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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 25131 “Weihrauch
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the topic (15392).
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1 Executive Summary
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This Dagstuhl Seminar is dedicated to the investigation of two active areas of research, one
in theoretical computer science, the other in mathematical logic. These are computable
analysis on the one hand, and reverse mathematics and applied computability theory on the
other. That there is a deep connection between these areas was first suggested by Gherardi
and Marcone (2008) and later independently by Dorais, Dzhafarov, Hirst, Mileti, and Shafer
(2016) and Hirschfeldt and Jockusch (2016). The past decade has seen this connection blossom
into a rich and productive area of research, with by now many papers and several Ph.D.
theses dedicated to it. Results in this area fall into two intertwined groups: Some clarify
the structure of the degrees of non-computability; some further our understanding of the
precise nature of non-computability of particular computational tasks of interest. Grasping

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Weihrauch Complexity: Structuring the Realm of Non-Computability, Dagstuhl Reports, Vol. 15, Issue 3, pp.
125–158
Editors: Vasco Brattka, Alberto Marcone, Arno Pauly, Linda Westrick, and Kenneth Gill

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vasco.brattka@cca-net.de
mailto:alberto.marcone@uniud.it
mailto:arno.m.pauly@gmail.com
mailto:lzw299@psu.edu
mailto:gillmathpsu@posteo.net
https://doi.org/10.4230/DagRep.5.9.77
https://www.dagstuhl.de/25131
https://doi.org/10.4230/DagRep.15.3.125
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


126 25131 – Weihrauch Complexity: Structuring the Realm of Non-Computability

the nature of non-computability is a profound goal mirroring the quest to understand the
nature of computation. Knowing the degree of non-computability of a computational task
brings with it answers as to whether weaker or approximate versions of it might be solvable.
This interdisciplinary development was fostered not least by the two precursor Dagstuhl
Seminars on this topic.1

The current seminar explored recent trends and results, open questions, and new directions
of this fascinating field of research that has become known as Weihrauch complexity. The
main part of each day was taken up by regular talks, with extra time set aside for two sessions
devoted to open questions and new research directions, as well as plenty of opportunities
for less structured socialization and collaboration. Although the ratio of number of talks
to number of open questions (as represented in the sessions and this report) was nominally
greater than in the previous seminar from 2018, a number of the talks themselves focused
heavily on enumerating open questions and outlining future work, and indeed the field has
only widened in the intervening years. To mention just a few highlights: investigations of
the Weihrauch complexity of reverse-mathematical principles have continued to spur new
developments, and this was reflected accordingly in many of the talks here, representing
the study of “new” principles as well as new light still being shed on old ones. Important
progress has also been made in our understanding of the properties of the Weihrauch lattice
itself, such as the existence of uncountable chains and antichains and the density of the
Weihrauch degrees above the identity map. Operators on Weihrauch degrees were a prominent
theme during the seminar, featuring in the sessions on open problems and new research
directions as well as being central to several talks. A few talks concerned recent work to
place Weihrauch reducibility in context as an instance of a more general sort of object in
category or topos theory.

Last but not least, underscoring the increasingly interdisciplinary interest in this subject,
a well-attended joint evening session was spontaneously planned with the concurrent Dagstuhl
Seminar2 in which a speaker from each seminar gave an expository talk aimed at the other’s
participants: Kevin Schewior spoke about approximate sampling algorithms for stochastic
function evaluation, and Arno Pauly about the non-computability of finding Nash equilibria.

This report includes the abstracts of all talks and other presentations given during the
seminar (except for the joint talks), along with the most recent version of a bibliography on
Weihrauch complexity which was begun during the first Dagstuhl Seminar on the topic in
2015. Altogether, this report reflects the high degree of productivity of our seminar, and we
would like to use this opportunity to thank all participants for their valuable contributions
and the Dagstuhl staff for their excellent support!

1 Seminars 15392 and 18361; see https://doi.org/10.4230/DagRep.5.9.77 and https://doi.org/10.
4230/DagRep.8.9.1.

2 Approximation Algorithms for Stochastic Optimization (25132; see https://www.dagstuhl.de/25132).

https://doi.org/10.4230/DagRep.5.9.77
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3 Overview of Talks

3.1 A category-theoretic account of generalized Weihrauch degrees
Andrej Bauer (University of Ljubljana & Institute for Mathematics, Physics, and Mechanics
– Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Andrej Bauer

Joint work of Danel Ahman, Andrej Bauer

In joint work with Danel Ahman [1] we developed and investigated a general theory of
representations of second-order functionals, based on a notion of a right comodule for a
monad on the category of containers. The theory can be used to give a type-theoretic
account of instance reducibility [2] and, through their realizability interpretation, generalized
Weihrauch degrees.

A container A ◁ P is given by a type A and a type family P : A → Type. A morphism
f ◁ g : (A ◁ P ) → (B ◁ Q) is given by a map f : A → b and a map g :

∏
a:A Q (f a) → P a.

Containers have been studied extensively in type theory and functional programming.
A special case is a propositional container A ◁p P , which is given by a type A and a

predicate P : A → Prop. A morphism of propositional containers f : (A ◁p P ) → (B ◁p Q) is
a map f : A → B such that

∀a:A. Q (f a) ⇒ P a.

In terms of instance degrees, such a map f is a functional instance reduction. The majority
of instance reductions seen in mathematical practice (both classical and constructive) are of
this kind.

The notion of instance reducibility, which states that A ◁p P is reducible to B ◁p Q when

∀a:A. ∃b:B. (Q b ⇒ P a),

can be accounted for in terms of the general theory of representations of second-order
functionals. Namely, it corresponds to the preorder reflection of the Kleisli category for the
inhabited powerset monad on the category of propositional containers [1, Prop. 8.5].

These observations open up the possibility for generalizations of Weihrauch degrees,
and application of type-theoretic and category-theoretic techniques to the topic. They
also show how Weihrauch reducibility is situated in the wider context of representations of
second-order functionals.

References
1 Danel Ahman and Andrej Bauer. Comodule representations of second-order functionals.

Journal of Logical and Algebraic Methods in Programming, 146:101071, 2025.
2 Andrej Bauer. Instance reducibility and Weihrauch degrees. Logical Methods in Computer

Science, 18(3), 2022.
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3.2 Survey on Weihrauch Complexity: Scaffolding, Operators,
Dichotomies

Vasco Brattka (Universität der Bundeswehr – München, DE)

License Creative Commons BY 4.0 International license
© Vasco Brattka

Main reference Vasco Brattka: “The discontinuity Problem”, J. Symb. Log., Vol. 88(3), pp. 1191 – 1212, 2023.
URL https://doi.org/10.1017/JSL.2021.106

We give a survey on basic problems, operators and dichotomies in Weihrauch complexity. In
particular, we describe how LPO and LLPO can be used together with operators such as jump,
parallelization, diamond, first-order part, and deterministic part to generate a whole class of
very basic and important Weihrauch degrees. We describe how these degrees give natural
classes of computable problems and how they match with systems in reverse mathematics.
We also briefly discuss the role of closure and interior operators. Finally, we show how some
of these degrees also lead to dichotomies for continuous problems with respect to continuous
Weihrauch reducibility and different codomains. We close with a brief demonstration of how
such dichotomies can be de-uniformized with the help of parallelization in order to obtain
dichotomies for computable reducibility.

3.3 Effective Reducibility Notions with Transfinite Machine Models
Merlin Carl (Europa-Universität – Flensburg, DE)

License Creative Commons BY 4.0 International license
© Merlin Carl

Joint work of Merlin Carl, Lorenzo Galeotti, Robert Passmann

In recent years, various notions of effectivity and effective reducibility, such as Weihrauch
reducibility and realizability, have been adapted to work on sets of arbitrary size by replacing
Turing computability with computability by transfinite machine models, such as Koepke’s
Ordinal Turing Machines. In this talk, we will give an overview of this area with some of the
central results, in particular concerning the mutual effective reducibility between the axioms
and axiom schemes of ZFC usually regarded as non-constructive or impredicative, such as
the power set axiom, the axiom of choice, and the schemes of separation and replacement.

References
1 Merlin Carl. Effectivity and reducibility with ordinal Turing machines. Computability 10(4)

(2021), 289-304. doi: doi:10.3233/COM-210307.
2 Robert Passmann. The first-order logic of CZF is intuitionistic first-order logic. Journal of

Symbolic Logic 89(1) (2022), 308-330. doi:10.1017/jsl.2022.51.
3 Merlin Carl, Lorenzo Galeotti, and Robert Passmann. Realisability for infinitary in-

tuitionistic set theory. Annals of Pure and Applied Logic 174(6):103259 (2023). doi:
doi:10.1016/j.apal.2023.103259.

4 Merlin Carl. Full generalized effective reducibility. Submitted (2025). arXiv: 2411.19386.
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3.4 A well-quasi-order for continuous functions
Raphaël Carroy (University of Torino, IT)

License Creative Commons BY 4.0 International license
© Raphaël Carroy

Joint work of Raphaël Carroy, Yann Pequignot
Main reference Raphaël Carroy, Yann Pequignot: “A well-quasi-order for continuous functions”, CoRR,

Vol. abs/2410.13150, 2024.
URL https://arxiv.org/abs/2410.13150

We prove that continuous reducibility – or topological strong Weihrauch reducibility – on
continuous functions from a 0-dimensional analytic domain to a separable metrizable space
is a well-quasi-order, or more precisely, a better-quasi-order. To do so, we introduce and
describe the class of scattered continuous functions with a 0-dimensional domain.

3.5 The category of quasi-Polish spaces as a represented space
Matthew de Brecht (Kyoto University, JP)

License Creative Commons BY 4.0 International license
© Matthew de Brecht

Main reference Matthew de Brecht: “The category of quasi-Polish spaces as a represented space”, 2021
URL https://www.mathsoc.jp/section/topology/topsymp/2021/ts2021Brecht.pdf

We construct the category of quasi-Polish spaces as a represented space, which allows us to
investigate the computability aspects of some category theoretical constructions, such as
functors and limits, within the framework of Type-Two Theory of Effectivity. As an example,
we demonstrate the computability of the lower, upper, double, and valuation powerspace
endofunctors on the category of quasi-Polish spaces. (This talk was originally presented at
the 68th Topology Seminar, August 2021: https://www.mathsoc.jp/section/topology/
topsymp.html)

3.6 The tree pigeonhole principle in the Weihrauch degrees
Damir D. Dzhafarov (University of Connecticut – Storrs, US)

License Creative Commons BY 4.0 International license
© Damir D. Dzhafarov

Joint work of Damir D. Dzhafarov, Reed Solomon, Manlio Valenti
Main reference Damir D. Dzhafarov, Reed Solomon, Manlio Valenti: “The Tree Pigeonhole Principle In The

Weihrauch Degrees”, The Journal of Symbolic Logic, p. 1–23, 2025.
URL https://doi.org/10.1017/jsl.2025.11

I will discuss recent work studying versions of the tree pigeonhole principle, TT1, in the
context of Weihrauch-style computable analysis. The principle has previously been the
subject of extensive research in reverse mathematics, an outstanding question of which
investigation is whether TT1 is Π1

1-conservative over the ordinary pigeonhole principle, RT1.
Using the recently introduced notion of the first-order part of an instance-solution problem,
we formulate the analogue of this question for Weihrauch reducibility, and give an affirmative
answer. In combination with other results, we use this to show that unlike RT1, the problem
TT1 is not Weihrauch requivalent to any first-order problem. Our proofs develop new
combinatorial machinery for constructing and understanding solutions to instances of TT1.
This is joint work with Reed Solomon and Manlio Valenti.

25131
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3.7 No dilator characterizes Ramsey’s theorem for pairs
Anton Freund (Universität Würzburg, DE)

License Creative Commons BY 4.0 International license
© Anton Freund

Main reference Anton Freund: “Dilators and the reverse mathematics zoo”, Journal of Mathematical Logic,
p. 2550010, 0.

URL https://doi.org/10.1142/S0219061325500102

Dilators are particularly uniform transformations of well-orders. Above ACA0, every Π1
2

statement corresponds to a dilator, by a classical result of Girard. In contrast, we show
that no dilator corresponds to Ramsey’s theorem for pairs and two colours (and the same
is true for many other principles from the reverse mathematics zoo). Our proof involves a
new principle of slow transfinite Π0

2-induction, which admits a recursive counterexample but
seems to lie below the Turing jump (though the latter is an open conjecture).

3.8 Formalization of Weihrauch reducibility in second-order arithmetic
between existence statements

Makoto Fujiwara (Tokyo University of Science, JP)

License Creative Commons BY 4.0 International license
© Makoto Fujiwara

Joint work of Makoto Fujiwara, Yudai Suzuki
Main reference Makoto Fujiwara and Yudai Suzuki. Formalization of Weihrauch reducibility in second-order

arithmetic between existence statements. Accepted to Computability.

We formalize the notion of Weihrauch reducibility between existence statements in terms
of second-order arithmetic [1], which is a standard framework of reverse mathematics.
This formalization enables us to determine the strength of verification theories needed for
Weihrauch reducibility between existence statements. As an example, we show that for any
second-order theory T which is an extension of RCA0, weak König’s lemma with a uniqueness
hypothesis is Weihrauch reducible to the identity map in T if and only if T proves weak
König’s lemma. This is joint work with Yudai Suzuki.

References
1 S. G. Simpson. Subsystems of Second Order Arithmetic, 2nd ed. Cambridge University Press,

2009.

3.9 Reverse Math of Regular Countable Second Countable Spaces
Giorgio G. Genovesi (University of Leeds, GB)

License Creative Commons BY 4.0 International license
© Giorgio G. Genovesi

Main reference Giorgio G. Genovesi: “Reverse mathematics of regular countable second countable spaces”, CoRR,
Vol. abs/2410/22227, 2024.

URL https://arxiv.org/abs/2410.22227

One approach to studying theorems of general topology in second order arithmetic is to
consider the countable second countable spaces, or CSC spaces. There are several classical
theorems in general topology which characterize the regular CSC spaces. We go over the
strength of some of these theorems in relation to the Big Five systems of second order
arithmetic. We also outline how ATR0 proves that regular Hausdorff CSC spaces are a
well-quasi-order under embedding.
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3.10 Pigeonhole principles for countable structures
Kenneth Gill (La Salle University – Philadelphia, US)

License Creative Commons BY 4.0 International license
© Kenneth Gill

Joint work of Kenneth Gill Damir Dzhafarov, Reed Solomon
Main reference Kenneth Gill: “Indivisibility and uniform computational strength”, Log. Methods Comput. Sci.,

Vol. 21(2), 2025.
URL https://doi.org/10.46298/LMCS-21(2:22)2025

A countable structure is said to be indivisible if for every presentation and every bounded
coloring of the presentation, there is a monochromatic substructure isomorphic to the whole
structure. Examples include the natural numbers, Rado and Henson graphs, and nonscattered
linear orders. This notion naturally gives rise to an instance-solution problem which outputs
such a substructure given a presentation and coloring. We discuss the Weihrauch degrees
of these problems in general and for some specific structures, surveying what is known
and highlighting current investigations. This is (in part) joint ongoing work with Damir
Dzhafarov and Reed Solomon.

3.11 Forests Describing Topological Weihrauch Degrees of Functions
with Discrete Range

Peter Hertling (Universität der Bundeswehr – München, DE)

License Creative Commons BY 4.0 International license
© Peter Hertling

We show that a certain initial segment of the degree structure of functions with discrete,
possibly infinite, range under continuous Weihrauch reducibility is isomorphic to a hierarchy
of labeled forests with respect to a suitable reducibility relation. We also present an explicit
calculation of the degree structure of the topological Weihrauch degrees of functions of level
of discontinuity at most 4.
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3.12 Basis theorems: Reverse mathematics and Weihrauch reductions
Jeffry L. Hirst (Appalachian State University – Boone, US)
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Joint work of Caleb Davis, Silva Keohulian, Brody Miller, and Jessica Ross, and separately, with Carl Mummert
Main reference Caleb Davis, Jeffry Hirst, Silva Keohulian, Brody Miller, Jessica Ross: “Reverse mathematics of a

pigeonhole basis theorem”. To appear in Computability (2025).
URL https://hirstjl.github.io/bib/pdf/cb111024LargePrint.pdf

There are a number of basis theorems that are equivalent to Σ0
2 induction in the reverse

mathematics framework. For example, the color basis theorem and the basis theorem for finite
dimensional e-matroids are provably equivalent. They are not Weihrauch equivalent. See
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[1] and [2]. Insights from Weihrauch analysis can motivate interesting reformulations of the
reverse mathematics results. Other examples of statements equivalent to Σ0

2 induction with
various Weihrauch strengths can be found in the recent work of Pauly, Pradic, and Soldà [3].
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3.13 Generalized Weihrauch reducibility
Takayuki Kihara (Nagoya University, JP)
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I will give an overview of generalized Weihrauch reducibility from the perspectives of
computability theory, reverse mathematics, and realizability topos theory, with concrete
examples and applications. This talk will cover the following topics: compositional product,
reduction game, Weihrauch-oracle realizability, constructive reverse mathematics, realizability
topos, Lawvere-Tierney topology, subtopos, and extended generalized Weihrauch reducibility.
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3.14 Recent applications of proof mining to splitting algorithms
Ulrich Kohlenbach (TU Darmstadt, DE)
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Splitting methods play a central role in nonsmooth optimization in the design of algorithms
for the computation of zeros of maximally monotone set-valued operators in Hilbert spaces
which can be written as the sum A + B of two such operators. The main point here is
to avoid the use of the resolvent of A + B and to involve only the individual resolvents
JA, JB of A and B respectively, which may be easier to compute (note that to compute the
resolvents of an operator amounts to solving in inverse problem). The most well-studied
such algorithms are (i) Tseng’s Splitting Algorithm, (ii) the Forward-Backward Splitting
Algorithm, (iii) the Douglas-Rachford Splitting Algorithm and, as the limiting case of (iii),
(iv) the Peaceman-Rachford Algorithm (see e.g. [1]).
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In [7] and [5], the logic-based proof mining methodology ([2]) is used to extract rates of
convergence in certain quantitative forms of uniform monotonicity which give rise to moduli
of uniqueness and hence moduli of regularity in the sense of [6]. The existence of such moduli
has been studied in terms of reverse mathematics and Weihrauch complexity in [3] and in
terms of intuitionistic reverse mathematics recently in [4].
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To appear in Israel Journal of Mathematics.

3.15 Better quasi-orders on labelled trees
Davide Manca (Universität Würzburg, DE)
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Main reference Davide Manca. At the limits of predicativity: the reverse mathematics of ordering relations. Ph.D.
dissertation. To appear (2025).

Kruskal’s theorem states that finite trees with labels in a well quasi-order (wqo) form a wqo
under infima-preserving embeddings. Nash-Williams proved a version of that theorem for
infinite trees, which relies on the stronger notion of better quasi-order [3] (see [1] for the
result for labelled trees). That version has not yet been analyzed in an appropriate context,
such as that of reverse mathematics. On the other hand, a number of weaker results about
the structure of trees with labels in a better quasi-order have been studied, often in relation
to open problems such as the strength of Fraïssé’s conjecture [2]. We review the currently
available results from the point of view of reverse mathematics and discuss some new ones,
as well as some ideas for future research.
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3.16 The Galvin-Prikry theorem in the Weihrauch lattice
Alberto Marcone (University of Udine, IT)
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Joint work of Alberto Marcone, Gian Marco Osso
Main reference Alberto Marcone, Gian Marco Osso: “The Galvin-Prikry Theorem in the Weihrauch lattice”, CoRR,

Vol. abs/2410/06928, 2024.
URL https://doi.org/10.48550/arXiv.2410.06928

We address the classification of different fragments of the Galvin-Prikry theorem in terms of
their uniform computational content. We show that functions related to the Galvin-Prikry
theorem for Borel sets of rank n are strictly between the (n + 1)th and nth iterate of the
hyperjump operator. To this end we establish the following result: a Turing jump ideal
containing homogeneous sets for all ∆0

n+1(X) sets must also contain the nth hyperjump of
X. Similar results also hold for Borel sets of transfinite rank. These findings yield a partial
refinement of previous results in the reverse mathematics of the Galvin-Prikry theorem.
Moreover, in combination with previous results of Marcone and Valenti, they allow us to
obtain a fairly complete picture of the Weihrauch degrees of the functions studied.

3.17 Indices, Computable Discontinuities and the Recursion Theorem
Daniel Mourad (Nanjing University, CN)
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Consider a problem P with at least one computable instance. Let P ′ be the problem whose
instances are indices n such that the nth computable partial function ϕn is an instance of P

and such that P ′(n) = P (ϕn). We investigate the relationship between discontinuity of P

and computability of P ′. We show that if P has a computable discontinuity (which we will
define) then P ′ is not computable. This fact generalizes many applications of the recursion
theorem, such as showing that P ′ is not computable when P = WKL or P = RT1

1. We also
pose some questions about how having the index of a solution rather than the set that the
index encodes influences Weihrauch reductions.

3.18 The equational theory of the Weihrauch degrees
Arno Pauly (Swansea University, GB)
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Joint work of Arno Pauly, Eike Neumann, Cécilia Pradic
Main reference Eike Neumann, Arno Pauly, Cécilia Pradic: “The equational theory of the Weihrauch lattice with

multiplication”, CoRR, Vol. abs/2403.13975, 2024.
URL https://doi.org/10.48550/ARXIV.2403.13975

The algebraic structure of the Weihrauch degrees has long been a subject of study. It is
linked to the “inherent logic of computability”. Identifying the Weihrauch degrees as an
instance of a previously studied class of structures, in particular one with a logical flavour,
could significantly advance our understanding.
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Here we study the equational theory of the Weihrauch lattice with multiplication, meaning
the collection of equations between terms built from variables, the lattice operations ⊔ and
⊓, the product ×, and the finite parallelization (·)∗ which are true however we substitute
Weihrauch degrees for the variables. We provide a combinatorial description of these in terms
of a reducibility between finite graphs, and moreover, show that deciding which equations
are true in this sense is complete for the third level of the polynomial hierarchy. Pradic has
similarly studied the equational structure of the Weihrauch lattice with composition.
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3.19 Weihrauch problems are containers
The equational theory of slightly extended Weihrauch degrees with
composition
Cécilia Pradic (Swansea University, GB)
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I’ll explain that Weihrauch problems can be regarded as containers over the category of
subspaces of Baire spaces and computable maps and that Weihrauch reductions correspond
exactly to container morphisms. Up to restricting to those containers that do not allow
a problem not to answer a question, we get a clean equivalence. We can make similar
observations and elaborations regarding extended/generalized/strong Weihrauch reducibility.

In the second part of the talk, I will discuss the equational theory of the Weihrauch lattice
equipped with (iterated) composition. Terms in this theory can be translated to alternating
automata, and reductions regarded as a somewhat weird kind of simulation. This leads to
decidability and a complete axiomatization that includes a generalization of a result of Linda
Westrick.
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3.20 Principal Spaces
Matthias Schröder (TU Darmstadt, DE)
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We introduce the class of principal topological spaces. Principal spaces have some bizarre
properties which might be useful in Computability Theory. For example, they admit some
automatic continuity properties.

Under the Axiom of Choice, principal spaces are very rare: no infinite Hausdorff space is
principal under AC. By contrast, in Shelah’s model of set theory and thus under the Axiom
of Determinancy a big class of topological spaces relevant to Computable Analysis turn out
to be principal, including all computable metric spaces and, more generally, all functionally
Hausdorff qcb-spaces.
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3.21 Old directions in degree theory
Mariya I. Soskova (University of Wisconsin – Madison, US)
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I was asked to present a brief overview of aspects of degree theory that have been studied
throughout the years. The intention was that researchers interested in the Weihrauch
degrees may use this as a source for questions that they may pursue. I focused on the
following aspects:

I discussed the complexity of the theory of Turing degrees and its fragments when
restricted to statements of limited quantifier complexity. I proposed the following questions
about the Weihrauch lattice: How complicated are the fragments of the theory of DW? At
what quantifier level does decidability break down? Are there upper cones of Weihrauch
degrees with a decidable/less complicated theory? Specifically, what about the cone above
the degree of id?

I discussed the larger structure of the enumeration degrees and ways in which studying
the Turing degrees within this larger context has been illuminating. I introduced the
enumeration-Weihrauch degrees and suggested the following questions: Can enumeration
Weihrauch reducibility be defined entirely in terms of Weihrauch reducibility à la Selman’s
theorem? How do other operators on the Weihrauch degrees live inside the ≤eW-degrees?
Are the Weihrauch degrees definable in the ≤eW-degrees? What is the relationship between
problems represented in the ≤eW-degrees and their total counterparts coming from the
Weihrauch degrees?

I discussed local substructures such as the c.e. Turing degrees and ways in which working
with them has expanded our toolbox (the priority method). I asked what local structures of
the Weihrauch degrees arise naturally or determine the global structure.
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Finally I discussed ways in which effective mathematics influences our view of degree
structures and helps solve purely structural problems within and asked whether a similar
phenomenon can be observed in the Weihrauch lattice.

3.22 Weihrauch degrees without roots
Patrick Uftring (Universität Würzburg, DE)
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Main reference Patrick Uftring: “Weihrauch degrees without roots”, CoRR, Vol. abs/2308.01422, 2023.
URL https://doi.org/10.48550/ARXIV.2308.01422

We answer the following question by Arno Pauly ([1, Open Question 12]): “Is there a
square-root operator on the Weihrauch degrees?” In fact, we show that there are uncountably
many pairwise incomparable Weihrauch degrees without any roots. We also prove that the
omniscience principles LPO and LLPO do not have roots.
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3.23 An overview on the structure of the Weihrauch degrees
Manlio Valenti (Swansea University, GB)
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In this talk, I will provide an overview of what is currently known about the structural
properties of the Weihrauch degrees, including some of the more recent results about the
existence and properties of chains, antichains, intervals and minimal covers, strong minimal
covers, minimal pairs, and embeddings. I will also highlight some open questions and
research directions.
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3.24 On the hierarchy above ATR in Weihrauch degrees and reverse
mathematics

Keita Yokoyama (Tohoku University, JP)
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Joint work of Keita Yokoyama, Yudai Suzuki

In the study of reverse mathematics, the gap between ATR0 and Π1
1-CA0 is rather large,

with many mathematical theorems falling in between. We focus on those theorems which
are described by Π1

2-sentences and examine the hierarchy above arithmetical transfinite
recursion in the context of Weihrauch degrees and reverse mathematics. This is joint work
with Yudai Suzuki.
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4 Open problems

4.1 What to do about all the other Weihrauch lattices?
Andrej Bauer (University of Ljubljana & Institute for Mathematics, Physics, and Mechanics
– Ljubljana, SI)
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The lattice of (generalized) Weihrauch degrees arises as the lattice of instance degrees [1],
interpreted in the Kleene-Vesley topos RT(NN, (NN)eff), based on the function realizability
model [2]. However, the instance degrees may be calculated in any topos to give many new vari-
ants of Weihrauch reduction. For example, in the relative realizability topos RT(Pω, (Pω)eff)
based on Scott’s graph model, we obtain the so-called enumeration Weihrauch lattice.

More generally, any partial combinatory algebra A with an elementary subalgebra A′ be-
gets a relative realizability topos RT(A,A′), see [5], and thereby a Weihrauch-style reducibility
lattice WA,A′ . Of particular interest are examples of pcas A that are also topological spaces,
with A′ their effective parts. Among these are van Oosten’s pca of sequential functionals,
universal Scott domain U, Plotkin’s universal coherent domain Tω, and others.

We propose a new direction of research that studies the alternative Weihrauch lattices. We
expect that John Longley’s notion of simulation [3], also known as as applicative morphism,
and his analysis of topological pcas [4] will be of some help in establishing basic results, and
in particular in relating the variants of Weihrauch lattices.
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4.2 Interior operators in the Weihrauch lattice
Jun Le Goh (National University of Singapore, SG)
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Joint work of Jun Le Goh, Vasco Brattka, Damir Dzhafarov, Reed Solomon, Keita Yokoyama, Vittorio Cipriani,
Arno Pauly

1. Brattka defined an interior operator on the Weihrauch degrees called the upper Turing
cone version of a problem. This problem is induced by the closure operator on P(NN)
given by upward closure under Turing reducibility.
Question: Which other interior operators can we form by considering closure operators
on P(NN)?
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2. The first-order part of a problem f is the maximum Weihrauch degree of a problem g
with codomain N which reduces to f (Dzhafarov, Solomon, Yokoyama). The k-finitary
part of a problem f is the maximum Weihrauch degree of a problem g with codomain
k which reduces to f (Cipriani, Pauly). Pauly observed during this Dagstuhl meeting
that for each represented space X and each problem f , the maximum Weihrauch degree
among all problems with codomain X which reduce to f exists.
Question: For which other represented spaces is this maximum useful? How about
Sierpinski space?

4.3 Question on the strength of the infinite loop closure
Takayuki Kihara (Nagoya University, JP)
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Recently, Brattka introduced the notion of infinite loop operation on Weihrauch problems.
Applying Yoshimura’s unpublished theorem, one can see that the Weihrauch problem F is
closed under the infinite loop operation (the inverse limit) if and only if F -relative realizability
validates the axiom of dependent choice. Therefore, it is an important problem to investigate
which Weihrauch problems are closed under the infinite loop operation. Here, we ask about
the strength of the infinite loop closure of LLPOk (all-or-counique choice on k).

Question: Is LLPO∞∞∞...
k+1 <W LLPO∞∞∞...

k ?
This problem was solved by myself during the conference. That is, LLPO∞∞∞...

k is
equivalent to DNRk, and thus the problem is positively resolved.

4.4 Strong Weihrauch compositional product
Alberto Marcone (University of Udine, IT)
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Main reference Alberto Marcone, Gian Marco Osso: “The Galvin-Prikry Theorem in the Weihrauch lattice”, CoRR,
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In the Weihrauch degrees we have an explicit definition of a multi-valued function f ⋆ g

such that

f ⋆ g ≡W max
≤W

{h ◦ k : h ≤W f ∧ k ≤W g}.

In the paper with Gian Marco Osso we define a multi-valued function f⋆̃g such that if g

is a cylinder then

f⋆̃g ≡sW max
≤sW

{h ◦ k : h ≤sW f ∧ k ≤sW g}.

⋆̃ has some nice properties:
(f⋆̃g)⋆̃h ≡W f⋆̃(g⋆̃h);
(idNN × f)⋆̃g ≡W f ⋆ g;
if g0 ≤W g1, then f⋆̃g0 ≤W f⋆̃g1;
if f0 ≤sW f1 and g0 ≤sW g1, then f0⋆̃g0 ≤sW f1⋆̃g1.
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However, we have examples where g is not a cylinder and max≤sW{h◦k : h ≤sW f ∧k ≤sW
g} either exists but is not represented by f⋆̃g or does not exist.

It would be interesting to characterize when max≤sW{h ◦ k : h ≤sW f ∧ k ≤sW g} exists
and in those cases provide an explicit realizer of this strong Weihrauch degree.

4.5 A question about the the uniform content of index sets
Daniel Mourad (Nanjing University, CN)
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Myhill showed that a set X is productive if and only if the complement of the halting set
K is 1-reducible to X. It follows that the index sets Indn for partial computable functions
are productive. Let IndRed be the problem which takes n and produces the graph of a
1-reduction from K to Indn. Let IndProd be the problem which takes n and produces a
graph of a productive set for Indn. Myhill’s proofs are uniform in the index: G ◦ IndRed is
Weihrauch equivalent to G◦IndProd, where G is the Gödel function which takes a computable
set to one of its indices. It turns out that one does not need the index to produce a graph in
one of the directions: IndRed is Weihrauch reducible to IndProd.

Questions: Is IndRed Weihrauch equivalent to IndProd? How about to G ◦ IndRed?

4.6 On residual operators
Manlio Valenti (Swansea University, GB)
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A residual lattice is a lattice equipped with a monoidal operator ∗ such that for every f and
g there are maximum h and k such that h ∗ f ≤ g and f ∗ k ≤ g. Given the large number of
operators in the Weihrauch lattice, it is natural to ask what are the operators that make the
Weihrauch lattice or its dual a residual lattice. Some of these questions have been already
answered, but we still miss a complete picture. In particular, it is open whether there always
exists a maximum h such that the compositional product f ∗ h is Weihrauch reducible to g.

4.7 Preservation results for well-quasiorders in the Weihrauch lattice
Arno Pauly (Swansea University, GB)
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Results of the form “If X is well-quasiordered, then so is F (X)” for various constructions of
quasi-orders F have been a fruitful subject of study in reverse mathematics. Kruskal’s and
Higman’s theorems are probably the most famous example, but already “If α is an ordinal, so
is 2α” has non-trivial strength. At first glance, such results don’t seem to have computational
content per se. However, we can look at their contrapositives. The algorithmic task then
becomes “Given a quasi-order X and a bad sequence in F (X), find a bad sequence in X”.
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The task of finding a bad sequence in a quasi-ordered merely promised to be non-well was
studied by Goh, Valenti and the author [1, 2]. By investigating how much the Weihrauch
degree decreases if a bad sequence in F (X) is provided as part of the input, we gain insight
on how tightly the non-wqo-ness of F (X) and X are linked in an effective way.
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4.8 A problem on the preservation of well-foundedness
Keita Yokoyama (Tohoku University, JP)
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Consider the following condition for a real X ∈ 2ω: (†) if L is a computable linear order on
ω with no computable infinite decreasing sequence, then X doesn’t compute any infinite
decreasing sequence for L.

Freund and Uftring [1] showed that if X is hyperimmune-free then X satisfies (†). Then,
is the condition (†) equivalent to being hyperimmune-free?

Joseph Miller answered this question. If X is 1-generic, then X satisfies (†), and thus (†)
is a strictly weaker notion than being hyperimmune-free.
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