Report from Dagstuhl Seminar 25061
Logic and Neural Networks

Vaishak Belle*!, Michael Benedikt*?, Dana Drachsler-Cohen*3,
Daniel Neider*4, and Tom Yuvilerf®

University of Edinburgh, GB. vaishak@ed.ac.uk

University of Oxford, GB. michael.benedikt@cs.ox.ac.uk
Technion, IL. ddana®ee.technion.ac.il

TU Dortmund University, DE. daniel.neider@tu-dortmund.de
Technion — Haifa, IL. tom.yuviler@campus.technion.ac.il

U W N =

—— Abstract
Logic and learning are central to Computer Science, and in particular to Al-related research.
Already Alan Turing envisioned in his 1950 “Computing Machinery and Intelligence” paper a
combination of statistical (ab initio) machine learning and an “unemotional” symbolic language
such as logic. The combination of logic and learning has received new impetus from the spectacular

success of deep learning systems.

This report documents the program and the outcomes of Dagstuhl Seminar 25061 “Logic and
Neural Networks”. The goal of this Dagstuhl Seminar was to bring together researchers from
various communities related to utilizing logical constraints in deep learning and to create bridges
between them via the exchange of ideas. The seminar focused on a set of interrelated topics:
enforcement of constraints on neural networks, verifying logical constraints on neural networks,
training using logic to supplement traditional supervision, and explanation and approximation
via logic. This Dagstuhl Seminar aimed not at studying these areas as separate components, but
in exploring common techniques among them as well as connections to other communities in
machine learning that share the same broad goals.

The seminar format consisted of long and short talks, as well as breakout sessions. We
summarize the motivations and proceedings of the seminar, and report on the abstracts of the
talks and the results of the breakout sessions.
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1 Executive Summary

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Oxzford, GB, michael.benedikt@cs.ox.ac.uk)
Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)

License ) Creative Commons BY 4.0 International license
© Vaishak Belle, Michael Benedikt, Dana Drachsler-Cohen, and Daniel Neider

Motivation

Logic and learning are central to Computer Science, and in particular to Al-related research.
Already Alan Turing envisioned in his 1950 “Computing Machinery and Intelligence” paper [1]
a combination of statistical (ab initio) machine learning and an “unemotional” symbolic
language such as logic. The combination of logic and learning has received new impetus
from the spectacular success of deep learning systems. As part of these developments,
several key roles for logical rules have been identified: As a means of expressing safety
properties that a network should satisfy; As a way of providing “weak supervision”, that
can be utilized in training, to augment or to substitute for direct supervision; As a means of
explaining properties of networks, or explanations of the decisions produced by them. With
the identification of these roles, a number of core challenges have arisen: Verifying logic-based
properties of networks, Enforcing logic-based properties during training; Utilizing logic-based
properties in tandem with traditional supervision within learning to train networks; and
Producing logic-based explanations of neural network outcomes. Clearly, these challenges
have significant synergy between them. The goal of this seminar was to bring together
researchers from various communities related to utilizing constraints in deep learning, and to
create bridges between them via the exchange of ideas.

Design of the Seminar

The seminar focused on a set of interrelated topics connected to logic and neural networks:
Verifying logical constraints on neural networks. Despite being successful in
various tasks, neural networks have also been shown to be susceptible to various attacks
(e.g., adversarial attacks [2]) or prone to biased decisions (e.g., in Amazon’s systems?).
To understand the resilience of networks to these phenomena, it is crucial to prove
that networks satisfy safety properties, such as local robustness and fairness. These are
captured via logical constraints, defined on specific inputs in a given dataset (e.g., local
robustness) or universally on any input (e.g., fairness and global robustness). Many
works have proposed verification systems for these properties [3], typically leveraging
constraint solvers [4, 5] or static analysis [6, 7]. Constraints can derive from a number of
motivations: security/safety, fairness, or interpretability. Despite the active research on
verifying these properties, existing approaches still do not scale to very deep networks,
which are ubiquitous in practice. We believe it is viable to understand how to push
forward the analysis capabilities to use them for large and deep networks. This will
have an impact both for academy and industry, since it will increase the users’ trust in
practical neural network-based systems.

! e.g., https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MKOSG
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Enforcement of constraints on neural networks. Logical rules can represent
important safety properties and prior knowledge into the training of neural networks.
For example, in a manufacturing setting, we may wish to encode that an actuator for a
robotic arm does not exceed some threshold (e.g., causing the arm to move at a hazardous
speed). Another example is a self-driving car, where a controller should be known to
operate within a predefined set of constraints (e.g., the car should always stop completely
when facing a human). In such safety-critical domains, machine learning solutions must
guarantee to operate within distinct boundaries that are specified by logical, arithmetic,
and geometric rules. Techniques include specialized loss functions [8], which can be
augmented with additional layers within a neural architecture. These approaches compile
the constraints into the loss function of the training algorithm, by quantifying the extent
to which the output of the network violates the constraints. This is appealing as logical
constraints are easy to elicit from people. However, the solution outputted by the network
is designed to minimize the loss function — which combines both data and constraints
— rather than to guarantee the satisfaction of the domain constraints. So this is an
important open problem.

Training using logic and traditional supervision. A major of impetus for a
synthesis of logic and learning relates to paucity of supervision. In many regimes explicit
supervision is extremely limited, and synthetic data generation may be infeasible. A
promising approach to augment supervision is via the use of external knowledge. The
approach has been used in domains as distinct as scene recognition [9] and parsing [10].
Approaches that integrate constraint-based supervision with traditional supervision have
arisen simultaneously in many areas of artificial intelligence. While the focus of our
seminar is constraints expressed in general-purpose logics, we look for connections with
constraint-based approaches to learning from other areas, such as physics.

Explaining neural networks via logic. A critical issue with black box models,
particularly neural networks, is understanding their decision boundaries. An important
strategy employed in recent years involves attempting to extract decision trees, logical
rules, and other deterministic machines from these neural networks [11, 12, 13, 14]. This
can be seen as a strategy for post-hoc explanation [15]. Most approaches for rule extraction
use template-based approaches to explore patterns in pre-trained models, with a focus
on characteristics and properties of entities such as people, places, or things. However,
template-based approaches do show sensitivity to template formulation, highlighting
the need to explore alternative strategies to probe pre-trained models. They are often
based on a combination of techniques from Bayesian Structure Learning, Inductive Logic
Programming [16], and Distillation [15]. Explanation and approximation via logics have
also arisen in Graph Neural Networks [17]. An interesting phenomenon is that one of
the languages used for explanation is Datalog, which is also prominent in the verification
community. The ability to approximate networks by logics is closely-related to attempts
to understand the expressiveness of neural approaches in terms of logics [18, 19].

Summary of Seminar Activities

The seminar was attended by 38 researchers across various communities including logic, formal
verification, machine learning, deep learning, program synthesis, graph neural networks,
expressiveness, explainability, theorem proving, neural-symbolic learning, and databases. The
seminar participants included senior and junior researchers, including graduate students, post-
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doctoral researchers, faculty members, and industry experts. The seminar was conducted
through talks and breakout sessions, with breaks for discussion between the attendees.
Overall, there were 19 talks, and two main breakout sessions. The talks included a range
of presentations on recent advances in the interrelated fields of logic and neural networks,
as previously discussed. Some talks also provided broader overviews of related areas, such
as formal verification of neural networks and program synthesis. The first breakout session
was divided into four groups based on the participants’ main areas of research: verification,
expressivity, explainability, and learning with background knowledge and constraints. FEach
group discussed several topic-specific questions: (1) the open challenges, (2) the value
proposition, (3) potential “killer applications” or teaching curricula, and (4) drafting a
concise manifesto. The second breakout session was divided into three groups (based on
participants’ choices), each focused on integrating interrelated topics: (1) verification and
constraints, (2) explainability, expressiveness, and constraints, and (3) verification and
explainability. Each group examined several issues concerning the interplay of these areas,
including: (1) prior work, (2) open challenges, (3) real-world motivations and applications,
and (4) short- and long-term project ideas.

Conclusion

We consider the seminar a success and believe it achieved several goals that will help
strengthen connections among the fields of neural-network verification, logic, explainability,
and expressivity. These include: (1) fostering links among the participating researchers,
(2) generating a set of open challenges, goals, and future research directions, and (3) providing
a more unified view of current approaches to these interrelated topics. We also hope the
seminar will catalyze the further development of benchmarks for applying logic in neural
networks. Finally, the seminar’s format — featuring talks, ample time for discussion, and
breakout sessions — received positive feedback from participants.
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3 Overview of Talks

3.1 Learning Symmetric Rules with SATNet
Hongseok Yang (KAIST — Daejeon, KR, hongseok00@gmail.com)

License ) Creative Commons BY 4.0 International license
© Hongseok Yang
Joint work of Hongseok Yang, Sangho Lim, Eungyeol Oh

Main reference Sangho Lim, Eun-Gyeol Oh, Hongseok Yang: “Learning Symmetric Rules with SATNet”, in Proc. of
the Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 —
December 9, 2022, 2022.

URL http://papers.nips.cc/paper__files/paper/2022/hash/5642b9811a9ac5281belcc84c2751251- Abstract-

Conference.html

SATNet is a differentiable constraint solver with a custom backpropagation algorithm, which
can be used as a layer in a deep-learning system. It is a promising proposal for bridging
deep learning and logical reasoning. In fact, SATNet has been successfully applied to learn,
among others, the rules of a complex logical puzzle, such as Sudoku, just from input and
output pairs where inputs are given as images. In this talk, I explain our work on improving
the learning of SATNet by exploiting symmetries in the target rules of a given but unknown
logical puzzle or more generally a logical formula. I present SymSATNet, a variant of SATNet
that translates the given symmetries of the target rules to a condition on the parameters
of SATNet and requires that the parameters should have a particular parametric form that
guarantees the condition. The requirement dramatically reduces the number of parameters to
learn for the rules with enough symmetries, and makes the parameter learning of SymSATNet
much easier than that of SATNet. I also describe a technique for automatically discovering
symmetries of the target rules from examples. Our experiments with Sudoku and Rubik’s
cube show the substantial improvement of SymSATNet over the baseline SATNet.

3.2 Query Languages for Machine Learning Models
Pablo Barcelo (PUC — Santiago de Chile, CL, pbarcelo@Quc.cl)

License @@ Creative Commons BY 4.0 International license
© Pablo Barcelo

Emerging challenges in machine learning (ML), such as explainability and verification,
underscore the growing need for declarative query languages that enable users to extract
relevant information from ML models and adapt it to diverse application-specific requirements.
These query languages offer several advantages: they provide flexibility in information
extraction, establish clear syntax and semantics for queries, and pave the way for query
optimization. In this talk, we survey two recent proposals for query languages tailored to ML
models — one designed for discrete classification models and another for real-valued models.
We demonstrate how these languages can express meaningful queries over ML models, and
we analyze their expressiveness and evaluation complexity. Our goal is to foster a productive
discussion on advancing the development of practical query languages for ML models that
can be effectively applied across a wide range of scenarios.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://papers.nips.cc/paper_files/paper/2022/hash/5642b9811a9ac5281be1cc84c275f251-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5642b9811a9ac5281be1cc84c275f251-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5642b9811a9ac5281be1cc84c275f251-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5642b9811a9ac5281be1cc84c275f251-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5642b9811a9ac5281be1cc84c275f251-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5642b9811a9ac5281be1cc84c275f251-Abstract-Conference.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

V. Belle, M. Benedikt, D. Drachsler-Cohen, D. Neider, and T. Yuviler

3.3 How to make logics neurosymbolic

Luc De Raedt (KU Leuven, BE, luc.deraedt@kuleuven.be)

License @ Creative Commons BY 4.0 International license
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Neurosymbolic AT (NeSy) is regarded as the third wave in Al It aims at combining knowledge
representation and reasoning with neural networks. Numerous approaches to NeSy are being
developed and there exists an ‘alphabet-soup’ of different systems, whose relationships are
often unclear. I discuss the state-of-the art in NeSy and argue that there are many similarities
with statistical relational AT (StarAlI). Taking inspiring from StarAl, and exploiting these
similarities, I argue that Neurosymbolic AI = Logic + Probability + Neural Networks. I
also provide a recipe for developing NeSy approaches: start from a logic, add a probabilistic
interpretation, and then turn neural networks into ‘neural predicates’. Probability is inter-
preted broadly here, and is necessary to provide a quantitative and differentiable component
to the logic. At the semantic and the computation level, one can then combine logical
circuits (aka proof structures) labelled with probability, and neural networks in computation
graphs. I illustrate the recipe with NeSy systems such as DeepProbLog, a deep probabilistic
extension of Prolog, and DeepStochLog, a neural network extension of stochastic definite
clause grammars (or stochastic logic programs).

3.4 Bridging Generalization and Expressivity of Graph Neural Networks
Floris Geerts (University of Antwerp, BE, floris.geerts@Quantwerp.be)

License @@ Creative Commons BY 4.0 International license
© Floris Geerts
Joint work of Shouheng Li, Floris Geerts, Dongwoo Kim, Qing Wang
Main reference Shouheng Li, Floris Geerts, Dongwoo Kim, Qing Wang: “Towards Bridging Generalization and
Expressivity of Graph Neural Networks”, in Proc. of the The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, OpenReview.net, 2025.
URL https://openreview.net/forum?id=BOQpRtI4F5

The expressive power of graph neural networks (GNNs) has been widely analysed through
their connection to the 1-dimensional Weisfeiler-Leman (1-WL) algorithm, a key tool for
addressing the graph isomorphism problem. While this link has deepened our understanding
of how GNNSs represent complex structures, it provides limited insight into their generalisation
— specifically, their ability to accurately predict on unseen data. In this talk, we delve into the
relationship between GNNs’ expressive power and their generalisation capabilities, offering a
perspective that bridges these two critical aspects of GNN performance.
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3.5 Formal Verification of Machine Learning with the Industry: The
Journey so Far, And the Future Ahead

Julien Girard-Satabin (CEA de Saclay — Gif-sur-Yvette, FR, julien.girard2@cea.fr)

License @ Creative Commons BY 4.0 International license
© Julien Girard-Satabin
Joint work of Julien Girard-Satabin, Augustin Lemesle, Julien Lehmann, Tristan Le Gall
Main reference Augustin Lemesle, Julien Lehmann, Tristan Le Gall: “Neural Network Verification with PyRAT”,
CoRR, Vol. abs/2410.23903, 2024.
URL https://doi.org/10.48550/ARXIV.2410.23903

Since the third Al revolution in 2012, industry displayed a keen interest in the newfound
capabilities of machine learning. However, in the field of critical systems, existing regulations
and practices require some degree of formal specification (and verification). Furthermore,
machine learning specification is implicitly defined by hyperparameters that are impossible
to formalise (the dataset, the architecture, the objective function, the intended goal). To
address those newfound challenges and fulfill its mission to support industrial actors, the
French Atomic Energy Commission develop and maintain several tools for the specification
and verification of machine learning systems. For seven years, those tools were applied in
industrial settings, in national and international projects. Through this presentation mixing
science and technical retrospective, we present the successes, the limitations and potential
future paths for formal verification informed by the needs of the French industry.

3.6 Learning with Constraints: Fuzzy Methods
Eleonora Giunchiglia (Imperial College London, GB, e.giunchiglia@imperial.ac.uk)

License ) Creative Commons BY 4.0 International license
© Eleonora Giunchiglia
Joint work of Eleonora Giunchiglia, Mihaela Catalina Stoian, Thomas Lukasiewicz
Main reference Eleonora Giunchiglia, Mihaela Catalina Stoian, Thomas Lukasiewicz: “Deep Learning with Logical
Constraints”, in Proc. of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. 5478-5485, ijcai.org, 2022.
URL https://doi.org/10.24963 /1JCAL.2022/767

In this first segment of the tutorial I discuss methods based on fuzzy logic for learning
with constraints. In this talk, I first provide an overview of the learning tasks where logical
constraints can play a fundamental role. Then I introduce the most commonly used triangular
norms, i.e., Godel, Product and Lukasiewicz, describing their properties. This be followed by
the introduction of “Logic Tensor Network” (LTN), which is one of the most famous methods
to integrate constraints in neural networks’ loss functions and “Coherent-by-Construction
Network” (CCN+), a method to integrate constraints in a neural layer. Both methods are
based on triangular norms. After this overview, I also discuss how — thanks to the versatility
of fuzzy logic — we can now build neural layers integrating constraints as expressive as
disjunctions over linear inequalities, which hence model non-convex and disconnected spaces.
I conclude the talk with a discussion with the pros and cons of using fuzzy methods in
learning with constraints.
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3.7 Neural Continuous-Time Supermartingale Certificates

Anna Lukina (TU Delft, NL, A.Lukina@tudelft.nl)

License @ Creative Commons BY 4.0 International license

© Anna Lukina

Joint work of Grigory Neustroev, Mirco Giacobbe, Anna Lukina

Main reference Grigory Neustroev, Mirco Giacobbe, Anna Lukina: “Neural Continuous-Time Supermartingale
Certificates”, in Proc. of the AAAI-25, Sponsored by the Association for the Advancement of
Artificial Intelligence, February 25 — March 4, 2025, Philadelphia, PA, USA, pp. 27538-27546, AAAI
Press, 2025.
URL https://doi.org/10.1609/AAAL.V39126.34966

We introduce for the first time a neural-certificate framework for continuous-time stochastic dy-
namical systems. Autonomous learning systems in the physical world demand continuous-time
reasoning, yet existing learnable certificates for probabilistic verification assume discretization
of the time continuum. Inspired by the success of training neural Lyapunov certificates for
deterministic continuous-time systems and neural supermartingale certificates for stochastic
discrete-time systems, we propose a framework that bridges the gap between continuous-time
and probabilistic neural certification for dynamical systems under complex requirements.
Our method combines machine learning and symbolic reasoning to produce formally certified
bounds on the probabilities that a nonlinear system satisfies specifications of reachability,
avoidance, and persistence. We present both the theoretical justification and the algorithmic
implementation of our framework and showcase its efficacy on popular benchmarks.

3.8 Challenges for the Certification of Al in Railway Systems
Pierre-Jean Meyer (Gustave Eiffel University — Villeneuve d’Ascq, FR,

pierre-jean.meyer@univ-eiffel.fr)

License @@ Creative Commons BY 4.0 International license
© Pierre-Jean Meyer

The trend of AT and desire to develop autonomous rail vehicles has led to a surge of interest
for the use of Al in the railway field, including in safety-critical functions. Traditionally in
the railway field, formal methods have been strongly recommended for the certification of
safety-related components, but currently applied approaches cannot be properly adapted
for the certification of AI functions. This talk gives a brief overview of current and desired
applications of Al in railway field, as well as the main identified challenges for the use of
formal verification to certify the good behaviors of Al functions within safety-related modules
in autonomous trains: primarily the computational complexity and the definition of formal
specifications.
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3.9 Distinguished In Uniform: Self Attention Vs. Virtual Nodes
Martin Ritzert (Universitiat Gottingen, DE, ritzert@informatik.uni-goettingen.de)

License @ Creative Commons BY 4.0 International license
© Martin Ritzert
Joint work of Eran Rosenbluth, Jan Ténshoff, Martin Ritzert, Berke Kisin, Martin Grohe
Main reference Eran Rosenbluth, Jan Ténshoff, Martin Ritzert, Berke Kisin, Martin Grohe: Distinguished In
Uniform: Self-Attention Vs. Virtual Nodes. In ICLR (2024).
URL https://openreview.net/forum?id=AcSChDWL6V

Graph Transformers (GTs) such as SAN and GPS are graph processing models that combine
Message-Passing GNNs (MPGNNs) with global Self-Attention. They were shown to be
universal function approximators, with two reservations: 1. The initial node features must
be augmented with certain positional encodings. 2. The approximation is non-uniform:
Graphs of different sizes may require a different approximating network. We first clarify that
this form of universality is not unique to GTs: Using the same positional encodings, also
pure MPGNNs and even 2-layer MLPs are non-uniform universal approximators. We then
consider uniform expressivity: The target function is to be approximated by a single network
for graphs of all sizes. There, we compare GTs to the more efficient MPGNN + Virtual Node
architecture. The essential difference between the two model definitions is in their global
computation method — Self-Attention Vs. Virtual Node. We prove that none of the models is
a uniform-universal approximator, before proving our main result: Neither model’s uniform
expressivity subsumes the other’s. We demonstrate the theory with experiments on synthetic
data. We further augment our study with real-world datasets, observing mixed results which
indicate no clear ranking in practice as well.

3.10 How Can Formal Methods Benefit Large Language Models
Gagandeep Singh (University of Illinois — Urbana-Champaign, US, ggnds@illinois.edu)

License ) Creative Commons BY 4.0 International license
© Gagandeep Singh
Joint work of Isha Chaudhary, Qian Hu, Manoj Kumar, Morteza Ziyadi, Rahul Gupta, Gagandeep Singh
Main reference Isha Chaudhary, Qian Hu, Manoj Kumar, Morteza Ziyadi, Rahul Gupta, Gagandeep Singh:
“Certifying Counterfactual Bias in LLMs”, in Proc. of the The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, OpenReview.net, 2025.
URL https://openreview.net/forum?id=HQHnhVQznF

Despite impressive performance, state-of-the-art Large Language Models (LLMs) often
hallucinate, produce toxic responses, and leak sensitive information. While increasing model
sizes, using more training data, compute resources, and prompt engineering have some
marginal impact on LLM behavior, these ad-hoc methods do not solve the core problems.
Further. These solutions are unsustainable due to their huge environmental impact. In this
talk, I discuss how formal methods can be leveraged to develop principled and systematic
approaches to improve LLM performance and alignment, offering a path forward that is both
effective and sustainable.
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3.11 Program Synthesis Present and Future
Armando Solar-Lezama (MIT — Cambridge, US, asolar@csail.mit.edu)

License @ Creative Commons BY 4.0 International license
© Armando Solar-Lezama

Large Language Models have transformed the landscape of program synthesis, enabling us
to solve previously intractable problems and opening up new applications. In this talk I give
a high-level summary of the current state of the art in program synthesis and describe some
of the open problems and opportunities in the field.

3.12 Refining Deep Generative Modelling using Background Knowledge
Mihaela Stoian (University of Ozxford, GB, mihaela.stoian@cs.ox.ac.uk)

License @ Creative Commons BY 4.0 International license
© Mihaela Stoian
Joint work of Mihaela C. Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, Eleonora Giunchiglia
Main reference Mihaela C. Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, Eleonora Giunchiglia:
“How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data”, in
Proc. of the The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024, OpenReview.net, 2024.
URL https://openreview.net/forum?id=tBROYsEz9G

Synthesising realistic tabular data often relies on deep generative models. However, these
models fail to account for inherent relationships between features, encoded as background
knowledge, which synthetic samples must satisfy to be deemed realistic. Existing methods
handle non-compliant samples by discarding them, leading to potentially indefinite inference
times. In this talk, I present a novel approach that embeds a constraint layer into the

topology of deep generative models to account for the relationships between the features.

This layer automatically incorporates background knowledge and ensures compliance with
these constraints during both training and inference. I first present our method for handling
linear constraints and then discuss its extension to support quantifier-free linear real arithmetic
constraints. Experimental results show that our layer significantly improves the machine
learning efficacy of deep generative models without hindering sample generation times. This
framework is part of our broader goal of bringing neuro-symbolic Al onto the stage of
real-world applications.

3.13 Expressive Power of Graph Neural Networks via Datalog

David Tena Cucala (Royal Holloway, University of London, GB,
David. TenaCucala@rhul.ac.uk)

License @ Creative Commons BY 4.0 International license
© David Tena Cucala

This talk discusses recent results on the expressive power of Graph Neural Networks (GNNs)
operating on relational datasets. We consider two sub-classes of GNNs: monotonic GNNs
and max GNNs, and then we identify Datalog fragments or extensions that realize the same
transformations as these GNNs. Monotonic GNNs are GNNs subject to restrictions ensuring
that their behaviour is monotonic under homomorphisms applied to their input. Max GNNs
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are subject to the restriction that they use the max function to aggregate information.
Finally, we illustrate some applications of these results, in the areas of GNN verification and
explanation of predictions.

3.14 Static Analysis Methods for Neural Networks
Caterina Urban (INRIA and ENS Paris, FR, caterina.urban@inria.fr)

License @ Creative Commons BY 4.0 International license
© Caterina Urban
Joint work of Caterina Urban, Maria Christakis, Valentin Wiistholz, Fuyuan Zhang
Main reference Caterina Urban, Maria Christakis, Valentin Wiistholz, Fuyuan Zhang: “Perfectly parallel fairness
certification of neural networks”, Proc. ACM Program. Lang., Vol. 4(OOPSLA), pp. 185:1-185:30,
2020.
URL https://doi.org/10.1145/3428253

Formal methods provide rigorous guarantees of correctness for both hardware and software
systems. Their use is well established in industry, notably to certify safety of critical
applications subject to stringent certification processes. With the rising prominence of
machine learning, the integration of machine-learned components into critical systems presents
novel challenges for the soundness, precision, and scalability of formal methods. This talk
serves as an introduction to formal methods tailed for machine learning software, with a focus
on static analysis methods for neural networks. We present several verification approaches,
highlighting their strengths and limitations, through the lens of different (hyper)safety
properties. A neural network surrogate from a real-world avionics use case serves as a
running example. We additionally survey the application of these verification approaches
towards the additional goal of enhancing machine learning explainability. We conclude with
perspectives on possible future research directions in this rapidly evolving field.

3.15 From Learning with Constraints to Partial Label Learning
Zsolt Zombori (Alfréd Rényi Institute of Mathematics — Budapest, HU, zombori@renyi.hu)

License ) Creative Commons BY 4.0 International license
© Zsolt Zombori
Joint work of Zsolt Zombori, Agapi Rissaki, Krist6f Szabd, Wolfgang Gatterbauer, Michael Benedikt
Main reference Zsolt Zombori, Agapi Rissaki, Kristéf Szab6, Wolfgang Gatterbauer, Michael Benedikt: “Towards
Unbiased Exploration in Partial Label Learning”, CoRR, Vol. abs/2307.00465, 2023.
URL https://doi.org/10.48550/ARXIV.2307.00465

In numerous learning setups, some background knowledge is available in the form of logical
constraints. Such constraints can be useful both for increasing the safety of the trained
models and for alleviating data shortage by making learning more effective. In this talk we
review different types of constraints and how they can possibly be incorporated into the
learning or inference process. We also identify a bias phenomenon that occurs during gradient
descent based optimisation with constraints, preventing proper exploration of alternative
options and making the dynamics of gradient descent overly sensitive to initialisation. We
introduce a novel loss function that allows for unbiased exploration within the space of
alternative outputs.
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3.16 Learning with Constraints: Probabilistic Methods
Emile van Krieken (University of Edinburgh, GB, Emile.van.Krieken@ed.ac.uk)

License @ Creative Commons BY 4.0 International license
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ten Teije
Main reference Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van Harmelen, Annette
ten Teije: “A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference”, in
Proc. of the Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 — 16,
2023, 2023.
URL http://papers.nips.cc/paper_ files/paper/2023/hash/4d9944ab3330fe6af8e¢fb9260aa9f307- Abstract-
Conference.html

I discuss probabilistic methods for learning with constraints. First, I recap practical issues
with fuzzy methods. Then, I introduce the weighted model count (WMC), the central
equation underlying probabilistic methods for integrating constraints. The WMC gives
many theoretical guarantees. With the WMC at hand, I describe a popular constraint
loss method called “Semantic Loss”, and a constraint layer called “Semantic Probabilistic
Layers”. This part ends with a comparison of the strengths and weaknesses of probabilistic
and fuzzy methods. After this introduction to the core methods, I describe several issues
with constraint losses, starting with Reasoning Shortcuts. This is the phenomenon that
models may completely minimise the constraint training loss without learning underlying
concepts. I also discuss issues with a conditional independence assumption that is frequently
taken in practical setups. I end with a brief introduction of state-of-the-art methods for
tackling these issues, and a recap of the methods discussed in this two-part tutorial.

4  Breakout Sessions

4.1 Verification

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Oxford, GB, michael.benedikt@cs.ozx.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
License @@ Creative Commons BY 4.0 International license

© Vaishak Belle, Michael Benedikt, Dana Drachsler-Cohen, and Daniel Neider
Joint work of All participants

Formal verification of ML is currently overly focusing on a very specific set of properties,
whose real-world applicability may not be fully correlated with the amount of work poured
into it. The community must extend towards the ML community and regulators to provide
expressive, sound tools that help better characterize complex systems (for instance, multiple
NNs or complex constraints on data) with expressive languages and principled compilation
toward provers. For this endeavor to be realized, languages should be accessible to non-experts
(possibly through constrained means). Furthermore, verifiers should scale to realistic settings,
and creative ways to devise specifications should be pursued, for instance by synthesizing
properties.
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4.2 Expressivity

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Oxford, GB, michael.benedikt@cs.ozx.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
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Joint work of All participants

Research on expressivity in advanced ML architectures highlights several open challenges,
such as how Transformers handle compositions and whether components like positional
encodings are truly necessary. The community must develop principled logical frameworks
that clarify which expressions are learnable, while balancing “succinctness” and expressivity
so that models remain trainable in realistic settings. Logical upper and lower bounds can
guide the design of new architectures and help prevent unintended behaviors (e.g., through
constrained losses or temporal constraints). Success stories such as the Weisfeiler-Lehman
(WL) approach in graph learning show the value of bridging logical theory and ML practice,
though some models (like k-WL) have proven impractical. Looking ahead, we should refine
these analyses for GNNs, consider how different architectural features shape learning, and
pursue sound yet accessible methods that integrate logic and machine learning across diverse
applications.

4.3 Explainability

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Ozford, GB, michael.benedikt@cs.ox.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
License ) Creative Commons BY 4.0 International license
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Research on explainability in ML highlights challenging trade-offs between model performance
and interpretability, particularly in high-stakes domains where trust and transparency are
paramount. While methods such as SHAP or LIME offer partial insights, the community
still grapples with fundamental questions about how to align expert understanding with
possibly less accurate yet more transparent models. Practical benefits extend beyond
improved decision-making: interpretable systems can foster scientific discovery by exposing
the reasoning behind model predictions, enabling knowledge transfer across tasks, and
ensuring that ethical constraints are thoroughly verified. Ultimately, progress in explainability
hinges on identifying scenarios where transparent models demonstrably outperform black-box
approaches, attracting broader funding and community engagement, and integrating reverse-
engineerable explanations that help pinpoint out-of-distribution cases and other critical
failures.
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4.4 Learning with Background Knowledge & Constraints

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Oxford, GB, michael.benedikt@cs.ozx.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
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There are several key challenges and considerations in integrating constraints into Al systems,
particularly in enhancing performance across various metrics such as safety, data efficiency,
accuracy, model size, and generalizability. One of the main challenges identified is demon-
strating measurable improvements in real-world scenarios. The discussion also emphasized
the need for parametric synthetic datasets with controllable properties, particularly for
out-of-distribution (OOD) testing. Additionally, the topic of constraint discovery is high-
lighted, exploring how constraints can be learned and analyzed in terms of their expressivity,
complexity, and geometric properties. The value proposition centers on the advantages of
incorporating constraints into Al models beyond just improving accuracy. These advantages
include ensuring safer Al decisions, reducing the need for labeled data, enabling more compact
models, and improving robustness. The discussion extends beyond traditional models to
generative Al, emphasizing that constraints should not only enforce syntactic correctness
but also contribute to semantic understanding. We also outline potential teaching material
for conveying these neuro-symbolic (NeSy) concepts. The curriculum would begin with
a general motivation for NeSy, explaining the complementary strengths of symbolic and
statistical approaches. It would introduce key ingredients, including logic (e.g., knowledge
graphs, description logics, and logic programming), probabilistic methods, fuzzy logic, neural
predicates, and knowledge compilation. The discussion would then cover how these elements
integrate into different architectures, addressing aspects such as layers, loss functions, and
predicate grounding. A key theme underlying NeSy is encapsulated in the phrase “Why learn
what you already know?”, suggesting that constraints should guide AI systems by leveraging
prior knowledge efficiently.

4.5 Combining Verification and Constraints

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Oxford, GB, michael.benedikt@cs.ox.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
License @ Creative Commons BY 4.0 International license

© Vaishak Belle, Michael Benedikt, Dana Drachsler-Cohen, and Daniel Neider
Joint work of All participants

Research on combining constraints and verification in ML underscores the need to ensure
that critical requirements remain satisfied, especially when models are treated as black
boxes. While constraints can guide the design of more easily verifiable networks — by
reducing complexity or limiting nonlinearities — they often need verification to confirm that
these properties hold in practice. In turn, verification methods benefit from constraints by
narrowing the solution space or allowing for surrogate models that can more efficiently detect
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potential errors. Challenges persist in communicating across different communities (e.g.,
security experts operating in black/grey-box settings), devising effective regularizations that
maintain performance while improving verifiability, and tackling relational constraints that
are notoriously difficult to encode directly. Achieving progress in these areas will require
deeper collaboration and possibly new architectures, loss functions, or partitioning strategies
that streamline verification while preserving robust performance.

4.6 Combining Explainability, Expressiveness, and Constraints

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Oxford, GB, michael.benedikt@cs.ozx.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
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Negative results on expressiveness show that logical formulas can be difficult to apply
for direct explainability. Traditionally, constraints are motivated by safety rather than
explainability, but recent approaches use logical constraints to explain network internals
— such as analyzing neuron correlations when given specific images. This strategy could
simplify various explainability tasks by leveraging a suitable logical framework, potentially
informed by knowledge representation techniques. Several open challenges include determining
whether expressive architectures inherently complicate constraint enforcement, identifying
parameter sets that minimize constraint violations, and discovering methods to isolate
network components corresponding to specific constraints. Addressing these issues could
lead to more transparent decision-making grounded in logic-based insights.

4.7 Combining Verification and Explainability

Vaishak Belle (University of Edinburgh, GB, vaishak@ed.ac.uk)

Michael Benedikt (University of Ozford, GB, michael.benedikt@cs.ox.ac.uk)

Dana Drachsler-Cohen (Technion, IL, ddana@ee.technion.ac.il)

Daniel Neider (TU Dortmund University, DE, daniel.neider@tu-dortmund.de)
License ) Creative Commons BY 4.0 International license

© Vaishak Belle, Michael Benedikt, Dana Drachsler-Cohen, and Daniel Neider
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Formal explanation techniques from classical software — such as SMT solving and UNSAT cores
— primarily focus on input/output properties and safety, yet they do not always capture the
intricacies of neural networks. Meanwhile, gradient-based attributions in neural networks can
be brittle or overly localized, raising questions about how to ensure explanations generalize
to unseen instances and how to pinpoint “interventions” that actually shift predictions.
Explainable AI (XAI) and verification both rely on abstraction to address these issues:
verification uses abstraction to isolate properties that can be formally proven or disproven,
whereas explanation refines the model’s salient behaviors so users can understand how inputs
map to outputs. By capturing properties at a higher level, we obtain amenable properties
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for explanations, that can be more easily communicated and interpreted. Consequently,
joint XAT and verification efforts could devise abstractions that both enable rigorous checks
on model correctness and illuminate the model’s inner workings. This synergy fosters Al
systems that are trustworthy and interpretable, bridging the gap between formal correctness
and human-centered understanding.
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