patient outcomes.

Scaling Up External Validation

One of the biggest challenges in scaling clinical ML is ensuring reproducibility and transpar-
ency across datasets. With ICU models, it is difficult to verify claims of superior performance
due to lack of access to datasets as well as unclear cohort definitions and preprocessing steps.
To address this, we introduce YAIB, a modular framework designed to support reproducible
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clinical ML experiments with multiple open-access ICU datasets [3]. YAIB provides an
end-to-end solution for model evaluation, including predefined tasks like mortality and sepsis,
and highlights the critical role of dataset selection, cohort definition and preprocessing in
model performance. By offering a unified benchmarking tool, YAIB paves the way for more
transparent, comparable ML research in clinical settings.

Scaling Up to Entire EHR Systems

For ML to be deployed at scale across entire health systems, we need an efficient infrastructure
to process both retrospective and prospective clinical data. To meet this need, we developed
the Medical Event Data Standard (MEDS) [1], a flexible low-level ML standard that integrates
seamlessly with existing electronic health record processing and modelling tools. MEDS
accelerates the training of predictive models on several clinical tasks. As a proof of concept,
we built an ETL pipeline to enable model development using the recently released NWICU
dataset. Additionally, we are working to convert data from the Mount Sinai AIR MS PHI
OMOP database into MEDS, making it possible to train models for various clinical endpoints
and develop foundation models. With ongoing efforts to verify data quality and define
cohorts, we aim to enhance model robustness and further advance the scalability of ML in
healthcare.
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3.19 AI in Babies and Beyond, Boom or Boomerang?
Sven Wellmann (Universität Regensburg, DE)

License Creative Commons BY 4.0 International license
© Sven Wellmann

Birth is one of the most critical moments in a person’s life. Birth marks the transition from
life in the womb (pregnancy) to life outside the womb. The infant’s survival and growth
depend fundamentally on basic support for months and years. Many disorders affecting the
nervous system lifelong originate in early life and in particular in perinatal complications
such as neonatal encephalopathy, preterm birth, neonatal sepsis or jaundice.

We will learn how medical examinations of newborn babies are routinely performed
immediately after birth and during the first weeks out of the womb, how vital signs indicate
healthy body functions and how subtle clinical signs can point towards serious problems
that require more complex examination and possibly subsequent treatment. Building on
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this, we will discuss areas in the care of pregnant women and newborns where improved
diagnostics through the use of computer algorithms could contribute to reducing morbidity
and mortality.

The introduction of prediction algorithms and decision support tools based on methods
of so-called artificial intelligence (AI) has started in neonatology and paediatrics. We will
discuss first use cases and possible benefits in reducing healthcare gaps. However, we will
also shed a light on potential risks that may harm the baby’s well-being despite the current
boom in AI.

4 Working Groups

4.1 AI Monitoring in Clinical Practice
Brett Beaulieu-Jones (University of Chicago, US), Evangelia Christodoulou (DKFZ – Heidel-
berg, DE), Thomas Gärtner (Technische Universität Wien, AT), Michael Kamp (Uni-
versitätsmedizin Essen, DE), Gilbert Koch (Universitäts-Kinderspital beider Basel, CH),
Yamuna Krishnamurthy (Phamily – New York, US), Fabian Laumer (Scanvio Medical
AG, CH), Christoph Lippert (Hasso-Plattner-Institut, Universität Potsdam, DE), Florian
Markowetz (University of Cambridge, GB), Randall Moorman (University of Virginia –
Charlottesville, US), Rajesh Ranganath (NYU Courant Institute of Mathematical Science,
US), Raul Santos-Rodriguez (University of Bristol, GB), Wouter van Amsterdam (University
Medical Center Utrecht, NL), Robin Van de Water (Hasso-Plattner-Institut, Universität
Potsdam, DE), and Julia E. Vogt (ETH Zürich, CH)
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Our working group has identified a fundamental challenge in post-deployment monitoring of
clinical artificial intelligence (AI) systems: a misalignment between incentives and resources
that undermines effective oversight. Those with the greatest interest in ensuring AI safety
and efficacy – clinicians, researchers and patients – often lack the necessary funding, technical
infrastructure and institutional support. Meanwhile, AI vendors and large healthcare
systems, which have these resources, frequently lack strong incentives to engage in long-term
monitoring.

To address this issue and align stakeholder interests, introducing regulatory mandates,
standardised monitoring metrics and financial incentives may be necessary. Creating clear
reporting requirements, real-world performance evaluations and publicly accessible monitoring
databases appears particularly promising for enhancing transparency and trust in clinical AI
tools. Achieving these objectives will likely require tight collaboration between regulators,
developers and healthcare providers, with the goal of establishing best practices and ensuring
continuous oversight. Without such measures, AI-driven healthcare solutions risk inconsistent
safety and effectiveness, ultimately limiting their long-term benefit to patient care.
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4.2 Human Factors in Clinical AI Design and Deployment
Michael Brudno (University of Toronto, CA), Jeff Clark (IngeniumAI – Bath, GB), James
Fackler (Johns Hopkins University – Baltimore, US), Maia Jacobs (Northwestern University
– Evanston, US), Patricia Reis Wolfertstetter (KH Barmh. Brüder Klinik St. Hedwig
– Regensburg, DE), Kacper Sokol (ETH Zürich, CH), and Sven Wellmann (Universität
Regensburg, DE)
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Our working group reviewed key criteria for selecting clinical problems where artificial
intelligence (AI) can have the most meaningful impact; we also focused on human factors
that are fundamental to ensuring safe and effective deployment of AI in clinical practice. One
important point is the role of biological plausibility. Should AI operation always align with
known and accepted medical knowledge, or can models be trusted even if these mechanisms
are unclear? Additionally, clinician trust tends to depend on both accuracy and explainability
of AI, but how much weight should be given to each remains an open question.

Another key consideration is how to integrate AI into clinical workflows. Can AI systems
be adapted to existing medical workflows, or should they be designed to drive (beneficial)
workflow changes over time? Crucially, AI could play a role in operational improvements
– such as staffing predictions and workflow optimisation – while balancing feasibility and
impact. Also, the characteristics of the clinical challenge for which an AI solution is envisaged
need to be considered. For example, should AI development focus on supporting (and possibly
automating) routine decisions, allowing clinicians to devote their attention to more complex
cases? Moreover, we explored opportunities for AI chatbots in collection of patient history,
provision of feedback to clinicians and general decision support; nonetheless, questions remain
about how to define their limits and handle sensitive topics.

From the human factors perspective, ensuring graceful AI failure modes and designing
intuitive handover protocols are of paramount importance so that operators can easily identify
such cases and handle them appropriately. A related issue is the need for AI to recognise
when it encounters unfamiliar cases and transition control back to human oversight without
disrupting provision of care. Additionally, where and how AI-generated alerts should appear
in a clinician’s workflow remains an open question. Their role is also unclear: should they be
advisory, mandatory or something in-between?

Past failures of deployed clinical AI systems highlight the risks of over-reliance on these
tools, especially without clear understanding of their limitations. Moreover, we need to
consider professional and cultural barriers. For example, how can we ensure that AI benefits
all types of healthcare professionals, from nurses to senior physicians? In this context, another
important open question is how AI can facilitate teamwork, particularly in patient handoff
between clinicians; should AI simply provide information, or should it actively suggest next
steps?

25052

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


220 25052 – From Research to Certification with Medical AI Decision Support Systems

Participants

Brett Beaulieu-Jones
University of Chicago, US

Michael Brudno
University of Toronto, CA

Evangelia Christodoulou
DKFZ – Heidelberg, DE

Jeff Clark
IngeniumAI – Bath, GB

James Fackler
Johns Hopkins University –
Baltimore, US

Thomas Gärtner
Technische Universität Wien, AT

Maia Jacobs
Northwestern University –
Evanston, US

Michael Kamp
Universitätsmedizin Essen, DE

Gilbert Koch
Universitäts-Kinderspital beider
Basel, CH

Yamuna Krishnamurthy
Phamily – New York, US

Fabian Laumer
Scanvio Medical AG, CH

Christoph Lippert
Hasso-Plattner-Institut,
Universität Potsdam, DE

Florian Markowetz
University of Cambridge, GB

Randall Moorman
University of Virginia –
Charlottesville, US

Rajesh Ranganath
NYU Courant Institute of
Mathematical Science, US

Patricia Reis Wolfertstetter
KH Barmh. Brüder Klinik St.
Hedwig – Regensburg, DE

Raul Santos-Rodriguez
University of Bristol, GB

Kacper Sokol
ETH Zürich, CH

Wouter van Amsterdam
University Medical Center
Utrecht, NL

Robin Van de Water
Hasso-Plattner-Institut,
Universität Potsdam, DE

Julia E. Vogt
ETH Zürich, CH

Sven Wellmann
Universität Regensburg, DE


	Executive Summary (Kacper Sokol, Raul Santos-Rodriguez, Julia E. Vogt, and Sven Wellmann)
	Table of Contents
	Overview of Talks
	Bridging the Gap Between Clinical Data and AI: Lessons From Real-World EMR Studies (Brett Beaulieu-Jones)
	Implementing Clinical Workflows in the Clinic (Michael Brudno)
	Friends Don't Let Friends Deploy Black Box Models: The Importance of Intelligibility in Machine Learning for Healthcare (Rich Caruana)
	Validation in Biomedical Imaging AI: Are We Ready for Clinical Translation? (Evangelia Christodoulou)
	Towards Deployment: Considerations Beyond Technical Performance (Jeff Clark)
	AI at the Bedside. There Must Be a Culture Change (James Fackler)
	A Few Lessons Learnt From Trying To Work With Healthcare and Related Data (Thomas Gärtner)
	AI in Healthcare: Key Human–Computer Interaction Challenges (Maia Jacobs)
	From Code to Clinic – From Bits to Bedside (Michael Kamp)
	Learning From Machine Learning – How To Deduce a Mechanism-Based Pharmacometrics Model for Serum Creatinine in Preterm Neonates From Neural Ordinary Differential Equations (Gilbert Koch)
	AI for Chronic Care Management (Yamuna Krishnamurthy)
	Rethinking Medical AI: Evaluation, Representation and Transferability (Christoph Lippert)
	All Models Are Wrong and Yours Are Useless (Florian Markowetz)
	Predictive Analytics Monitoring at the Bedside (Randall Moorman)
	Interpretability? (Rajesh Ranganath)
	AI in Paediatric Surgery and Paediatric Urology (Patricia Reis Wolfertstetter)
	My Priorities for AI in Health: Proper Evaluation and Prediction Under Intervention (Wouter van Amsterdam)
	Scaling up Clinical ML: Modalities, External Validation, Health Systems (Robin Van de Water)
	AI in Babies and Beyond, Boom or Boomerang? (Sven Wellmann)

	Working Groups
	AI Monitoring in Clinical Practice (Brett Beaulieu-Jones, Evangelia Christodoulou, Thomas Gärtner, Michael Kamp, Gilbert Koch, Yamuna Krishnamurthy, Fabian Laumer, Christoph Lippert, Florian Markowetz, Randall Moorman, Rajesh Ranganath, Raul Santos-Rodriguez, Wouter van Amsterdam, Robin Van de Water, and Julia E. Vogt)
	Human Factors in Clinical AI Design and Deployment (Michael Brudno, Jeff Clark, James Fackler, Maia Jacobs, Patricia Reis Wolfertstetter, Kacper Sokol, and Sven Wellmann)

	Participants

