Report from Dagstuhl Seminar 25092
Estimation-of-Distribution Algorithms: Theory and
Applications

Josu Ceberio Uribe*!, Benjamin Doerr*2, John McCall*3,
Carsten Witt*4, and Marcus Schmidbauer’

University of the Basque Country — Donostia, ES. josu.ceberio@ehu.eus
Ecole Polytechnique — Palaiseau, FR. doerr@lix.polytechnique.fr

The Robert Gordon University — Aberdeen, GB. j.mccall@rgu.ac.uk
Technical University of Denmark — Lyngby, DK. cawi@dtu.dk
Universitdt Passau, DE. marcus.schmidbauer@uni-passau.de

CU W N

—— Abstract

The Dagstuhl Seminar 25092 “Estimation-of-Distribution Algorithms: Theory and Practice” took

place on February 23-28, 2025. It brought together 25 international experts in estimation-of-

distribution algorithms (EDAs) and related research areas. Their research focus ranged from

theoretical aspects like mathematical runtime analyses to efficient solutions of real-world problems

in industrial contexts. This report documents the program and the main outcomes of this fruitful

seminar.
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1 Executive Summary
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The Dagstuhl Seminar “Estimation-of-Distribution Algorithms: Theory and Practice” from
February 23 to 28, 2025, brought together 25 international experts in the field of estimation-
of-distribution algorithms (EDAs). EDAs iteratively evolve a distribution on the search
space (called probabilistic model of the search space) in such a way that better solutions
accumulate probability mass. Consequently, after running an EDA for sufficient time, one
can obtain near-optimal solutions simply by sampling from this probabilistic model. The
expertise of the seminar participants covered a broad variety of aspects ranging, in particular,
from theoretical topics such as mathematical runtime analyses to an applied topics such as
the solution of industrial optimization problems through EDAs.
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The main aim of the seminar was to narrow the gap between theory and practice in
EDAs by bringing together researchers from both sides and stimulating interaction. We
facilitated this interaction through two long introductory talks on theory of EDAs and on
typical applications of EDAs, through some regular conference-style talks discussing recent
substantial results, short flash talks presenting new ideas and open problems, and breakout
sessions for focused discussions. At all times, we left ample time for discussions, and flexibly
adjusted the schedule to not cut short interesting discussions.

We believe that the seminar has succeeded its main aims of narrowing the gap between
theory and practice in EDAs. This is visible from the high number of talks and the intensive
discussions both in plenary and breakout sessions. Moreover, all participants attended
essentially all sessions and all stayed for the full five days of the seminar. Given the large
number of truly leading experts from academia and industry usually having overloaded

schedules, this shows the success of the seminar, and the Dagstuhl Seminar center in general.

The seminar has identified several promising research directions, which can be explored
in the reminder of this report. One that deserves particular mention is the relation of
model-based genetic algorithms, that use additional mechanisms to understand the search
space structure, and multi-variate EDAs, that try to understand the search space via the
core working principles of EDAs. Here clearly a more intensive exchange of ideas is very
promising, and will surely result from this seminar.

Overall, we feel that this was a very successful seminar, and, also in the name of the
participants, we thank Dagstuhl for enabling us to conduct this seminar at Schloss Dagstuhl,
which was the ideal place for this type of seminar.
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3 Overview of Talks

3.1 Multi-Armed Bandits and Algorithm Configuration and their
connections to EDAs (Self-presentation)

Jasmin Brandt (Universitit Paderborn, DE)

License ) Creative Commons BY 4.0 International license
© Jasmin Brandt
Main reference Jasmin Brandt, Viktor Bengs, Bjorn Haddenhorst, Eyke Hiillermeier: “Finding Optimal Arms in
Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget”, in Proc. of
the Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.
URL http://papers.nips.cc/paper__files/paper/2022/hash/820¢95997d050178323230e316897¢38- Abstract-
Conference.html
Main reference Jasmin Brandt, Elias Schede, Bjorn Haddenhorst, Viktor Bengs, Eyke Hiillermeier, Kevin Tierney:
“AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration”, in Proc. of the
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence, ITAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAATI 2023, Washington, DC, USA, February 7-14, 2023,
pp. 12355-12363, AAAI Press, 2023.
URL https://doi.org/10.1609/AAAL.V37110.26456

In this talk, a brief introduction to the Multi-Armed Bandit and Algorithm Configuration
problem was given. I presented my recent work on combinatorial bandits and the challenges
during the extension of the theoretical analysis to Algorithm Configuration. In addition, the
connection of the problems to EDAs was shortly outlined.

3.2 Inversion vectors: an alternative representation for permutations
Josu Ceberio Uribe (University of the Basque Country — Donostia, ES)

License ) Creative Commons BY 4.0 International license
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Joint work of Josu Ceberio Uribe, Aimar Barrena, Ekhine Irurozki, Jose A. Lozano, Mikel Malagén

Many optimization algorithms use permutations to represent solutions, but despite their
apparent simplicity, permutations present significant challenges for optimization methods,
particularly for Global Random Search algorithms. The mutual-exclusivity constraint
complicates the learning and sampling of probability distributions over the permutation
space, often requiring costly numerical computations. An alternative approach involves
using bijective functions on S,, to transform permutation-coded solutions into integer-vector
representations known as inversion vectors.

Although inversion vectors have been recognized for centuries, a comprehensive and
unified framework for them is lacking. In this paper, we provide formal definitions and a
unified notation for all types of inversion vector codifications. We then establish bijective
transformations between these codifications, enabling the characterization of their relation-
ships and properties. Finally, we apply this theoretical framework to explain the behavior of
UMDA algorithms when different inversion vectors are used in various permutation problems.
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3.3 Searching Permutations for Constructing Uniformly Distributed
Point Sets

Carola Doerr (Sorbonne University — Paris, FR)

License @@ Creative Commons BY 4.0 International license
© Carola Doerr
Joint work of Frangois Clément, Carola Doerr, Kathrin Klamroth, Luis Paquete
Main reference Francois Clément, Carola Doerr, Kathrin Klamroth, Luis Paquete: “Transforming the Challenge of
Constructing Low-Discrepancy Point Sets into a Permutation Selection Problem”, CoRR,
Vol. abs/2407.11533, 2024.
URL https://doi.org/10.48550/ ARXIV.2407.11533

Uniformly distributed point sets of low discrepancy are heavily used in experimental design
and across a very wide range of applications such as numerical integration, computer
graphics, and finance. Recent methods based on Graph Neural Networks [1] and solver-based
optimization [2] identified point sets having much lower discrepancy than previously known
constructions. We show that further substantial improvements are possible by separating
the construction of low-discrepancy point sets into (i) the relative position of the points, and
(ii) the optimal placement respecting these relationships. Using tailored permutations, we
construct point sets that are of 20% smaller discrepancy on average than those proposed
by Rusch et al. In terms of inverse discrepancy, our sets reduce the number of points in
dimension 2 needed to obtain a discrepancy of 0.005 from more than 500 points to less than
350. For applications where the sets are used to query time-consuming models, this is a
significant reduction.

References

1 T.K. Rusch, N. Kirk, M.M. Bronstein, C. Lemieux, D. Rus, Message-Passing Monte
Carlo: Generating low-discrepancy point sets via graph neural networks. Proc. Natl. Acad.
Sci. U.S.A. 121, 2409913121 (2024). https://doi.org/10.1073/pnas.2409913121 Free
version available at https://arxiv.org/abs/2405.15059

2 F. Clément, C. Doerr, K. Klamroth, L. Paquete, Constructing Optimal L., Star Discrepancy

Sets. To appear in Proc. of the AMS. Preprint available at https://arxiv.org/abs/2311.

17463

3.4 An Introduction to Search Trajectory Mining
Martin Fyvie (The Robert Gordon University — Aberdeen, GB)

License @ Creative Commons BY 4.0 International license
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Population-based metaheuristics are commonly used to solve complex optimization problems,
but their stochastic nature often obscures decision-making processes. As these algorithms
are increasingly deployed in critical domains requiring end-user interaction, the need for
explainability has grown. This presentation introduces trajectory mining as a post-runtime
analytical framework for enhancing the transparency of optimization methods including
Estimation of Distribution Algorithms, Genetic Algorithms, Particle Swarm Optimization,
and Differential Evolution.

Our approach is based on the use of Principal Components Analysis to project algorithm
search trajectories onto lower-dimensional sub-spaces, capturing population evolution from
initialization to convergence. Novel metrics such as Mean Variable Contribution identify
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decision variables with highest impact on search behaviour and solution quality. These ana-
lyses, complemented by statistical testing, extract explanatory features that reveal algorithm
behaviour across diverse problem landscapes, allowing search behaviour comparisons.

We show from experiments on benchmark problems and real-world applications how
trajectory mining can be used to identify influential variables and reveal key learning steps
that help to explain fitness outcomes. These insights can inform the design of new algorithm
variants while improving end-user understanding of solution quality and algorithm behaviour,
particularly in domains requiring human-algorithm collaboration.

3.5 It's Always the Step-Size
Nikolaus Hansen (INRIA Saclay — Palaiseau, FR)

License ) Creative Commons BY 4.0 International license
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By the semantics of the parameter K in cGA, we identify analogous places “of K” in the
CMA-ES. However, in the CMA-ES, we cannot use the same value for K in all of these
places. In particular, in the (m, C) parametrization of the distribution, the C' update must
have a much larger K value (a smaller learning rate) than the m update, usually n?/u vs 1.
Otherwise, CMA-ES fails to work. In the CMA-ES, genetic drift is usually only observable
when the objective is noisy and we discuss how failures can be observed. Anecdotal evidence
also suggests that a failure of ES or CMA-ES is often due to a failure of the step-size
adaptation, in particular also when the objective is noisy where we observe the smallest
eigenvalue of C' to drift to zero exponentially fast.

3.6 Can EDAs be useful for Data augmentation and Imputation?

Jose Ignacio Hidalgo (Complutense University of Madrid, ES)

License @ Creative Commons BY 4.0 International license
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Joint work of Jose Ignacio Hidalgo, Oscar Garnica, J. Mauel Velasco, Jessica Megane

Main reference José Ignacio Hidalgo, Marta Botella, J. Manuel Velasco, Oscar Garnica, Carlos Cervigén, Remedios
Martinez, Aranzazu Aramendi, Esther Maqueda, Juan Lanchares: “Glucose forecasting combining
Markov chain based enrichment of data, random grammatical evolution and Bagging”, Appl. Soft
Comput., Vol. 88, p. 105923, 2020.

URL https://doi.org/10.1016/J.ASOC.2019.105923

In this talk, we present the work of our group on blood glucose prediction for individuals with
diabetes, where we utilize Estimation of Distribution Algorithms in two distinct parts of the
modeling process. First, we applied a UMDA to learn the weights of an ensemble model for
glucose prediction. Second, we also use a UMDA to improve the data augmentation process.

I divided the talk in three parts. In the first part I quickly revised how I used a comatc
GA, a basic EDA, for solving the main contribution of my PhD Thesis: Partitioning of digital
ciruits for Multi-FPGA implementation. I also mentioned in this part the previous work on
EDAs in collaboration gith UPM, Roberto Santana, Pedro Larrafiaga, Concha Bielza an
Alfredo Cuesta, where we proposed the use of Archimedean Copulas as the model of a Joint
Distribution Fuuhction in an EDA.
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The second part of the talk was devoted to explain our work on Blood Glucose prediction
for peole with diabetes. We have beeb applying Grammatical Evolution approaches for the
last 12 years. In those works we use EDAs, in particular an UMDA. First, we applied a
UMDA to learn the weights of an ensemble model for glucose prediction. Second, we also
use a UMDA to improve the data augmentation process.

Finally, we propose a new problem for EDAs to solve in the context of the EARCO project.
EARCO stands for European Alpha-1 Research Collaboration. It is a pan-European network
committed to promoting clinical research and education in alpha-1 antitrypsin deficiency
(AATD).

3.7 Is Deep Optimization an EDA?
Joshua D. Knowles (SLB Cambridge Research, GB)

License @ Creative Commons BY 4.0 International license
© Joshua D. Knowles
Main reference Jamie Caldwell, Joshua D. Knowles, Christoph Thies, Filip Kubacki, Richard A. Watson: “Deep
Optimisation: Transitioning the Scale of Evolutionary Search by Inducing and Searching in Deep
Representations”, SN Comput. Sci., Vol. 3(3), p. 253, 2022.
URL https://doi.org/10.1007/S42979-022-01109-W

Deep Optimization is an algorithm that uses deep association networks to learn epistatic
structure in a problem while optimizing it, and that works recursively applying parts of itself
to itself. It was introduced in 2018 by Jamie Caldwell et al, [1] and it comes out of and
develops ideas from Richard A. Watson’s 25 years of research on models of symbiogenetic
evolution. It appears to perform remarkably well on some problems (including learning
constraints with no explicit constraint handling mechanism), however that’s presently a
tentative statement because it’s not in common use. The basic form of the algorithm is
an EDA but it also departs from other EDAs in some ways that I'll explain. I have new
results to show based on work I did with MSc students last year; these improve the algorithm
significantly on hard multiple knapsack problem instances. Questions: Is Deep Optimization
correctly classified as an EDA? Is it better than other EDAs? Why/why not? How should
we measure its performance (since it has more and different overhead than other EDAs)?
Is there a lighter-weight version of it that would be better for theoretical analysis? What
theoretical tools would be needed to analyse Deep Optimization properly?

References

1 Caldwell, J.R., Watson, R.A., Thies, C. and Knowles, J.D., 2018. Deep optimisation:
Solving combinatorial optimisation problems using deep neural networks. arXiv preprint
arXiv:1811.00784.

2 Caldwell, J., Knowles, J., Thies, C., Kubacki, F. and Watson, R., 2022. Deep optimisa-
tion: Transitioning the scale of evolutionary search by inducing and searching in deep
representations. SN Computer Science, 3(3), p.253.
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3.8 Estimation-of-Distribution Algorithms for Multi-Valued Decision
Variables

Martin S. Krejea (Ecole Polytechnique — Palaiseau, FR)

License @ Creative Commons BY 4.0 International license
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Main reference Firas Ben Jedidia, Benjamin Doerr, Martin S. Krejca: “Estimation-of-distribution algorithms for
multi-valued decision variables”, Theor. Comput. Sci., Vol. 1003, p. 114622, 2024.
URL https://doi.org/10.1016/J.TCS.2024.114622

The majority of research on estimation-of-distribution algorithms (EDAs) concentrates on
pseudo-Boolean optimization and permutation problems, leaving the domain of EDAs for
problems in which the decision variables can take more than two values, but which are not
permutation problems, mostly unexplored. To render this domain more accessible, we propose
a natural way to extend the known univariate EDAs to this setting. Different from a naive
reduction to the binary case, our approach avoids additional constraints. Since understanding
genetic drift is crucial for an optimal parameter choice, we extend the known quantitative
analysis of genetic drift to EDAs for multi-valued, categorical variables. Roughly speaking,
when the variables take r different values, the time for genetic drift to become significant is r
times shorter than in the binary case. Consequently, the update strength of the probabilistic
model has to be chosen r times lower now. To investigate how desired model updates take
place in this framework, we undertake a mathematical runtime analysis on the r-valued
LeadingOnes problem. We prove that with the right parameters, the multi-valued UMDA
solves this problem efficiently in O(r In(r)?n? In(n)) function evaluations. Overall, our work
shows that our good understanding of binary EDAs naturally extends to the multi-valued
setting, and it gives advice on how to set the main parameters of multi-values EDAs.

3.9 Introduction to Theoretical Analyses of EDAs
Timo Kotzing (Hasso-Plattner-Institut, Universitit Potsdam, DE)

License ) Creative Commons BY 4.0 International license
© Timo Kétzing

The Theory of EDAs, conducted as a run time analysis of specific EDAs applied to test
functions, has a history of close to 20 years. In this talk, I review some of the core results
provided by the theory of EDAs. I give insights into main paradigms and the models used
by theoreticians.

Discussing results, I present different settings pertaining to (a) hill climbing; (b) noise,
rugged landscapes and local optima; (¢) behavior in the absence of a signal.
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3.10 Faster Optimization Through Genetic Drift
Johannes Lengler (ETH Ziirich, CH)

License @ Creative Commons BY 4.0 International license
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Joint work of Cella Florescu, Marc Kaufmann, Johannes Lengler, Ulysse Schaller, Dirk Sudholt, Carsten Witt

Main reference Cella Florescu, Marc Kaufmann, Johannes Lengler, Ulysse Schaller: “Faster Optimization Through
Genetic Drift”, in Proc. of the Parallel Problem Solving from Nature — PPSN XVIII — 18th
International Conference, PPSN 2024, Hagenberg, Austria, September 14-18, 2024, Proceedings, Part
I11, Lecture Notes in Computer Science, Vol. 15150, pp. 70-85, Springer, 2024.

URL https://doi.org/10.1007/978-3-031-70071-2_5

I gave some new perspective on genetic drift. While genetic drift is often seen as something
to be avoided, as it produces mistakes, I discuss a simple problem, dynamic BinVal, for which
it is faster to accept those mistake and use aggressive updates that correct them quickly.
This talk is part of a general discussion at Dagstuhl on when one should avoid or accept
genetic drift.

References
1 Johannes Lengler, Dirk Sudholt, and Carsten Witt. “The complex parameter landscape of
the compact genetic algorithm.” Algorithmica 83 (2021): 1096-1137.

3.11 Introduction to EDAs
John McCall (The Robert Gordon University — Aberdeen, GB)

License @ Creative Commons BY 4.0 International license
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In this talk I provide an introduction to Estimation of Distribution Algorithms (EDA). I
begin with the general concept of an EDA: that one models the distribution of fitness over a
search space and by sampling this distribution one hopes to generate high fitness solutions
with a high probability.

The talk covers a range of key EDA techniques including: linkage learning; model
parameterisation, model sampling; and adaptation to different representation spaces. I also
present some EDA applications on test functions, theoretical benchmarks and to real world
applications in biocontrol and marine scheduling.

In summary, EDAs are a mature and successful optimisation metaheuristic based on
mathematically-principled statistical modelling that have been applied across all major
problem representations and in the real world.

3.12 Estimation of Distribution Algorithms using generative Machine
Learning models

Franz Rothlauf (Universitat Mainz, DE)
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The talk discussed the development of EDAs using generative ML models over the last 15
years.
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3.13 From Fitness Landscapes to Problem Factorizations: A Machine
Learning Perspective

Roberto Santana (University of the Basque Country — Donostia, ES)
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Boston, Massachusetts, USA, July 9 — 13, 2022, pp. 858-866, ACM, 2022.
URL https://doi.org/10.1145/3512290.3528856

This talk discusses the use of machine learning models — particularly neural networks — to
automate various components of evolutionary search by leveraging information from the
problem’s fitness landscape. A general framework is presented in which the search model
comprises three elements: (1) data from the fitness landscape; (2) a neural network; and
(3) a machine learning task. As a specific instance of this framework, the talk presents the
problem of learning neural embeddings for NK landscapes [1]. In this scenario, the goal is to
learn an embedding-based representation of an NK landscape instance, where each binary
solution of the NK problem is mapped to a continuous vector. To construct this embedding,
each NK model solution is treated as a word in a vocabulary. Sentences are sequences of NK
solutions related by predefined semantics (e.g., walks in the fitness landscape), and a corpus
is a large collection of such sentences.

The talk also proposes alternative scenarios in which fitness landscape data correspond to
local optima networks (LONSs) [2], represented as annotated graphs. Graph neural networks
are employed to process these LONs, and the machine learning task involves algorithm
parameter generation by producing a factorization of the optimization problem — one that
could be exploited by a factorized distribution algorithm (FDA). The work aligns with
approaches that integrate ML techniques with classical exploratory landscape analysis for
automated algorithm selection [3], as well as with applications of graph neural networks in
solving combinatorial optimization problems [4].

Finally, the talk addresses the question of theory choice [5] for Estimation of Distribution
Algorithms, advocating for the use of factorizations as a fundamental component of EDA
theory. This is justified by their potential to provide simplicity, broad applicability, fruitful-
ness, and accuracy — particularly due to their compatibility with widely accepted theories in
the ML field.
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3.14 The use of the Doubly Stochastic Matrix models for the Quadratic
Assignment Problem

Valentino Santucci (University for Foreigners of Perugia, IT)
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Permutation problems have captured the attention of the combinatorial optimization com-
munity for decades due to the challenge they pose. Although their solutions are naturally
encoded as permutations, in each problem, the information to be used to optimize them can
vary substantially. Therefore, we discussed two types of permutation problems: ordering
problems and assignment problems. The Quadratic Assignment Problem (QAP) is perhaps
the most prominent example of permutation problems of assignment type. In the talk we
discussed how it is possible to use Doubly Stochastic Matrices (DSMs) to address QAP in the
context of Estimation of Distribution Algorithms. To that end, we discussed efficient learning
and sampling schemes that enable an effective iterative update of the probability model.
We analyzed the effectiveness of the discussed model both on QAP and on the the Linear
Ordering Problem (LOP), a well-known example of permutation problem of ordering type.
The talk concluded with a description of the potential uses of DSMs for other optimization
paradigms, such as genetic algorithms or model-based gradient search.

3.15 Linkage-Learning Evolutionary Algorithms: Recent Theoretical
Advances

Marcus Schmidbaver (Universitit Passau, DE)
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Linkage Learning (LL) aims at detecting dependencies between problem variables. We gave a
short introduction into LL and, in particular, contrasted different linkage-learning techniques.
Statistical Linkage Learning (SLL) uses frequencies of gene value combinations, whereas
Empirical Linkage Learning (ELL) is based on investigating how perturbation influences the
fitness of a solution. We proved the correctness of ELL on the Hierarchical If-and-only-if
(H-IFF) problem. Further, we stated bounds on the expected runtime of the ELL-based
Parameter-less Population Pyramid (P3) on H-IFF.

3.16 Estimation of Distribution Algorithms and the Ising Model
Jonathan L. Shapiro (University of Manchester, GB)
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This talk discussed Estimation of Distribution Algorithms and the Ising Model.
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3.17 Vine Copula-Based Estimation of Distribution Algorithms for
Multivariate Continuous Optimization

Marta Rosa Soto Ortiz (CaizaBank Tech — Madrid, ES)
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Estimation of Distribution Algorithms (EDAs) are a class of generative models within
evolutionary computation that build probabilistic models from selected solutions in order to
generate new candidate solutions. In the continuous multivariate setting, traditional EDAs
often assume Gaussian distributions and linear dependencies between variables. However,
these assumptions are restrictive and rarely hold in complex, real-world scenarios.

To address these limitations, we adopt vine copula models, which offer a flexible framework
by decoupling the modeling of marginal distributions from the dependency structure. Vine
copulas capture dependencies between variables — regardless of their individual distributions —
by learning them directly from the data, allowing for a broad range of pairwise relationships,
including asymmetric, nonlinear, and non-monotonic interactions.

Moreover, vine copulas decompose the joint dependency structure into a product of
conditional bivariate copulas, organized hierarchically in a sequence of trees known as R-
vines. This architecture allows different copula families to be assigned to different variable
pairs within the same decomposition, making it highly adaptable to the complex dependency
patterns found in real-world data.

We illustrate the effectiveness of this approach through real-world examples, where vine
copulas successfully capture diverse dependency patterns — such as tail dependence and
complex variable dependencies — that Gaussian-based models fail to represent. In addition,
we introduce copulaedas, an R package available on CRAN, which implements a complete
vine copula-based EDA framework, including model learning and sampling procedures.

Our findings show that vine copulas significantly enhance the modeling capabilities of
EDAs, enabling more expressive and adaptive search distributions for continuous optimization
problems.

3.18 Optimal Mixing in Model-based Evolutionary Algorithms
Dirk Thierens (Utrecht University, NL)
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This talk discussed Optimal Mixing in Model-based Evolutionary Algorithms.

3.19 Estimated Distributions and Warm Starts
Vanessa Volz (CWI — Amsterdam, NL)
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Estimation-of-Distribution Algorithms (EDA) learn the underlying structure of a given
black-box problem. But can the obtained model be reused for optimising similar problems?
Below, I summarise a discussion on the topic.
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In the field of evolutionary computation (EC), problems are commonly assumed to be
a black box. However, in most real-world settings, solving a problem with sophisticated
methods is only considered profitable if it is recurring, i.e. if different instances of the
same problem are encountered repeatedly. For example, logistics companies need to solve
comparable routing problems every day. Medical professionals need to create effective
treatment plans for similar conditions. Hyperparameters of algorithms need to be adjusted
for each new task. While the underlying problem structures remain unknown, black-box
optimisation approaches could be iteratively tailored to the regularly encountered problem
over time (across instances). Essentially: Learning to optimise.

Some work on warm-starting EDAs exists, for example for CMA-ES ([1] for Hyperpara-
meter Optimisation and [2] for contextual optimisation). A structural transfer framework
using EDAs has also been proposed in [3].

For some problems, such as ensemble selection of machine learning models for different
data folds, the optima may be assumed to be in similar locations. In these cases, when
running an EDA, warm-starting from the previously estimated distribution (with higher
exploration settings) might be sufficient for improving algorithm performance. In other cases,
additional domain knowledge would be required to determine how the obtained information
can be transferred. However, in most settings, what kind of similarity exists between instances
would need to be established first. How this can be done remains an open question.
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3.20 Runtime Analysis of the Multi-valued cGA
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In this talk, we discuss recent advances in the runtime analysis of the multi-valued cGA,
defined in the framework by Ben Jedidia et al. [5]. We consider an r-valued LeadingOnes
function and prove a runtime bound of O(n?r? (log® n+log? 7)) that holds with high probability.
For an r-valued OneMax function counting the number of positions of value » — 1, we prove
a bound of O(nr(logn + log? 7)), which improves the previously best bound by Hamano et
al. [4] by a logarithmic factor and is tight for » = 2. Finally, we discuss a second generalization
of OneMax to the r-valued domain, which sums up the integer values of all positions and
hence has a maximum value of n(r — 1). For this function, the multi-valued ¢GA is proved
to find the optimum in time O(nr?(log? n + logr)) with high probability. Our proofs are
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based on analyses of stochastic drift of the frequencies for value r — 1 and bounds on their
genetic drift. Finally, we discuss why the bound for the second OneMax-function is probably
not tight.
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4 Working groups

4.1 Breakout Session: Learning Distributions with Deep Learning
Josu Ceberio Uribe (University of the Basque Country — Donostia, ES)
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The breakout session explored applications of deep learning for learning distributions, with
a focus on alternatives to traditional Maximum Likelihood Estimation (MLE) approaches.
Starting point of the session was the following:

Traditional MLE methods often require intensive computation,

Model capacity must appropriately capture variable interactions,

Deep learning offers computational efficiency while maintaining modeling power.

There was no common position, but rather, each participant presented a different vision
of what the title of the session might mean. As a result, participants suggested various
approaches:

1. Generating variation rather than modeling entire populations,

2. Moving beyond optimization to distribution estimation,

3. Finding optimal search directions,

4. Leveraging deep learning models (both custom-trained and existing LLMs) to guide
search point selection,

Developing higher-level learning models adaptable to various problems,

Using fitness approximation for ranking or selection,

7. Integrating selection directly into learning processes using fitness information.

o o

Finally, the conversation expanded to more general ideas:

Learning movement patterns or genetic operators (crossover, mutation),

Developing black-box iterative models that learn movement, selection, and solution
representation,
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Projection techniques into embedding spaces to reduce interactions while preserving
information,

Relationships with Bayesian Optimization,

Solution quality prediction and generation (potential GAN applications).

4.2 Breakout Session: Exploration versus Exploitation

Duc-Cuong Dang (Universitit Passau, DE), Jonathan L. Shapiro (University of
Manchester, GB)
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Participants. Jonathan L. Shapiro, Franz Rothlauf, Carsten Witt, Vanessa Volz, Jasmin
Brandt, Timo Koétzing, Martin S. Krejca, Aishwarya Radhakrishnan, Andrew M. Sutton,
Marcus Schmidbauer, Duc-Cuong Dang

To get everyone on the same page, Jonathan Shapiro highlighted the importance of
exploitation and exploration as in the case of Reinforcement Learning (RL): at any time one
always have to decide between using the current information to exploit immediate rewards,
versus exploring the alternatives that may lead to better rewards later.

The first question we discussed is whether it is a good strategy to explore first and exploit
later. This is the case with traditional Evolutionary Algorithms (EAs), the algorithms often

converge in the end. Some participants noted that this is not the case for EDAs like BoA.

Marcus Schmidbauer added that in the case of GOMEA, a multivariate model-building
algorithm, it is a combination of extreme exploitation with extreme exploration. Timo
Kotzing added a comment that there is a fundamental difference between RL and EA: in
EAs, the rewards are not immediate. The notion of neighbourhood is also important: EAs
seem to prefer having nearby good solutions over having random good solutions that are
hard to recombine. Jasmin Brandt commented that we may need a proper definition of
exploitation and exploration. According to Franz Rothlauf, exploitation means finding good
solutions nearby the ones already explored, while doing anything else is exploration.

We then discussed different parameters that can influence the search towards either
exploitation or exploration. In the case of EAs, it appears that that the mutation rate is often
settled to one on average per mutation. However, one should be careful about which EAs are
considered. In the case non-elitist EAs, the balance between mutation and selection does not
necessarily lead to mutation rate of 1/n but it depends on which selection is used or how it is
set. For example, in tournament selection of size k the balance is found exactly at mutation
rate In(k)/n. For EDAs, the following parameters can influence the search: the inverse of
the population size 1/K in ¢cGA; for UMDA, this is the ratio u/\ when the (u,\)-truncation
selection is used to decide which solutions to keep in order to model the next distribution;
the learning rate p in PBIL and related algorithms like Ant Colony Optimisation. From the
theory side, how to control these parameters optimally for simple problems remains an open
question as the existing lower bound techniques and results are scarce.

A common set of parameters that is important for all the above-mentioned algorithms
to avoid the possibility of premature convergence is the borders that limit the frequencies
of bits to be strictly below 1 and strictly above 0. In practical applications, the use of
these borders is essential as one may absolutely wants to avoid degenerated distributions, an
example is the application Franz Rothlauf has in his talk. Related to this, Jonathan Shapiro
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asked, in practices how to avoid identify that the learned model is general enough and not
over-fitted. This is a hard question, and often the case this comes back to a good engineering
practice, or a familiarity with the problems and algorithms. Martin S. Krejca put forwards
the following question: Is there any way to adjust the borders, somehow reflecting the amount
of confidence on doing the right thing at any given time? Jasmin Brandt added that in
the case of multi-arm bandit problems, the confidence interval is a well-defined concept. A
related question we discussed is how to detect that the entropy of the model is too low early
on, or are the techniques developed for stagnate detection in EAs useful for EDAs?

In summary, we all agree that the balancing exploitation and exploration is relevant to
all areas of Evolutionary Computation, including EDAs. We know how to deal with them for
practical problems, however formulating them as statements with rigorous proofs remains
challenging. The good news is that even in a lack of recommendations, there is a technique
from theory that allow selecting the values for parameters efficiently based on power-law
distributions.

4.3 Breakout Session: Univariate versus Multivariate 2

Duc-Cuong Dang (Universitit Passau, DE), Jonathan L. Shapiro (University of
Manchester, GB)
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Participants. Jonathan L. Shapiro, John McCall, Joshua D. Knowles, Carola Doerr, Vanessa
Volz, Nikolaus Hansen, Josu Ceberio Uribe, Valentino Santucci, Alistair Benford, Andrew M.
Sutton, Martin S. Krejca, Roberto Santana, Duc-Cuong Dang

The breakout session began with a discussion of the trade-off between having an accurate
model, at the expense of intensive computation, as in the case of building graphical models
in EDAs, versus having less accurate models that are faster to learn, but at the risk of
misleading or slowing down the search for optimal solutions.

We agree that in practical runs of EDAs, there may not be a clear separation between the
phase of learning an accurate model and that of using that model to find optimal solutions
as the model is often learned along the way. More importantly, as pointed out by Nikolaus
Hansen, for solving an optimisation problem, finding an accurate model can be misleading:
we only want to find the best solutions. In fact, we want models that can help the search in
finding better solutions, or in finding improvements to the existing solutions, more efficiently.
In other words, a good model should help guide the search towards the optimal solutions,
and need not be an accurate description of those solutions.

We then discussed whether there are practical problems where there are clear interactions
between variables, but the univariate model is still useful, as this is often argued by theory
research (most existing theory papers only focus on univariate models). John McCall gave
an example of such settings for a scheduling problem in chemotherapy. In this application,
thousands of interactions between variables are detected between the variables, but univari-
ate algorithms like PBIL/DEUM still outperform hBOA. The current hypothesis for the
inefficiency of hBOA, which is stuck with medium quality solutions, is that this is due to
the dominance of different terms in the objectives. It could be very interesting if there is a
mathematical description that can capture this property.
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As the discussion progressed, we asked the question whether the computational budget or
parameter settings, like the sample size, can have some influence on the success of univariate
models. This is because the univariate model is cheaper to learn, compared to models with
interactions. From the practical side, practitioners have noticed that on some problems,
the population or the sample size needs to be set above a certain threshold for the search
to be successful. We then discussed the settings in which the computational budget is less
of an issue, whether multivariate models are always the better choice. Nikolaus Hansen

mentioned a counter-example of the sector-sphere function where univariate performs best.

In addition, trying to adapt the step sizes on this function may worsen the progress of
optimisation. Similar effects can be observed for the case of LONGPATH and SURFSAMP in
discrete optimisation, and this is related to the general issue of balancing exploitation and
exploration.

We then discussed whether multivariate models might limit the diversity of solutions.

In other words, in multivariate EDAs, how does the entropy of the model evolve as the
search progresses? Nikolaus Hansen said that it tends to increase as we learn more about
the models. He added that a good indicator of a good model is that the entropy of sampled
solutions within a fitness level should be high. Carola Doerr drew the parallel with black-box

complexity: if we know more about the problem at hand, we want to have higher entropy.

For example, if we know that we are solving a ONEMAX-type problem, the best algorithm
is to sample O(n/logn) solutions uniformly at random, and then infer a consistent target
string based on the acquired fitness of these random solutions.

The following questions were also discussed during the breakout session.

1. Isit always a good practice to first try univariate models first and then try the multivariate
ones? There is no consensus among the participants on this question.

2. What is the current state of theory research on multivariate models? As far as we know,
the only theory research on multivariate models is about linkage-learning, e.g. the papers
by Dirk Sudholt and co-authors.

3. Should we model improvement moves (or directions) instead of that of solutions? After
our discussion, we incline towards modelling the improvement moves.

4. TIs there any benefit for building a model from scratch instead of incremental learning,
and vice-versa? This is open.

5. Are the weights of detected interactions important to learn, and how to use them? This
is open.

6. Is there a way to learn the model implicitly, or somehow avoid the burden of building an
explicitly accurate model? This is open, but there are related ideas about projecting the
search into other spaces where there may be less deception.

4.4 Breakout Session: Genetic Drift 1
Martin S. Krejca (Ecole Polytechnique — Palaiseau, FR)
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Participants. Alistair Benford, Jasmin Brandt, Josu Ceberio Uribe, Duc-Cuong Dang,
Benjamin Doerr, Carola Doerr, Martin Fyvie, Nikolaus Hansen, Joshua Knowles, Timo
Kotzing, Martin S. Krejca
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This breakout session discussed the phenomenon of genetic drift in estimation-of-
distribution algorithms (EDAs). The discussion meandered a bit while it took place. The
following summary rearranges it logically, grouping it in terms of different points that were
discussed.

We started the session by Benjamin’s explanations of the mathematical results for genetic
drift in univariate EDAs on binary problems, which mostly concerns the cGA and the PBIL.
In this setting, genetic drift refers to the random movement of frequencies in the probabilistic
model without any true signal from the objective function. In the case of constant objective
functions, we have strong concentration bounds that tell us how long it takes until a frequency
randomly moves by at least €. It was also mentioned that the resulting bounds can be used
for a smart restart scheme, which recommends to restart an EDA whenever it is likely that a
frequency could have moved too far due to genetic drift. When restarting, the step size of an
update should be halved (which usually means that the population size should be doubled).

This explanation raised the question how realistic this analysis is, since real objective
functions are not constant. It was clarified that genetic drift is usually superimposed by the
true signal of an objective function, but that it is hard to analyze it in its generality, which
is why the mathematical analysis assumes a constant objective function, which represents
the full effect of pure genetic drift.

A natural question that followed was whether this phenomenon also shows up in practice
and whether it is relevant. It was agreed upon that genetic drift does show up in practice,
but it was less clear whether it is relevant. The consensus was ultimately that is is indeed
relevant but that practitioners may not care about it due to other, more pressing issues,
such as budgetary constraints or the wishes of the customer. A typical approach is to simply
rely on best practices, which traditionally aim at reducing the impact of genetic drift (albeit
without mathematical guarantees).

Afterward, the discussion moved to other types of search spaces. It was mentioned that
genetic drift is also present for multi-valued discrete search spaces, where it is even easier to
have a greater (detrimental) effect, due to generally smaller starting values of the frequencies.
Afterward, the question came up to what extent genetic drift is visible in continuous search
spaces. The conclusion was that it also shows up there and also poses a problem.

With genetic drift being a general problem, other questions were whether it is possible to
detect genetic drift somehow and how it behaves in the presence of noise. Regarding the
detection, it was mentioned that the sig-cGA operates on only updating a frequency when a
statistical significance in the objective function is detected. This approach allows to directly
measure (with a certain confidence) that genetic drift did not occur. This approach should
not be largely affected by noise. Otherwise, more traditional EDAs are known to cope well
with noise, but only if the step size is chosen sufficiently small (suggesting again a smart
restart scheme in the general case).

These points were followed up by questions how genetic drift relates to similar phenomena
in other settings, such as multi-armed bandits and reinforcement learning. For multi-armed
bandits, it was not so clear how this directly translates to the setting of EDAs, since there
is no real exploitation in the binary domain, as the two possible choices for a variable are
either 0 or 1. However, assigning a confidence to each frequency is something that aligns well
with multi-armed bandits and seems like a good strategy. As for reinforcement learning, the
question was whether the approach of adding uniform samples periodically with a certain
probability could prove promising to counteract genetic drift. The argument was brought
forth that uniform samples are not a good choice. However, in continuous problems, it is not
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uncommon to add noise on purpose to the samples and to then assess whether the selection
is affected by this choice. If it is, then the learning rate is increased. Something similar could
potentially prove useful for EDAs as well.

In the same vein as the connection to reinforcement learning, the question came up
whether it is smart to introduce an artificial bias into the update that explicitly counteracts
genetic drift. This has been done before in theoretical studies to great effect, but the paper
on the sig-cGA shows that this can also easily backfire. A static approach is not useful, as
the bias can be stronger than the signal of the objective function, which renders optimization
unsuccessful. However, a dynamically adjusting approach could maybe work.

In conclusion, genetic drift is a real and important problem that is hard to detect. Being
able to detect it could tremendously improve the situation. The sig-cGA as well as the
concept of adding noise on purpose and adjusting the step size based on whether this affects
selection can be promising ways to reduce the impact of genetic drift. However, these details
need to be worked out in greater detail analytically.

4.5 Breakout Session: Univariate versus Multivariate 1
Timo Kotzing (Hasso-Plattner-Institut, Universitit Potsdam, DE)
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In this breakout session we discussed univariate versus multivariate EDAs.

We started by discussing insights dating back to 80s / 90s. In particular, we discussed a
concatenated (summed) Trapj function, and the difference to LeadingOnes-concatenated
Trapg. Univariate EDAs or uniform crossover can optimize this function if the gap in function
value between local optima is large enough. It might also work if parameter scale with k
sufficiently, due to averaging over many traps. If the gap in fitness is small, the function is
“fully deceptive”, univariate EDAs get stuck, same with crossover. As an aside: univariate
EDAs might be “more stuck” than EAs. Mutlivariate EDA can learn blocks; can swap all
blocks. This is highly related to the work of Miihlenbein, Ochoa and others.

We then discussed how to learn the linkage. How can one do it efficientily? The direct
algorithm scales quadratic in the number of variables, which can be too much. Many problems
with low computation time use UMDA instead. Some modern algorithms can do better (eg
GOMEA).

4.6 Breakout Session: Genetic Drift 2

Johannes Lengler (ETH Ziirich, CH) and Carsten Witt (Technical University of Denmark —
Lyngby, DK)

License @ Creative Commons BY 4.0 International license
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This 2nd breakout session on genetic drift considered its definition, theoretical implications,
and practical considerations in various types of EDAs. The participants discussed how genetic
drift affects algorithm performance, its distinction to stochastic drift, and potential strategies
for mitigating its impact.

The following key points were debated in the session.
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Definition and Characteristics of Genetic Drift

Genetic drift was described as the loss of alleles in a population due to stochastic effects. In
an infinite population model, genetic drift cannot lead to a loss of alleles. To avoid too strong
genetic drift, the population size of an EDA usually has to scale linearly in problem size
on benchmark problems like BV (Binary Value) and LO (LeadingOnes). This was already
observed in early literature.

Distinguishing Genetic Drift from Stochastic Drift

Empirical evidence suggests sharp thresholds in population size that determine genetic drift
behavior. The role of minimum population size in modeling multivariate problems was
debated. The impact of genetic drift on neutral versus non-neutral bits was questioned.

Genetic Drift in Specific Problem Settings

For constrained problems (e.g., knapsack), the effect of different selection operators on drift
as discussed. Ising models (related to so-called checkerboard problems) were proposed as
potential test cases. Whether genetic drift occurs on fitness plateaus was questioned. The
Dynamic BinVal problem was suggested as another theoretical test bed.

Counteracting Genetic Drift

In theoretical studies, borders on marginal frequencies are used to avoid fixation at extreme
values. Multi-factor EDAs use Bayesian priors to prevent premature fixation. Tournament
selection in UMDA and its potential impact on genetic drift was explored. Hybrid approaches
combining EDAs with local search were proposed to mitigate drift. Finally, theoretical studies
have identified scenarios (dynamic BinVal) where genetic drift can speed up optimization.

Algorithmic and Theoretical Considerations

Studying PBIL instead of UMDA was suggested as potentially more insightful. Again, the
role of population size in determining genetic drift was highlighted. The phenomenon of
domino convergence was discussed in relation to problem landscapes like BinVal and OneMax.

Broader Implications and Open Questions

The applicability of genetic drift to machine learning was debated. Whether overparameterized
neural networks exhibit genetic drift was questioned. Symmetry breaking in EDAs and
theoretical analysis of PBIL for feature selection were suggested as future research directions.

4.7 Breakout Session: Explainability of EDAs

John McCall (The Robert Gordon University — Aberdeen, GB) and Josu Ceberio Uribe
(University of the Basque Country — Donostia, ES)
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In this session, we approached the “explainability” of EDAs from the point of view of expert
practitioners. That is to say, what can be derived empirically from the EDA process that
can potentially be useful in gaining an understanding of an EDA? The key starting point
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for the discussion was the observation that runs of an EDA using a Probabilistic Graphical
Model (PGM) will generate sequences of PGMs. These can be considered as trajectories of
the EDA through model space. What might be learned from these trajectories?

The trajectories are a function of EDA parameters (population size, selection pressure)
and problem characteristics (the distribution of fitness over solutions). Generally, insights
can be gained from varying algorithm or problem characteristics and deriving statistical
relations.

Problems can also be decomposed using certain functional bases on solution spaces (Walsh,
continuous Fourier, discrete Fourier). There is rich potential for exploiting this when the
PGM explicitly distributes fitness over these basis components, also known as “problem
structure.”

In black-box scenarios, where the problem structure is unknown and so there is no
decomposition available, does it make sense to capture first-order structure, then second-
order, and so on to higher orders? Structure detection algorithms are widely used in EDAs
and so there is a potential value in mining PGM trajectories for problem structure. We
wonder if there is an algorithm that tries to guess the most interesting representation to
optimize a problem.

How can a decomposition of the above help when designing an algorithm? Can structural
features of problem classes suggest EDAs specialized to learn how fitness is distributed
across those structures? Might the behavior of such EDAs on such problems be amenable to
theoretical analysis?

EDA experts in the group observed that by examining PGM trajectories you can sometimes
manually identify solutions that are better than those sampled from the model by the EDA,
even after parameter optimization. Can we learn more efficiently from those trajectories?

In the context of real-world problems, often similar problems need to be frequently
solved. We discussed how to gain knowledge about the problem family by running EDAs on
the problem and extracting recurrent model structures. Related to this, transfer learning
works on EDAs, and incremental-BOA were discussed. There were cases where models
learnt in certain iterations were re-used in later iterations (i+1, i4+2, i43,...). We discussed
aggregating trajectories of EDA executions, and then using SVD-type techniques to remove
noise, and hence gain insights about recurrent structures. We discussed whether ensembles
of algorithms (the same algorithm with different parameters run on the same problem) might
help in problem understanding. This was related to Island models. In some real-world
problems such as scheduling, such analysis can be used to identify resources that need to be
carefully allocated early in the solution process, while others may be fixed later and can be
flexibly allocated. This also gives a lot of information about the process. We discussed the
general concept of “backbones” of important variables that, once optimally set, reduce the
complexity of optimizing the remaining variables.

We discussed the relation between EDA theory and EDA explainability, with a special
focus on the phase transition between divergence and convergence of algorithms and the
relation to population size. A key theme arising many times in the seminar was the focus
of EDA theory on genetic drift whereas researchers of large-scale and applied EDAs never
consider but see premature convergence as a major problem. The process of adjusting
population size appears to be analogous to the role of K in theory. Is there potential for
combining theoretical and empirical analysis to understand this phase transition?

In the context of UMDA (or PBIL), we considered statistical analysis of univariate
probabilities as a source of information about the problem. Does the explainability approach
discussed in this group offer a bridge between the two EDA communities to build a framework
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that is useful to both theory and practice? Such a framework would consider a set of problems
with known and controllable structures and explore generalized concepts of K theoretically
and empirically.

4.8 Breakout Session: Linkage Learning

John McCall (The Robert Gordon University — Aberdeen, GB) and Duc-Cuong Dang (Uni-
versitit Passau, DE)

License @ Creative Commons BY 4.0 International license
© John McCall and Duc-Cuong Dang

Participants. John McCall, Marcus Schmidbauer, Benjamin Doerr, Timo Kétzing, Martin
Fyvie, Aishwarya Radhakrishnan, Andrew M. Sutton, Nikolaus Hansen, Carsten Witt,
Duc-Cuong Dang.

The group considered the question “How much precision is needed in linkage learning?”
More fully, for an EDA that learns linkage, either in the form of a PGM (Probabilistic
Graphical Model) or more broadly as families of subsets of variables, to optimise a problem,
is it necessary to incorporate in the EDA model all linkage that is detected.

The discussion focussed around a published paper comparing algorithm performance on
a real world chemotherapy problem. The chemotherapy problem is based on binary strings
encoding dosages of multiple drugs over a time period. The problem contains thousands
of variable linkages based on tumour-size, dosage constraints and toxic side-effects on the
patient. The paper compares a leading multivariate-PGM EDA, hBOA, against a GA and
three univariate EDAs (UMDA, PBIL and a univariate version of DEUM).

The counter-intuitive result is that the univariate algorithms, led by UMDA, all converge
to the (best-known) optimum much faster than hBOA, with far fewer fitness evaluations
and massively less clock time. This is despite the fact that the univariate EDAs learn no
interactions. The GA is outperformed on this problem by all of the EDAs.

There was discussion on the linkage detection method used — if there is no thresholding
then spurious linkages can be detected that have no significance for the problem. hBOA uses
internal linkage parameters that do use thresholding, and note that the inventor of hHBOA
(Martin Pelikan) collaborated on the paper. Moreover, a separate detection algorithm (LDA)
was used to verify the linkages. The paper concludes that, in this example, multivariate
linkage is inessential.

A contrasting example in the case of Concatenated Traps was discussed. Here it can
be shown theoretically that P3 (Parameter-less Population Pyramid), a model-building EA
related to EDAs, requires multivariate linkage-learning to solve the problem in polynomial
time. If only univariate learning is allowed (i.e. no linkage) P3 is shown to require exponential
time to solve Concatenated Traps. Therefore in this example, multivariate modelling is
essential.

Some more general insight into when linkages are essential or inessential can potentially
be gained through Walsh function decomposition of binary functions. More research is needed
into how robust Walsh coefficients are in terms of detecting essential linkage, particularly
under function scaling.

The original question on precision remains open.
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5 Panel discussions

5.1 Discussion Forum: Early Insights on Design and Analysis of EDAs

Duc-Cuong Dang (Universitiat Passau, DE), Timo Kétzing (Hasso-Plattner-Institut, Uni-
versitit Potsdam, DE), Marcus Schmidbauer (Universitit Passau, DE), and Andrew M.
Sutton (University of Minnesota — Duluth, US)

License @@ Creative Commons BY 4.0 International license
© Duc-Cuong Dang, Timo Kétzing, Marcus Schmidbauer, and Andrew M. Sutton

The first part of this session was devoted to early theoretical approaches to the analysis of
Estimation-of-Distribution Algorithms (EDAs). The second one gave a short introduction to
the Cross-Entropy Method (CEM).

First Part: Early Theory on EDAs

Miihlenbein et. al. [1] consider additively decomposed functions, and point out that simple
genetic algorithms fail when they are deceptive. The authors present conditions for such
functions on which the Boltzmann distribution factors into a product over marginal distri-
butions, making them tractable for univariate EDAs. They also demonstrate that when
these conditions do not hold, the factorization is approximate. Further, the authors consider
a purely selection-based EDA using the Boltzmann distribution, called Boltzmann EDA
(BEDA). The authors prove that, for a given e, BEDA on ONEMAX finds the optimum in
N, (specified in the paper) generations with probability at least 1 — e.

Miihlenbein et. al. [2] consider EDAs with infinite populations to solve continuous max-
imisation problems. They define that an EDA converges globally if the average fitness of
the population converges to the globally optimal fitness value as time goes to infinity. The
authors prove that certain purely selection-based EDAs converge globally. Further, they prove
that this is also the case for the Factorized Distribution Algorithm (FDA) with proportional
selection.

Second Part: Introduction to CEM

The idea of CEM [3] when applied to an optimisation problem is to view it as a problem of
estimating the probability of sampling solutions above some quality threshold; typically this
is a rare event and the technique of importance sampling provides an efficient solution. This
is equivalent to minimising the Kullback-Leibler metrics between a family of distributions
defined by some model and the ideal sampling distribution (hence the name cross-entropy) and
analytically solving this minimisation problem produces a specific algorithm for the model,
like in the case of the univariate model we obtain the Univariate Marginal Distribution
Algorithm (UMDA) and then Population-based Incremental Learning (PBIL) via some
smoothing process.
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6 Open problems

6.1 Sampling of Rare Fitness Values
Duc-Cuong Dang (Universitit Passau, DE)
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We discuss the algorithmic design problem of efficiently discovering all fitness values, thus
introducing the notion of (expected) cover time instead of optimisation time. This design
perspective is useful in some situations where the number of possible fitness values is relatively
small and they are well connected.

A prominent algorithm that follows this idea is the so-called Fitness Frequency Assign-
ment [2] which completely ignores the actual fitness values but focuses on the frequencies at
which these values are encountered by the parent and offspring populations. We formulate
this algorithm in its general form as the (u+A)-FFA algorithm using unary unbiased variation
operators and show some of its invariants and a conditional upper bound on the cover time.
It remains an open question how to prove unconditional bounds for some functions such as
OneMax or Jump, since experiments with fixed A\ = 1 suggest that they lie between Q(n?)
and O(n?logn) depending on p. Finally, we introduce the notion of the fitness accessibility
graph, and show that learning this graph on the fly can improve the cover time in some
settings.

As a general question to the research community on EDAs, we want to know what
information and statistics are useful to learn or model, then to exploit in order to minimise
the cover time. Benjamin and Timo suggest a multi-objectivization approach: run GSEMO
on (f(z),—f(x)) and this gives a cover time of O(n%logn) for OneMax and Jump. In
a related work, Aisha and Timo have a paper [1] where they analyse Novelty Search on
OneMinMax and show a non-trivial upper bound O(n?) for the expected optimisation time.
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